1
|
Larsen FK, Baksh RA, McGlinchey E, Langballe EM, Benejam B, Beresford‐Webb J, McCarron M, Coppus A, Falquero S, Fortea J, Levin J, Loosli SV, Mark R, Rebillat A, Zaman S, Strydom A. Age of Alzheimer's disease diagnosis in people with Down syndrome and associated factors: Results from the Horizon 21 European Down syndrome consortium. Alzheimers Dement 2024; 20:3270-3280. [PMID: 38506627 PMCID: PMC11095427 DOI: 10.1002/alz.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION People with Down syndrome (DS) have high risk of developing Alzheimer's disease (AD). This study examined mean ages of AD diagnosis and associations with co-occurring conditions among adults with DS from five European countries. METHODS Data from 1335 people with DS from the Horizon 21 European DS Consortium were used for the analysis. RESULTS Mean ages of AD diagnosis ranged between 51.4 (SD 7.0) years (United Kingdom) and 55.6 (SD 6.8) years (France). Sleep-related and mental health problems were associated with earlier age of AD diagnosis. The higher number of co-occurring conditions the more likely the person with DS is diagnosed with AD at an earlier age. DISCUSSION Mean age of AD diagnosis in DS was relatively consistent across countries. However, co-occurring conditions varied and impacted on age of diagnosis, suggesting that improvements can be made in diagnosing and managing these conditions to delay onset of AD in DS. HIGHLIGHTS Mean age of AD diagnosis was relatively consistent between countries Sleep problems and mental health problems were associated with earlier age of AD diagnosis APOE ε4 carriers were diagnosed with AD at an earlier age compared to non-carriers Number of co-occurring conditions was associated with earlier age of AD diagnosis No differences between level of intellectual disability and mean age of AD diagnosis.
Collapse
Affiliation(s)
- Frode Kibsgaard Larsen
- The Norwegian National Centre for Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
| | - R. Asaad Baksh
- Institute of PsychiatryPsychology, and NeuroscienceDepartment of Forensic and Neurodevelopmental Sciences, King's College LondonLondonUK
- The London Down Syndrome (LonDownS) ConsortiumLondonUK
| | - Eimear McGlinchey
- Trinity Centre for Ageing and Intellectual DisabilityTrinity College Dublin, Lincoln GateDublinIreland
- Global Brain Health InstituteTrinity College Dublin & University of CaliforniaSan FranciscoCaliforniaUSA
| | - Ellen Melbye Langballe
- The Norwegian National Centre for Ageing and HealthVestfold Hospital TrustTønsbergNorway
- Department of Geriatric MedicineOslo University HospitalOsloNorway
| | - Bessy Benejam
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
| | - Jessica Beresford‐Webb
- Department of PsychiatryUniversity of CambridgeThe Old SchoolsCambridgeUK
- Cambridgeshire & Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Mary McCarron
- Trinity Centre for Ageing and Intellectual DisabilityTrinity College Dublin, Lincoln GateDublinIreland
| | - Antonia Coppus
- Department of Primary and Community CareRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Juan Fortea
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
- Sant Pau Memory UnitDepartment of NeurologyHospital of Sant Pau, Sant Pau Research InstituteBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Monforte de LemosMadridSpain
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Sandra V. Loosli
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Ruth Mark
- Cognitive NeuropsychologyTilburg UniversityTilburgThe Netherlands
| | | | - Shahid Zaman
- Department of PsychiatryUniversity of CambridgeThe Old SchoolsCambridgeUK
- Cambridgeshire & Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Andre Strydom
- Institute of PsychiatryPsychology, and NeuroscienceDepartment of Forensic and Neurodevelopmental Sciences, King's College LondonLondonUK
- The London Down Syndrome (LonDownS) ConsortiumLondonUK
- South London and the Maudsley NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Llambrich S, Tielemans B, Saliën E, Atzori M, Wouters K, Van Bulck V, Platt M, Vanherp L, Gallego Fernandez N, Grau de la Fuente L, Poptani H, Verlinden L, Himmelreich U, Croitor A, Attanasio C, Callaerts-Vegh Z, Gsell W, Martínez-Abadías N, Vande Velde G. Pleiotropic effects of trisomy and pharmacologic modulation on structural, functional, molecular, and genetic systems in a Down syndrome mouse model. eLife 2024; 12:RP89763. [PMID: 38497812 PMCID: PMC10948151 DOI: 10.7554/elife.89763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Down syndrome (DS) is characterized by skeletal and brain structural malformations, cognitive impairment, altered hippocampal metabolite concentration and gene expression imbalance. These alterations were usually investigated separately, and the potential rescuing effects of green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG) provided disparate results due to different experimental conditions. We overcame these limitations by conducting the first longitudinal controlled experiment evaluating genotype and GTE-EGCG prenatal chronic treatment effects before and after treatment discontinuation. Our findings revealed that the Ts65Dn mouse model reflected the pleiotropic nature of DS, exhibiting brachycephalic skull, ventriculomegaly, neurodevelopmental delay, hyperactivity, and impaired memory robustness with altered hippocampal metabolite concentration and gene expression. GTE-EGCG treatment modulated most systems simultaneously but did not rescue DS phenotypes. On the contrary, the treatment exacerbated trisomic phenotypes including body weight, tibia microarchitecture, neurodevelopment, adult cognition, and metabolite concentration, not supporting the therapeutic use of GTE-EGCG as a prenatal chronic treatment. Our results highlight the importance of longitudinal experiments assessing the co-modulation of multiple systems throughout development when characterizing preclinical models in complex disorders and evaluating the pleiotropic effects and general safety of pharmacological treatments.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Birger Tielemans
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Ellen Saliën
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Marta Atzori
- Department of Human Genetics, KU LeuvenLeuvenBelgium
| | - Kaat Wouters
- Laboratory of Biological Psychology, KU LeuvenLeuvenBelgium
| | | | - Mark Platt
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Laure Vanherp
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Nuria Gallego Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Laura Grau de la Fuente
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of LiverpoolLiverpoolUnited Kingdom
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KU LeuvenLeuvenBelgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Anca Croitor
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | | | | | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU LeuvenLeuvenBelgium
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de BarcelonaBarcelonaSpain
| | | |
Collapse
|
3
|
Oeckl P, Bluma M, Bucci M, Halbgebauer S, Chiotis K, Sandebring-Matton A, Ashton NJ, Molfetta GD, Grötschel L, Kivipelto M, Blennow K, Zetterberg H, Savitcheva I, Nordberg A, Otto M. Blood β-synuclein is related to amyloid PET positivity in memory clinic patients. Alzheimers Dement 2023; 19:4896-4907. [PMID: 37052206 DOI: 10.1002/alz.13046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 04/14/2023]
Abstract
INTRODUCTION β-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimer´s disease (AD), but its relation to amyloid-β (Αβ) pathology is unclear. METHODS We investigated the association of plasma β-synuclein levels with [18F] flutemetamol positron emission tomography (PET) in patients with AD dementia (n = 51), mild cognitive impairment (MCI-Aβ+ n = 18, MCI- Aβ- n = 30), non-AD dementias (n = 22), and non-demented controls (n = 5). RESULTS Plasma β-synuclein levels were higher in Aβ+ (AD dementia, MCI-Aβ+) than in Aβ- subjects (non-AD dementias, MCI-Aβ-) with good discrimination of Aβ+ from Aβ- subjects and prediction of Aβ status in MCI individuals. A positive correlation between plasma β-synuclein and Aβ PET was observed in multiple cortical regions across all lobes. DISCUSSION Plasma β-synuclein demonstrated discriminative properties for Aβ PET positive and negative subjects. Our data underline that β-synuclein is not a direct marker of Aβ pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum. HIGHLIGHTS Blood and CSF β-synuclein levels are higher in Aβ+ than in Aβ- subjects. Blood β-synuclein level correlates with amyloid PET positivity in multiple regions. Blood β-synuclein predicts Aβ status in MCI individuals.
Collapse
Affiliation(s)
- Patrick Oeckl
- German Center for Neurodegenerative Diseases e.V. (DZNE), Ulm, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Marina Bluma
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Marco Bucci
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Steffen Halbgebauer
- German Center for Neurodegenerative Diseases e.V. (DZNE), Ulm, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Konstantinos Chiotis
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Guglielmo Di Molfetta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Lana Grötschel
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Karolinska University, Stockholm, Sweden
| | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- University Clinic and Polyclinic for Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Saini F, Masina F, Wells J, Rosch R, Hamburg S, Startin C, Strydom A. The mismatch negativity as an index of cognitive abilities in adults with Down syndrome. Cereb Cortex 2023; 33:9639-9651. [PMID: 37401006 PMCID: PMC10431748 DOI: 10.1093/cercor/bhad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
Down syndrome (DS) is associated with an ultra-high risk of developing Alzheimer's disease (AD). Understanding variability in pre-AD cognitive abilities may help understand cognitive decline in this population. The mismatch negativity (MMN) is an event-related potential component reflecting the detection of deviant stimuli that is thought to represent underlying memory processes, with reduced MMN amplitudes being associated with cognitive decline. To further understand the MMN in adults with DS without AD, we explored the relationships between MMN, age, and cognitive abilities (memory, language, and attention) in 27 individuals (aged 17-51) using a passive auditory oddball task. Statistically significant MMN was present only in 18 individuals up to 41 years of age and the latency were longer than canonical parameters reported in the literature. Reduced MMN amplitude was associated with lower memory scores, while longer MMN latencies were associated with poorer memory, verbal abilities, and attention. Therefore, the MMN may represent a valuable index of cognitive abilities in DS. In combination with previous findings, we hypothesize that while MMN response and amplitude may be associated with AD-related memory loss, MMN latency may be associated with speech signal processing. Future studies may explore the potential impact of AD on MMN in people with DS.
Collapse
Affiliation(s)
- Fedal Saini
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Fabio Masina
- IRCCS San Camillo Hospital, Via Alberoni, 70, 30126 Lido VE, Italy
| | - Jasmine Wells
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
| | - Richard Rosch
- Department of Clinical Neurophysiology, King’s College Hospital NHS Foundation Trust, Golden Jubilee, Denmark Hill, London SE5 9RS, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3AR, UK
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
| | - Carla Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
- School of Psychology, University of Roehampton, Grove House, Roehampton Lane, London, SW15 5PJ, UK
| | - André Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Ct Rd, London W1T 7BN, UK
| |
Collapse
|
5
|
Imran Sajid M, Sultan Sheikh F, Anis F, Nasim N, Sumbria RK, Nauli SM, Kumar Tiwari R. siRNA drug delivery across the blood-brain barrier in Alzheimer's disease. Adv Drug Deliv Rev 2023; 199:114968. [PMID: 37353152 PMCID: PMC10528676 DOI: 10.1016/j.addr.2023.114968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with a few FDA-approved drugs that provide modest symptomatic benefits and only two FDA-approved disease-modifying treatments for AD. The advancements in understanding the causative genes and non-coding sequences at the molecular level of the pathophysiology of AD have resulted in several exciting research papers that employed small interfering RNA (siRNA)-based therapy. Although siRNA is being sought by academia and biopharma industries, several challenges still need to be addressed. We comprehensively report the latest advances in AD pathophysiology, druggable targets, ongoing clinical trials, and the siRNA-based approaches across the blood-brain barrier for addressing AD. This review describes the latest delivery systems employed to address this barrier. Critical insights and future perspectives on siRNA therapy for AD are also provided.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Fahad Sultan Sheikh
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Faiza Anis
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Nourina Nasim
- Department of Chemistry and Chemical Engineering, Syed Baber Ali School of Science and Engineering, Lahore University of Management Sciences, 54792 Lahore, Pakistan
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; Department of Neurology, University of California, Irvine, CA, 92868, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Rakesh Kumar Tiwari
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
| |
Collapse
|
6
|
Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer's Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel) 2023; 12:antiox12010111. [PMID: 36670973 PMCID: PMC9854894 DOI: 10.3390/antiox12010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Down syndrome (DS) is the most frequent genetic cause of intellectual disability and is strongly associated with Alzheimer's disease (AD). Brain insulin resistance greatly contributes to AD development in the general population and previous studies from our group showed an early accumulation of insulin resistance markers in DS brain, already in childhood, and even before AD onset. Here we tested the effects promoted in Ts2Cje mice by the intranasal administration of the KYCCSRK peptide known to foster insulin signaling activation by directly interacting and activating the insulin receptor (IR) and the AKT protein. Therefore, the KYCCSRK peptide might represent a promising molecule to overcome insulin resistance. Our results show that KYCCSRK rescued insulin signaling activation, increased mitochondrial complexes levels (OXPHOS) and reduced oxidative stress levels in the brain of Ts2Cje mice. Moreover, we uncovered novel characteristics of the KYCCSRK peptide, including its efficacy in reducing DYRK1A (triplicated in DS) and BACE1 protein levels, which resulted in reduced AD-like neuropathology in Ts2Cje mice. Finally, the peptide elicited neuroprotective effects by ameliorating synaptic plasticity mechanisms that are altered in DS due to the imbalance between inhibitory vs. excitatory currents. Overall, our results represent a step forward in searching for new molecules useful to reduce intellectual disability and counteract AD development in DS.
Collapse
|
7
|
Dobrowolska Zakaria JA, Bateman RJ, Lysakowska M, Khatri A, Jean-Gilles D, Kennedy ME, Vassar R. The metabolism of human soluble amyloid precursor protein isoforms is quantifiable by a stable isotope labeling-tandem mass spectrometry method. Sci Rep 2022; 12:14985. [PMID: 36056033 PMCID: PMC9440206 DOI: 10.1038/s41598-022-18869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that β-secretase (BACE1), which cleaves Amyloid Precursor Protein (APP) to form sAPPβ and amyloid-β, is elevated in Alzheimer's disease (AD) brains and biofluids and, thus, BACE1 is a therapeutic target for this devastating disease. The direct product of BACE1 cleavage of APP, sAPPβ, serves as a surrogate marker of BACE1 activity in the central nervous system. This biomarker could be utilized to better understand normal APP processing, aberrant processing in the disease setting, and modulations to processing during therapeutic intervention. In this paper, we present a method for measuring the metabolism of sAPPβ and another APP proteolytic product, sAPPα, in vivo in humans using stable isotope labeling kinetics, paired with immunoprecipitation and liquid chromatography/tandem mass spectrometry. The method presented herein is robust, reproducible, and precise, and allows for the study of these analytes by taking into account their full dynamic potential as opposed to the traditional methods of absolute concentration quantitation that only provide a static view of a dynamic system. A study of in vivo cerebrospinal fluid sAPPβ and sAPPα kinetics using these methods could reveal novel insights into pathophysiological mechanisms of AD, such as increased BACE1 processing of APP.
Collapse
Affiliation(s)
- Justyna A Dobrowolska Zakaria
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Lysakowska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ammaarah Khatri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Matthew E Kennedy
- Deparment of Neuroscience, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Sacco S, Falquero S, Bouis C, Akkaya M, Gallard J, Pichot A, Radice G, Bazin F, Montestruc F, Hiance-Delahaye A, Rebillat AS. Modified cued recall test in the French population with Down syndrome: A retrospective medical records analysis. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2022; 66:690-703. [PMID: 35726628 DOI: 10.1111/jir.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adults with Down syndrome (DS) are at increased risk of developing Alzheimer's disease (AD) due to genetic predisposition. Identification of patients with AD is difficult since intellectual disabilities (ID) may confound diagnosis. The objective of this study was to evaluate the ability of the French version of the modified cued recall test (mCRT) to distinguish between subjects with and without AD in the adult DS population. METHODS This was a retrospective, single-centre, medical records study including data between March 2014 and July 2020. Adults aged ≥30 years with DS who had at least one mCRT record available were eligible. Age, sex and ID level were extracted, and subjects were attributed to three groups: patients with AD, patients with co-occurring conditions that may impact cognitive function and subjects without AD. mCRT scores, adjusted by sex, age and ID level, were compared between groups. The optimal cut-off value to distinguish between patients with and without AD was determined using the receiver operating characteristic curve. The impact of age and ID level on mCRT scores was assessed. RESULTS Overall, 194 patients with DS were included: 12 patients with AD, 94 patients with co-occurring conditions and 88 healthy subjects. Total recall scores were significantly lower (P < 0.0001) in patients with AD compared with healthy subjects. The optimal cut-off value to discriminate between patients with AD and healthy subjects was 22, which compares well with the cut-off value of 23 originally reported for the English version of the mCRT. Patients aged 30-44 years had higher mCRT total recall scores compared with patients aged ≥45 years (P = 0.0221). Similarly, patients with mild ID had higher mCRT scores compared with patients with severe ID (P < 0.0001). INTERPRETATION The mCRT is a sensitive tool that may help in the clinical diagnosis of AD in subjects with DS. Early recognition of AD is paramount to deliver appropriate interventions to this vulnerable population.
Collapse
Affiliation(s)
- S Sacco
- Institut Jérôme Lejeune, Paris, France
| | | | - C Bouis
- Institut Jérôme Lejeune, Paris, France
| | - M Akkaya
- Institut Jérôme Lejeune, Paris, France
| | - J Gallard
- Institut Jérôme Lejeune, Paris, France
| | - A Pichot
- Institut Jérôme Lejeune, Paris, France
| | - G Radice
- Institut Jérôme Lejeune, Paris, France
| | - F Bazin
- Department of Statistics, eXYSTAT, Paris, France
| | - F Montestruc
- Department of Statistics, eXYSTAT, Paris, France
| | | | | |
Collapse
|
9
|
Han MX, Jiang WY, Jiang Y, Wang LH, Xue R, Zhang GX, Chen JW. Gao-Zi-Yao improves learning and memory function in old spontaneous hypertensive rats. BMC Complement Med Ther 2022; 22:147. [PMID: 35643519 PMCID: PMC9148521 DOI: 10.1186/s12906-022-03630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aims Gao-Zi-Yao has long been a unique way for treating various diseases. The present study is to explore the effect of Gao-Zi-Yao on learning and memory function in old spontaneous hypertensive rats (SHR) and its possible mechanism. Method Male old SHR were received different doses of Gao-Zi-Yao for 4 weeks. Systolic blood pressure (SBP) and heart rate were monitored. Serum levels of nitric oxide (NO), interleukin (IL)-1β, IL-2, and tumor necrotic factor (TNF)-α were measured. Morris water maze was performed to test the learning and memory function of the rats. Number of neurons in hippocampus was counted by Nissl staining. Western blot was applied to detect the expressions of learning and memory function related proteins, N-methyl-d-aspartate receptor 2B (NMDAR 2B), glutamate receptor 1 (GluR1), phosphorylated-calmodulin-dependent protein kinase II (p-CaMK II), and phosphorylated-cAMP responsive element-binding protein (p-CREB) in rat hippocampus. Results Data showed that Gao-Zi-Yao reduced SBP in old SHR, elevated NO level, and suppressed levels of IL-1β, IL-2, TNF-α. The results of Morris water maze experiment showed that Gao-Zi-Yao dose-dependently improved learning and memory function. Number of neurons in the hippocampal dentate gyrus (DG) region of the old SHR was increased by Gao-Zi-Yao treatment. In addition, Gao-Zi-Yao elevated the protein expressions of NMDAR 2B, GluR1, p-CaMK II, and p-CREB in hippocampus. Conclusion Gao-Zi-Yao decreases SBP and improves the learning and memory function of the old SHR by regulation of oxidative stress, inflammatory factors and neuron number in hippocampal DG area and the expression of learning and memory function related proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03630-0.
Collapse
|
10
|
Hamadelseed O, Elkhidir IH, Skutella T. Psychosocial Risk Factors for Alzheimer's Disease in Patients with Down Syndrome and Their Association with Brain Changes: A Narrative Review. Neurol Ther 2022; 11:931-953. [PMID: 35596914 PMCID: PMC9338203 DOI: 10.1007/s40120-022-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Several recent epidemiological studies attempted to identify risk factors for Alzheimer’s disease. Age, family history, genetic factors (APOE genotype, trisomy 21), physical activity, and a low level of schooling are significant risk factors. In this review, we summarize the known psychosocial risk factors for the development of Alzheimer’s disease in patients with Down syndrome and their association with neuroanatomical changes in the brains of people with Down syndrome. We completed a comprehensive review of the literature on PubMed, Google Scholar, and Web of Science about psychosocial risk factors for Alzheimer’s disease, for Alzheimer’s disease in Down syndrome, and Alzheimer’s disease in Down syndrome and their association with neuroanatomical changes in the brains of people with Down syndrome. Alzheimer’s disease causes early pathological changes in individuals with Down syndrome, especially in the hippocampus and corpus callosum. People with Down syndrome living with dementia showed reduced volumes of brain areas affected by Alzheimer’s disease as the hippocampus and corpus callosum in association with cognitive decline. These changes occur with increasing age, and the presence or absence of psychosocial risk factors impacts the degree of cognitive function. Correlating Alzheimer’s disease biomarkers in Down syndrome and cognitive function scores while considering the effect of psychosocial risk factors helps us identify the mechanisms leading to Alzheimer’s disease at an early age. Also, this approach enables us to create more sensitive and relevant clinical, memory, and reasoning assessments for people with Down syndrome.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Ibrahim H Elkhidir
- Faculty of Medicine, University of Khartoum, Alqasr St., Khartoum, Sudan
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Rebillat AS, Hiance-Delahaye A, Falquero S, Radice G, Sacco S. The French translation of the dementia screening questionnaire for individuals with intellectual disabilities is a sensitive tool for screening for dementia in people with Down Syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 118:104068. [PMID: 34467872 DOI: 10.1016/j.ridd.2021.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND People with Down Syndrome (DS) are at an increased risk of developing Alzheimer's Disease (AD) relatively early in life. The dementia screening questionnaire for individuals with intellectual disabilities (DSQIID) has been developed for people with intellectual disabilities and was shown to have high discriminative power to distinguish between people with and without dementia. The objective of this study was to verify if the French version of the DSQIID (DSQIID-F) had a good diagnostic specificity and to determine the optimal cut-off for screening people with DS for dementia. METHOD This was a single-centre, retrospective, medical chart review study in people with DS aged ≥40 years. Demographics, level of intellectual disability, DSQIID-F data and clinical assessment of dementia were extracted from medical records. Sensitivity and specificity for different DSQIID-F cut-offs were calculated to determine the optimal cut-off. RESULTS 151 people with DS were included with a median age of 51 years. The optimal DSQIID-F cut-off was 19, sensitivity was 0.940 (95 % CI: 0.830; 0.985) and specificity was 0.941 (95 % CI: 0.873; 0.975). Results were comparable to those for the English DSQIID (cut-off: 20; sensitivity: 0.92; specificity: 0.97). However, the psychometric qualities of the DSQIID-F, used for clinical follow-up, have not been verified. CONCLUSIONS The DSQIID-F has good discriminative power and represents a useful tool to screen people with DS for dementia.
Collapse
|
12
|
Hamburg S, Bush D, Strydom A, Startin CM. Comparison of resting-state EEG between adults with Down syndrome and typically developing controls. J Neurodev Disord 2021; 13:48. [PMID: 34649497 PMCID: PMC8518326 DOI: 10.1186/s11689-021-09392-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 12/01/2022] Open
Abstract
Background Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) worldwide. Understanding electrophysiological characteristics associated with DS provides potential mechanistic insights into ID, helping inform biomarkers and targets for intervention. Currently, electrophysiological characteristics associated with DS remain unclear due to methodological differences between studies and inadequate controls for cognitive decline as a potential cofounder. Methods Eyes-closed resting-state EEG measures (specifically delta, theta, alpha, and beta absolute and relative powers, and alpha peak amplitude, frequency and frequency variance) in occipital and frontal regions were compared between adults with DS (with no diagnosis of dementia or evidence of cognitive decline) and typically developing (TD) matched controls (n = 25 per group). Results We report an overall ‘slower’ EEG spectrum, characterised by higher delta and theta power, and lower alpha and beta power, for both regions in people with DS. Alpha activity in particular showed strong group differences, including lower power, lower peak amplitude and greater peak frequency variance in people with DS. Conclusions Such EEG ‘slowing’ has previously been associated with cognitive decline in both DS and TD populations. These findings indicate the potential existence of a universal EEG signature of cognitive impairment, regardless of origin (neurodevelopmental or neurodegenerative), warranting further exploration. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09392-z.
Collapse
Affiliation(s)
- Sarah Hamburg
- The London Down Syndrome Consortium (LonDownS), London, UK.
| | - Daniel Bush
- Institute of Cognitive Neuroscience, University College London, London, UK.,Queen Square Institute of Neurology, University College London, London, UK
| | - Andre Strydom
- The London Down Syndrome Consortium (LonDownS), London, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Carla M Startin
- The London Down Syndrome Consortium (LonDownS), London, UK.,Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
13
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
14
|
The Alteration of Chloride Homeostasis/GABAergic Signaling in Brain Disorders: Could Oxidative Stress Play a Role? Antioxidants (Basel) 2021; 10:antiox10081316. [PMID: 34439564 PMCID: PMC8389245 DOI: 10.3390/antiox10081316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
In neuronal precursors and immature neurons, the depolarizing (excitatory) effect of γ-Aminobutyric acid (GABA) signaling is associated with elevated [Cl−]i; as brain cells mature, a developmental switch occurs, leading to the decrease of [Cl−]i and to the hyperpolarizing (inhibitory) effect of GABAergic signaling. [Cl−]i is controlled by two chloride co-transporters: NKCC1, which causes Cl− to accumulate into the cells, and KCC2, which extrudes it. The ontogenetic upregulation of the latter determines the above-outlined switch; however, many other factors contribute to the correct [Cl−]i in mature neurons. The dysregulation of chloride homeostasis is involved in seizure generation and has been associated with schizophrenia, Down’s Syndrome, Autism Spectrum Disorder, and other neurodevelopmental disorders. Recently, much effort has been put into developing new drugs intended to inhibit NKCC1 activity, while no attention has been paid to the origin of [Cl−]i dysregulation. Our study examines the pathophysiology of Cl− homeostasis and focuses on the impact of oxidative stress (OS) and inflammation on the activity of Cl− co-transporters, highlighting the relevance of OS in numerous brain abnormalities and diseases. This hypothesis supports the importance of primary prevention during pregnancy. It also integrates the therapeutic framework addressed to restore normal GABAergic signaling by counteracting the alteration in chloride homeostasis in central nervous system (CNS) cells, aiming at limiting the use of drugs that potentially pose a health risk.
Collapse
|
15
|
Fagan AM, Henson RL, Li Y, Boerwinkle AH, Xiong C, Bateman RJ, Goate A, Ances BM, Doran E, Christian BT, Lai F, Rosas HD, Schupf N, Krinsky-McHale S, Silverman W, Lee JH, Klunk WE, Handen BL, Allegri RF, Chhatwal JP, Day GS, Graff-Radford NR, Jucker M, Levin J, Martins RN, Masters CL, Mori H, Mummery CJ, Niimi Y, Ringman JM, Salloway S, Schofield PR, Shoji M, Lott IT. Comparison of CSF biomarkers in Down syndrome and autosomal dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2021; 20:615-626. [PMID: 34302786 PMCID: PMC8496347 DOI: 10.1016/s1474-4422(21)00139-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Due to trisomy of chromosome 21 and the resultant extra copy of the amyloid precursor protein gene, nearly all adults with Down syndrome develop Alzheimer's disease pathology by the age of 40 years and are at high risk for dementia given their increased life expectancy compared with adults with Down syndrome in the past. We aimed to compare CSF biomarker patterns in Down syndrome with those of carriers of autosomal dominant Alzheimer's disease mutations to enhance our understanding of disease mechanisms in these two genetic groups at high risk for Alzheimer's disease. METHODS We did a cross-sectional study using data from adults enrolled in the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study, a multisite longitudinal study of Alzheimer's disease in Down syndrome, as well as a cohort of carriers of autosomal dominant Alzheimer's disease mutations and non-carrier sibling controls enrolled in the Dominantly Inherited Alzheimer Network (DIAN) study. For ABC-DS, participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of Jan 31, 2019, were included in the analysis. DIAN participants with baseline CSF, available clinical diagnosis, and apolipoprotein E genotype as of June 30, 2018, were evaluated as comparator groups. CSF samples obtained from adults with Down syndrome, similarly aged carriers of autosomal dominant Alzheimer's disease mutations, and non-carrier siblings (aged 30-61 years) were analysed for markers of amyloid β (Aβ1-40, Aβ1-42); tau phosphorylated at threonine 181-related processes; neuronal, axonal, or synaptic injury (total tau, visinin-like protein 1, neurofilament light chain [NfL], synaptosomal-associated protein 25); and astrogliosis and neuroinflammation (chitinase-3-like protein 1 [YKL-40]) via immunoassay. Biomarker concentrations were compared as a function of dementia status (asymptomatic or symptomatic), and linear regression was used to evaluate and compare the relationship between biomarker concentrations and age among groups. FINDINGS We assessed CSF samples from 341 individuals (178 [52%] women, 163 [48%] men, aged 30-61 years). Participants were adults with Down syndrome (n=41), similarly aged carriers of autosomal dominant Alzheimer's disease mutations (n=192), and non-carrier siblings (n=108). Individuals with Down syndrome had patterns of Alzheimer's disease-related CSF biomarkers remarkably similar to carriers of autosomal dominant Alzheimer's disease mutations, including reductions (all p<0·0080) in Aβ1-42 to Aβ1-40 ratio and increases in markers of phosphorylated tau-related processes; neuronal, axonal, and synaptic injury (p<0·080); and astrogliosis and neuroinflammation, with greater degrees of abnormality in individuals with dementia. Differences included overall higher concentrations of Aβ and YKL-40 (both p<0·0008) in Down syndrome and potential elevations in CSF tau (p<0·010) and NfL (p<0·0001) in the asymptomatic stage (ie, no dementia symptoms). FUNDING National Institute on Aging, Eunice Kennedy Shriver National Institute of Child Health and Human Development, German Center for Neurodegenerative Diseases, and Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
| | - Rachel L Henson
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Anna H Boerwinkle
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Doran
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| | - Bradley T Christian
- Department of Medical Physics, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Psychiatry, Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole Schupf
- Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Wayne Silverman
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| | - Joseph H Lee
- Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Instituto Neurologico Fleni, Buenos Aires, Argentina
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, German Center for Neurodegenerative Diseases, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ralph N Martins
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Colin L Masters
- Florey Institute, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Abenoku, Osaka, Japan
| | - Catherine J Mummery
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, University of Tokyo, Tokyo, Japan
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Salloway
- Memory and Aging Program, Brown University, Butler Hospital, Providence, RI, USA
| | - Peter R Schofield
- Neuroscience Research Australia, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mikio Shoji
- Geriatrics Research Institute and Hospital, Maebashi, Gunma, Japan
| | - Ira T Lott
- Department of Pediatrics, UC Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
16
|
Zhou X, Chen X, Hong T, Zhang M, Cai Y, Cui L. TTC3-Mediated Protein Quality Control, A Potential Mechanism for Cognitive Impairment. Cell Mol Neurobiol 2021; 42:1659-1669. [PMID: 33638766 PMCID: PMC9239942 DOI: 10.1007/s10571-021-01060-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down's syndrome (DS) critical region. Cognitive impairment is a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential targets of TTC3 in the treatment of such diseases.
Collapse
Affiliation(s)
- Xu Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.57, Renmindadaonan Road, Xiashan District, Zhanjiang, China.
| |
Collapse
|
17
|
Sun W, Liu C, Wang Y, Zhou X, Sui W, Zhang Y, Zhang Q, Han J, Li X, Han F. Rhodiola crenulata protects against Alzheimer's disease in rats: A brain lipidomics study by Fourier-transform ion cyclotron resonance mass spectrometry coupled with high-performance reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8969. [PMID: 33047398 DOI: 10.1002/rcm.8969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is a chronic, severe, progressive neurodegenerative disorder associated with cognitive and memory impairment that ultimately causes death. Most approved drugs can only alleviate some of the symptoms of AD, but no interventions have been found that reverse the underlying disease mechanisms. Rhodiola crenulata extract (RCE) has been reported to alleviate AD symptoms in rats. However, its underlying mechanism of action is still unclear. METHODS A brain lipidomics study was conducted to investigate the protective effects of RCE against AD in rats to identify potential biomarkers of AD using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with high-performance reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC). Differences in lipid metabolism profiles were evaluated using multivariate statistical analysis. Finally, the possible mechanism of action of RCE on AD was investigated by analysing metabolic pathways. RESULTS The RPLCHILIC/FT-ICR MS results showed 20 lipid components with significant differences between the control and model groups. After administration of RCE, the levels of 10 lipids in AD rats tended to shift toward reference levels. The pathway analysis revealed that the protective effect of RCE against AD might be related to regulation of glycerophospholipid metabolism. CONCLUSIONS This study provides a novel perspective on the potential intervention mechanism of RCE in the treatment of AD.
Collapse
Affiliation(s)
- Wei Sun
- Department of Biomedical Engineering School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou, 570311, China
| | - Yanan Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xing Zhou
- Hainan Institute of Materia Medica, Haikou, 570311, China
| | - Wenwen Sui
- Shenyang Harmony Health Medical Laboratory, 15 Buildings, 19 Wenhui Street, JinPenglong Hightech Industry Park, Shenyang, 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Qingyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Jing Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xintong Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
18
|
Zhang S, Zhu Q, Chen JY, OuYang D, Lu JH. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer's disease animal model: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153316. [PMID: 32942205 DOI: 10.1016/j.phymed.2020.153316] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and there is an urgent need to develop new AD drugs. Many studies have revealed the potential neuroprotective effect of Epigallocatechin-3-O-gallate (EGCG), the main antioxidant in green tea, on animal models of AD. However, a systematic review of these reports is lacking. PURPOSE To assess the effectiveness of EGCG for AD treatment using systematic review and meta-analysis of pre-clinical trials. METHODS We conducted a systematic search of all available randomized controlled trials (RCTs) performed up to November 2019 in the following electronic databases: ScienceDirect, Web of Science, and PubMed. 17 preclinical studies assessing the effect of EGCG on animal AD models have been identified. Meta-analysis and subgroup analysis was performed to evaluate cognition improvement of various types of AD models. The study quality was assessed using the CAMARADES checklist and the criteria of published studies. RESULTS Our analysis shows that the methodological quality ranges from 3 to 5, with a median score of 4. According to meta-analysis of random-effects method, EGCG showed a positive effect in AD with shorter escape latency (SMD= -9.24, 95%CI= -12.05 to -6.42) and decreased Aβ42 level (SD= -25.74,95%CI= -42.36 to -9.11). Regulation of α-, β-, γ-secretase activity, inhibition of tau phosphorylation, anti-oxidation, anti-inflammation, anti-apoptosis, and inhibition of AchE activity are reported as the main neuroprotective mechanisms. Though more than 100 clinical trials have been registered on the ClinicalTrials.gov, only one clinical trial has been conducted to test the therapeutic effects of EGCG on the AD progression and cognitive performance. CONCLUSION Here, we conducted this review to systematically describe the therapeutic potential of EGCG in animal models of AD and hope to provide a more comprehensive assessment of the effects in order to design future clinical trials. Besides, the safety, blood-brain barrier (BBB) penetration and bioavailability issues in conducting clinical trials were also discussed.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Qi Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jia-Yue Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Defang OuYang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
19
|
Snyder HM, Bain LJ, Brickman AM, Carrillo MC, Esbensen AJ, Espinosa JM, Fernandez F, Fortea J, Hartley SL, Head E, Hendrix J, Kishnani PS, Lai F, Lao P, Lemere C, Mobley W, Mufson EJ, Potter H, Zaman SH, Granholm AC, Rosas HD, Strydom A, Whitten MS, Rafii MS. Further understanding the connection between Alzheimer's disease and Down syndrome. Alzheimers Dement 2020; 16:1065-1077. [PMID: 32544310 PMCID: PMC8865308 DOI: 10.1002/alz.12112] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Improved medical care of individuals with Down syndrome (DS) has led to an increase in life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-related co-occurring conditions including Alzheimer's disease (AD). Understanding the factors that underlie symptom and age of clinical presentation of dementia in people with DS may provide insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the Alzheimer's Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation partnered to convene a workshop to explore the state of the research on the intersection of AD and DS research; to identify research gaps and unmet needs; and to consider how best to advance the field. This article provides a summary of discussions, including noting areas of emerging science and discovery, considerations for future studies, and identifying open gaps in our understanding for future focus.
Collapse
Affiliation(s)
- Heather M. Snyder
- Alzheimer’s Association, Medical & Scientific Relations, Chicago, Illinois, USA
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania, USA
| | - Adam M. Brickman
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Maria C. Carrillo
- Alzheimer’s Association, Medical & Scientific Relations, Chicago, Illinois, USA
| | - Anna J. Esbensen
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center & University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Fabian Fernandez
- Departments of Psychology and Neurology, BIO5 Institute, and The Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Juan Fortea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Sigan L. Hartley
- Department of Human Development and Family Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, California, USA
| | - James Hendrix
- LuMind IDSC Foundation, Burlington, Massachusetts, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Florence Lai
- Department of Neurology, Harvard University/Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Lao
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Cynthia Lemere
- Department of Neurology, Brigham & Women’s Hospital and Harvard University, Boston, Massachusetts, USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, California, USA
| | | | - Huntington Potter
- Rocky Mountain Alzheimer’s Disease Center and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disability Research Group, Department of Psychiatry University of Cambridge, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, USA
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - H. Diana Rosas
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Psychology and Neuroscience, King’s College London, South London and the Maudsley NHS Foundation Trust, LonDowns Consortium, Institute of Psychiatry, London, UK
| | | | - Michael S. Rafii
- Alzheimer’s Therapeutics Research Institute and Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Benejam B, Videla L, Vilaplana E, Barroeta I, Carmona‐Iragui M, Altuna M, Valldeneu S, Fernandez S, Giménez S, Iulita F, Garzón D, Bejanin A, Bartrés‐Faz D, Videla S, Alcolea D, Blesa R, Lleó A, Fortea J. Diagnosis of prodromal and Alzheimer's disease dementia in adults with Down syndrome using neuropsychological tests. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12047. [PMID: 32613076 PMCID: PMC7322242 DOI: 10.1002/dad2.12047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We aimed to define prodromal Alzheimer's disease (AD) and AD dementia using normative neuropsychological data in a large population-based cohort of adults with Down syndrome (DS). METHODS Cross-sectional study. DS participants were classified into asymptomatic, prodromal AD and AD dementia, based on neurologist's judgment blinded to neuropsychological data (Cambridge Cognitive Examination for Older Adults with Down's syndrome [CAMCOG-DS] and modified Cued Recall Test [mCRT]). We compared the cutoffs derived from the normative data in young adults with DS to those from receiver-operating characteristic curve (ROC) analysis. RESULTS Diagnostic performance of the CAMCOG-DS and modified Cued Recall Test (mCRT) in subjects with mild and moderate levels of intellectual disability (ID) was high, both for diagnosing prodromal AD and AD dementia (area under the curve [AUC] 0.73-0.83 and 0.90-1, respectively). The cutoffs derived from the normative data were similar to those derived from the ROC analyses. DISCUSSION Diagnosing prodromal AD and AD dementia in DS with mild and moderate ID using population norms for neuropsychological tests is possible with high diagnostic accuracy.
Collapse
Affiliation(s)
- Bessy Benejam
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
| | - Laura Videla
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Eduard Vilaplana
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Isabel Barroeta
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Maria Carmona‐Iragui
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Miren Altuna
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Silvia Valldeneu
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Fernandez
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
| | - Sandra Giménez
- Multidisciplinary Sleep UnitRespiratory DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Florencia Iulita
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Diana Garzón
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Alexandre Bejanin
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - David Bartrés‐Faz
- Department of MedicineFaculty of Medicine and Health SciencesInstitute of neurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Sebastià Videla
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Daniel Alcolea
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Rafael Blesa
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Alberto Lleó
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan Fortea
- Barcelona Down Medical CenterFundació Catalana Síndrome de DownBarcelonaSpain
- Memory Unit and Biomedical Research Institute Sant Pau (IIB Sant Pau)Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
21
|
Hamburg S, Rosch R, Startin CM, Friston KJ, Strydom A. Dynamic Causal Modeling of the Relationship between Cognition and Theta-alpha Oscillations in Adults with Down Syndrome. Cereb Cortex 2020; 29:2279-2290. [PMID: 30877793 PMCID: PMC6458903 DOI: 10.1093/cercor/bhz043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 02/09/2019] [Indexed: 01/17/2023] Open
Abstract
Individuals with Down syndrome (DS) show high inter-subject variability in cognitive ability and have an ultra-high risk of developing dementia (90% lifetime prevalence). Elucidating factors underlying variability in cognitive function can inform us about intellectual disability (ID) and may improve our understanding of factors associated with later cognitive decline. Increased neuronal inhibition has been posited to contribute to ID in DS. Combining electroencephalography (EEG) with dynamic causal modeling (DCM) provides a non-invasive method for investigating excitatory/inhibitory mechanisms. Resting-state EEG recordings were obtained from 36 adults with DS with no evidence of cognitive decline. Theta–alpha activity (4–13 Hz) was characterized in relation to general cognitive ability (raw Kaufmann’s Brief Intelligence Test second Edition (KBIT-2) score). Higher KBIT-2 was associated with higher frontal alpha peak amplitude and higher theta–alpha band power across distributed regions. Modeling this association with DCM revealed intrinsic self-inhibition was the key network parameter underlying observed differences in 4–13 Hz power in relation to KBIT-2 and age. In particular, intrinsic self-inhibition in right V1 was negatively correlated with KBIT-2. Results suggest intrinsic self-inhibition within the alpha network is associated with individual differences in cognitive ability in adults with DS, and may provide a potential therapeutic target for cognitive enhancement.
Collapse
Affiliation(s)
- Sarah Hamburg
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 149 Tottenham Court Road, London, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,The London Down Syndrome Consortium (LonDownS), London, UK
| | - Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, UK
| | - Carla Marie Startin
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 149 Tottenham Court Road, London, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,The London Down Syndrome Consortium (LonDownS), London, UK
| | - Karl John Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, UK
| | - André Strydom
- Division of Psychiatry, Faculty of Brain Sciences, University College London, 149 Tottenham Court Road, London, UK.,Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,The London Down Syndrome Consortium (LonDownS), London, UK
| |
Collapse
|
22
|
Rueda N, Flórez J, Dierssen M, Martínez-Cué C. Translational validity and implications of pharmacotherapies in preclinical models of Down syndrome. PROGRESS IN BRAIN RESEARCH 2019; 251:245-268. [PMID: 32057309 DOI: 10.1016/bs.pbr.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are challenging to study in the laboratory, and despite a large investment, few novel treatments have been developed in the last decade. While animal models have been valuable in elucidating disease mechanisms and in providing insights into the function of specific genes, the predictive validity of preclinical models to test potential therapies has been questioned. In the last two decades, diverse new murine models of Down syndrome (DS) have been developed and numerous studies have demonstrated neurobiological alterations that could be responsible for the cognitive and behavioral phenotypes found in this syndrome. In many cases, similar alterations were found in murine models and in individuals with DS, although several phenotypes shown in animals have yet not been confirmed in the human condition. Some of the neurobiological alterations observed in mice have been proposed to account for their changes in cognition and behavior, and have received special attention because of being putative therapeutic targets. Those include increased oxidative stress, altered neurogenesis, overexpression of the Dyrk1A gene, GABA-mediated overinhibition and Alzheimer's disease-related neurodegeneration. Subsequently, different laboratories have tested the efficacy of pharmacotherapies targeting these alterations. Unfortunately, animal models are limited in their ability to mimic the extremely complex process of human neurodevelopment and neuropathology. Therefore, the safety and efficacy identified in animal studies are not always translated to humans, and most of the drugs tested have not demonstrated any positive effect or very limited efficacy in clinical trials. Despite their limitations, though, animal trials give us extremely valuable information for developing and testing drugs for human use that cannot be obtained from molecular or cellular experiments alone. This chapter reviews some of these therapeutic approaches and discusses some reasons that could account for the discrepancy between the findings in mouse models of DS and in humans, including: (i) the incomplete resemble of the genetic alterations of available mouse models of DS and human trisomy 21, (ii) the lack of evidence that some of the phenotypic alterations found in mice (e.g., GABA-mediated overinhibition, and alterations in adult neurogenesis) are also present in DS individuals, and (iii) the inaccuracy and/or inadequacy of the methods used in clinical trials to detect changes in the cognitive and behavioral functions of people with DS. Despite the shortcomings of animal models, animal experimentation remains an invaluable tool in developing drugs. Thus, we will also discuss how to increase predictive validity of mouse models.
Collapse
Affiliation(s)
- Noemí Rueda
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Jesús Flórez
- Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
23
|
Alhajraf F, Ness D, Hye A, Strydom A. Plasma amyloid and tau as dementia biomarkers in Down syndrome: Systematic review and meta-analyses. Dev Neurobiol 2019; 79:684-698. [PMID: 31389176 PMCID: PMC6790908 DOI: 10.1002/dneu.22715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Individuals with Down syndrome (DS) are at high risk of developing Alzheimer's disease (AD). Discovering reliable biomarkers which could facilitate early AD diagnosis and be used to predict/monitor disease course would be extremely valuable. To examine if analytes in blood related to amyloid plaques may constitute such biomarkers, we conducted meta‐analyses of studies comparing plasma amyloid beta (Aβ) levels between DS individuals and controls, and between DS individuals with and without dementia. PubMed, Embase, and Google Scholar were searched for studies investigating the relationship between Aβ plasma concentrations and dementia in DS and 10 studies collectively comprising >1,600 adults, including >1,400 individuals with DS, were included. RevMan 5.3 was used to perform meta‐analyses. Meta‐analyses showed higher plasma Aβ40 (SMD = 1.79, 95% CI [1.14, 2.44], Z = 5.40, p < .00001) and plasma Aβ42 levels (SMD = 1.41, 95% CI [1.15, 1.68], Z = 10.46, p < .00001) in DS individuals than controls, and revealed that DS individuals with dementia had higher plasma Aβ40 levels (SMD = 0.23, 95% CI [0.05, 0.41], Z = 2.54, p = .01) and lower Aβ42/Aβ40 ratios (SMD = −0.33, 95% CI [−0.63, −0.03], Z = 2.15, p = .03) than DS individuals without dementia. Our results indicate that plasma Aβ40 levels may constitute a promising biomarker for predicting dementia status in individuals with DS. Further investigations using new ultra‐sensitive assays are required to obtain more reliable results and to investigate to what extent these results may be generalizable beyond the DS population.
Collapse
Affiliation(s)
- Falah Alhajraf
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Al Amiri Hospital, Kuwait City, State of Kuwait
| | - Deborah Ness
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Abdul Hye
- The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| |
Collapse
|
24
|
Carmona-Iragui M, Videla L, Lleó A, Fortea J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev Neurobiol 2019; 79:716-737. [PMID: 31278851 DOI: 10.1002/dneu.22709] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/04/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
25
|
Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S. Accelerated bio-cognitive aging in Down syndrome: State of the art and possible deceleration strategies. Aging Cell 2019; 18:e12903. [PMID: 30768754 PMCID: PMC6516152 DOI: 10.1111/acel.12903] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Down syndrome (DS) has been proposed by George Martin as a segmental progeroid syndrome since 1978. In fact, DS persons suffer from several age-associated disorders much earlier than euploid persons. Furthermore, a series of recent studies have found that DS persons display elevated levels of age biomarkers, thus supporting the notion that DS is a progeroid trait. Nowadays, due to the progressive advancements in social inclusion processes and medical assistance, DS persons live much longer than in the past; therefore, the early-onset health problems of these persons are becoming an urgent and largely unmet social and medical burden. In particular, the most important ailment of DS persons is the accelerated cognitive decline that starts when they reach about 40 years of age. This decline can be at least in part counteracted by multi-systemic approaches including early-onset cognitive training, physical activity, and psychosocial assistance. However, no pharmacological treatment is approved to counteract this decline. According to the most advanced conceptualization of Geroscience, tackling the molecular mechanisms underpinning the aging process should be a smart/feasible strategy to combat and/or delay the great majority of age-related diseases, including cognitive decline. We think that a debate is needed urgently on if (and how) this strategy could be integrated in protocols to face DS-associated dementia and overall unhealthy aging. In particular we propose that, on the basis of data obtained in different clinical settings, metformin is a promising candidate that could be exploited to counteract cognitive decline in DS.
Collapse
Affiliation(s)
- Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Clinical Chemistry, Department of Laboratory MedicineKarolinska Institutet at Huddinge University HospitalStockholmSweden
- Applied Biomedical Research Center (CRBA)S. Orsola‐Malpighi PolyclinicBolognaItaly
- CNR Institute of Molecular GeneticsUnit of BolognaBolognaItaly
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
| | | | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Interdepartmental Center “L. Galvani” (CIG)University of BolognaBolognaItaly
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaBolognaItaly
- Interdepartmental Center “L. Galvani” (CIG)University of BolognaBolognaItaly
| |
Collapse
|
26
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Lu X, Yang H, Li Q, Chen Y, Li Q, Zhou Y, Feng F, Liu W, Guo Q, Sun H. Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: Discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation. Bioorg Chem 2019; 85:117-127. [DOI: 10.1016/j.bioorg.2018.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
28
|
Startin CM, Ashton NJ, Hamburg S, Hithersay R, Wiseman FK, Mok KY, Hardy J, Lleó A, Lovestone S, Parnetti L, Zetterberg H, Hye A, Strydom A. Plasma biomarkers for amyloid, tau, and cytokines in Down syndrome and sporadic Alzheimer's disease. Alzheimers Res Ther 2019; 11:26. [PMID: 30902060 PMCID: PMC6429702 DOI: 10.1186/s13195-019-0477-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Down syndrome (DS), caused by chromosome 21 trisomy, is associated with an ultra-high risk of dementia due to Alzheimer's disease (AD), driven by amyloid precursor protein (APP) gene triplication. Understanding relevant molecular differences between those with DS, those with sporadic AD (sAD) without DS, and controls will aid in understanding AD development in DS. We explored group differences in plasma concentrations of amyloid-β peptides and tau (as their accumulation is a characteristic feature of AD) and cytokines (as the inflammatory response has been implicated in AD development, and immune dysfunction is common in DS). METHODS We used ultrasensitive assays to compare plasma concentrations of the amyloid-β peptides Aβ40 and Aβ42, total tau (t-tau), and the cytokines IL1β, IL10, IL6, and TNFα between adults with DS (n = 31), adults with sAD (n = 27), and controls age-matched to the group with DS (n = 27), and explored relationships between molecular concentrations and with age within each group. In the group with DS, we also explored relationships with neurofilament light (NfL) concentration, due to its potential use as a biomarker for AD in DS. RESULTS Aβ40, Aβ42, and IL1β concentrations were higher in DS, with a higher Aβ42/Aβ40 ratio in controls. The group with DS showed moderate positive associations between concentrations of t-tau and both Aβ42 and IL1β. Only NfL concentration in the group with DS showed a significant positive association with age. CONCLUSIONS Concentrations of Aβ40 and Aβ42 were much higher in adults with DS than in other groups, reflecting APP gene triplication, while no difference in the Aβ42/Aβ40 ratio between those with DS and sAD may indicate similar processing and deposition of Aβ40 and Aβ42 in these groups. Higher concentrations of IL1β in DS may reflect an increased vulnerability to infections and/or an increased prevalence of autoimmune disorders, while the positive association between IL1β and t-tau in DS may indicate IL1β is associated with neurodegeneration. Finally, NfL concentration may be the most suitable biomarker for dementia progression in DS. The identification of such a biomarker is important to improve the detection of dementia and monitor its progression, and for designing clinical intervention studies.
Collapse
Affiliation(s)
- Carla M. Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Nicholas J. Ashton
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, and Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular & Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Rosalyn Hithersay
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Frances K. Wiseman
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Kin Y. Mok
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, SAR People’s Republic of China
| | - John Hardy
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - Alberto Lleó
- Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Lucilla Parnetti
- Centre for Memory Disturbances, Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
| | - Abdul Hye
- Maurice Wohl Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR Biomedical Research Centre for Mental Health, Biomedical Research Unit for Dementia at South London, and Maudsley NHS Foundation, London, UK
| | - André Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Division of Psychiatry, University College London, London, UK
- The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| |
Collapse
|
29
|
Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev 2019; 98:234-255. [DOI: 10.1016/j.neubiorev.2019.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
|
30
|
Startin CM, Hamburg S, Hithersay R, Al-Janabi T, Mok KY, Hardy J, Strydom A. Cognitive markers of preclinical and prodromal Alzheimer's disease in Down syndrome. Alzheimers Dement 2019; 15:245-257. [PMID: 30503169 PMCID: PMC6374283 DOI: 10.1016/j.jalz.2018.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Down syndrome (DS) is associated with an almost universal development of Alzheimer's disease. Individuals with DS are therefore an important population for randomized controlled trials to prevent or delay cognitive decline, though it is essential to understand the time course of early cognitive changes. METHODS We conducted the largest cognitive study to date with 312 adults with DS to assess age-related and Alzheimer's disease-related cognitive changes during progression from preclinical to prodromal dementia, and prodromal to clinical dementia. RESULTS Changes in memory and attention measures were most sensitive to early decline. Resulting sample size calculations for randomized controlled trials to detect significant treatment effects to delay decline were modest. DISCUSSION Our findings address uncertainties around the development of randomized controlled trials to delay cognitive decline in DS. Such trials are essential to reduce the high burden of dementia in people with DS and could serve as proof-of-principle trials for some drug targets.
Collapse
Affiliation(s)
- Carla M Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK; The LonDownS Consortium, London, UK.
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK; The LonDownS Consortium, London, UK
| | - Rosalyn Hithersay
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK; The LonDownS Consortium, London, UK
| | - Tamara Al-Janabi
- Division of Psychiatry, University College London, London, UK; The LonDownS Consortium, London, UK
| | - Kin Y Mok
- The LonDownS Consortium, London, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China
| | - John Hardy
- The LonDownS Consortium, London, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK; The LonDownS Consortium, London, UK
| |
Collapse
|
31
|
Babulal GM, Quiroz YT, Albensi BC, Arenaza-Urquijo E, Astell AJ, Babiloni C, Bahar-Fuchs A, Bell J, Bowman GL, Brickman AM, Chételat G, Ciro C, Cohen AD, Dilworth-Anderson P, Dodge HH, Dreux S, Edland S, Esbensen A, Evered L, Ewers M, Fargo KN, Fortea J, Gonzalez H, Gustafson DR, Head E, Hendrix JA, Hofer SM, Johnson LA, Jutten R, Kilborn K, Lanctôt KL, Manly JJ, Martins RN, Mielke MM, Morris MC, Murray ME, Oh ES, Parra MA, Rissman RA, Roe CM, Santos OA, Scarmeas N, Schneider LS, Schupf N, Sikkes S, Snyder HM, Sohrabi HR, Stern Y, Strydom A, Tang Y, Terrera GM, Teunissen C, Melo van Lent D, Weinborn M, Wesselman L, Wilcock DM, Zetterberg H, O'Bryant SE. Perspectives on ethnic and racial disparities in Alzheimer's disease and related dementias: Update and areas of immediate need. Alzheimers Dement 2019; 15:292-312. [PMID: 30555031 PMCID: PMC6368893 DOI: 10.1016/j.jalz.2018.09.009] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise "state-of-the-science" report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations.
Collapse
Affiliation(s)
- Ganesh M Babulal
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Arlene J Astell
- Department of Occupational Sciences & Occupational Therapy, University of Toronto, CA; School of Psychology and Clinical Language Sciences, University of Reading, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Neuroscience, IRCCS-Hospital San Raffaele Pisana of Rome and Cassino, Rome and Cassino, Italy
| | - Alex Bahar-Fuchs
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, the University of Melbourne, Australia
| | | | - Gene L Bowman
- Nutrition and Brain Health Laboratory, Nestlé Institute of Health Sciences, Lausanne, Switzerland; Department of Neurology, Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Adam M Brickman
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Carrie Ciro
- Department of Occupational Therapy Education, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Hiroko H Dodge
- Department of Neurology, Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA
| | - Simone Dreux
- Undergraduate Program of History and Science, Harvard College, Cambridge, MA, USA
| | - Steven Edland
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lisbeth Evered
- Melbourne Medical School, University of Melbourne, Australia
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Keith N Fargo
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Hector Gonzalez
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Research Center, University of San Diego, CA, USA
| | - Deborah R Gustafson
- Department of Neurology, Section for NeuroEpidemiology, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - James A Hendrix
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Scott M Hofer
- Adult Development and Aging, University of Victoria, British Columbia, CA, USA
| | - Leigh A Johnson
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Roos Jutten
- VU University Medical Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Kerry Kilborn
- Department of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Krista L Lanctôt
- Sunnybrook Research Institute of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jennifer J Manly
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Michelle M Mielke
- Department of Epidemiology, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Esther S Oh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario A Parra
- School of Social Sciences, Department of Psychology, Heriot-Watt University, UK; Universidad Autónoma del Caribe, Barranquilla, Colombia; Neuroprogressive and Dementia Network, UK
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego School of Medicine, CA, USA
| | - Catherine M Roe
- Department of Neurology and Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Octavio A Santos
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY, USA; Aiginition Hospital, 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lon S Schneider
- Department of Psychiatry and The Behavioral Sciences, University of Southern California, CA, USA
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Sietske Sikkes
- Massachusetts General Hospital, Department of Neurology, Boston, MA, USA
| | - Heather M Snyder
- Medical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Hamid R Sohrabi
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Yaakov Stern
- Department of Neurology, Columbia University, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Yi Tang
- Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Graciela Muniz Terrera
- Centers for Clinical Brain Sciences and Dementia Prevention, University in Edinburgh, Scotland, UK
| | - Charlotte Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Debora Melo van Lent
- Department of Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Weinborn
- Aging and Alzheimer's Disease, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | | | - Donna M Wilcock
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK; Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sid E O'Bryant
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
32
|
McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, Kruck TPA, Fang Z, Sharfman NM, Jaber V, Zhao Y, Li W, Lukiw WJ. Aluminum in Neurological and Neurodegenerative Disease. Mol Neurobiol 2019; 56:1531-1538. [PMID: 30706368 PMCID: PMC6402994 DOI: 10.1007/s12035-018-1441-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
With continuing cooperation from 18 domestic and international brain banks over the last 36 years, we have analyzed the aluminum content of the temporal lobe neocortex of 511 high-quality human female brain samples from 16 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Temporal lobes (Brodmann areas A20-A22) were selected for analysis because of their availability and their central role in massive information-processing operations including efferent-signal integration, cognition, and memory formation. We used the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) preliminary analysis from the advanced photon source (APS) hard X-ray beam (7 GeV) fluorescence raster-scanning (XRFR) spectroscopy device (undulator beam line 2-ID-E) at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. Neurological diseases examined were Alzheimer's disease (AD; N = 186), ataxia Friedreich's type (AFT; N = 6), amyotrophic lateral sclerosis (ALS; N = 16), autism spectrum disorder (ASD; N = 26), dialysis dementia syndrome (DDS; N = 27), Down's syndrome (DS; trisomy, 21; N = 24), Huntington's chorea (HC; N = 15), multiple infarct dementia (MID; N = 19), multiple sclerosis (MS; N = 23), Parkinson's disease (PD; N = 27), and prion disease (PrD; N = 11) that included bovine spongiform encephalopathy (BSE; "mad cow disease"), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N = 11), progressive supranuclear palsy (PSP; N = 24), schizophrenia (SCZ; N = 21), a young control group (YCG; N = 22; mean age, 10.2 ± 6.1 year), and an aged control group (ACG; N = 53; mean age, 71.4 ± 9.3 year). Using ETAAS, all measurements were performed in triplicate on each tissue sample. Among these 17 common neurological conditions, we found a statistically significant trend for aluminum to be increased only in AD, DS, and DDS compared to age- and gender-matched brains from the same anatomical region. This is the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. The results continue to suggest that aluminum's association with AD, DDS, and DS brain tissues may contribute to the neuropathology of those neurological diseases but appear not to be a significant factor in other common disorders of the human brain and/or CNS.
Collapse
Affiliation(s)
- Donald R C McLachlan
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | - Catherine Bergeron
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | | | | | | | - Maire E Percy
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Surrey Place Center, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Obstetrics and Gynecology, Toronto, ON, M5S 1A8, Canada
| | - Theodore P A Kruck
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Louisiana Clinical and Translational Science Center (LA CaTS), LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nathan M Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow, 113152, Russia.
- Alchem Biotek Research, Toronto, ON, M5S 1A8, Canada.
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
33
|
Helman AM, Siever M, McCarty KL, Lott IT, Doran E, Abner EL, Schmitt FA, Head E. Microbleeds and Cerebral Amyloid Angiopathy in the Brains of People with Down Syndrome with Alzheimer's Disease. J Alzheimers Dis 2019; 67:103-112. [PMID: 30452414 PMCID: PMC6424116 DOI: 10.3233/jad-180589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebrovascular pathology is a significant mediator in Alzheimer's disease (AD) in the general population. In people with Down syndrome (DS), the contribution of vascular pathology to dementia may play a similar role in age of onset and/or the rate of progression of AD. In the current study, we explored the extent of microbleeds (MBs) and the link between cerebral amyloid angiopathy (CAA) and MBs in the frontal cortex (FCTX) and occipital cortex (OCTX) in an autopsy series from individuals with DS (<40 years), DS with AD pathology (DSAD), sporadic AD, and control cases (2-83 years). Sections were immunostained against Aβ1 - 40 and an adjacent section stained using Prussian blue for MBs. MBs were both counted and averaged in each case and CAA was scored based on previously published methods. MBs were more frequent in DS cases relative to controls but present to a similar extent as sporadic AD. This aligned with CAA scores, with more extensive CAA in DS relative to controls in both brain regions. CAA was also more frequent in DSAD cases relative to sporadic AD. We found CAA to be associated with MBs and that MBs increased with age in DS after 30 years of age in the OCTX and after 40 years of age in the FCTX. MB and CAA appear to be a significant contributors to the development of dementia in people with DS and are important targets for future clinical trials.
Collapse
Affiliation(s)
- Alex M Helman
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Morgan Siever
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Katie L McCarty
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Ira T Lott
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Erin L Abner
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
34
|
Strydom A, Coppus A, Blesa R, Danek A, Fortea J, Hardy J, Levin J, Nuebling G, Rebillat AS, Ritchie C, van Duijn C, Zaman S, Zetterberg H. Alzheimer's disease in Down syndrome: An overlooked population for prevention trials. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:703-713. [PMID: 30581976 PMCID: PMC6296162 DOI: 10.1016/j.trci.2018.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discovery that adults with Down syndrome (DS) have neuropathological features identical to individuals with sporadic Alzheimer's disease (AD) played a key role in the identification of the amyloid precursor protein gene on chromosome 21 and resulted in the amyloid cascade hypothesis. Individuals with DS have a lifetime risk for dementia in excess of 90%, and DS is now acknowledged to be a genetic form of AD similar to rare autosomal-dominant causes. Just as DS put the spotlight on amyloid precursor protein mutations, it is also likely to inform us of the impact of manipulating the amyloid pathway on treatment outcomes in AD. Ironically, however, individuals with DS are usually excluded from AD trials. This review will discuss primary and secondary prevention trials for AD in DS and the potential barriers and solutions to such trials and describe the Europe-wide Horizon21 Consortium to establish a DS-AD prevention clinical trials network.
Collapse
Affiliation(s)
- André Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
- Division of Psychiatry, University Collee London, London, UK
- The London Down Syndrome Consortium (LonDownS), UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Antonia Coppus
- Dichterbij, Center for Intellectual Disabilities, Gennep, the Netherlands
- Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau-Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Spain
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau-Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - John Hardy
- The London Down Syndrome Consortium (LonDownS), UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, Munich, Germany
| | - Georg Nuebling
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Craig Ritchie
- Centre for Clinical Brain Sciences, Dementia Prevention Research Group, University of Edinburgh
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Shahid Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust (CBFT), Fulbourn Hospital, Cambridge, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
35
|
Nuovo G, Tili E, Awad H, Michaille JJ. [Roles of miR-155 microRNA in dementia associated with Down's syndrome]. Med Sci (Paris) 2018; 34:922-924. [PMID: 30526830 DOI: 10.1051/medsci/2018231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Gerard Nuovo
- GNOME Diagnostics, Powell, OH 43065, États-Unis. - Comprehensive Cancer Center, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, États-Unis
| | - Esmerina Tili
- Department of Anesthesiology, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, États-Unis. - Department of Cancer Biology and Genetics, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, États-Unis
| | - Hamdy Awad
- Department of Anesthesiology, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, États-Unis
| | - Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté, Faculté des Sciences Gabriel, 6 Bd. Gabriel, 21000 Dijon, France
| |
Collapse
|
36
|
Zhao X, Bhattacharyya A. Human Models Are Needed for Studying Human Neurodevelopmental Disorders. Am J Hum Genet 2018; 103:829-857. [PMID: 30526865 DOI: 10.1016/j.ajhg.2018.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
The analysis of animal models of neurological disease has been instrumental in furthering our understanding of neurodevelopment and brain diseases. However, animal models are limited in revealing some of the most fundamental aspects of development, genetics, pathology, and disease mechanisms that are unique to humans. These shortcomings are exaggerated in disorders that affect the brain, where the most significant differences between humans and animal models exist, and could underscore failures in targeted therapeutic interventions in affected individuals. Human pluripotent stem cells have emerged as a much-needed model system for investigating human-specific biology and disease mechanisms. However, questions remain regarding whether these cell-culture-based models are sufficient or even necessary. In this review, we summarize human-specific features of neurodevelopment and the most common neurodevelopmental disorders, present discrepancies between animal models and human diseases, demonstrate how human stem cell models can provide meaningful information, and discuss the challenges that exist in our pursuit to understand distinctively human aspects of neurodevelopment and brain disease. This information argues for a more thoughtful approach to disease modeling through consideration of the valuable features and limitations of each model system, be they human or animal, to mimic disease characteristics.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| | - Anita Bhattacharyya
- Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI 53705, USA.
| |
Collapse
|
37
|
Lukiw WJ, Kruck TP, Percy ME, Pogue AI, Alexandrov PN, Walsh WJ, Sharfman NM, Jaber VR, Zhao Y, Li W, Bergeron C, Culicchia F, Fang Z, McLachlan DR. Aluminum in neurological disease - a 36 year multicenter study. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:457. [PMID: 31179161 PMCID: PMC6550484 DOI: 10.4172/2161-0460.1000457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology and pathology of multiple neurological diseases that involve inflammatory neural degeneration, behavioral impairment and cognitive decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 high quality coded human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) were selected for analysis: (i) because of their essential functions in massive neural information processing operations including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer's disease (AD). Coded brain tissue samples were analyzed using the analytical technique of: (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis (ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down's syndrome (DS; trisomy21; N=24), Huntington's chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), Parkinson's disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; 'mad cow disease'), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum's association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but appear not to be a significant factor in other common disorders of the human central nervous system (CNS).
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Alchem Biotek Research, Toronto ON M5S 1A8, CANADA
- Russian Academy of Medical Sciences, Moscow 113152, RUSSIAN
FEDERATION
| | - Theodore P.A. Kruck
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
| | - Maire E. Percy
- Surrey Place Center, University of Toronto, Toronto ON M5S
1A8 CANADA
- Department of Neurogenetics, University of Toronto, Toronto
ON M5S 1A8 CANADA
| | | | | | | | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State
University Health Sciences Center, New Orleans LA 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi
University of TCM, Nanchang, Jiangxi 330004 CHINA
| | - Catherine Bergeron
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Culicchia Neurological Clinic, West Jefferson Medical
Center, Marrero, LA 70072 USA
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU
Health Sciences Center, New Orleans LA 70112, USA
- Department of Genetics, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Louisiana Clinical and Translational Science Center (LA
CaTS), LSU Health Sciences Center, New Orleans LA 70112, USA
| | - Donald R.C. McLachlan
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| |
Collapse
|
38
|
Eady N, Sheehan R, Rantell K, Sinai A, Bernal J, Bohnen I, Bonell S, Courtenay K, Dodd K, Gazizova D, Hassiotis A, Hillier R, McBrien J, Mukherji K, Naeem A, Perez-Achiaga N, Sharma V, Thomas D, Walker Z, McCarthy J, Strydom A. Author's reply to: Difficulties of diagnosing and managing dementia in people with Down syndrome. Br J Psychiatry 2018; 213:669. [PMID: 30741135 DOI: 10.1192/bjp.2018.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nicole Eady
- Division of Psychiatry,University College London,UK
| | - Rory Sheehan
- Division of Psychiatry,University College London,UK
| | | | - Amanda Sinai
- Division of Psychiatry,University College London,UK
| | | | | | - Simon Bonell
- Plymouth Community Learning Disabilities Team,Livewell Southwest,UK
| | - Ken Courtenay
- Haringey Learning Disability Partnership,Barnet Enfield Haringey Mental Health NHS Trust,UK
| | - Karen Dodd
- Surrey and Borders Partnership NHS Foundation Trust,UK
| | | | | | | | | | | | - Asim Naeem
- South West London and St George's Mental Health NHS Trust,UK
| | | | | | - David Thomas
- Hackney Learning Disability Team, East London NHS Foundation Trust,UK
| | | | - Jane McCarthy
- Institute of Psychiatry, Psychology and Neuroscience,King's College London,UK
| | - André Strydom
- Division of Psychiatry,University College London, Institute of Psychiatry,Psychology and Neuroscience,King's College London and The LonDownS Consortium,UK
| |
Collapse
|
39
|
Zis P, McHugh PC, Manca M, Sarrigiannis PG, Rao DG, Hadjivassiliou M. Increased Oxidative Stress as a Risk Factor in Chronic Idiopathic Axonal Polyneuropathy. J Mol Neurosci 2018; 66:547-551. [PMID: 30350254 PMCID: PMC6267393 DOI: 10.1007/s12031-018-1200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 01/04/2023]
Abstract
Chronic idiopathic axonal polyneuropathy (CIAP) is a disorder with insidious onset and slow progression, where no etiology is identified despite appropriate investigations. We aimed to investigate the role of oxidative stress as a risk factor for the pathogenesis of CIAP. Sera of patients with CIAP were tested for protein carbonyl (PC) and 8-hydroxydeoxyguanosine (8H). As a control group, we recruited patients with gluten neuropathy. Twenty-one patients with CIAP and 21 controls were recruited. The two groups did not differ significantly regarding demographics or clinical characteristics (i.e., neuropathy type or disease severity). After adjusting for gender, having CIAP was positively correlated with both the 8H titer (standardized beta coefficient 0.349, p = 0.013) and the PC titer (standardized beta coefficient 0.469, p = 0.001). Oxidative stress appears to be increased in CIAP and might have a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Panagiotis Zis
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Glossop Rd, Sheffield, South Yorkshire, S10 2JF, UK.
| | - Patrick C McHugh
- Centre for Biomarker Research and Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maurizio Manca
- Centre for Biomarker Research and Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | | | - Dasappaiah Ganesh Rao
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Glossop Rd, Sheffield, South Yorkshire, S10 2JF, UK
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Glossop Rd, Sheffield, South Yorkshire, S10 2JF, UK
| |
Collapse
|
40
|
Mann DMA, Davidson YS, Robinson AC, Allen N, Hashimoto T, Richardson A, Jones M, Snowden JS, Pendleton N, Potier MC, Laquerrière A, Prasher V, Iwatsubo T, Strydom A. Patterns and severity of vascular amyloid in Alzheimer's disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer's disease. Acta Neuropathol 2018; 136:569-587. [PMID: 29770843 PMCID: PMC6132946 DOI: 10.1007/s00401-018-1866-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023]
Abstract
In this study, we have compared the severity of amyloid plaque formation and cerebral amyloid angiopathy (CAA), and the subtype pattern of CAA pathology itself, between APP genetic causes of AD (APPdup, APP mutations), older individuals with Down syndrome (DS) showing the pathology of Alzheimer's disease (AD) and individuals with sporadic (early and late onset) AD (sEOAD and sLOAD, respectively). The aim of this was to elucidate important group differences and to provide mechanistic insights related to clinical and neuropathological phenotypes. Since lipid and cholesterol metabolism is implicated in AD as well as vascular disease, we additionally aimed to explore the role of APOE genotype in CAA severity and subtypes. Plaque formation was greater in DS and missense APP mutations than in APPdup, sEOAD and sLOAD cases. Conversely, CAA was more severe in APPdup and missense APP mutations, and in DS, compared to sEOAD and sLOAD. When stratified by CAA subtype from 1 to 4, there were no differences in plaque scores between the groups, though in patients with APPdup, APP mutations and sEOAD, types 2 and 3 CAA were more common than type 1. Conversely, in DS, sLOAD and controls, type 1 CAA was more common than types 2 and 3. APOE ε4 allele frequency was greater in sEOAD and sLOAD compared to APPdup, missense APP mutations, DS and controls, and varied between each of the CAA phenotypes with APOE ε4 homozygosity being more commonly associated with type 3 CAA than types 1 and 2 CAA in sLOAD and sEOAD. The differing patterns in CAA within individuals of each group could be a reflection of variations in the efficiency of perivascular drainage, this being less effective in types 2 and 3 CAA leading to a greater burden of CAA in parenchymal arteries and capillaries. Alternatively, as suggested by immunostaining using carboxy-terminal specific antibodies, it may relate to the relative tissue burdens of the two major forms of Aβ, with higher levels of Aβ40 promoting a more 'aggressive' form of CAA, and higher levels of Aβ42(3) favouring a greater plaque burden. Possession of APOE ε4 allele, especially ε4 homozygosity, favours development of CAA generally, and as type 3 particularly, in sEOAD and sLOAD.
Collapse
Affiliation(s)
- David M A Mann
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK.
| | - Yvonne S Davidson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Nancy Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Anna Richardson
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Matthew Jones
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Julie S Snowden
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Annie Laquerrière
- Department of Pathology, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Team 4, Neovasc, 76000, Rouen, France
| | - Vee Prasher
- Birmingham Community NHS Trust, The Greenfields, 30 Brookfield Road, Birmingham, B30 3QY, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andre Strydom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
- Division of Psychiatry, University College London, 147 Tottenham Court Road, London, UK
| |
Collapse
|
41
|
|
42
|
Fortea J, Carmona-Iragui M, Benejam B, Fernández S, Videla L, Barroeta I, Alcolea D, Pegueroles J, Muñoz L, Belbin O, de Leon MJ, Maceski AM, Hirtz C, Clarimón J, Videla S, Delaby C, Lehmann S, Blesa R, Lleó A. Plasma and CSF biomarkers for the diagnosis of Alzheimer's disease in adults with Down syndrome: a cross-sectional study. Lancet Neurol 2018; 17:860-869. [DOI: 10.1016/s1474-4422(18)30285-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
|
43
|
Wiseman FK, Pulford LJ, Barkus C, Liao F, Portelius E, Webb R, Chávez-Gutiérrez L, Cleverley K, Noy S, Sheppard O, Collins T, Powell C, Sarell CJ, Rickman M, Choong X, Tosh JL, Siganporia C, Whittaker HT, Stewart F, Szaruga M, Murphy MP, Blennow K, de Strooper B, Zetterberg H, Bannerman D, Holtzman DM, Tybulewicz VLJ, Fisher EMC. Trisomy of human chromosome 21 enhances amyloid-β deposition independently of an extra copy of APP. Brain 2018; 141:2457-2474. [PMID: 29945247 PMCID: PMC6061702 DOI: 10.1093/brain/awy159] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
Down syndrome, caused by trisomy of chromosome 21, is the single most common risk factor for early-onset Alzheimer's disease. Worldwide approximately 6 million people have Down syndrome, and all these individuals will develop the hallmark amyloid plaques and neurofibrillary tangles of Alzheimer's disease by the age of 40 and the vast majority will go on to develop dementia. Triplication of APP, a gene on chromosome 21, is sufficient to cause early-onset Alzheimer's disease in the absence of Down syndrome. However, whether triplication of other chromosome 21 genes influences disease pathogenesis in the context of Down syndrome is unclear. Here we show, in a mouse model, that triplication of chromosome 21 genes other than APP increases amyloid-β aggregation, deposition of amyloid-β plaques and worsens associated cognitive deficits. This indicates that triplication of chromosome 21 genes other than APP is likely to have an important role to play in Alzheimer's disease pathogenesis in individuals who have Down syndrome. We go on to show that the effect of trisomy of chromosome 21 on amyloid-β aggregation correlates with an unexpected shift in soluble amyloid-β 40/42 ratio. This alteration in amyloid-β isoform ratio occurs independently of a change in the carboxypeptidase activity of the γ-secretase complex, which cleaves the peptide from APP, or the rate of extracellular clearance of amyloid-β. These new mechanistic insights into the role of triplication of genes on chromosome 21, other than APP, in the development of Alzheimer's disease in individuals who have Down syndrome may have implications for the treatment of this common cause of neurodegeneration.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Chris Barkus
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK
| | - Fan Liao
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30, Sweden
| | - Robin Webb
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40507, USA
| | - Lucia Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain and Disease Research, VIB-Leuven 3000, Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
| | - Karen Cleverley
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Sue Noy
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Olivia Sheppard
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Toby Collins
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Caroline Powell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W 7FF, UK
| | - Claire J Sarell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W 7FF, UK
| | - Matthew Rickman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Xun Choong
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Carlos Siganporia
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Heather T Whittaker
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
| | - Floy Stewart
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain and Disease Research, VIB-Leuven 3000, Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
| | - London Down syndrome consortium
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
| | - Michael P Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40507, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30, Sweden
| | - Bart de Strooper
- VIB-KU Leuven Center for Brain and Disease Research, VIB-Leuven 3000, Center for Human Genetics, Universitaire Ziekenhuizen and LIND, KU Leuven, Leuven, Belgium
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute, London, WC2B 4AN, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute, London, WC2B 4AN, UK
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH, UK
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, 63110, USA
| | - Victor L J Tybulewicz
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
- Francis Crick Institute, London, NW1 1AT, UK
- Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG UK
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London, SE5 8AF, UK
| |
Collapse
|
44
|
Head E, Powell DK, Schmitt FA. Metabolic and Vascular Imaging Biomarkers in Down Syndrome Provide Unique Insights Into Brain Aging and Alzheimer Disease Pathogenesis. Front Aging Neurosci 2018; 10:191. [PMID: 29977201 PMCID: PMC6021507 DOI: 10.3389/fnagi.2018.00191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
People with Down syndrome (DS) are at high risk for developing Alzheimer disease (AD). Neuropathology consistent with AD is present by 40 years of age and dementia may develop up to a decade later. In this review, we describe metabolic and vascular neuroimaging studies in DS that suggest these functional changes are a key feature of aging, linked to cognitive decline and AD in this vulnerable cohort. FDG-PET imaging in DS suggests systematic reductions in glucose metabolism in posterior cingulate and parietotemporal cortex. Magentic resonance spectroscopy studies show consistent decreases in neuronal health and increased myoinositol, suggesting inflammation. There are few vascular imaging studies in DS suggesting a gap in our knowledge. Future studies would benefit from longitudinal measures and combining various imaging approaches to identify early signs of dementia in DS that may be amenable to intervention.
Collapse
Affiliation(s)
- Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - David K Powell
- Magnetic Resonance Imaging and Spectroscopy Center, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Frederick A Schmitt
- Department of Neurology, Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
45
|
Firth NC, Startin CM, Hithersay R, Hamburg S, Wijeratne PA, Mok KY, Hardy J, Alexander DC, Strydom A. Aging related cognitive changes associated with Alzheimer's disease in Down syndrome. Ann Clin Transl Neurol 2018; 5:741-751. [PMID: 29928657 PMCID: PMC5989753 DOI: 10.1002/acn3.571] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Individuals with Down syndrome (DS) have an extremely high genetic risk for Alzheimer's disease (AD), however, the course of cognitive decline associated with progression to dementia is ill-defined. Data-driven methods can estimate long-term trends from cross-sectional data while adjusting for variability in baseline ability, which complicates dementia assessment in those with DS. METHODS We applied an event-based model to cognitive test data and informant-rated questionnaire data from 283 adults with DS (the largest study of cognitive functioning in DS to date) to estimate the sequence of cognitive decline and individuals' disease stage. RESULTS Decline in tests of memory, sustained attention/motor coordination, and verbal fluency occurred early, demonstrating that AD in DS follows a similar pattern of change to other forms of AD. Later decline was found for informant measures. Using the resulting staging model, we showed that adults with a clinical diagnosis of dementia and those with APOE 3:4 or 4:4 genotype were significantly more likely to be staged later, suggesting that the model is valid. INTERPRETATION Our results identify tests of memory and sustained attention may be particularly useful measures to track decline in the preclinical/prodromal stages of AD in DS whereas informant-measures may be useful in later stages (i.e. during conversion into dementia, or postdiagnosis). These results have implications for the selection of outcome measures of treatment trials to delay or prevent cognitive decline due to AD in DS. As clinical diagnoses are generally made late into AD progression, early assessment is essential.
Collapse
Affiliation(s)
- Nicholas C. Firth
- Centre for Medical Image ComputingDepartment of Computer ScienceUCLLondonWC1E 6BTUnited Kingdom
| | - Carla M. Startin
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology & NeuroscienceKings College LondonLondonSE5 8AFUnited Kingdom
- Division of PsychiatryUCLLondonWC1E 6BTUnited Kingdom
- LonDownS ConsortiumLondonUnited Kingdom
| | - Rosalyn Hithersay
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology & NeuroscienceKings College LondonLondonSE5 8AFUnited Kingdom
- Division of PsychiatryUCLLondonWC1E 6BTUnited Kingdom
- LonDownS ConsortiumLondonUnited Kingdom
| | - Sarah Hamburg
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology & NeuroscienceKings College LondonLondonSE5 8AFUnited Kingdom
- Division of PsychiatryUCLLondonWC1E 6BTUnited Kingdom
- LonDownS ConsortiumLondonUnited Kingdom
| | - Peter A. Wijeratne
- Centre for Medical Image ComputingDepartment of Computer ScienceUCLLondonWC1E 6BTUnited Kingdom
| | - Kin Y. Mok
- LonDownS ConsortiumLondonUnited Kingdom
- Department of Molecular NeuroscienceInstitute of NeurologyUCLLondonWC1N 3BGUnited Kingdom
- Division of Life ScienceHong Kong University of Science and TechnologyHong Kong SARChina
| | - John Hardy
- LonDownS ConsortiumLondonUnited Kingdom
- Department of Molecular NeuroscienceInstitute of NeurologyUCLLondonWC1N 3BGUnited Kingdom
- Reta Lila Weston InstituteInstitute of NeurologyUCLLondonWC1N 3BGUnited Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image ComputingDepartment of Computer ScienceUCLLondonWC1E 6BTUnited Kingdom
| | | | - André Strydom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology & NeuroscienceKings College LondonLondonSE5 8AFUnited Kingdom
- Division of PsychiatryUCLLondonWC1E 6BTUnited Kingdom
- LonDownS ConsortiumLondonUnited Kingdom
- South London and Maudsley NHS Foundation TrustBethlem Royal HospitalMonks Orchard RoadBeckenhamKent BR3 3BXUnited Kingdom
| |
Collapse
|
46
|
Strydom A, Heslegrave A, Startin CM, Mok KY, Hardy J, Groet J, Nizetic D, Zetterberg H. Neurofilament light as a blood biomarker for neurodegeneration in Down syndrome. ALZHEIMERS RESEARCH & THERAPY 2018; 10:39. [PMID: 29631614 PMCID: PMC5891918 DOI: 10.1186/s13195-018-0367-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Background Down syndrome (DS) may be considered a genetic form of Alzheimer’s disease (AD) due to universal development of AD neuropathology, but diagnosis and treatment trials are hampered by a lack of reliable blood biomarkers. A potential biomarker is neurofilament light (NF-L), due to its association with axonal damage in neurodegenerative conditions. Methods We measured blood NF-L concentrations in 100 adults with DS using Simoa NF-light® assays, and we examined relationships with age as well as cross-sectional and longitudinal dementia diagnosis. Results NF-L concentrations increased with age (Spearman’s rho = 0.789, p < 0.001), with a steep increase after age 40, and they were predictive of dementia status (p = 0.022 adjusting for age, sex, and APOE4), but they showed no relationship with long-standing epilepsy or premorbid ability. Baseline NF-L concentrations were associated with longitudinal dementia status. Conclusions NF-L is a biomarker for neurodegeneration in DS with potential for use in future clinical trials to prevent or delay dementia.
Collapse
Affiliation(s)
- Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK. .,Division of Psychiatry, University College London, London, UK. .,The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Carla M Startin
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.,Division of Psychiatry, University College London, London, UK.,The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Kin Y Mok
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong, Special Administrative Region of China
| | - John Hardy
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - Jurgen Groet
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Dean Nizetic
- The LonDownS Consortium, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,UK Dementia Research Institute at UCL, London, UK
| | | |
Collapse
|
47
|
Sánchez MP, García-Cabrero AM, Sánchez-Elexpuru G, Burgos DF, Serratosa JM. Tau-Induced Pathology in Epilepsy and Dementia: Notions from Patients and Animal Models. Int J Mol Sci 2018; 19:ijms19041092. [PMID: 29621183 PMCID: PMC5979593 DOI: 10.3390/ijms19041092] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Patients with dementia present epilepsy more frequently than the general population. Seizures are more common in patients with Alzheimer’s disease (AD), dementia with Lewy bodies (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP) than in other dementias. Missense mutations in the microtubule associated protein tau (MAPT) gene have been found to cause familial FTD and PSP, while the P301S mutation in MAPT has been associated with early-onset fast progressive dementia and the presence of seizures. Brains of patients with AD, LBD, FTD and PSP show hyperphosphorylated tau aggregates, amyloid-β plaques and neuropil threads. Increasing evidence suggests the existence of overlapping mechanisms related to the generation of network hyperexcitability and cognitive decline. Neuronal overexpression of tau with various mutations found in FTD with parkinsonism-linked to chromosome 17 (FTDP-17) in mice produces epileptic activity. On the other hand, the use of certain antiepileptic drugs in animal models with AD prevents cognitive impairment. Further efforts should be made to search for plausible common targets for both conditions. Moreover, attempts should also be made to evaluate the use of drugs targeting tau and amyloid-β as suitable pharmacological interventions in epileptic disorders. The diagnosis of dementia and epilepsy in early stages of those diseases may be helpful for the initiation of treatments that could prevent the generation of epileptic activity and cognitive deterioration.
Collapse
Affiliation(s)
- Marina P Sánchez
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Ana M García-Cabrero
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
- Department of Immunology and Oncology and Protein Tools Unit, Biotechnology National Center (CNB/CSIC), 28049 Madrid, Spain.
| | - Gentzane Sánchez-Elexpuru
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Daniel F Burgos
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| |
Collapse
|
48
|
Nocebo Responses in Brain Diseases: A Systematic Review of the Current Literature. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 139:443-462. [DOI: 10.1016/bs.irn.2018.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown, Center on Aging, University of Kentucky, Lexington, KY 40506 USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|