1
|
Filho CC, Melfior L, Ramos SL, Pizi MSO, Taruhn LF, Muller ME, Nunes TK, Schmitt LDO, Gaspar JM, de Oliveira MDA, Tassinari G, Cruz L, Latini A. Tetrahydrobiopterin and Autism Spectrum Disorder: A Systematic Review of a Promising Therapeutic Pathway. Brain Sci 2025; 15:151. [PMID: 40002484 PMCID: PMC11853471 DOI: 10.3390/brainsci15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, along with restricted and repetitive patterns of behavior, interests, or activities. ASD encompasses a wide spectrum of clinical presentations and functional impairments, ranging from mild to severe. Despite its prevalence, the underlying physiopathological mechanisms of ASD remain largely unknown, resulting in a lack of effective targeted therapeutic interventions, contributing to significant financial and emotional burdens on affected families and the healthcare system. Emerging evidence suggests that dysfunction in the tetrahydrobiopterin (BH4) pathway may impair the activity of monoaminergic and nitric oxide (NO)-dependent neurons in individuals with ASD. To explore this potential mechanism, we conducted a systematic review to analyze such impairments to gather information on whether the off-label use of BH4 could represent a novel pharmacological approach for managing ASD. Following the PRISMA 2020 guidelines, we systematically reviewed the literature from four databases: PubMed, Virtual Health Library, Cochrane Library, and SciELO, from January 1967 to December 2021. The quality of the included studies was assessed using the Newcastle-Ottawa scale. The inclusion criteria for this systematic review focused on identifying articles published in English that contained the following keywords, used in various combinations: autism, ASD, autism spectrum disorder, BH4, tetrahydrobiopterin, neopterin, NO, nitric oxide. The analysis was performed between December 2020 and December 2021. The collected data demonstrated that BH4 metabolism was altered in individuals with ASD. Lower levels of BH4 were reported in biological samples from ASD-affected individuals compared to age- and sex-matched controls. Additionally, neopterin levels were elevated in plasma and urine, but decreased in cerebrospinal fluid, while nitric oxide levels were consistently reported to be higher across studies. Treatment with BH4 has shown potential in improving ASD-related symptoms. The reported increase in neopterin in biological fluids indicates inflammation, while the reduction in BH4 levels suggests a potential shift in its metabolic role. Specifically, BH4 may be diverted from its primary role in neurotransmitter synthesis to function as an antioxidant or to perpetuate inflammation through NO production. Given that BH4 is a critical cofactor in monoaminergic neurotransmission, its dysfunction highlights the molecule's therapeutic potential. BH4, already FDA-approved for other conditions, emerges as a promising off-label candidate to alleviate ASD symptomatology.
Collapse
Affiliation(s)
- Clóvis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Lucas Melfior
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Sthephanie Luiz Ramos
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Lilian Freitas Taruhn
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Margrit Ellis Muller
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Thiago Kucera Nunes
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luísa de Oliveira Schmitt
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Pharmacy School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Joana Margarida Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Miguel de Abreu de Oliveira
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giovanna Tassinari
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luisa Cruz
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
2
|
Satılmış B, Çiçek E, Karakaş S, Kutlutürk K, Otan E, Yılmaz S, Şahin TT. The role of neopterin in cross-talk between tumor and tumor microenvironment in hepatocellular carcinoma. Pteridines 2024; 35. [DOI: 10.1515/pteridines-2022-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Abstract
Neopterin is a marker of activated immune response, but its role in hepatocarcinogenesis is unknown. The present study aims to evaluate the effects of neopterin on prooncogenic/proinflammatory, apoptotic pathways, and other molecular mechanisms in HCC. We used SNU449, Huh-7, SK-Hep-1, and HepG2 cell lines. A cell viability assay was performed with different concentrations of neopterin. RT-PCR, Western blotting, transwell migration, scratch assay, and reactive oxygen species (ROS) production assays were performed at inhibition concentration 50 of neopterin, which was 40 µM for SNU449 and 80 µM for other cell lines. There were significant changes in mTOR, STAT3, PI3K, and interleukin-6 gene expressions, which were also supported by the protein expressions. Neopterin did not affect apoptosis in SNU449, while apoptosis increased by all doses of neopterin in SK-Hep-1 and HepG2. ROS production was increased in all cell lines in response to neopterin. Cell migration was reduced in SK-Hep1 and HepG2 but did not change in SNU449 and Huh-7. Our study showed that neopterin is not just a byproduct. The results suggest that neopterin may be a paracrine factor that modulates pro-inflammatory and pro-oncogenic pathways responsible for the biological behavior of HCC in a chronic inflammatory tumor microenvironment.
Collapse
Affiliation(s)
- Basri Satılmış
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
- Hepatology Research Laboratory , Liver Transplant Institute , İnönü University , 44280 , Malatya , Turkey
| | - Egemen Çiçek
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
- Department of Surgery , Faculty of Medicine , İnönü University , 44280 , Malatya , Turkey
| | - Serdar Karakaş
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
| | - Koray Kutlutürk
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
| | - Emrah Otan
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
- Department of Surgery , Faculty of Medicine , İnönü University , 44280 , Malatya , Turkey
| | - Sezai Yılmaz
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
- Hepatology Research Laboratory , Liver Transplant Institute , İnönü University , 44280 , Malatya , Turkey
- Department of Surgery , Faculty of Medicine , İnönü University , 44280 , Malatya , Turkey
| | - Tevfik Tolga Şahin
- Liver Transplant Institute, İnönü University , 44280 , Malatya , Turkey
- Hepatology Research Laboratory , Liver Transplant Institute , İnönü University , 44280 , Malatya , Turkey
- Department of Surgery , Faculty of Medicine , İnönü University , 44280 , Malatya , Turkey
| |
Collapse
|
3
|
Gateva P, Hristov M, Ivanova N, Vasileva D, Ivanova A, Sabit Z, Bogdanov T, Apostolova S, Tzoneva R. Antinociceptive Behavior, Glutamine/Glutamate, and Neopterin in Early-Stage Streptozotocin-Induced Diabetic Neuropathy in Liraglutide-Treated Mice under a Standard or Enriched Environment. Int J Mol Sci 2024; 25:10786. [PMID: 39409118 PMCID: PMC11477071 DOI: 10.3390/ijms251910786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of long-lasting type 1 and type 2 diabetes, with no curative treatment available. Here, we tested the effect of the incretin mimetic liraglutide in DN in mice with early-stage type 1 diabetes bred in a standard laboratory or enriched environment. With a single i.p. injection of streptozotocin 150 mg/kg, we induced murine diabetes. Liraglutide (0.4 mg/kg once daily, i.p. for ten days since the eighth post-streptozotocin day) failed to decrease the glycemia in the diabetic mice; however, it alleviated their antinociceptive behavior, as tested with formalin. The second phase of the formalin test had significantly lower results in liraglutide-treated mice reared in the enriched environment vs. liraglutide-treated mice under standard conditions [2.00 (0.00-11.00) vs. 29.00 (2.25-41.50) s, p = 0.016]. Liraglutide treatment, however, decreased the threshold of reactivity in the von Fray test. A significantly higher neopterin level was demonstrated in the diabetic control group compared to treatment-naïve controls and the liraglutide-treated diabetic mice (p < 0.001). The glutamine/glutamate ratio in both liraglutide-treated groups, either reared under standard conditions (p = 0.003) or an enriched environment (p = 0.002), was significantly higher than in the diabetic controls. This study demonstrates an early liraglutide effect on pain sensation in two streptozotocin-induced diabetes mouse models by reducing some inflammatory and oxidative stress parameters.
Collapse
Affiliation(s)
- Pavlina Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Natasha Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Debora Vasileva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Alexandrina Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria; (M.H.); (N.I.); (D.V.); (A.I.)
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Todor Bogdanov
- Department of Medical Physics and Biophysics, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Sonia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (S.A.); (R.T.)
| |
Collapse
|
4
|
Miyaue N, Yamanishi Y, Ito Y, Ando R, Nagai M. CSF Neopterin Levels Are Elevated in Various Neurological Diseases and Aging. J Clin Med 2024; 13:4542. [PMID: 39124808 PMCID: PMC11312611 DOI: 10.3390/jcm13154542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objectives: Cerebrospinal fluid (CSF) neopterin reflects inflammation of the central nervous system (CNS) and is a potentially useful biomarker for neuroinflammatory assessment and differential diagnosis. However, its optimal cut-off level in adult patients with neurological disease has not been established and it has not been adequately studied in controls. We aimed to determine its usefulness as a biomarker of neuroinflammation and the effect of age on its level. Methods: In this retrospective study, CSF neopterin was evaluated in 652 patients in 38 disease groups. Its levels were analyzed with high-performance liquid chromatography with fluorometric detection. Results: A receiver operating characteristic analysis revealed that the optimal cut-off value of 33.57 pmol/mL for CSF neopterin distinguished the control and meningitis/encephalitis groups with a sensitivity of 100.0% and specificity of 94.4%. In the control group, which consisted of 170 participants (99 men and 71 women; mean ± standard deviation age, 52.56 ± 17.99 years), age was significantly positively correlated with CSF protein (r = 0.474, p < 0.001) and CSF neopterin (r = 0.476, p < 0.001) levels but not with CSF cell count (r = 0.144, p = 0.061). Both male and female controls exhibited significant increases in CSF neopterin levels with age. Similarly, the CSF neopterin level was significantly positively correlated with age in patients with amyotrophic lateral sclerosis, independently of disease duration and respiratory function. Conclusions: CSF neopterin levels were elevated in patients with various CNS diseases, reflecting CNS inflammation; they were also elevated with age. Prospective studies are required to establish CSF neopterin as a sensitive biomarker of neuroinflammation.
Collapse
Affiliation(s)
- Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon 791-0295, Japan; (Y.Y.); (Y.I.); (R.A.); (M.N.)
| | | | | | | | | |
Collapse
|
5
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Leveque C, Mrakic Sposta S, Theunissen S, Germonpré P, Lambrechts K, Vezzoli A, Gussoni M, Levenez M, Lafère P, Guerrero F, Balestra C. Oxidative Stress Response Kinetics after 60 Minutes at Different Levels (10% or 15%) of Normobaric Hypoxia Exposure. Int J Mol Sci 2023; 24:10188. [PMID: 37373334 DOI: 10.3390/ijms241210188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the metabolic responses of hypoxic breathing for 1 h to inspired fractions of 10% and 15% oxygen were investigated. To this end, 14 healthy nonsmoking subjects (6 females and 8 males, age: 32.2 ± 13.3 years old (mean ± SD), height: 169.1 ± 9.9 cm, and weight: 61.6 ± 16.2 kg) volunteered for the study. Blood samples were taken before, and at 30 min, 2 h, 8 h, 24 h, and 48 h after a 1 h hypoxic exposure. The level of oxidative stress was evaluated by considering reactive oxygen species (ROS), nitric oxide metabolites (NOx), lipid peroxidation, and immune-inflammation by interleukin-6 (IL-6) and neopterin, while antioxidant systems were observed in terms of the total antioxidant capacity (TAC) and urates. Hypoxia abruptly and rapidly increased ROS, while TAC showed a U-shape pattern, with a nadir between 30 min and 2 h. The regulation of ROS and NOx could be explained by the antioxidant action of uric acid and creatinine. The kinetics of ROS allowed for the stimulation of the immune system translated by an increase in neopterin, IL-6, and NOx. This study provides insights into the mechanisms through which acute hypoxia affects various bodily functions and how the body sets up the protective mechanisms to maintain redox homeostasis in response to oxidative stress.
Collapse
Affiliation(s)
- Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Simona Mrakic Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Peter Germonpré
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
7
|
Eichwald T, da Silva LDB, Staats Pires AC, Niero L, Schnorrenberger E, Filho CC, Espíndola G, Huang WL, Guillemin GJ, Abdenur JE, Latini A. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Antioxidants (Basel) 2023; 12:1037. [PMID: 37237903 PMCID: PMC10215290 DOI: 10.3390/antiox12051037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.
Collapse
Affiliation(s)
- Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Laís Niero
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Erick Schnorrenberger
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Clovis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei-Lin Huang
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - José E. Abdenur
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| |
Collapse
|
8
|
Macrophage-Targeted Sodium Chlorite (NP001) Slows Progression of Amyotrophic Lateral Sclerosis (ALS) through Regulation of Microbial Translocation. Biomedicines 2022; 10:biomedicines10112907. [PMID: 36428474 PMCID: PMC9687998 DOI: 10.3390/biomedicines10112907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous, progressive, and universally fatal neurodegenerative disease. A subset of ALS patients has measurable plasma levels of lipopolysaccharide (LPS) and C-reactive protein (CRP) consistent with low-grade microbial translocation (MT). Unless interrupted, MT sets up a self-perpetuating loop of inflammation associated with systemic macrophage activation. To test whether MT contributed to ALS progression, blood specimens from a phase 2 study of NP001 in ALS patients were evaluated for changes in activity in treated patients as compared to controls over the 6-month study. In this post hoc analysis, plasma specimens from baseline and six-month timepoints were analyzed. Compared with baseline values, biomarkers related to MT were significantly decreased (LPS, LPS binding protein (LBP), IL-18, Hepatocyte growth factor (HGF), soluble CD163 (sCD163)) in NP001-treated patients as compared to controls, whereas wound healing and immunoregulatory factors were increased (IL-10, Epidermal growth factor (EGF), neopterin) by the end of study. These biomarker results linked to the positive clinical trial outcome confirm that regulation of macrophage activation may be an effective approach for the treatment of ALS and, potentially, other neuroinflammatory diseases related to MT.
Collapse
|
9
|
Miyaue N, Hosokawa Y, Yamanishi Y, Tada S, Ando R, Nagai M. Clinical use of CSF neopterin levels in CNS demyelinating diseases. J Neurol Sci 2022; 441:120385. [PMID: 36027640 DOI: 10.1016/j.jns.2022.120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND There is some phenotypic overlap between MS, AQP4-IgG positive NMOSD, and MOG-IgG associated disease (MOGAD), and distinguishing a true relapse and a pseudorelapse can be difficult. CSF neopterin, a marker of inflammation-immune-mediated processes in the CNS, may be a useful marker in a wide range of CNS infectious and inflammatory diseases. We compared CSF neopterin levels and other CSF parameters in patients with MS, AQP4-IgG-positive NMOSD, and MOGAD and also investigated whether CSF neopterin levels can distinguish between active and inactive phases of the diseases. METHODS We retrospectively reviewed the medical records of 22 patients with MS, 18 with AQP4-IgG-positive NMOSD, and five with MOGAD. CSF neopterin concentrations were measured by HPLC with fluorometric detection. RESULTS CSF neopterin levels at diagnosis were significantly higher in patients with AQP4-IgG-positive NMOSD (52.77 ± 34.56 pmol/mL) than patients with MS (16.92 ± 5.03 pmol/mL, p < 0.001), and tended to be higher in patients with MOGAD (28.87 ± 9.66 pmol/mL) than patients with MS (p = 0.092). ROC analysis revealed that CSF neopterin most accurately discriminated between MS and AQP4-IgG-positive NMOSD (AUC, 0.912; sensitivity, 75.0%; specificity, 100.0%). At diagnosis/relapse and during remission, CSF neopterin most accurately discriminated between the disease phases in patients with MS (AUC, 0.779; sensitivity, 58.1%; specificity, 94.7%) and patients with AQP4-IgG-positive NMOSD (AUC, 0.934; sensitivity, 83.3%; specificity, 94.1%). CONCLUSION Measurement of CSF neopterin may be useful for differential diagnosis and assessment of disease activity in CNS demyelinating diseases. Further studies with larger cohorts, including comparisons with other biomarkers, are needed to validate the utility of CSF neopterin.
Collapse
Affiliation(s)
- Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan.
| | - Yuko Hosokawa
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Yuki Yamanishi
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Satoshi Tada
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Rina Ando
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Ehime University Graduate School of Medicine, Tohon, Ehime, Japan
| |
Collapse
|
10
|
Mata-Martínez E, Díaz-Muñoz M, Vázquez-Cuevas FG. Glial Cells and Brain Diseases: Inflammasomes as Relevant Pathological Entities. Front Cell Neurosci 2022; 16:929529. [PMID: 35783102 PMCID: PMC9243488 DOI: 10.3389/fncel.2022.929529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation mediated by the innate immune system is a physiopathological response to diverse detrimental circumstances such as microbe infections or tissular damage. The molecular events that underlie this response involve the assembly of multiprotein complexes known as inflammasomes. These assemblages are essentially formed by a stressor-sensing protein, an adapter protein and a non-apoptotic caspase (1 or 11). The coordinated aggregation of these components mediates the processing and release of pro-inflammatory interleukins (IL-β and IL-18) and cellular death by pyroptosis induction. The inflammatory response is essential for the defense of the organism; for example, it triggers tissue repair and the destruction of pathogen microbe infections. However, when inflammation is activated chronically, it promotes diverse pathologies in the lung, liver, brain and other organs. The nervous system is one of the main tissues where the inflammatory process has been characterized, and its implications in health and disease are starting to be understood. Thus, the regulation of inflammasomes in specific cellular types of the central nervous system needs to be thoroughly understood to innovate treatments for diverse pathologies. In this review, the presence and participation of inflammasomes in pathological conditions in different types of glial cells will be discussed.
Collapse
|
11
|
Rasmi Y, Heidari N, Kübra Kırboğa K, Hatamkhani S, Tekin B, Alipour S, Naderi R, Farnamian Y, Akca I. The importance of neopterin in COVID-19: The prognostic value and relation with the disease severity. Clin Biochem 2022; 104:1-12. [PMID: 35307400 PMCID: PMC8929545 DOI: 10.1016/j.clinbiochem.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
Abstract
Coronavirus Disease 2019 [COVID-19], caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2], has rapidly evolved into a global health emergency. Neopterin [NPT], produced by macrophages when stimulated with interferon [IFN-]gamma, is an essential cytokine in the antiviral immune response. NPT has been used as a marker for the early assessment of disease severity in different diseases. The leading cause of NPT production is the pro-inflammatory cytokine IFN-. Macrophage activation has also been revealed to be linked with disease severity in SARS-CoV-2 patients. We demonstrate the importance of NPT in the pathogenesis of SARS-CoV-2 and suggest that targeting NPT in SARS-CoV-2 infection may be critical in the early prediction of disease progression and provision of timely management of infected individuals.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nadia Heidari
- Department of Biochemistry, School of Medicine, Gorgan University of Medical Sciences, Urmia, Iran
| | | | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Burcu Tekin
- Izmir Institute of Technology, Biotechnology Department, Izmir, Turkey
| | - Shahryar Alipour
- Department of Biochemistry and Applied Cell, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeghaneh Farnamian
- Student Research Center, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ilknur Akca
- Mersin University, Faculty of Sciences, Department of Biotechnology, Mersin, Turkey
| |
Collapse
|
12
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|
13
|
Tastan B, Arioz BI, Genc S. Targeting NLRP3 Inflammasome With Nrf2 Inducers in Central Nervous System Disorders. Front Immunol 2022; 13:865772. [PMID: 35418995 PMCID: PMC8995746 DOI: 10.3389/fimmu.2022.865772] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
The NLRP3 inflammasome is an intracellular multiprotein complex that plays an essential role in the innate immune system by identifying and eliminating a plethora of endogenous and exogenous threats to the host. Upon activation of the NLRP3 complex, pro-inflammatory cytokines are processed and released. Furthermore, activation of the NLRP3 inflammasome complex can induce pyroptotic cell death, thereby propagating the inflammatory response. The aberrant activity and detrimental effects of NLRP3 inflammasome activation have been associated with cardiovascular, neurodegenerative, metabolic, and inflammatory diseases. Therefore, clinical strategies targeting the inhibition of the self-propelled NLRP3 inflammasome activation are required. The transcription factor Nrf2 regulates cellular stress response, controlling the redox equilibrium, metabolic programming, and inflammation. The Nrf2 pathway participates in anti-oxidative, cytoprotective, and anti-inflammatory activities. This prominent regulator, through pharmacologic activation, could provide a therapeutic strategy for the diseases to the etiology and pathogenesis of which NLRP3 inflammasome contributes. In this review, current knowledge on NLRP3 inflammasome activation and Nrf2 pathways is presented; the relationship between NLRP3 inflammasome signaling and Nrf2 pathway, as well as the pre/clinical use of Nrf2 activators against NLRP3 inflammasome activation in disorders of the central nervous system, are thoroughly described. Cumulative evidence points out therapeutic use of Nrf2 activators against NLRP3 inflammasome activation or diseases that NLRP3 inflammasome contributes to would be advantageous to prevent inflammatory conditions; however, the side effects of these molecules should be kept in mind before applying them to clinical practice.
Collapse
Affiliation(s)
- Bora Tastan
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burak I. Arioz
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey,*Correspondence: Sermin Genc,
| |
Collapse
|
14
|
Shepheard SR, Karnaros V, Benyamin B, Schultz DW, Dubowsky M, Wuu J, Tim C, Malaspina A, Benatar M, Rogers ML. Urinary neopterin: a novel biomarker of disease progression in amyotrophic lateral sclerosis. Eur J Neurol 2021; 29:990-999. [PMID: 34967083 DOI: 10.1111/ene.15237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND To evaluate urinary neopterin, a marker of pro-inflammatory state, as a potential biomarker of disease prognosis and progression in amyotrophic lateral sclerosis (ALS); and to compare its utility to urinary neurotrophin receptor p75 extracellular domain (p75ECD ). METHODS Observational study including 21 healthy controls and 46 people with ALS, 29 of whom were sampled longitudinally. Neopterin and p75ECD were measured using enzyme-linked immunoassays. Baseline and longitudinal changes in clinical measures, neopterin and urinary p75ECD were examined, and prognostic utility explored by survival analysis. RESULTS At baseline, urinary neopterin was higher in ALS compared to controls (181.7 ± 78.9 μmol/mol creatinine vs 120.4 ± 60.8 μmol/mol creatinine, p= 0.002, Welch's t-test) and correlated with ALSFRS-R (r= -0.36, p= 0.01). Combining previously published urinary p75ECD results from 22 ALS patients with a further 24 ALS patients, baseline urinary p75ECD was also higher compared to healthy controls (6.0 ± 2.7 vs 3.2 ± 1.0 ng/mg creatinine p<0.0001) and correlated with ALSFRS-R (r= -0.36, p= 0.01). Urinary neopterin and p75ECD correlated with each other at baseline (r= 0.38, p= 0.009). In longitudinal analysis, urinary neopterin increased on average (±SE) by 6.8 ± 1.1 μmol/mol creatinine per month (p<0.0001) and p75ECD by 0.19 ± 0.02 ng/mg creatinine per month (p<0.0001) from diagnosis in 29 ALS patients. CONCLUSION Urinary neopterin holds promise as marker of disease progression in ALS and is worthy of future evaluation for its potential to predict response to anti-inflammatory therapies.
Collapse
Affiliation(s)
- Stephanie R Shepheard
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health & Allied Health and Human Performance Unit, University of South, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Megan Dubowsky
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Joanne Wuu
- Dept. of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Chataway Tim
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Andrea Malaspina
- Motor Neuron Disease Centre, Neuromuscular Department, UCL Queen Square Institute of Neurology
| | - Michael Benatar
- Dept. of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mary-Louise Rogers
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Pietrangelo T. Raising the Guanosine-Based Molecules as Regulators of Excitable Tissues by the Exosomal-Vehiculated Signaling. Front Pharmacol 2021; 12:658370. [PMID: 34393768 PMCID: PMC8363250 DOI: 10.3389/fphar.2021.658370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Chieti, Italy
| |
Collapse
|
16
|
Espíndola G, Scheffer DDL, Latini A. Commentary: Urinary Neopterin, a New Marker of the Neuroinflammatory Status in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 15:645694. [PMID: 33833664 PMCID: PMC8021780 DOI: 10.3389/fnins.2021.645694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Ambulatório de Doenças Neuromusculares e Neurogenéticas Hospital Universitário Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
17
|
Garcez ML, Tan VX, Heng B, Guillemin GJ. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int J Tryptophan Res 2021; 13:1178646920978404. [PMID: 33447046 PMCID: PMC7780186 DOI: 10.1177/1178646920978404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Michelle L Garcez
- Neurochemistry Laboratory, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X Tan
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,PANDIS.org, Little Collins St, Melbourne VIC, Australia
| |
Collapse
|
18
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kindy MS. Plant-Based Nutritional Supplementation Attenuates LPS-Induced Low-Grade Systemic Activation. Int J Mol Sci 2021; 22:ijms22020573. [PMID: 33430045 PMCID: PMC7826722 DOI: 10.3390/ijms22020573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Plant-based nutritional supplementation has been shown to attenuate and reduce mortality in the processes of both acute and chronic disorders, including diabetes, obesity, cardiovascular disease, cancer, inflammatory diseases, and neurological and neurodegenerative disorders. Low-level systemic inflammation is an important contributor to these afflictions and diets enriched in phytochemicals can slow the progression. The goal of this study was to determine the impact of lipopolysaccharide (LPS)-induced inflammation on changes in glucose and insulin tolerance, performance enhancement, levels of urinary neopterin and concentrations of neurotransmitters in the striatum in mouse models. Both acute and chronic injections of LPS (2 mg/kg or 0.33 mg/kg/day, respectively) reduced glucose and insulin tolerance and elevated neopterin levels, which are indicative of systemic inflammatory responses. In addition, there were significant decreases in striatal neurotransmitter levels (dopamine and DOPAC), while serotonin (5-HT) levels were essentially unchanged. LPS resulted in impaired execution in the incremental loading test, which was reversed in mice on a supplemental plant-based diet, improving their immune function and maintaining skeletal muscle mitochondrial activity. In conclusion, plant-based nutritional supplementation attenuated the metabolic changes elicited by LPS injections, causing systemic inflammatory activity that contributed to both systemic and neurological alterations.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
| | | | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (J.Y.); (H.Z.); (S.T.); (W.M.)
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33620, USA
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
19
|
The potential role of neopterin in Covid-19: a new perspective. Mol Cell Biochem 2021; 476:4161-4166. [PMID: 34319496 PMCID: PMC8317144 DOI: 10.1007/s11010-021-04232-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Neopterin (NPT) is a member of pteridines group, synthesized by macrophages when stimulated by interferon gamma (INF-γ). NPT is regarded as a macrophage stimulation indicator, marker of cellular immune activation and T helper 1 (Th1) type 1 immune response. Here, we aimed to provide a view point on the NPT features and role in Covid-19. Serum NPT level is regarded as an independent prognostic factor for Covid-19 severity, with levels starting to increase from the 3rd day of SARS-CoV-2 infection, being associated with severe dyspnea, longer hospitalization period and complications. Also, early raise of NPT reflects monocytes/macrophages activation before antibody immune response, despite the NPT level may also remain high in Covid-19 patients or at the end of incubation period before the onset of clinical symptoms. On the other hand, NPT attenuates the activity of macrophage foam cells and is linked to endothelial inflammation through inhibition of adhesion molecules and monocytes migration. However, NPT also exerts anti-inflammatory and antioxidant effects by suppressing NF-κB signaling and NLRP3 inflammasomes. NPT can be viewed as a protective compensatory mechanism to counterpoise hyper-inflammation, oxidative stress, and associated organ damage.
Collapse
|
20
|
Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165823. [PMID: 32360589 PMCID: PMC7188661 DOI: 10.1016/j.bbadis.2020.165823] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
A wide array of molecular pathways has been investigated during the past decade in order to understand the mechanisms by which the practice of physical exercise promotes neuroprotection and reduces the risk of developing communicable and non-communicable chronic diseases. While a single session of physical exercise may represent a challenge for cell homeostasis, repeated physical exercise sessions will improve immunosurveillance and immunocompetence. Additionally, immune cells from the central nervous system will acquire an anti-inflammatory phenotype, protecting central functions from age-induced cognitive decline. This review highlights the exercise-induced anti-inflammatory effect on the prevention or treatment of common chronic clinical and experimental settings. It also suggests the use of pterins in biological fluids as sensitive biomarkers to follow the anti-inflammatory effect of physical exercise.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
21
|
Staats Pires A, Heng B, Tan VX, Latini A, Russo MA, Santarelli DM, Bailey D, Wynne K, O’Brien JA, Guillemin GJ, Austin PJ. Kynurenine, Tetrahydrobiopterin, and Cytokine Inflammatory Biomarkers in Individuals Affected by Diabetic Neuropathic Pain. Front Neurosci 2020; 14:890. [PMID: 32973438 PMCID: PMC7472959 DOI: 10.3389/fnins.2020.00890] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a common complication of diabetes with high morbidity and poor treatment outcomes. Accumulating evidence suggests the immune system is involved in the development of diabetic neuropathy, whilst neuro-immune interactions involving the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways have been linked to neuropathic pain pre-clinically and in several chronic pain conditions. Here, using a multiplex assay, we quantified serum levels of 14 cytokines in 21 participants with type 1 diabetes mellitus, 13 of which were classified as having neuropathic pain. In addition, using high performance liquid chromatography and gas chromatography-mass spectrometry, all major KYN and BH4 pathway metabolites were quantified in serum from the same cohort. Our results show increases in GM-CSF and IL-8, suggesting immune cell involvement. We demonstrated increases in two inflammatory biomarkers: neopterin and the KYN/TRP ratio, a marker of indoleamine 2,3-dioxygenase activity. Moreover, the KYN/TRP ratio positively correlated with pain intensity. Total kynurenine aminotransferase activity was also higher in the diabetic neuropathic pain group, indicating there may be increased production of the KYN metabolite, xanthurenic acid. Overall, this study supports the idea that inflammatory activation of the KYN and BH4 pathways occurs due to elevated inflammatory cytokines, which might be involved in the pathogenesis of neuropathic pain in type 1 diabetes mellitus. Further studies should be carried out to investigate the role of KYN and BH4 pathways, which could strengthen the case for therapeutically targeting them in neuropathic pain conditions.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Marc A. Russo
- Hunter Pain Clinic, Broadmeadow, NSW, Australia
- Genesis Research Services, Broadmeadow, NSW, Australia
| | | | | | - Katie Wynne
- Department of Diabetes and Endocrinology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Jayden A. O’Brien
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul J. Austin
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Yamauchi J, Araya N, Yagishita N, Sato T, Yamano Y. An update on human T-cell leukemia virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) focusing on clinical and laboratory biomarkers. Pharmacol Ther 2020; 218:107669. [PMID: 32835825 DOI: 10.1016/j.pharmthera.2020.107669] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a rare inflammatory disease causing unremitting and progressive neurological disorders, such as spastic paraparesis, neurogenic bladder, and sensory disturbance of the lower extremities. Although there is no cure, immune-modulating agents such as corticosteroids are most widely used to slow disease progression. Biomarkers for the clinical assessment of HAM/TSP should be identified because the prediction of functional prognosis and the assessment of treatment efficacy are challenging due to the slowly progressive nature of the disease. The lack of surrogate biomarkers also hampers clinical trials of new drugs. This review summarizes biomarker candidates for the clinical assessment of patients with HAM/TSP. Most of the reported biomarker candidates are associated with viral components or inflammatory mediators because immune dysregulation provoked by HTLV-1 infection is thought to cause chronic inflammation and damage the spinal cord of patients with HAM/TSP. Although information on the diagnostic accuracy of most of the reported biomarkers is insufficient, several molecules, including inflammatory mediators such as CXCL10 and neopterin in the cerebrospinal fluid, have been suggested as potential biomarkers of functional prognosis and treatment response. Several clinical trials for HAM/TSP are currently underway, and we expect that these studies will provide not only evidence pertaining to treatment, but also novel findings regarding the utility of biomarkers in this disease. The establishment of clinical biomarkers will improve patient care and promote the development of therapies for HAM/TSP.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan; Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
23
|
Sil S, Niu F, Chivero ET, Singh S, Periyasamy P, Buch S. Role of Inflammasomes in HIV-1 and Drug Abuse Mediated Neuroinflammaging. Cells 2020; 9:cells9081857. [PMID: 32784383 PMCID: PMC7464640 DOI: 10.3390/cells9081857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the effectiveness of combined antiretroviral therapy (cART) in suppressing virus replication, chronic inflammation remains one of the cardinal features intersecting HIV-1, cART, drug abuse, and likely contributes to the accelerated neurocognitive decline and aging in people living with HIV-1 (PLWH) that abuse drugs. It is also estimated that ~30–60% of PLWH on cART develop cognitive deficits associated with HIV-1-associated neurocognitive disorders (HAND), with symptomatology ranging from asymptomatic to mild, neurocognitive impairments. Adding further complexity to HAND is the comorbidity of drug abuse in PLWH involving activated immune responses and the release of neurotoxins, which, in turn, mediate neuroinflammation. Premature or accelerated aging is another feature of drug abusing PLWH on cART regimes. Emerging studies implicate the role of HIV-1/HIV-1 proteins, cART, and abused drugs in altering the inflammasome signaling in the central nervous system (CNS) cells. It is thus likely that exposure of these cells to HIV-1/HIV-1 proteins, cART, and/or abused drugs could have synergistic/additive effects on the activation of inflammasomes, in turn, leading to exacerbated neuroinflammation, ultimately resulting in premature aging referred to as “inflammaging” In this review, we summarize the current knowledge of inflammasome activation, neuroinflammation, and aging in central nervous system (CNS) cells such as microglia, astrocytes, and neurons in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Correspondence: (P.P.); (S.B.); Tel.: +1-402-559-3165 (S.B.)
| |
Collapse
|
24
|
Russo MA, Georgius P, Pires AS, Heng B, Allwright M, Guennewig B, Santarelli DM, Bailey D, Fiore NT, Tan VX, Latini A, Guillemin GJ, Austin PJ. Novel immune biomarkers in complex regional pain syndrome. J Neuroimmunol 2020; 347:577330. [PMID: 32731051 DOI: 10.1016/j.jneuroim.2020.577330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
We investigated serum levels of 29 cytokines and immune-activated kynurenine and tetrahydrobiopterin pathway metabolites in 15 complex regional pain syndrome (CRPS) subjects and 14 healthy controls. Significant reductions in interleukin-37 and tryptophan were found in CRPS subjects, along with positive correlations between kynurenine/tryptophan ratio and TNF-α levels with kinesiophobia, tetrahydrobiopterin levels with McGill pain score, sRAGE, and xanthurenic acid and neopterin levels with depression, anxiety and stress scores. Using machine learning, we identified a set of binary variables, including IL-37 and GM-CSF, capable of distinguishing controls from established CRPS subjects. These results suggest possible involvement of various inflammatory markers in CRPS pathogenesis.
Collapse
Affiliation(s)
- Marc A Russo
- Hunter Pain Specialists, 91 Chatham Street, Broadmeadow, NSW, 2292, Australia; Genesis Research Services, 220 Denison St, Broadmeadow, NSW, 2292, Australia
| | - Peter Georgius
- Pain Rehab, Suite 4 Noosa Central, 6 Bottlebrush Avenue, Sunshine Coast, QLD, 4567, Australia
| | - Ananda Staats Pires
- Neuroinflammation Group; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Macquarie University, Sydney, NSW, 2109, Australia; Laboratório de Bioenergética e Estresse Oxidativo, LABOX; Departamento de Bioquímica, CCB; Universidade Federal de Santa Catarina; Florianópolis / SC, Brazil
| | - Benjamin Heng
- Neuroinflammation Group; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael Allwright
- ForeFront, Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | - Boris Guennewig
- ForeFront, Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia
| | | | - Dominic Bailey
- Genesis Research Services, 220 Denison St, Broadmeadow, NSW, 2292, Australia
| | - Nathan T Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Vanessa X Tan
- Neuroinflammation Group; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Macquarie University, Sydney, NSW, 2109, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, LABOX; Departamento de Bioquímica, CCB; Universidade Federal de Santa Catarina; Florianópolis / SC, Brazil
| | - Gilles J Guillemin
- Neuroinflammation Group; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Macquarie University, Sydney, NSW, 2109, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
25
|
Zhang DX, Zheng WC, Bai Y, Bai J, Fu L, Wang XP, Zhang LM. CORM-3 improves emotional changes induced by hemorrhagic shock via the inhibition of pyroptosis in the amygdala. Neurochem Int 2020; 139:104784. [PMID: 32652269 DOI: 10.1016/j.neuint.2020.104784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
Hemorrhagic shock and resuscitation (HSR) may lead to long-term neurological dysfunction, such as depression and anxiety. Carbon monoxide (CO) has emerged as an excellent neuroprotective agent against caspase-1-associated pyroptosis, following HSR. We evaluated the effects and determined the mechanism through which CO protects against emotional changes in a model of HSR, in rats. We subjected rats to treatments with an exogenous, CO-releasing compound (CORM-3, 4 mg/kg), in vivo, after HSR. We measured sucrose preference and performed tail suspension and open field tests 7 days after HSR, assessed brain magnetic resonance imaging 12 h after HSR and evaluated pyroptosis, and neuronal and astrocyte death in the amygdala 12 h post-HSR. We also measured changes in behavior and pathology, following an injection of recombinant murine interleukin (IL)-18 into the amygdala. HSR-treated rats displayed increased depression-like and anxiety-like behaviors, increased amygdalar injury, as indicated by T2-weighted magnetic resonance imaging (MRI) and cerebral blood flow with arterial spin labeling (CBFASL), associated with both neuronal and astrocytic death and pyroptosis, and upregulated IL-18 expression was observed in astrocytes. CORM-3 administration after resuscitation, via a femoral vein injection, provided neuroprotection against HSR, and this neuroprotective effect could be partially reversed by the injection of recombinant murine IL-18 into the amygdala. Therefore, CORM-3 alleviated HSR-induced neuronal pyroptosis and emotional changes, through the downregulation of IL-18 in astrocytes.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yang Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jing Bai
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| |
Collapse
|
26
|
Staats Pires A, Tan VX, Heng B, Guillemin GJ, Latini A. Kynurenine and Tetrahydrobiopterin Pathways Crosstalk in Pain Hypersensitivity. Front Neurosci 2020; 14:620. [PMID: 32694973 PMCID: PMC7338796 DOI: 10.3389/fnins.2020.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the identification of molecular mechanisms associated with pain persistence, no significant therapeutic improvements have been made. Advances in the understanding of the molecular mechanisms that induce pain hypersensitivity will allow the development of novel, effective, and safe therapies for chronic pain. Various pro-inflammatory cytokines are known to be increased during chronic pain, leading to sustained inflammation in the peripheral and central nervous systems. The pro-inflammatory environment activates additional metabolic routes, including the kynurenine (KYN) and tetrahydrobiopterin (BH4) pathways, which generate bioactive soluble metabolites with the potential to modulate neuropathic and inflammatory pain sensitivity. Inflammation-induced upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) and guanosine triphosphate cyclohydrolase I (GTPCH), both rate-limiting enzymes of KYN and BH4 biosynthesis, respectively, have been identified in experimental chronic pain models as well in biological samples from patients affected by chronic pain. Inflammatory inducible KYN and BH4 pathways upregulation is characterized by increase in pronociceptive compounds, such as quinolinic acid (QUIN) and BH4, in addition to inflammatory mediators such as interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). As expected, the pharmacologic and genetic experimental manipulation of both pathways confers analgesia. Many metabolic intermediates of these two pathways such as BH4, are known to sustain pain, while others, like xanthurenic acid (XA; a KYN pathway metabolite) have been recently shown to be an inhibitor of BH4 synthesis, opening a new avenue to treat chronic pain. This review will focus on the KYN/BH4 crosstalk in chronic pain and the potential modulation of these metabolic pathways that could induce analgesia without dependence or abuse liability.
Collapse
Affiliation(s)
- Ananda Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa X. Tan
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
27
|
Scheffer DDL, Ghisoni K, Aguiar AS, Latini A. Moderate running exercise prevents excessive immune system activation. Physiol Behav 2019; 204:248-255. [PMID: 30794851 DOI: 10.1016/j.physbeh.2019.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/01/2023]
Abstract
Benefits of exercise have been documented for many diseases with a chronic progression, including obesity, diabetes mellitus, cardiovascular diseases, neurodegenerative diseases, certain types of cancers, and overall mortality. Low-grade systemic inflammation is a key component of these pathologies and it has been demonstrated that can be prevented by performing regularly physical exercise. The aim of this study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on glucose and insulin tolerance, exercise performance, production of urinary neopterin and striatal neurotransmitters levels in adult male C57BL/6 mice. Increased blood glucose clearance and insulin sensitivity were observed after a single administration of glucose (2 g/kg, p.o.) or insulin (0.5 U/kg, i.p.). However, the repeated injection of LPS (0.33 mg/kg/day, i.p.) decreased glucose tolerance and increase urinary neopterin levels, pointing to systemic inflammation. In parallel to the urinary-increased neopterin, it was observed a significant reduction in the striatal dopamine levels and an increase in the serotonin/dopamine ratio. While a single LPS injection (0.33 mg/kg, i.p.) showed impaired performance in the incremental loading test (10 m/min, with 2 m/min increment every 3 min, at 9% grade), a moderate physical exercise protocol (treadmill for three weeks; 5 sessions/week; up to 50 min/day) prevented the exacerbation of immune system activation and preserved mitochondrial activity in skeletal muscle from mice with continuous LPS infusion (infusion pumps: 0.83 mg/kg/day, i.p.). In conclusion, the peripheral-induced inflammation elicited metabolic alterations that provoked impairment in striatal dopamine metabolism. The moderate exercise prevented the increase of urinary neopterin and preserved mitochondrial activity under LPS-induced inflammatory conditions.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Karina Ghisoni
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal Silva Aguiar
- Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Araranguá, Brazil.
| | - Alexandra Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
28
|
Hara S, Fukumura S, Ichinose H. Reversible S-glutathionylation of human 6-pyruvoyl tetrahydropterin synthase protects its enzymatic activity. J Biol Chem 2019; 294:1420-1427. [PMID: 30514762 DOI: 10.1074/jbc.ra118.005280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/28/2018] [Indexed: 01/12/2023] Open
Abstract
6-Pyruvoyl tetrahydropterin synthase (PTS) converts 7,8-dihydroneopterin triphosphate into 6-pyruvoyltetrahydropterin and is a critical enzyme for the de novo synthesis of tetrahydrobiopterin, an essential cofactor for aromatic amino acid hydroxylases and nitric-oxide synthases. Neopterin derived from 7,8-dihydroneopterin triphosphate is secreted by monocytes/macrophages, and is a well-known biomarker for cellular immunity. Because PTS activity in the cell can be a determinant of neopterin production, here we used recombinant human PTS protein to investigate how its activity is regulated, especially depending on redox conditions. Human PTS has two cysteines: Cys-43 at the catalytic site and Cys-10 at the N terminus. PTS can be oxidized and consequently inactivated by H2O2 treatment, oxidized GSH, or S-nitrosoglutathione, and determining the oxidized modifications of PTS induced by each oxidant by MALDI-TOF MS, we show that PTS is S-glutathionylated in the presence of GSH and H2O2 S-Glutathionylation at Cys-43 protected PTS from H2O2-induced irreversible sulfinylation and sulfonylation. We also found that PTS expressed in HeLa and THP-1 cells is reversibly modified under oxidative stress conditions. Our findings suggest that PTS activity and S-glutathionylation is regulated by the cellular redox environment and that reversible S-glutathionylation protects PTS against oxidative stress.
Collapse
Affiliation(s)
- Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Soichiro Fukumura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
29
|
Latini A, de Bortoli da Silva L, da Luz Scheffer D, Pires ACS, de Matos FJ, Nesi RT, Ghisoni K, de Paula Martins R, de Oliveira PA, Prediger RD, Ghersi M, Gabach L, Pérez MF, Rubiales-Barioglio S, Raisman-Vozari R, Mongeau R, Lanfumey L, Aguiar AS. Tetrahydrobiopterin improves hippocampal nitric oxide-linked long-term memory. Mol Genet Metab 2018; 125:104-111. [PMID: 29935801 DOI: 10.1016/j.ymgme.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe José de Matos
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Renata T Nesi
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Paulo Alexandre de Oliveira
- LEXDON, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui D Prediger
- LEXDON, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marisa Ghersi
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Gabach
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela Fernanda Pérez
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Raymond Mongeau
- Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie, Université Paris Descartes, EA4475, France
| | - Laurence Lanfumey
- Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie, Université Paris Descartes, EA4475, France
| | - Aderbal Silva Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| |
Collapse
|
30
|
Sato T, Yagishita N, Tamaki K, Inoue E, Hasegawa D, Nagasaka M, Suzuki H, Araya N, Coler-Reilly A, Hasegawa Y, Tsuboi Y, Takata A, Yamano Y. Proposal of Classification Criteria for HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis Disease Activity. Front Microbiol 2018; 9:1651. [PMID: 30090093 PMCID: PMC6068401 DOI: 10.3389/fmicb.2018.01651] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a rare chronic neuroinflammatory disease. While the disease usually progresses slowly without remission, there is a subgroup of patients with rapid progression and another subgroup with very slow progression. However, there have been no reports to date that have successfully determined the criteria to differentiate these subgroups. Therefore, we initially conducted a statistical modeling analysis to explore representative patterns of disease progression using data from our nationwide HAM/TSP patient registration system (“HAM-net”). The latent class mixed model analysis on the retrospective data (n = 205) of disease progression measured by the change in Osame Motor Disability Score from the onset of the disease to diagnosis demonstrated three representative progression patterns of HAM/TSP. Next, to test the effect of the progression rate at the initial phase of the disease on long-term prognosis, we divided 312 “HAM-net” registered patients into three groups (rapid, slow, and very slow progressors) based on the progression rate, then analyzed long-term functional prognosis of each group using the Kaplan–Meier method. Our data clearly demonstrated that the rapid progression at the early phase of the disease is an important poor prognostic factor. Moreover, to determine the biomarkers capable of discriminating the difference in disease activity, we compared the value of potential biomarkers of HAM/TSP among rapid (n = 15), slow (n = 74), very slow (n = 7), and controls (non-HAM/TSP patients, n = 18). The cerebrospinal fluid (CSF) levels of neopterin and C-X-C motif chemokine 10 (CXCL10) were the most valuable markers to discriminate among rapid, slow, and very slow progressors. To differentiate between rapid and slow progressors, the cut-off values of neopterin and CXCL10 were determined to be 44 pmol/mL and 4400 pg/mL, respectively. Furthermore, to differentiate between slow and very slow progressors, these values were determined to be 5.5 pmol/mL and 320 pg/mL, respectively. Notably, we found that CSF levels of these markers in very slow progressors were within the reference range. Thus, we propose a new classification criteria for disease activity of HAM/TSP that may contribute to improving the treatment algorithm for HAM/TSP.
Collapse
Affiliation(s)
- Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keiko Tamaki
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Eisuke Inoue
- Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Daisuke Hasegawa
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misako Nagasaka
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hiroko Suzuki
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ariella Coler-Reilly
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuhiro Hasegawa
- Department of Neurology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Ayako Takata
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.,Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| |
Collapse
|
31
|
de Paula Martins R, Glaser V, Aguiar AS, de Paula Ferreira PM, Ghisoni K, da Luz Scheffer D, Lanfumey L, Raisman-Vozari R, Corti O, De Paul AL, da Silva RA, Latini A. De novo tetrahydrobiopterin biosynthesis is impaired in the inflammed striatum of parkin (-/-) mice. Cell Biol Int 2018; 42:725-733. [PMID: 29624777 DOI: 10.1002/cbin.10969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/31/2018] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD), the second-most prevalent neurodegenerative disease, is primarily characterized by neurodegeneration in the substantia nigra pars compacta, resulting in motor impairment. Loss-of-function mutations in parkin are the major cause of the early onset familial form of the disease. Although rodents deficient in parkin (parkin(-/-) ) have some dopaminergic system dysfunction associated with central oxidative stress and energy metabolism deficiencies, these animals only display nigrostriatal pathway degeneration under inflammatory conditions. This study investigated the impact of the inflammatory stimulus induced by lypopolisaccharide (LPS) on tetrahydrobiopterin (BH4) synthesizing enzymes (de novo and salvage pathways), since this cofactor is essential for dopamine synthesis. The mitochondrial content and architecture was investigated in the striatum of LPS-exposed parkin(-/-) mice. As expected, the LPS (0.33 mg/kg; i.p.) challenge compromised spontaneous locomotion and social interaction with juvenile parkin(-/-) and WT mice. Moreover, the genotype impacted the kinetics of the investigation of the juvenile. The inflammatory scenario did not induce apparent changes in mitochondrial ultrastructure; however, it increased the quantity of mitochondria, which were of smaller size, and provoked the perinuclear distribution of the organelle. Furthermore, the BH4 de novo biosynthetic pathway failed to be up-regulated in the LPS challenge, a well-known stimulus for its activation. The LPS treatment increased sepiapterin reductase (SPR) expression, suggesting compensation by the salvage pathway. This might indicate that dopamine synthesis is compromised in parkin(-/-) mice under inflammatory conditions. Finally, this scenario impaired the striatal expression of the transcription factor BDNF, possibly favoring cell death.
Collapse
Affiliation(s)
- Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal S Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Priscila Maximiliano de Paula Ferreira
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Laurence Lanfumey
- INSERM UMR 894, Centre de Psychiatrie et Neurosciences, Paris, France
| | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Olga Corti
- Institut de Cerveau et de la Moelle Epinière, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Ana Lucia De Paul
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rodrigo Augusto da Silva
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Faculdade de Odontologia, Área de Pesquisa em Epigenética, Universidade Paulista, São Paulo, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo-LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|