1
|
Hu W, Wu C, Yang Y, Hu D. Rapid detection and imaging of methylglyoxal in plant tissues by the near-infrared fluorescent probe SWJT-2. Biochimie 2024:S0300-9084(24)00292-X. [PMID: 39615742 DOI: 10.1016/j.biochi.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
Methylglyoxal (MG) can be produced via various pathways in plants. MG is toxic for plant cells at high levels, however it acts as a signaling molecule at low levels, just as H2O2 in plants. Therefore, MG detection is very important for investigating its roles in plant cells, especially in plants under environmental stresses. The near-infrared fluorescent probe SWJT-2 is a novel probe with high sensitivity for the rapid detection of MG in human HeLa cells, but at present it is not clear whether the probe can be used to determine MG levels in plant tissues. In this present research, we tried to apply the probe in plant research. Our results showed that 40 min treatment of SWJT-2 (80 μM) can be applied to the detection and imaging of MG levels in tobacco (Nicotiana benthamiana) tissues.
Collapse
Affiliation(s)
- Wenxu Hu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Yujie Yang
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Die Hu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
2
|
Ji K, Zhang Y, Zhang T, Li D, Yuan Y, Wang L, Huang Q, Chen W. sll1019 and slr1259 encoding glyoxalase II improve tolerance of Synechocystis sp. PCC 6803 to methylglyoxal- and ethanol- induced oxidative stress by glyoxalase pathway. Appl Environ Microbiol 2024; 90:e0056424. [PMID: 39431850 DOI: 10.1128/aem.00564-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
The glyoxalase pathway is the primary detoxification mechanism for methylglyoxal (MG), a ubiquitous toxic metabolite that disrupts redox homeostasis. In the glyoxalase pathway, glyoxalase II (GlyII) can completely detoxify MG. Increasing the activity of the glyoxalase system can enhance the resistance of plants or organisms to abiotic stress, but the relevant mechanism remains largely unknown. In this study, we investigated the physiological functions of GlyII genes (sll1019 and slr1259) in Synechocystis sp. PCC 6803 under MG or ethanol stress based on transcriptome and metabolome data. High-performance liquid chromatography (HPLC) results showed that proteins Sll1019 and Slr1259 had GlyII activity. Under stress conditions, sll1019 and slr1259 protected the strain against oxidative stress by enhancing the activity of the glyoxalase pathway and raising the contents of antioxidants such as glutathione and superoxide dismutase. In the photosynthetic system, sll1019 and slr1259 indirectly affected the light energy absorption by strains, synthesis of photosynthetic pigments, and activities of photosystem I and photosystem II, which was crucial for the growth of the strain under stress conditions. In addition, sll1019 and slr1259 enhanced the tolerance of strain to oxidative stress by indirectly regulating metabolic networks, including ensuring energy acquisition, NADH and NADPH production, and phosphate and nitrate transport. This study reveals the mechanism by which sll1019 and slr1259 improve oxidative stress tolerance of strains by glyoxalase pathway. Our findings provide theoretical basis for breeding, seedling, and field production of abiotic stress tolerance-enhanced variety.IMPORTANCEThe glyoxalase system is present in most organisms, and it is the primary pathway for eliminating the toxic metabolite methylglyoxal. Increasing the activity of the glyoxalase system can enhance plant resistance to environmental stress, but the relevant mechanism is poorly understood. This study revealed the physiological functions of glyoxalase II genes sll1019 and slr1259 in Synechocystis sp. PCC 6803 under abiotic stress conditions and their regulatory effects on oxidative stress tolerance of strains. Under stress conditions, sll1019 and slr1259 enhanced the activity of the glyoxalase pathway and the antioxidant system, maintained photosynthesis, ensured energy acquisition, NADH and NADPH production, and phosphate and nitrate transport, thereby protecting the strain against oxidative stress. This study lays a foundation for further deciphering the mechanism by which the glyoxalase system enhances the tolerance of cells to abiotic stress, providing important information for breeding, seedling, and selection of plants with strong stress resistance.
Collapse
Affiliation(s)
- Kai Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yihang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tianyuan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daixi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuan Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Anaya-Sanchez A, Berry SB, Espich S, Zilinskas A, Tran PM, Agudelo C, Samani H, Darwin KH, Portnoy DA, Stanley SA. Methylglyoxal is an antibacterial effector produced by macrophages during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621721. [PMID: 39554200 PMCID: PMC11566019 DOI: 10.1101/2024.11.03.621721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Infected macrophages transition into aerobic glycolysis, a metabolic program crucial for control of bacterial infection. However, antimicrobial mechanisms supported by aerobic glycolysis are unclear. Methylglyoxal is a highly toxic aldehyde that modifies proteins and DNA and is produced as a side-product of glycolysis. Here we show that despite the toxicity of this aldehyde, infected macrophages generate high levels of methylglyoxal during aerobic glycolysis while downregulating the detoxification system. We use targeted mutations in mice to modulate methylglyoxal generation and show that reducing methylglyoxal production by the host promotes survival of Listeria monocytogenes and Mycobacterium tuberculosis , whereas increasing methylglyoxal levels improves control of bacterial infection. Furthermore, we show that bacteria that are unable to detoxify methylglyoxal are avirulent and experience up to 1000-fold greater genomic mutation frequency during infection. Taken together, these results suggest that methylglyoxal is an antimicrobial innate immune effector that defends the host against bacterial pathogens.
Collapse
|
4
|
Sun Y, Chen S, Grin IR, Zharkov DO, Yu B, Li H. The dual role of methylglyoxal in plant stress response and regulation of DJ-1 protein. PHYSIOLOGIA PLANTARUM 2024; 176:e14608. [PMID: 39508129 DOI: 10.1111/ppl.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Methylglyoxal (MG) is a highly reactive metabolic intermediate that plays important roles in plant salt stress response. This review explores the sources of MG in plants, how salt stress promotes MG production, and the dual role of MG under salt stress conditions. Both the positive role of low concentrations of MG as a signalling molecule and the toxic effects of high concentrations of MG in plant response to salt stress are discussed. The MG detoxification pathways, especially the glyoxalase system, are described in detail. Special attention is given to the novel role of the DJ-1 protein in the glyoxalase system as glyoxalase III to remove MG, and as a deglycase to decrease glycation damage caused by MG on DNA, proteins, and other biomolecules. This review aims to provide readers with comprehensive perspectives on the functions of MG in plant salt stress response, the roles of the DJ-1 protein in MG detoxification and repair of glycation-damaged molecules, as well as the broader functional implications of MG in plant salt stress tolerance. New perspectives on maintaining plant genome stability, breeding for salt-tolerant crop varieties, and improving crop quality are discussed.
Collapse
Affiliation(s)
- Yutong Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
5
|
Yu T, Dong W, Hou X, Sun A, Li X, Yu S, Zhang J. The Maize Gene ZmGLYI-8 Confers Salt and Drought Tolerance in Transgenic Arabidopsis Plants. Int J Mol Sci 2024; 25:10937. [PMID: 39456719 PMCID: PMC11507017 DOI: 10.3390/ijms252010937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Methylglyoxal (MG), a highly reactive and cytotoxic α-oxoaldehyde compound, can over-accumulate under abiotic stress, consequently injuring plants or even causing death. Glyoxalase I (GLYI), the first enzyme of the glyoxalase pathway, plays multiple roles in the detoxification of MG and in abiotic stress responses. However, the GLY1 gene in maize has been little studied in response to abiotic stress. In this study, we screened a glyoxalase I gene (ZmGLYI-8) and overexpressed in Arabidopsis. This gene was localized in the cytoplasm and can be induced in maize seedlings under multiple stress treatments, including salt, drought, MG, ABA, H2O2 and high temperature stress. Phenotypic analysis revealed that after MG, salt and drought stress treatments, overexpression of ZmGLYI-8 increased the tolerance of transgenic Arabidopsis to MG, salt and drought stress. Furthermore, we demonstrated that the overexpression of ZmGLYI-8 scavenges accumulated reactive oxygen species, detoxifies MG and enhances the activity of antioxidant enzymes to improve the resistance of transgenic Arabidopsis plants to salt and drought stress. In summary, this study preliminarily elucidates the molecular mechanism of the maize ZmGLYI-8 gene in transgenic Arabidopsis and provides new insight into the breeding of salt- and drought-tolerant maize varieties.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Wei Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Xinwei Hou
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Aiqing Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China;
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| | - Shaowei Yu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (T.Y.); (W.D.); (X.L.)
| |
Collapse
|
6
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
7
|
Xiang RH, Wang JQ, Li ZG. Crosstalk of methylglyoxal and calcium signaling in maize (Zea mays L.) thermotolerance through methylglyoxal-scavenging system. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154362. [PMID: 39395220 DOI: 10.1016/j.jplph.2024.154362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024]
Abstract
Methylglyoxal (MG) and calcium ion (Ca2+) can increase multiple-stress tolerance including plant thermotolerance. However, whether crosstalk of MG and Ca2+ exists in the formation of maize thermotolerance and underlying mechanism still remain elusive. In this paper, maize seedlings were irrigated with MG and calcium chloride alone or in combination, and then exposed to heat stress (HS). The results manifested that, compared with the survival percentage (SP, 45.3%) of the control seedlings, the SP of MG and Ca2+ alone or in combination was increased to 72.4%, 74.2%, and 83.4% under HS conditions, indicating that Ca2+ and MG alone or in combination could upraise seedling thermotolerance. Also, the MG-upraised SP was separately weakened to 42.2%, 40.3%, 52.1%, and 39.4% by Ca2+ chelator (ethylene glycol tetraacetic acid, EGTA), plasma membrane Ca2+ channel blocker (lanthanum chloride, LaCl3), intracellular Ca2+ channel blocker (neomycin, NEC), and calmodulin (CaM) antagonist (trifluoperazine, TFP). However, significant effect of MG scavengers N-acetylcysteine (NAC) and aminoguanidine (AG) on Ca2+-induced thermotolerance was not observed. Similarly, an endogenous Ca2+ level in seedlings was increased by exogenous MG under non-HS and HS conditions, while exogenous Ca2+ had no significant effect on endogenous MG. These data implied that Ca2+ signaling, at least partly, mediated MG-upraised thermotolerance in maize seedlings. Moreover, the activity and gene expression of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (MG reductase, aldehyde reductase, aldo-keto reductase, and lactate dehydrogenase) were up-regulated to a certain extent by Ca2+ and MG alone in seedlings under non-HS and HS conditions. The up-regulated MG-scavenging system by MG was enhanced by Ca2+, while impaired by EGTA, LaCl3, NEC, or TFP. These data suggest that the crosstalk of MG and Ca2+ signaling in maize thermotolerance through MG-scavenging system. These findings provided a theoretical basis for breeding climate-resilient maize crop and developing smart agriculture.
Collapse
Affiliation(s)
- Ru-Hua Xiang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, PR China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, PR China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, PR China
| | - Jia-Qi Wang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, PR China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, PR China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, PR China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, PR China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, PR China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650092, PR China.
| |
Collapse
|
8
|
Huang Y, Huang L, Cheng M, Li C, Zhou X, Ullah A, Sarfraz S, Khatab A, Xie G. Progresses in biosynthesis pathway, regulation mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109047. [PMID: 39153390 DOI: 10.1016/j.plaphy.2024.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of OsBadh2 in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the OsBadh2 haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of OsBadh2 and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.
Collapse
Affiliation(s)
- Yajing Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The People's Government of Zougang Town, Xiaochang County, Xiaogan City, Hubei, 432910, China
| | - Maozhi Cheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanhao Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Samina Sarfraz
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Rice Research and Training Center, 33717, Sakha, Kafr El-Sheikh, Egypt
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Imran M, Widemann E, Shafiq S, Bakhsh A, Chen X, Tang X. Salicylic Acid and Melatonin Synergy Enhances Boron Toxicity Tolerance via AsA-GSH Cycle and Glyoxalase System Regulation in Fragrant Rice. Metabolites 2024; 14:520. [PMID: 39452901 PMCID: PMC11509829 DOI: 10.3390/metabo14100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Boron is an essential micronutrient for plant growth and productivity, yet excessive boron leads to toxicity, posing significant challenges for agriculture. Fragrant rice is popular among consumers, but the impact of boron toxicity on qualitative traits of fragrant rice, especially aroma, remains largely unexplored. The individual potentials of melatonin and salicylic acid in reducing boron toxicity are less known, while their synergistic effects and mechanisms in fragrant rice remain unclear. Methods: Thus, this study investigates the combined application of melatonin and salicylic acid on fragrant rice affected by boron toxicity. One-week-old seedlings were subjected to boron (0 and 800 µM) and then treated with melatonin and salicylic acid (0 and 100 µM, for 3 weeks). Results: Boron toxicity significantly impaired photosynthetic pigments, plant growth, and chloroplast integrity while increasing oxidative stress markers such as hydrogen peroxide, malondialdehyde, methylglyoxal, and betaine aldehyde dehydrogenase. Likewise, boron toxicity abridged the precursors involved in the 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway. However, individual as well as combined application of melatonin and salicylic acid ameliorated boron toxicity by strengthening the antioxidant defense mechanisms-including the enzymes involved during the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system-and substantially improved 2-AP precursors including proline, P5C, Δ1-pyrroline, and GABA levels, thereby restoring the 2-AP content and aroma. These findings deduce that melatonin and salicylic acid synergistically alleviate boron toxicity-induced disruptions on the 2-AP biosynthesis pathway by improving the 2-AP precursors and enzymatic activities, as well as modulating the physio-biochemical processes and antioxidant defense system of fragrant rice plants. Conclusions: The findings of this study have the potential to enhance rice productivity and stress tolerance, offering solutions to improve food security and sustainability in agricultural practices, particularly in regions affected by environmental stressors.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, 67084 Strasbourg, France;
| | - Sarfraz Shafiq
- Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan;
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
10
|
Chaudhary J, Gangwar H, Jaiswal V, Gupta PK. Identification and characterization of sulphotransferase (SOT) genes for tolerance against drought and heat in wheat and six related species. Mol Biol Rep 2024; 51:956. [PMID: 39230759 DOI: 10.1007/s11033-024-09899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Sulphotransferase (SOT) enzyme (encoded by a conserved family of SOT genes) is involved in sulphonation of a variety of compounds, through transfer of a sulphuryl moiety from 3'phosphoadenosine- 5'phosphosulphate (PAPS) to a variety of secondary metabolites. The PAPS itself is derived from 3'adenosine-5'phosphosulphate (APS) that is formed after uptake of sulphate ions from the soil. The process provides tolerance against abiotic stresses like drought and heat in plants. Therefore, a knowledge of SOT genes in any crop may help in designing molecular breeding methods for improvement of tolerance for drought and heat. METHODS Sequences of rice SOT genes and SOT domain (PF00685) of corresponding proteins were both used for identification of SOT genes in wheat and six related species (T. urartu, Ae. tauschii, T. turgidum, Z. mays, B. distachyon and Hordeum vulgare), although detailed analysis was conducted only in wheat. The wheat genes were mapped on individual chromosomes and also subjected to synteny and collinearity analysis. The proteins encoded by these genes were examined for the presence of a complete SOT domain using 'Conserved Domain Database' (CDD) search tool at NCBI. RESULTS In wheat, 107 TaSOT genes, ranging in length from 969 bp to 7636 bp, were identified and mapped onto individual chromosomes. SSRs (simple sequence repeats), microRNAs, long non-coding RNAs (lncRNAs) and their target sites were also identified in wheat SOT genes. SOT proteins were also studied in detail. An expression assay of TaSOT genes via wheat RNA-seq data suggested engagement of these genes in growth, development and responses to various hormones and biotic/abiotic stresses. CONCLUSIONS The results of the present study should help in further functional characterization of SOT genes in wheat and other related crops.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Himanshi Gangwar
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vandana Jaiswal
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
11
|
Zafar S, Khan IM, Ashraf MA, Zafar M, Ahmad M, Rasheed R, Mehmood A, Ahmad KS. Insights into trehalose mediated physiological and biochemical mechanisms in Zea mays L. under chromium stress. BMC PLANT BIOLOGY 2024; 24:783. [PMID: 39152388 PMCID: PMC11330127 DOI: 10.1186/s12870-024-05514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.
Collapse
Affiliation(s)
- Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan.
| | - Inam Mehdi Khan
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan
| | | | - Muhammad Zafar
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | | |
Collapse
|
12
|
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl 2 Alleviation of H 2O 2 Inhibition of Pea Primary Root Gravitropism. Int J Mol Sci 2024; 25:8613. [PMID: 39201298 PMCID: PMC11354692 DOI: 10.3390/ijms25168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Normal root growth is essential for the plant uptake of soil nutrients and water. However, exogenous H2O2 inhibits the gravitropic growth of pea primary roots. It has been shown that CaCl2 application can alleviate H2O2 inhibition, but the exact alleviation mechanism is not clear. Therefore, the present study was carried out by combining the transcriptome and metabolome with a view to investigate in depth the mechanism of action of exogenous CaCl2 to alleviate the inhibition of pea primordial root gravitropism by H2O2. The results showed that the addition of CaCl2 (10 mmol·L-1) under H2O2 stress (150 mmol·L-1) significantly increased the H2O2 and starch content, decreased peroxidase (POD) activity, and reduced the accumulation of sugar metabolites and lignin in pea primary roots. Down-regulated genes regulating peroxidase, respiratory burst oxidase, and lignin synthesis up-regulated PGM1, a key gene for starch synthesis, and activated the calcium and phytohormone signaling pathways. In summary, 10 mmol·L-1 CaCl2 could alleviate H2O2 stress by modulating the oxidative stress response, signal transduction, and starch and lignin accumulation within pea primary roots, thereby promoting root gravitropism. This provides new insights into the mechanism by which CaCl2 promotes the gravitropism of pea primary roots under H2O2 treatment.
Collapse
Affiliation(s)
- Ruonan Wei
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaoying Ma
- Laboratory and Site Management Center, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ling Xu
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Tingfeng Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Yantong Ma
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Zhen Cheng
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Junhong Dang
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
| | - Sheng Li
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.W.)
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiang Chai
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Hussain M, Hafeez A, Rizwan M, Rasheed R, Seleiman MF, Ashraf MA, Ali S, Farooq U, Nafees M. Pervasive influence of heavy metals on metabolic pathways is potentially relieved by hesperidin to enhance the phytoremediation efficiency of Bassia scoparia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34526-34549. [PMID: 38709411 DOI: 10.1007/s11356-024-33530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Hesperidin (HSP), a flavonoid, is a potent antioxidant, metal chelator, mediator of signaling pathways, and regulator of metal uptake in plants. The study examined the ameliorative effects of HSP (100 μM) on Bassia scoparia grown under excessive levels of heavy metals (zinc (500 mg kg-1), copper (400 mg kg-1), cadmium (100 mg kg-1), and chromium (100 mg kg-1)). The study clarifies the underlying mechanisms by which HSP lessens metabolic mayhem to enhance metal stress tolerance and phytoremediation efficiency of Bassia scoparia. Plants manifested diminished growth because of a drop in chlorophyll content and nutrient acquisition, along with exacerbated deterioration of cellular membranes reflected in elevated reactive oxygen species (ROS) production, lipid peroxidation, and relative membrane permeability. Besides the colossal production of cytotoxic methylglyoxal, the activity of lipoxygenase was also higher in plants under metal toxicity. Conversely, hesperidin suppressed the production of cytotoxic ROS and methylglyoxal. Hesperidin improved oxidative defense that protected membrane integrity. Hesperidin caused a more significant accumulation of osmolytes, non-protein thiols, and phytochelatins, thereby rendering metal ions non-toxic. Hydrogen sulfide and nitric oxide endogenous levels were intricately maintained higher in plants treated with HSP. Hesperidin increased metal accumulation in Bassia scoparia and thereby had the potential to promote the reclamation of metal-contaminated soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mahmoud F Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 21023, Jiangsu, China
| |
Collapse
|
14
|
Yu X, Liu Y, Yue L, Zeng X, Huang Y, Xue H, Xu B, Zhang J, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Gao S, Li X. Effects of cadmium and zinc interactions on the physiological biochemistry and enrichment characteristics of Iris pseudacorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116275. [PMID: 38564858 DOI: 10.1016/j.ecoenv.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 μM) and Zn (800 μM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 μM + 200 μM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 μM + 800 μM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yujia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Yue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hanyue Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junrui Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Xiao
- Triticeae research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Lin YH, Zhou YN, Liang XG, Jin YK, Xiao ZD, Zhang YJ, Huang C, Hong B, Chen ZY, Zhou SL, Shen S. Exogenous methylglyoxal alleviates drought-induced 'plant diabetes' and leaf senescence in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1982-1996. [PMID: 38124377 DOI: 10.1093/jxb/erad503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Drought-induced leaf senescence is associated with high sugar levels, which bears some resemblance to the syndrome of diabetes in humans; however, the underlying mechanisms of such 'plant diabetes' on carbon imbalance and the corresponding detoxification strategy are not well understood. Here, we investigated the regulatory mechanism of exogenous methylglyoxal (MG) on 'plant diabetes' in maize plants under drought stress applied via foliar spraying during the grain-filling stage. Exogenous MG delayed leaf senescence and promoted photoassimilation, thereby reducing the yield loss induced by drought by 14%. Transcriptome and metabolite analyses revealed that drought increased sugar accumulation in leaves through inhibition of sugar transporters that facilitate phloem loading. This led to disequilibrium of glycolysis and overaccumulation of endogenous MG. Application of exogenous MG up-regulated glycolytic flux and the glyoxalase system that catabolyses endogenous MG and glycation end-products, ultimately alleviating 'plant diabetes'. In addition, the expression of genes facilitating anabolism and catabolism of trehalose-6-phosphate was promoted and suppressed by drought, respectively, and exogenous MG reversed this effect, implying that trehalose-6-phosphate signaling in the mediation of 'plant diabetes'. Furthermore, exogenous MG activated the phenylpropanoid biosynthetic pathway, promoting the production of lignin and phenolic compounds, which are associated with drought tolerance. Overall, our findings indicate that exogenous MG activates defense-related pathways to alleviate the toxicity derived from 'plant diabetes', thereby helping to maintain leaf function and yield production under drought.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ya-Ning Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiao-Gui Liang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yu-Ka Jin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zu-Dong Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ying-Jun Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen-Yuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, China
| |
Collapse
|
16
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
17
|
Rathore RS, Mishra M, Pareek A, Singla-Pareek SL. A glutathione-independent DJ-1/Pfp1 domain containing glyoxalase III, OsDJ-1C, functions in abiotic stress adaptation in rice. PLANTA 2024; 259:81. [PMID: 38438662 DOI: 10.1007/s00425-023-04315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
MAIN CONCLUSION Overexpression of OsDJ-1C in rice improves root architecture, photosynthesis, yield and abiotic stress tolerance through modulating methylglyoxal levels, antioxidant defense, and redox homeostasis. Exposure to abiotic stresses leads to elevated methylglyoxal (MG) levels in plants, impacting seed germination and root growth. In response, the activation of NADPH-dependent aldo-keto reductase and glutathione (GSH)-dependent glyoxalase enzymes helps to regulate MG levels and reduce its toxic effects. However, detoxification may not be carried out effectively due to the limitation of GSH and NADPH in plants under stress. Recently, a novel enzyme called glyoxalase III (GLY III) has been discovered which can detoxify MG in a single step without needing GSH. To understand the physiological importance of this pathway in rice, we overexpressed the gene encoding GLYIII enzyme (OsDJ-1C) in rice. It was observed that OsDJ-1C overexpression in rice regulated MG levels under stress conditions thus, linked well with plants' abiotic stress tolerance potential. The OsDJ-1C overexpression lines displayed better root architecture, improved photosynthesis, and reduced yield penalty compared to the WT plants under salinity, and drought stress conditions. These plants demonstrated an improved GSH/GSSG ratio, reduced level of reactive oxygen species, increased antioxidant capacity, and higher anti-glycation activity thereby indicating that the GLYIII mediated MG detoxification plays a significant role in plants' ability to reduce the impact of abiotic stress. Furthermore, these findings imply the potential of OsDJ-1C in crop improvement programs.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
18
|
Popović AV, Čamagajevac IŠ, Vuković R, Matić M, Velki M, Gupta DK, Galić V, Lončarić Z. Biochemical and molecular responses of the ascorbate-glutathione cycle in wheat seedlings exposed to different forms of selenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108460. [PMID: 38447422 DOI: 10.1016/j.plaphy.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Biofortification aims to increase selenium (Se) concentration and bioavailability in edible parts of crops such as wheat (Triticum aestivum L.), resulting in increased concentration of Se in plants and/or soil. Higher Se concentrations can disturb protein structure and consequently influence glutathione (GSH) metabolism in plants which can affect antioxidative and other detoxification pathways. The aim of this study was to elucidate the impact of five different concentrations of selenate and selenite (0.4, 4, 20, 40 and 400 mg kg-1) on the ascorbate-glutathione cycle in wheat shoots and roots and to determine biochemical and molecular tissue-specific responses. Content of investigated metabolites, activities of detoxification enzymes and expression of their genes depended both on the chemical form and concentration of the applied Se, as well as on the type of plant tissue. The most pronounced changes in the expression level of genes involved in GSH metabolism were visible in wheat shoots at the highest concentrations of both forms of Se. Obtained results can serve as a basis for further research on Se toxicity and detoxification mechanisms in wheat. New insights into the Se impact on GSH metabolism could contribute to the further development of biofortification strategies.
Collapse
Affiliation(s)
- Ana Vuković Popović
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | | | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | - Magdalena Matić
- Faculty of Agrobiotechnical Sciences Osijek, 31000, Osijek, Croatia
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University, 31000, Osijek, Croatia
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, 110003, New Delhi, India
| | - Vlatko Galić
- Agricultural Institute Osijek, Južno predgrađe 17, 31000, Osijek, Croatia
| | - Zdenko Lončarić
- Faculty of Agrobiotechnical Sciences Osijek, 31000, Osijek, Croatia
| |
Collapse
|
19
|
Kumar P, Roy A, Mukul SJ, Singh AK, Singh DK, Nalli A, Banerjee P, Babu KSD, Raman B, Kruparani SP, Siddiqi I, Sankaranarayanan R. A translation proofreader of archaeal origin imparts multi-aldehyde stress tolerance to land plants. eLife 2024; 12:RP92827. [PMID: 38372335 PMCID: PMC10942605 DOI: 10.7554/elife.92827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ankit Roy
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Shivapura Jagadeesha Mukul
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | | | - Aswan Nalli
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
| | | | | | | | | | - Imran Siddiqi
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
| | - Rajan Sankaranarayanan
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
20
|
Fu ZW, Fan SH, Liu HF, Hua W. Proteome-wide identification of methylglyoxalated proteins in rapeseed (Brassica napus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108319. [PMID: 38183900 DOI: 10.1016/j.plaphy.2023.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Methylglyoxal (MG), a highly reactive cellular metabolite, is crucial for plant growth and environmental responses. MG may function by modifying its target proteins, but little is known about MG-modified proteins in plants. Here, MG-modified proteins were pulled down by an antibody against methylglyoxalated proteins and detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. We identified 543 candidate proteins which are involved in multiple enzymatic activities and metabolic processes. A great number of candidate proteins were predicted to localize to cytoplasm, chloroplast, and nucleus, consistent with the known subcellular compartmentalization of MG. By further analyzing the raw LC-MS/MS data, we obtained 42 methylglyoxalated peptides in 35 proteins and identified 10 methylglyoxalated lysine residues in a myrosinase-binding protein (BnaC06G0061400ZS). In addition, we demonstrated that MG modifies the glycolate oxidase and β-glucosidase to enhance and inhibit the enzymatic activity, respectively. Together, our study contributes to the investigation of the MG-modified proteins and their potential roles in rapeseed.
Collapse
Affiliation(s)
- Zheng-Wei Fu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shi-Hang Fan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hong-Fang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
21
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
22
|
Kaur S, Grewal SK, Taggar GK, Bhardwaj RD. Methylglyoxal metabolism is altered during defence response in pigeonpea ( Cajanus cajan (L.) Millsp.) against the spotted pod borer ( Maruca vitrata). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23155. [PMID: 38266279 DOI: 10.1071/fp23155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.
Collapse
Affiliation(s)
- Sukhmanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | - Gaurav Kumar Taggar
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
23
|
Javed T, Shabbir R, Hussain S, Naseer MA, Ejaz I, Ali MM, Ahmar S, Yousef AF. Nanotechnology for endorsing abiotic stresses: a review on the role of nanoparticles and nanocompositions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:831-849. [PMID: 36043237 DOI: 10.1071/fp22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.
Collapse
Affiliation(s)
- Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; and Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rubab Shabbir
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sadam Hussain
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Irsa Ejaz
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Muhamamd Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Xu M, Zuo D, Wang Q, Lv L, Zhang Y, Jiao H, Zhang X, Yang Y, Song G, Cheng H. Identification and molecular evolution of the GLX genes in 21 plant species: a focus on the Gossypium hirsutum. BMC Genomics 2023; 24:474. [PMID: 37608304 PMCID: PMC10464159 DOI: 10.1186/s12864-023-09524-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.
Collapse
Affiliation(s)
- Menglin Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huixin Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiang Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yi Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoli Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Hailiang Cheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
25
|
Bless Y, Ndlovu L, Gcanga E, Niekerk LA, Nkomo M, Bakare O, Mulaudzi T, Klein A, Gokul A, Keyster M. Methylglyoxal improves zirconium stress tolerance in Raphanus sativus seedling shoots by restricting zirconium uptake, reducing oxidative damage, and upregulating glyoxalase I. Sci Rep 2023; 13:13618. [PMID: 37604852 PMCID: PMC10442447 DOI: 10.1038/s41598-023-40788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Raphanus sativus also known as radish is a member of the Brassicaceae family which is mainly cultivated for human and animal consumption. R. sativus growth and development is negatively affected by heavy metal stress. The metal zirconium (Zr) have toxic effects on plants and tolerance to the metal could be regulated by known signaling molecules such as methylglyoxal (MG). Therefore, in this study we investigated whether the application of the signaling molecule MG could improve the Zr tolerance of R. sativus at the seedling stage. We measured the following: seed germination, dry weight, cotyledon abscission (%), cell viability, chlorophyll content, malondialdehyde (MDA) content, conjugated diene (CD) content, hydrogen peroxide (H2O2) content, superoxide (O2•-) content, MG content, hydroxyl radical (·OH) concentration, ascorbate peroxidase (APX) activity, superoxide dismutase (SOD) activity, glyoxalase I (Gly I) activity, Zr content and translocation factor. Under Zr stress, exogenous MG increased the seed germination percentage, shoot dry weight, cotyledon abscission, cell viability and chlorophyll content. Exogenous MG also led to a decrease in MDA, CD, H2O2, O2•-, MG and ·OH, under Zr stress in the shoots. Furthermore, MG application led to an increase in the enzymatic activities of APX, SOD and Gly I as well as in the complete blocking of cotyledon abscission under Zr stress. MG treatment decreased the uptake of Zr in the roots and shoots. Zr treatment decreased the translocation factor of the Zr from roots to shoots and MG treatment decreased the translocation factor of Zr even more significantly compared to the Zr only treatment. Our results indicate that MG treatment can improve R. sativus seedling growth under Zr stress through the activation of antioxidant enzymes and Gly I through reactive oxygen species and MG signaling, inhibiting cotyledon abscission through H2O2 signaling and immobilizing Zr translocation.
Collapse
Affiliation(s)
- Yoneal Bless
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Linda Ndlovu
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Esihle Gcanga
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Mbukeni Nkomo
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Takalani Mulaudzi
- Department of Biotechnology, Life Science Building, University of the Western Cape, Bellville, 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Arun Gokul
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba, 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa.
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, 7530, South Africa.
| |
Collapse
|
26
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
27
|
Shaffique S, Hussain S, Kang SM, Imran M, Kwon EH, Khan MA, Lee IJ. Recent progress on the microbial mitigation of heavy metal stress in soybean: overview and implications. FRONTIERS IN PLANT SCIENCE 2023; 14:1188856. [PMID: 37377805 PMCID: PMC10291193 DOI: 10.3389/fpls.2023.1188856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023]
Abstract
Plants are adapted to defend themselves through programming, reprogramming, and stress tolerance against numerous environmental stresses, including heavy metal toxicity. Heavy metal stress is a kind of abiotic stress that continuously reduces various crops' productivity, including soybeans. Beneficial microbes play an essential role in improving plant productivity as well as mitigating abiotic stress. The simultaneous effect of abiotic stress from heavy metals on soybeans is rarely explored. Moreover, reducing metal contamination in soybean seeds through a sustainable approach is extremely needed. The present article describes the initiation of heavy metal tolerance mediated by plant inoculation with endophytes and plant growth-promoting rhizobacteria, the identification of plant transduction pathways via sensing annotation, and contemporary changes from molecular to genomics. The results suggest that the inoculation of beneficial microbes plays a significant role in rescuing soybeans under heavy metal stress. They create a dynamic, complex interaction with plants via a cascade called plant-microbial interaction. It enhances stress metal tolerance via the production of phytohormones, gene expression, and secondary metabolites. Overall, microbial inoculation is essential in mediating plant protection responses to heavy metal stress produced by a fluctuating climate.
Collapse
Affiliation(s)
- Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saddam Hussain
- Department of Agronomy, The University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- National Institute of Agriculture Science, Rural Development Administration, Biosafety Division, Jeonju, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Department of Chemical and Life Sciences, Qurtuba University of Science and Information Technology, Peshawar, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
29
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
30
|
Manna I, Bandyopadhyay M. The impact of engineered nickel oxide nanoparticles on ascorbate glutathione cycle in Allium cepa L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:663-678. [PMID: 37363417 PMCID: PMC10284763 DOI: 10.1007/s12298-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023]
Abstract
Engineered nickel oxide nanoparticle (NiO-NP) can inflict significant damages on exposed plants, even though very little is known about the modus operandi. The present study investigated effects of NiO-NP on the crucial stress alleviation mechanism Ascorbate-Glutathione Cycle (Asa-GSH cycle) in the model plant Allium cepa. Cellular contents of reduced glutathione (GSH) and oxidised glutathione (GSSG), was disturbed upon NiO-NP exposure. The ratio of GSH to GSSG changed from 20:1 in NC to 4:1 in roots exposed to 125 mg L-1 NiO-NP. Even the lowest treatments of NiO-NP (10 mg L-1) increased ascorbic acid (2.9-folds) and cysteine contents (1.6-folds). Enzymes like glutathione reductase, ascorbate peroxidase, glutathione peroxidase and glutathione-S-transferase also showed altered activities in the affected tissues. Further, intracellular methylglyoxal, a harbinger of ROS (Reactive oxygen species), increased significantly (~ 26 to 65-fold) across different concentrations NiO-NP. Intracellular H2O2 (hydrogen peroxide) and ROS levels increased with NiO-NP doses, as did electrolytic leakage from damaged cells. The present work indicated that multiple pathways were compromised in NiO-NP affected plants and this information can bolster our general understanding of the actual mechanism of its toxicity on living cells, and help formulate strategies to thwart ecological pollution. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01314-8.
Collapse
Affiliation(s)
- Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019 India
| |
Collapse
|
31
|
Basit F, Tao J, An J, Song X, Sheteiwy MS, Holford P, Hu J, Jośko I, Guan Y. Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51638-51653. [PMID: 36811783 DOI: 10.1007/s11356-023-25901-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 µM) and NO (100 µM), applied alone or in combination, on the mitigation of stress induced by Cr (100 µM) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ji Tao
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianyu An
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Song
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Anuar MSK, Hashim AM, Ho CL, Wong MY, Sundram S, Saidi NB, Yusof MT. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J Microbiol Biotechnol 2023; 39:123. [PMID: 36934342 DOI: 10.1007/s11274-023-03579-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.
Collapse
Affiliation(s)
- Muhammad Salahudin Kheirel Anuar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Shamala Sundram
- Biology Research Division, Malaysian Palm Oil Board, Kajang, Selangor, 43000, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia.
| |
Collapse
|
33
|
Laus MN, Blando F, Soccio M. Glyoxalase I Assay as a Possible Tool for Evaluation of Biological Activity of Antioxidant-Rich Plant Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1150. [PMID: 36904010 PMCID: PMC10005046 DOI: 10.3390/plants12051150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The health-promoting properties of natural plant bioactive compounds are mainly attributable to their ability to counteract oxidative stress. This is considered a major causative factor in aging and aging-related human diseases, in which a causal role is also ascribed to dicarbonyl stress. This is due to accumulation of methylglyoxal (MG) and other reactive dicarbonyl species, leading to macromolecule glycation and cell/tissue dysfunction. The glyoxalase (GLYI) enzyme, catalyzing the rate-limiting step of the GSH-dependent MG detoxification pathway, plays a key role in cell defense against dicarbonyl stress. Therefore, the study of GLYI regulation is of relevant interest. In particular, GLYI inducers are important for pharmacological interventions to sustain healthy aging and to improve dicarbonyl-related diseases; GLYI inhibitors, allowing increased MG levels to act as proapoptotic agents in tumor cells, are of special interest in cancer treatment. In this study, we performed a new in vitro exploration of biological activity of plant bioactive compounds by associating the measurement of their antioxidant capacity (AC) with the evaluation of their potential impact on dicarbonyl stress measured as capability to modulate GLYI activity. AC was evaluated using TEAC, ORAC, and LOX-FL methods. The GLYI assay was performed using a human recombinant isoform, in comparison with the recently characterized GLYI activity of durum wheat mitochondria. Different plant extracts were tested, obtained from plant sources with very high phytochemical content ('Sun Black' and wildtype tomatoes, black and 'Polignano' carrots, and durum wheat grain). Results showed high antioxidant properties of the tested extracts, associated with different modes (no effect, activation, and inhibition) and effectiveness in modulating both GLYI activity sources. Overall, results indicate the GLYI assay as an advisable and promising tool for researching plant foods as a source of natural antioxidant compounds acting as GLYI enzymatic regulators to be used for dietary management associated the treatment of oxidative/dicarbonyl-promoted diseases.
Collapse
Affiliation(s)
- Maura Nicoletta Laus
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Federica Blando
- Institute of Sciences of Food Production, CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Mario Soccio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| |
Collapse
|
34
|
Wu ZX, Wang J, Lin XH, Yang Q, Wang TZ, Chen JJ, Li XN, Guan Y, Lv GH. Nicosulfuron stress on the glyoxalase system and endogenous hormone content in sweet maize seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49290-49300. [PMID: 36773263 DOI: 10.1007/s11356-023-25777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
To reduce the harmful effects of nicosulfuron on sweet corn, the physiological regulation mechanism of sweet corn detoxification was studied. This study analyzed the effects of nicosulfuron stress on the glyoxalase system, hormone content, and key gene expression of nicosulfuron-tolerant "HK301" and nicosulfuron-sensitive "HK320" sweet corn seedling sister lines. After spraying nicosulfuron, the methylglyoxal (MG) content in HK301 increased first and then decreased. Glyoxalase I (GlyI) and glyoxalase II (GlyII) activities, non-enzymatic glutathione (GSH), and the glutathione redox state glutathione/(glutathione + glutathione disulfide) (GSH/(GSH + GSSG)) showed a similar trend as the MG content. Abscisic acid (ABA), gibberellin (GA), and zeatin nucleoside (ZR) also increased first and then decreased, whereas the auxin (IAA) increased continuously. In HK301, all indices after spraying nicosulfuron were significantly greater than those of the control. In HK320, MG accumulation continued to increase after nicosulfuron spraying and GlyI and GlyII activities, and GSH first increased and then decreased after 1 day of stress. The indicators above were significantly greater than the control. The GSH/(GSH + GSSG) ratio showed a decreasing trend and was significantly smaller than the control. Furthermore, ABA and IAA continued to increase, and the GA and ZR first increased and then decreased. Compared with HK320, HK301 significantly upregulated the transcription levels of GlyI and GlyII genes in roots, stems, and leaves. Comprehensive analysis showed that sweet maize seedlings improved their herbicide resistance by changing the glyoxalase system and regulating endogenous hormones. The results provide a theoretical basis for further understanding the response mechanism of the glyoxalase system and the regulation characteristics of endogenous hormones in maize under nicosulfuron stress.
Collapse
Affiliation(s)
- Zhen-Xing Wu
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Jian Wang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Xiao-Hu Lin
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Qing Yang
- College of Agronomy and Biotechnology, Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science &Technology, Qinhuangdao, 066000, China
| | - Ting-Zhen Wang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Jian-Jian Chen
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Xiang-Nan Li
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China
| | - Yuan Guan
- Shanghai Engineering Research Center of Specialty Maize, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Gui-Hua Lv
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, 322100, China.
| |
Collapse
|
35
|
Guo L, Ling L, Wang X, Cheng T, Wang H, Ruan Y. Exogenous hydrogen sulfide and methylglyoxal alleviate cadmium-induced oxidative stress in Salix matsudana Koidz by regulating glutathione metabolism. BMC PLANT BIOLOGY 2023; 23:73. [PMID: 36732696 PMCID: PMC9893619 DOI: 10.1186/s12870-023-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cadmium (Cd) is a highly toxic element for plant growth. In plants, hydrogen sulfide (H2S) and methylglyoxal (MG) have emerged as vital signaling molecules that regulate plant growth processes under Cd stress. However, the effects of sodium hydrosulfide (NaHS, a donor of H2S) and MG on Cd uptake, physiological responses, and gene expression patterns of Salix to Cd toxicity have been poorly understood. Here, Salix matsudana Koidz. seedlings were planted in plastic pot with applications of MG (108 mg kg- 1) and NaHS (50 mg kg- 1) under Cd (150 mg kg- 1) stress. RESULTS Cd treatment significantly increased the reactive oxygen species (ROS) levels and malondialdehyde (MDA) content, but decreased the growth parameters in S. matsudana. However, NaHS and MG supplementation significantly decreased Cd concentration, ROS levels, and MDA content, and finally enhanced the growth parameters. Cd stress accelerated the activities of antioxidative enzymes and the relative expression levels of stress-related genes, which were further improved by NaHS and MG supplementation. However, the activities of monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) were sharply decreased under Cd stress. Conversely, NaHS and MG applications restored the MDHAR and DHAR activities compared with Cd-treated seedlings. Furthermore, Cd stress decreased the ratios of GSH/GSSG and AsA/DHA but considerably increased the H2S and MG levels and glyoxalase I-II system in S. matsudana, while the applications of MG and NaHS restored the redox status of AsA and GSH and further improved glyoxalase II activity. In addition, compared with AsA, GSH showed a more sensitive response to exogenous applications of MG and NaHS and plays more important role in the detoxification of Cd. CONCLUSIONS The present study illustrated the crucial roles of H2S and MG in reducing ROS-mediated oxidative damage to S. matsudana and revealed the vital role of GSH metabolism in regulating Cd-induced stress.
Collapse
Affiliation(s)
- Long Guo
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Long Ling
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Xiaoqian Wang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Ting Cheng
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Hongyan Wang
- School of Life Science, Liaoning University, Shenyang, 110036, China
| | - Yanan Ruan
- School of Life Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
36
|
Mihailova G, Solti Á, Sárvári É, Hunyadi-Gulyás É, Georgieva K. Protein Changes in Shade and Sun Haberlea rhodopensis Leaves during Dehydration at Optimal and Low Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020401. [PMID: 36679114 PMCID: PMC9861795 DOI: 10.3390/plants12020401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Haberlea rhodopensis is a unique resurrection plant of high phenotypic plasticity, colonizing both shady habitats and sun-exposed rock clefts. H. rhodopensis also survives freezing winter temperatures in temperate climates. Although survival in conditions of desiccation and survival in conditions of frost share high morphological and physiological similarities, proteomic changes lying behind these mechanisms are hardly studied. Thus, we aimed to reveal ecotype-level and temperature-dependent variations in the protective mechanisms by applying both targeted and untargeted proteomic approaches. Drought-induced desiccation enhanced superoxide dismutase (SOD) activity, but FeSOD and Cu/ZnSOD-III were significantly better triggered in sun plants. Desiccation resulted in the accumulation of enzymes involved in carbohydrate/phenylpropanoid metabolism (enolase, triosephosphate isomerase, UDP-D-apiose/UDP-D-xylose synthase 2, 81E8-like cytochrome P450 monooxygenase) and protective proteins such as vicinal oxygen chelate metalloenzyme superfamily and early light-induced proteins, dehydrins, and small heat shock proteins, the latter two typically being found in the latest phases of dehydration and being more pronounced in sun plants. Although low temperature and drought stress-induced desiccation trigger similar responses, the natural variation of these responses in shade and sun plants calls for attention to the pre-conditioning/priming effects that have high importance both in the desiccation responses and successful stress recovery.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62., H-6726 Szeged, Hungary
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
37
|
Ahmed S, Khan MT, Abbasi A, Haq IU, Hina A, Mohiuddin M, Tariq MAUR, Afzal MZ, Zaman QU, Ng AWM, Li Y. Characterizing stomatal attributes and photosynthetic induction in relation to biochemical changes in Coriandrum sativum L. by foliar-applied zinc oxide nanoparticles under drought conditions. FRONTIERS IN PLANT SCIENCE 2023; 13:1079283. [PMID: 36714745 PMCID: PMC9879579 DOI: 10.3389/fpls.2022.1079283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Abiotic stress, particularly drought, will remain an alarming challenge for sustainable agriculture. New approaches have been opted, such as nanoparticles (NPs), to reduce the negative impact of drought stress and lessen the use of synthetic fertilizers and pesticides that are an inevitable problem these days. The application of zinc oxide nanoparticles (ZnO NPs) has been recognized as an effective strategy to enhance plant growth and crop production during abiotic stress. The aim of the current study was to investigate the role of ZnO NPs in drought stress management of drought-susceptible Coriandrum sativum L. (C. sativum) in two consecutive seasons. Drought regimes (moderate drought regime-MDR and intensive drought regime-IDR) were developed based on replenishment method with respect to 50% field capacity of fully irrigated (control) plants. The results showed that foliar application of 100 ppm ZnO NPs improved the net photosynthesis (Pn), stomatal conductance (C), and transpiration rate (E) and boosted up the photosynthetic capacity associated with photosynthetic active radiation in MDR. Similarly, 48% to 30% improvement of chlorophyll b content was observed in MDR and onefold to 41% in IDR during both seasons in ZnO NP-supplemented plants. The amount of abscisic acid in leaves showed a decreasing trend in MDR and IDR in the first season (40% and 30%) and the second season (49% and 33%) compared with untreated ZnO NP plants. The ZnO NP-treated plants showed an increment in total soluble sugars, total phenolic content, and total flavonoid content in both drought regimes, whereas the abaxial surface showed high stomatal density and stomatal index than the adaxial surface in foliar-supplied NP plants. Furthermore, ZnO NPs improve the magnitude of stomata ultrastructures like stomatal length, stomatal width, and pore length for better adaptation against drought. Principal component analysis revealed the efficacy of ZnO NPs in inducing drought tolerance in moderate and intensive stress regimes. These results suggest that 100 ppm ZnO NPs can be used to ameliorate drought tolerance in C. sativum plants.
Collapse
Affiliation(s)
- Shakil Ahmed
- Institute of Botany, University of the Punjab Quaid, Lahore, Pakistan
| | - Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab Quaid, Lahore, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Aiman Hina
- Department of Botany, Kohsar University, Murree, Pakistan
| | - Muhammad Mohiuddin
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Muhammad Atiq Ur Rehman Tariq
- Department of Environmental Sciences, Comsats University Islamabad (CUI), Abbottabad, Pakistan
- Center of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore, Pakistan
| | | | - Qamar uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Anne Wai Man Ng
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT, Australia
| | - Yong Li
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
38
|
Qiu XM, Sun YY, Li ZG. Signaling molecule glutamic acid initiates the expression of genes related to methylglyoxal scavenging and osmoregulation systems in maize seedlings. PLANT SIGNALING & BEHAVIOR 2022; 17:1994257. [PMID: 34875972 PMCID: PMC8920167 DOI: 10.1080/15592324.2021.1994257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 05/31/2023]
Abstract
Glutamic acid (Glu) is not only a protein amino acid, but also a signaling molecule, which takes part in various physiological processes in plants. Our previous study found that root-irrigation with Glu could improve the heat tolerance of maize seedlings by plant Glu receptor-like channels-mediated calcium signaling (Protoplasma, 2019; 256:1165-1169), but its molecular mechanism remains unclear. In this study, based on the our previous work, the maize seedlings were treated with 1 mM Glu prior to be exposed to heat stress (HS), and then the expression of genes related to related to methylglyoxal (MG)-scavenging and osmoregulation systems was quantified. The results showed that Glu treatment up-regulated the gene expression of Zea mays aldo-keto reductase (ZmAKR) under both non-HS and HS conditions. Also, the gene expression of Zea mays alkenal/alkenone reductase (ZmAAR), glyoxalase II (ZmGly II), pyrroline-5-carboxylate synthase (ZmP5CS), betaine dehydrogenase (ZmBADH), and trehalase (ZmTRE) was up-regualted by exogenous Glu treatment under HS conditions. These data imply that signaling molecule Glu initiated the expression of genes related to MG-scavenging and osmoregulation systems in maize seedlings, further supporting the fact that Glu-enhanced heat tolerance in plants.
Collapse
Affiliation(s)
- Xue-Mei Qiu
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, Yunnan, P.R. China
| | - Yu-Ying Sun
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, Yunnan, P.R. China
| | - Zhong-Guang Li
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Kunming, Yunnan, P.R. China
| |
Collapse
|
39
|
Liu H, Xiao C, Qiu T, Deng J, Cheng H, Cong X, Cheng S, Rao S, Zhang Y. Selenium Regulates Antioxidant, Photosynthesis, and Cell Permeability in Plants under Various Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:44. [PMID: 36616173 PMCID: PMC9824017 DOI: 10.3390/plants12010044] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant growth is affected by various abiotic stresses, including water, temperature, light, salt, and heavy metals. Selenium (Se) is not an essential nutrient for plants but plays important roles in alleviating the abiotic stresses suffered by plants. This article summarizes the Se uptake and metabolic processes in plants and the functions of Se in response to water, temperature, light, salt, and heavy metal stresses in plants. Se promotes the uptake of beneficial substances, maintains the stability of plasma membranes, and enhances the activity of various antioxidant enzymes, thus alleviating adverse effects in plants under abiotic stresses. Future research directions on the relationship between Se and abiotic stresses in plants are proposed. This article will further deepen our understanding of the relationship between Se and plants.
Collapse
Affiliation(s)
- Haodong Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chunmei Xiao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Tianci Qiu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Deng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yue Zhang
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| |
Collapse
|
40
|
Physio-Biochemical and Transcriptomic Features of Arbuscular Mycorrhizal Fungi Relieving Cadmium Stress in Wheat. Antioxidants (Basel) 2022; 11:antiox11122390. [PMID: 36552597 PMCID: PMC9774571 DOI: 10.3390/antiox11122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant cadmium (Cd) tolerance, but the tolerance mechanism in wheat is not fully understood. This study aimed to examine the physiological properties and transcriptome changes in wheat inoculated with or without Glomus mosseae (GM) under Cd stress (0, 5, and 10 mg·kg-1 CdCl2) to understand its role in wheat Cd tolerance. The results showed that the Cd content in shoots decreased while the Cd accumulation in roots increased under AMF symbiosis compared to the non-inoculation group and that AMF significantly promoted the growth of wheat seedlings and reduced Cd-induced oxidative damage. This alleviative effect of AMF on wheat under Cd stress was mainly attributed to the fact that AMF accelerated the ascorbate-glutathione (AsA-GSH) cycle, promoted the production of GSH and metallothionein (MTs), improved the degradation of methylglyoxal (MG), and induced GRSP (glomalin-related soil protein) secretion. Furthermore, a comparative analysis of the transcriptomes of the symbiotic group and the non-symbiotic group revealed multiple differentially expressed genes (DEGs) in the 'metal ion transport', 'glutathione metabolism', 'cysteine and methionine metabolism', and 'plant hormone signal transduction' terms. The expression changes of these DEGs were basically consistent with the changes in physio-biochemical characteristics. Overall, AMF alleviated Cd stress in wheat mainly by promoting immobilization and sequestration of Cd, reducing ROS production and accelerating their scavenging, in which the rapid metabolism of GSH may play an important role.
Collapse
|
41
|
Qiu XM, Sun YY, Wang JQ, Xiang RH, Li ZG. Involvement of osmoregulation, glyoxalase, and non-glyoxalase systems in signaling molecule glutamic acid-boosted thermotolerance in maize seedlings. PROTOPLASMA 2022; 259:1507-1520. [PMID: 35277781 DOI: 10.1007/s00709-022-01753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Glutamic acid (Glu) is not only an important protein building block, but also a signaling molecule in plants. However, the Glu-boosted thermotolerance and its underlying mechanisms in plants still remain unclear. In this study, the maize seedlings were irrigated with Glu solution prior to exposure to heat stress (HS), the seedlings' thermotolerance as well as osmoregulation, glyoxalase, and non-glyoxalase systems were evaluated. The results manifested that the seedling survival and tissue vitality after HS were boosted by Glu, while membrane damage was reduced in comparison with the control seedlings without Glu treatment, indicating Glu boosted the thermotolerance of maize seedlings. Additionally, root-irrigation with Glu increased its endogenous level, reinforced osmoregulation system (i.e., an increase in the levels of proline, glycine betaine, trehalose, and total soluble sugar, as well as the activities of pyrroline-5-carboxylate synthase, betaine dehydrogenase, and trehalose-5-phosphate phosphatase) in maize seedlings under non-HS and HS conditions compared with the control. Also, Glu treatment heightened endogenous methylglyoxal level and the activities of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (methylglyoxal reductase, lactate dehydrogenase, aldo-ketoreductase, and alkenal/alkenone reductase) in maize seedlings under non-HS and HS conditions as compared to the control. These data hint that osmoregulation, glyoxalase, and non-glyoxalase systems are involved in signaling molecule Glu-boosted thermotolerance of maize seedlings.
Collapse
Affiliation(s)
- Xue-Mei Qiu
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Yu-Ying Sun
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Jia-Qi Wang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Ru-Hua Xiang
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650092, People's Republic of China.
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University, Yunnan Province, Kunming, 650092, People's Republic of China.
| |
Collapse
|
42
|
Khan MT, Ahmed S, Sardar R, Shareef M, Abbasi A, Mohiuddin M, Ercisli S, Fiaz S, Marc RA, Attia K, Khan N, Golokhvast KS. Impression of foliar-applied folic acid on coriander ( Coriandrum sativum L.) to regulate aerial growth, biochemical activity, and essential oil profiling under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1005710. [PMID: 36340333 PMCID: PMC9633984 DOI: 10.3389/fpls.2022.1005710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Drought is one of the major environmental limitations in the crop production sector that has a great impact on food security worldwide. Coriander (Coriandrum sativum L.) is an herbaceous angiosperm of culinary significance and highly susceptible to rootzone dryness. Elucidating the drought-induced physio-chemical changes and the foliar-applied folic acid (FA; vitamin B9)-mediated stress tolerance mechanism of coriander has been found as a research hotspot under the progressing water scarcity challenges for agriculture. The significance of folic acid in ameliorating biochemical activities for the improved vegetative growth and performance of coriander under the mild stress (MS75), severe stress (SS50), and unstressed (US100) conditions was examined in this study during two consecutive seasons. The results revealed that the plants treated with 50 mM FA showed the highest plant fresh biomass, leaf fresh biomass, and shoot fresh biomass from bolting stage to seed filling stage under mild drought stress. In addition, total soluble sugars, total flavonoids content, and chlorophyll content showed significant results by the foliar application of FA, while total phenolic content showed non-significant results under MS75 and SS50. It was found that 50 mM of FA upregulated the activity of catalase, superoxide dismutase, and ascorbate peroxidase enzymes in MS75 and SS50 plants compared with untreated FA plants. Thus, FA treatment improved the overall biological yield and economic yield regardless of water deficit conditions. FA-accompanied plants showed a decline in drought susceptibility index, while it improved the drought tolerance efficiency, indicating this variety to become stress tolerant. The optimum harvest index, essential oil (EO) percentage, and oil yield were found in MS75 followed by SS50 in FA-supplemented plants. The gas chromatography-mass spectrometry analysis revealed a higher abundance of linalool as the major chemical constituent of EO, followed by α-terpeniol, terpinene, and p-Cymene in FA-treated SS50 plants. FA can be chosen as a shotgun tactic to improve drought tolerance in coriander by delimiting the drastic changes due to drought stress.
Collapse
Affiliation(s)
- Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Muhammad Mohiuddin
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Kiril S. Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology, Russian Academy of Sciences (RAS), Krasnoobsk, Russia
| |
Collapse
|
43
|
Altaf MM, Diao XP, Altaf MA, Ur Rehman A, Shakoor A, Khan LU, Jan BL, Ahmad P. Silicon-mediated metabolic upregulation of ascorbate glutathione (AsA-GSH) and glyoxalase reduces the toxic effects of vanadium in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129145. [PMID: 35739696 DOI: 10.1016/j.jhazmat.2022.129145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although beneficial metalloid silicon (Si) has been proven to reduce the toxicity of several heavy metals, there is a lack of understanding regarding Si potential function in mitigating phytotoxicity induced by vanadium (V). In this study, effect of Si (1.5 mM) on growth, biomass production, V uptake, reactive oxygen species (ROS), methylglyoxal (MG) formation, selected antioxidants enzymes activities, glyoxalase enzymes under V stress (35 mg L-1) was investigated in hydroponic experiment. The results showed that V stress reduced rice growth, caused V accumulation in rice. Addition of Si to the nutritional medium increased plant growth, biomass yield, root length, root diameter, chlorophyll parameters, photosynthetic assimilation, ion leakage, antioxidant enzymes activities under V stress. Notably, Si sustained V-homeostasis and alleviated V caused oxidative stress by boosting ascorbate (AsA) levels and the activity of antioxidant enzymes in V stressed rice plants. Furthermore, Si protected rice seedlings against the harmful effects of methylglyoxal by increasing the activity of glyoxalase enzymes. Additionally, Si increased the expression of numerous genes involved in the detoxification of reactive oxygen species (e.g., OsCuZnSOD1, OsCaTB, OsGPX1, OsAPX1, OsGR2, and OsGSTU37) and methylglyoxal (e.g., OsGLYI-1 and OsGLYII-2). The findings supported that Si can be applied to plants to minimize the V availability to plant, and also induced V stress tolerance.
Collapse
Affiliation(s)
- Muhammad Mohsin Altaf
- College of Ecology and Environment, Hainan University, Haikou 570228, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Xiao-Ping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China; School of Biology, Hainan Normal University, Haikou 571158, PR China.
| | | | - Atique Ur Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, Lleida 25198, Spain
| | - Latif Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir 192301, India
| |
Collapse
|
44
|
Biermann AR, Hogan DA. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl. mSphere 2022; 7:e0012422. [PMID: 35473297 PMCID: PMC9241502 DOI: 10.1128/msphere.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris is an urgent threat to human health due to its rapid spread in health care settings and its repeated development of multidrug resistance. Diseases that increase risk for C. auris infection, such as diabetes, kidney failure, or immunocompromising conditions, are associated with elevated levels of methylglyoxal (MG), a reactive dicarbonyl compound derived from several metabolic processes. In other Candida species, expression of MG reductase enzymes that catabolize and detoxify MG are controlled by Mrr1, a multidrug resistance-associated transcription factor, and MG induces Mrr1 activity. Here, we used transcriptomics and genetic assays to determine that C. auris MRR1a contributes to MG resistance, and that the main Mrr1a targets are an MG reductase and MDR1, which encodes a drug efflux protein. The C. auris Mrr1a regulon is smaller than Mrr1 regulons described in other species. In addition to MG, benomyl (BEN), a known Mrr1 stimulus, induces C. auris Mrr1 activity, and characterization of the MRR1a-dependent and -independent transcriptional responses revealed substantial overlap in genes that were differentially expressed in response to each compound. Additionally, we found that an MRR1 allele specific to one C. auris phylogenetic clade, clade III, encodes a hyperactive Mrr1 variant, and this activity correlated with higher MG resistance. C. auris MRR1a alleles were functional in Candida lusitaniae and were inducible by BEN, but not by MG, suggesting that the two Mrr1 inducers act via different mechanisms. Together, the data presented in this work contribute to the understanding of Mrr1 activity and MG resistance in C. auris. IMPORTANCE Candida auris is a fungal pathogen that has spread since its identification in 2009 and is of concern due to its high incidence of resistance against multiple classes of antifungal drugs. In other Candida species, the transcription factor Mrr1 plays a major role in resistance against azole antifungals and other toxins. More recently, Mrr1 has been recognized to contribute to resistance to methylglyoxal (MG), a toxic metabolic product that is often elevated in different disease states. MG can activate Mrr1 and its induction of Mdr1 which can protect against diverse challenges. The significance of this work lies in showing that MG is also an inducer of Mrr1 in C. auris, and that one of the major pathogenic C. auris lineages has an activating Mrr1 mutation that confers protection against MG.
Collapse
Affiliation(s)
- Amy R. Biermann
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
45
|
Soccio M, Marangi M, Laus MN. Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat ( Triticum durum Desf.). FRONTIERS IN PLANT SCIENCE 2022; 13:934523. [PMID: 35832233 PMCID: PMC9272005 DOI: 10.3389/fpls.2022.934523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
Glyoxalase I (GLYI) catalyzes the rate-limiting step of the glyoxalase pathway that, in the presence of GSH, detoxifies the cytotoxic molecule methylglyoxal (MG) into the non-toxic D-lactate. In plants, MG levels rise under various abiotic stresses, so GLYI may play a crucial role in providing stress tolerance. In this study, a comprehensive genome database analysis was performed in durum wheat (Triticum durum Desf.), identifying 27 candidate GLYI genes (TdGLYI). However, further analyses of phylogenetic relationships and conserved GLYI binding sites indicated that only nine genes encode for putative functionally active TdGLYI enzymes, whose distribution was predicted in three different subcellular compartments, namely cytoplasm, plastids and mitochondria. Expression profile by qRT-PCR analysis revealed that most of the putative active TdGLYI genes were up-regulated by salt and osmotic stress in roots and shoots from 4-day-old seedlings, although a different behavior was observed between the two types of stress and tissue. Accordingly, in the same tissues, hyperosmotic stress induced an increase (up to about 40%) of both GLYI activity and MG content as well as a decrease of GSH (up to about -60%) and an increase of GSSG content (up to about 7-fold) with a consequent strong decrease of the GSH/GSSG ratio (up to about -95%). Interestingly, in this study, we reported the first demonstration of the existence of GLYI activity in highly purified mitochondrial fraction. In particular, GLYI activity was measured in mitochondria from durum wheat (DWM), showing hyperbolic kinetics with Km and Vmax values equal to 92 ± 0.2 μM and 0.519 ± 0.004 μmol min-1 mg-1 of proteins, respectively. DWM-GLYI resulted inhibited in a competitive manner by GSH (Ki = 6.5 ± 0.7 mM), activated by Zn2+ and increased, up to about 35 and 55%, under salt and osmotic stress, respectively. In the whole, this study provides basis about the physiological significance of GLYI in durum wheat, by highlighting the role of this enzyme in the early response of seedlings to hyperosmotic stress. Finally, our results strongly suggest the existence of a complete mitochondrial GLYI pathway in durum wheat actively involved in MG detoxification under hyperosmotic stress.
Collapse
Affiliation(s)
- Mario Soccio
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| | - Marianna Marangi
- Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maura N. Laus
- Department of Agriculture, Food, Natural resources and Engineering, University of Foggia, Foggia, Italy
| |
Collapse
|
46
|
Ketehouli T, Nguyen Quoc VH, Dong J, Do H, Li X, Wang F. Overview of the roles of calcium sensors in plants’ response to osmotic stress signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:589-599. [PMID: 35339206 DOI: 10.1071/fp22012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Calcium signals serve an important function as secondary messengers between cells in various biological processes due to their robust homeostatic mechanism, maintaining an intracellular free Ca2+ concentration. Plant growth, development, and biotic and abiotic stress are all regulated by Ca2+ signals. Ca2+ binding proteins decode and convey the messages encoded by Ca2+ ions. In the presence of high quantities of Mg2+ and monovalent cations, such sensors bind to Ca2+ ions and modify their conformation in a Ca2+ -dependent manner. Calcium-dependent protein kinases (CPKs), calmodulins (CaMs), and calcineurin B-like proteins are all calcium sensors (CBLs). To transmit Ca2+ signals, CPKs, CBLs, and CaMs interact with target proteins and regulate the expression of their genes. These target proteins may be protein kinases, metabolic enzymes, or cytoskeletal-associated proteins. Beyond its role in plant nutrition as a macroelement and its involvement in the plant cell wall structure, calcium modulates many aspects of development, growth and adaptation to environmental constraints such as drought, salinity and osmotic stresses. This review summarises current knowledge on calcium sensors in plant responses to osmotic stress signalling.
Collapse
Affiliation(s)
- Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Viet Hoang Nguyen Quoc
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Jinye Dong
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Hoaithuong Do
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaowei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
47
|
Ahmad A, Blasco B, Martos V. Combating Salinity Through Natural Plant Extracts Based Biostimulants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:862034. [PMID: 35668803 PMCID: PMC9164010 DOI: 10.3389/fpls.2022.862034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/02/2022] [Indexed: 05/07/2023]
Abstract
Enhanced crop growth and yield are the recurring concerns in agricultural field, considering the soaring world population and climate change. Abiotic stresses are one of the major limiting factors for constraining crop production, for several economically important horticultural crops, and contribute to almost 70% of yield gap. Salt stress is one of these unsought abiotic stresses that has become a consistent problem in agriculture over the past few years. Salinity further induces ionic, osmotic, and oxidative stress that result in various metabolic perturbations (including the generation of reactive oxygen, carbonyl, and nitrogen species), reduction in water potential (ψw), distorted membrane potential, membrane injury, altered rates of photosynthesis, leaf senescence, and reduced nitrogen assimilation, among others); thereby provoking a drastic reduction in crop growth and yield. One of the strategies to mitigate salt stress is the use of natural plant extracts (PEs) instead of chemical fertilizers, thus limiting water, soil, and environmental pollution. PEs mainly consist of seeds, roots, shoots, fruits, flowers, and leaves concentrates employed either individually or in mixtures. Since PEs are usually rich in bioactive compounds (e.g., carotenoids, flavonoids, phenolics, etc.), therefore they are effective in regulating redox metabolism, thereby promoting plant growth and yield. However, various factors like plant growth stage, doses applied, application method, soil, and environmental conditions may greatly influence their impact on plants. PEs have been reported to enhance salt tolerance in plants primarily through modulation of signaling signatures and pathways (e.g., Na+, ANNA4, GIPC, SOS3, and SCaBP8 Ca2+ sensors, etc.), and regulation of redox machinery [e.g., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), glutathione peroxidase (GPX), peroxiredoxin (Prx), ascorbic acid (AsA), glutathione (GSH), α-tocopherol, etc.]. The current study highlights the role of PEs in terms of their sources, methods of preparation, and mode of action with subsequent physiological changes induced in plants against salinity. However, an explicit mode of action of PEs remains nebulous, which might be explicated utilizing transcriptomics, proteomics, metabolomics, and bioinformatics approaches. Being ecological and economical, PEs might pave the way for ensuring the food security in this challenging era of climate change.
Collapse
Affiliation(s)
- Ali Ahmad
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - Begoña Blasco
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - Vanessa Martos
- Department of Plant Physiology, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Lu F, Duan W, Cui Y, Zhang J, Zhu D, Zhang M, Yan Y. 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress. BMC Genomics 2022; 23:369. [PMID: 35568798 PMCID: PMC9107758 DOI: 10.1186/s12864-022-08599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resistance. In this study, the drought tolerance of wheat Zhongmai 8601-Thinopyrum intermedium 7XL/7DS translocation line YW642 was estimated under drought stress, and then two-dimensional difference gel electrophoresis (2D-DIGE) based proteome analysis of the developing grains was performed to uncover the drought-resistant proteins. Results The results showed that 7XL/7DS translocation possessed a better drought-tolerance compared to Zhongmai 8601. 2D-DIGE identified 146 differential accumulation protein (DAP) spots corresponding to 113 unique proteins during five grain developmental stages of YW642 under drought stress. Among them, 55 DAP spots corresponding to 48 unique proteins displayed an upregulated expression, which were mainly involved in stress/defense, energy metabolism, starch metabolism, protein metabolism/folding and transport. The cis-acting element analysis revealed that abundant stress-related elements were present in the promoter regions of the drought-responsive protein genes, which could play important roles in drought defense. RNA-seq and RT-qPCR analyses revealed that some regulated DAP genes also showed a high expression level in response to drought stress. Conclusions Our results indicated that Wheat-Th. intermedium 7XL/7DS translocation line carried abundant drought-resistant proteins that had potential application values for wheat drought tolerance improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08599-1.
Collapse
Affiliation(s)
- Fengkun Lu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Wenjing Duan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yue Cui
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junwei Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Dong Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, 2269 Daxue Road, Heze, 274015, Shandong, China.
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
49
|
Grewal SK, Gill RK, Virk HK, Bhardwaj RD. Methylglyoxal detoxification pathway - Explored first time for imazethapyr tolerance in lentil (Lens culinaris L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:10-22. [PMID: 35219898 DOI: 10.1016/j.plaphy.2022.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Lentil is an important pulses crop but it's short stature and slow growth rate make it vulnerable to weed competition, limiting crop productivity. There is need to identify herbicide tolerant genotypes and their tolerance mechanism. The present investigation was conducted to understand the effect of imazethapyr (IM) treatment on accumulation of methylglyoxal (MG) and its detoxification mechanism in IM-tolerant (LL1397 and LL1612) susceptible (FLIP2004-7L and PL07) genotypes sown under control (weed free), weedy check (weeds were growing with crop) and sprayed with imazethapyr. The enzymes of glyoxalase pathway (glyoxalase I, II and III) and non glyoxalase pathway (methylglyoxal reductase), lactate dehydrogenase (LDH), glutathione content, gamma-glutamyl-cysteine synthetase (γ-GCS) were estimated in lentil genotypes at different days after spray. Higher activities of glyoxalase I, II and III and MGR along with the increased glutathione content (GSH) content in LL1397 and LL1612 under IM treatment as compared to FLIP2004-7L and PL07 might be responsible for lowering MG accumulation and increasing lactate content, which is end product of these pathways. Enhanced LDH activity in LL1397 and LL1612 might be responsible for energy production via TCA cycle that might be responsible for growth and recovery of tolerant genotypes after IM treatment. Higher γ-GCS activity in tolerant genotypes led to increased glutathione content required for glyoxalase pathway. However, decreased activities of glyoxalase enzymes and MGR in susceptible genotypes result in MG accumulation which limit plant growth. This is the first ever study elucidating the role of MG detoxification pathway conferring IM tolerance in lentil.
Collapse
Affiliation(s)
- Satvir Kaur Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India.
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Harpreet Kaur Virk
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
50
|
Li Y, Xin J, Ge W, Tian R. Tolerance mechanism and phytoremediation potential of Pistia stratiotes to zinc and cadmium co-contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1259-1266. [PMID: 35037542 DOI: 10.1080/15226514.2021.2025201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pistia stratiotes can not only effectively remediate eutrophic water, but also displays strong absorption and bioaccumulation abilities for heavy metals. However, it has not been well-understood how the plant resists the combined stress of heavy metals. In these experiments, the morphophysiological traits, the ascorbate-glutathione (AsA-GSH) cycle, the glyoxalase system, and the contents of zinc (Zn) and cadmium (Cd) were investigated under Zn and Cd co-pollution. The AsA-GSH cycle and glyoxalase system could coordinately alleviate the oxidative and carbonyl stress, which was identified as an important tolerance mechanism. With Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 18 days, 90.75-93.69% of Zn and 88.13-96.96% Cd accumulated in the roots. Treatments with Zn50Cd50, and Zn100Cd50 for 18 days resulted in a decrease of stress tolerance and chlorophyll content in leaves, an increase in plasma membrane permeability, a massive accumulation of methylglyoxal (MG), and visible toxic symptoms. Additionally, the bioaccumulation factor (BCF) for roots and shoots and the translocation factor (TF) were >1, and the content of Cd in shoots was no <100 mg·kg-1. This indicated P. stratiotes was a Cd hyperaccumulator and have great potential for the phytoremediation of heavy metal contaminated water.Novelty statement Pistia stratiotes, a cadmium hyperaccumulator, has great application potential for the phytoremediation of zinc and cadmium co-polluted water.
Collapse
Affiliation(s)
- Yan Li
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| | - Jianpan Xin
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| | - Wenjia Ge
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| | - Runan Tian
- College of Landscape Architecture, Nanjing Forestry University, Jiangsu, Nanjing, China
| |
Collapse
|