1
|
Wang F, Chen F, Song W, Li Y, Wu H, Tian T, Tian M, Tang D, Liu Y. Sodium Fluoride Exposure Induces Developmental Toxicity and Cardiotoxicity in Zebrafish Embryos. Biol Trace Elem Res 2024:10.1007/s12011-024-04381-4. [PMID: 39287768 DOI: 10.1007/s12011-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
Fluorosis is a worldwide public health problem, in which the heart is an important target organ. However, studies on its toxicological mechanism in embryonic development are limited. This study assessed the toxicity of sodium fluoride (NaF) toward zebrafish embryos. We determined the mortality, hatching rate, phenotypic malformation, heart function, and morphology of zebrafish embryos after exposure to NaF. Subsequently, the molecular mechanism was revealed using high-throughput RNA sequencing analysis. The expression levels of key genes for heart development were detected using quantitative real-time reverse transcription PCR. The 50% lethal concentration (LC50) value of NaF toward zebrafish embryos at 96 h post-fertilization was 335.75 mg/L. When the concentration of NaF was higher than 200 mg/L, severe deformities, such as pericardial edema, yolk sac edema, spine curvature, shortened body length, reduced head area, and eye area, were observed. The heart rate of the embryos exposed to NaF decreased in a dose-dependent fashion. The distance between the sinus venosus and bulbus arteriosus was significantly increased in the NaF-exposed group compared with that in the control group. The stroke volume and cardiac output decreased significantly in the NaF groups. Compared with the control group, the expression levels of Gata4, Tbx5a, Hand2, Tnnt2c, Nppa, and Myh6 were significantly increased in the NaF-treated group. Through transcriptome sequencing, 1354 differentially expressed genes (DEGs) were detected in the NaF (200 mg/L) treated groups, including 1253 upregulated genes and 101 downregulated genes. Gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs showed that cardiac-related pathways, such as actin cytoskeleton regulation, Jak-Stat, PI3k-Akt, and Ras, were activated in the NaF-exposed group. This study revealed the underlying mechanism of fluoride-induced cardiac morphological and functional abnormalities and provides clues for the clinical prevention and treatment of fluorosis.
Collapse
Affiliation(s)
- Feiqing Wang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin City, 300072, China
| | - Fa Chen
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Wen Song
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Haiyan Wu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Tingting Tian
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Mengxian Tian
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Dongxin Tang
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| | - Yang Liu
- Clinical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| |
Collapse
|
2
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
3
|
Chen H, Pan L, Zhang C, Liu L, Tu B, Liu E, Huang Y. Gastroretentive Raft Forming System for Enhancing Therapeutic Effect of Drug-Loaded Hollow Mesoporous Silica on Gastric Ulcers. Adv Healthc Mater 2024; 13:e2400566. [PMID: 38767185 DOI: 10.1002/adhm.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Indexed: 05/22/2024]
Abstract
Gastric ulcers are characterized by damage to the stomach lining and are often triggered by substances such as ethanol and non-steroidal anti-inflammatory drugs. Patchouli alcohol (PA) has demonstrated effectiveness in treating gastric ulcers through antioxidative and anti-inflammatory effects. However, the water insolubility of PA and rapid gastric emptying cause low drug concentration and poor absorption in the stomach, resulting in limited treatment efficacy of PA. This study develops an oral gastroretentive raft forming system (GRFDDS) containing the aminated hollow mesoporous silica nanoparticles (NH2-HMSN) for PA delivery. The application of NH2-HMSN can enhance PA-loading capacity and water dispersibility, promoting bio-adhesion to the gastric mucosa and sustained drug release. The incorporation of PA-loaded NH2-HMSN (NH2-HMSN-PA) into GRFDDS can facilitate gastric drug retention and achieve long action, thereby improving therapeutic effects. The results reveal that NH2-HMSN-PA protects the gastric mucosa damage by inhibiting NLRP3-mediated pyroptosis. The GRFDDS, optimized through orthogonal design, demonstrates the gastric retention capacity and sustained drug release, exhibiting significant therapy efficacy in an ethanol-induced acute gastric ulcers model and an aspirin-induced chronic gastric ulcers model through antioxidation, anti-pyroptosis, and anti-inflammation. This study provides a potential strategy for enhancing druggability of insoluble natural compounds and therapeutic management of gastric ulcers.
Collapse
Affiliation(s)
- Huayuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Li Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563003, China
| | - Chengyu Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510450, China
| | - Lin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yongzhuo Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510450, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China
| |
Collapse
|
4
|
Belenichev I, Goncharov O, Bukhtiyarova N, Kuchkovskyi O, Ryzhenko V, Makyeyeva L, Oksenych V, Kamyshnyi O. Beta-Blockers of Different Generations: Features of Influence on the Disturbances of Myocardial Energy Metabolism in Doxorubicin-Induced Chronic Heart Failure in Rats. Biomedicines 2024; 12:1957. [PMID: 39335471 PMCID: PMC11428500 DOI: 10.3390/biomedicines12091957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Beta-blockers are first-line drugs in the treatment of chronic heart failure (CHF). However, there is no consensus on the specific effects of the beta-blockers of the I-III generation on energy metabolism in CHF. The aim of this study is to conduct a study of beta-blockers of different generations on myocardial energy metabolism in experimental CHF. CHF was modeled in white outbred rats by administering doxorubicin. The study drugs were administered intragastrically-new drug Hypertril (1-(β-phenylethyl)-4-amino-1,2,4-triazolium bromide)-3.5 mg/kg, Metoprolol-15 mg/kg, Nebivolol -10 mg/kg, Carvedilol 50 mg/kg, and Bisoprolol, 10 mg/kg. In the myocardium, the main indices of energy metabolism were determined-ATP, ADP, AMP, malate, lactate, pyruvate, succinate dehydrogenase (SDH) activity, and NAD-dependent malate dehydrogenase (NAD-MDH) activity. Traditional second-generation beta-blockers (Metoprolol and Bisoprolol) did not affect the studied indices of energy metabolism, and third-generation beta-blockers with additional properties-Carvedilol and, especially, Nebivalol and Hypertril-improved myocardial energy metabolism. The obtained results will help to expand our understanding of the effect of beta-blockers of various generations used to treat cardiovascular diseases on energy metabolism, and are also an experimental justification for the practical choice of these drugs in the complex therapy of CHF.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Olexiy Goncharov
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oleh Kuchkovskyi
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
5
|
Lv X, Liu B, Su X, Tian X, Wang H. Unlocking cardioprotection: iPSC exosomes deliver Nec-1 to target PARP1/AIFM1 axis, alleviating HF oxidative stress and mitochondrial dysfunction. J Transl Med 2024; 22:681. [PMID: 39061056 PMCID: PMC11282728 DOI: 10.1186/s12967-024-05204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by oxidative stress and mitochondrial dysfunction. This study investigates the therapeutic potential of Necrostatin-1 (Nec-1) delivered through exosomes derived from induced pluripotent stem cells (iPSCs) to address these pathologies in HF. METHODS An HF rat model was established, and comprehensive assessments were performed using echocardiography, hemodynamics, and ventricular mass index measurements. iPSCs were used to isolate exosomes, loaded with Nec-1, and characterized for efficient delivery into cardiomyocytes. The interaction between Nec-1-loaded exosomes (Nec-1-Exos), poly (ADP-ribose) polymerase 1 (PARP1), and apoptosis-inducing factor mitochondria-associated 1 (AIFM1) was explored. Gain-of-function experiments assessed changes in cardiomyocyte parameters, and histological analyses were conducted on myocardial tissues. RESULTS Cardiomyocytes successfully internalized Nec-1-loaded exosomes, leading to downregulation of PARP1, inhibition of AIFM1 nuclear translocation, increased ATP and superoxide dismutase levels, reduced reactive oxygen species and malonaldehyde levels, and restored mitochondrial membrane potential. Histological examinations confirmed the modulation of the PARP1/AIFM1 axis by Nec-1, mitigating HF. CONCLUSIONS iPSC-derived exosomes carrying Nec-1 attenuate oxidative stress and mitochondrial dysfunction in HF by targeting the PARP1/AIFM1 axis. This study proposes a promising therapeutic strategy for HF management and highlights the potential of exosome-mediated drug delivery.
Collapse
Affiliation(s)
- Xiaobing Lv
- Department of Cardiology, Jinan Central Hospital, Shandong University, No.105 Jiefang Road, Lixia District, Jinan, Shandong Province, 250013, P. R. China
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, P.R. China
| | - Boqin Liu
- Department of Cardiology, Qingdao Municipal Hospital (West Yard), Qingdao, 266000, P.R. China
| | - Xiaoting Su
- Department of Obstetric, the Affiliated Hospital of Qingdao University, Qingdao, 266000, P.R. China
| | - Xintao Tian
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000, P.R. China
| | - Huating Wang
- Department of Cardiology, Jinan Central Hospital, Shandong University, No.105 Jiefang Road, Lixia District, Jinan, Shandong Province, 250013, P. R. China.
| |
Collapse
|
6
|
Shen Q, Cintron SA, Pierce JD. Platelet and Leukocyte Mitochondrial Function With Cardiac Function and Self-Reported Health Status Among Obese Patients With Heart Failure. Nurs Res 2024; 73:294-303. [PMID: 38905622 DOI: 10.1097/nnr.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
BACKGROUND Mitochondrial dysfunction plays a key role in the development of heart failure (HF), including HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Impaired mitochondrial function negatively affects cardiac function and, subsequently, the health status of patients. However, measuring mitochondrial function in human myocytes is difficult because of the high risk associated with myocardial biopsy. Platelets and leukocytes have functional mitochondria and can potentially serve as a surrogate for myocardial mitochondria. Roles of platelet and leukocyte mitochondrial function in HF have not yet been fully explored. OBJECTIVE We aimed to explore the relationships of platelet and leukocyte mitochondrial function with cardiac function and self-reported health status among obese patients with HF and examine if the relationships vary between HFrEF and HFpEF. METHODS Forty-five obese patients with HF were recruited. Maximal enzymatic activities (Vmax) of platelet cytochrome c oxidase (COX) and citrate synthase (CS) were assessed. Leukocyte mitochondrial mass, membrane potential, superoxide production, and apoptosis were measured in a subset of the sample. Data on cardiac function were retrieved from electronic health records. Self-reported health status was assessed using the Kansas City Cardiomyopathy Questionnaire (KCCQ). Pearson correlations were performed. RESULTS Platelet COX Vmax was negatively correlated with left ventricular end-systolic diameter. Positive correlations of leukocyte mitochondrial mass and superoxide production with left ventricular mass and mass index were observed, respectively. Leukocyte mitochondrial mass and superoxide production also negatively correlated with KCCQ summary scores. These relationships varied between HFrEF and HFpEF. DISCUSSION Platelet and leukocyte mitochondrial function was found to significantly correlate with some echocardiographic parameters and KCCQ scores. These findings provided preliminary data to support future research to further explore the potential of using platelets and leukocytes as surrogate biomarkers. Identifying easy-accessible mitochondrial biomarkers will be useful for assessing mitochondrial function to assist with early diagnosis and monitoring the effectiveness of mitochondrial-targeted therapy in HF patients.
Collapse
|
7
|
Pan L, Xu Z, Wen M, Li M, Lyu D, Xiao H, Li Z, Xiao J, Cheng Y, Huang H. Xinbao Pill ameliorates heart failure via regulating the SGLT1/AMPK/PPARα axis to improve myocardial fatty acid energy metabolism. Chin Med 2024; 19:82. [PMID: 38862959 PMCID: PMC11165817 DOI: 10.1186/s13020-024-00959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by a disorder of cardiomyocyte energy metabolism. Xinbao Pill (XBW), a traditional Chinese medicine formulation integrating "Liushen Pill" and "Shenfu Decoction," has been approved by China Food and Drug Administration for the treatment of HF for many years. The present study reveals a novel mechanism of XBW in HF through modulation of cardiac energy metabolism. METHODS In vivo, XBW (60, 90, 120 mg/kg/d) and fenofibrate (100 mg/kg/d) were treated for six weeks in Sprague-Dawley rats that were stimulated by isoproterenol to induce HF. Cardiac function parameters were measured by echocardiography, and cardiac pathological changes were assessed using H&E, Masson, and WGA staining. In vitro, primary cultured neonatal rat cardiomyocytes (NRCMs) were induced by isoproterenol to investigate the effects of XBW on myocardial cell damage, mitochondrial function and fatty acid energy metabolism. The involvement of the SGLT1/AMPK/PPARα signalling axis was investigated. RESULTS In both in vitro and in vivo models of ISO-induced HF, XBW significantly ameliorated cardiac hypertrophy cardiac fibrosis, and improved cardiac function. Significantly, XBW improved cardiac fatty acid metabolism and mitigated mitochondrial damage. Mechanistically, XBW effectively suppressed the expression of SGLT1 protein while upregulating the phosphorylation level of AMPK, ultimately facilitating the nuclear translocation of PPARα and enhancing its transcriptional activity. Knockdown of SGLT1 further enhanced cardiac energy metabolism by XBW, while overexpression of SGLT1 reversed the cardio-protective effect of XBW, highlighting that SGLT1 is probably a critical target of XBW in the regulation of cardiac fatty acid metabolism. CONCLUSIONS XBW improves cardiac fatty acid energy metabolism to alleviate HF via SGLT1/AMPK/PPARα signalling axis.
Collapse
Affiliation(s)
- Linjie Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhanchi Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Minghui Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lyu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiming Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Junhui Xiao
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Guangzhou, 510801, China.
| |
Collapse
|
8
|
Cheng S, Wu J, Pei Y, Tong H, Fan M, Xiang Q, Ding Y, Xie L, Zhang H, Sun W, Zhang X, Zhu Y, Gu N. Guanxin V alleviates ventricular remodeling after acute myocardial infarction with circadian disruption by regulating mitochondrial dynamics. Sleep Breath 2024; 28:823-833. [PMID: 38147288 DOI: 10.1007/s11325-023-02974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Circadian disruption has been a common issue due to modern lifestyles. Ventricular remodeling (VR) is a pivotal progressive pathologic change after acute myocardial infarction (AMI) and circadian disruption may have a negative influence on VR according to the latest research. Whether or not Guanxin V (GXV) has a positive effect on VR after AMI with circadian disruption drew our interest. METHODS Rats were randomly divided into a sham group, an AMI group, an AMI with circadian disruption group, and an AMI with circadian disruption treated with the GXV group according to a random number table. RNA sequencing (RNA-Seq) was utilized to confirm the different expressed genes regulated by circadian disruption. Cardiac function, inflammation factors, pathological evaluation, and mitochondrial dynamics after the intervention were conducted to reveal the mechanism by which GXV regulated VR after AMI with circadian disruption. RESULTS RNA-Seq demonstrated that NF-κB was up-regulated by circadian disruption in rats with AMI. Functional and pathological evaluation indicated that compared with the AMI group, circadian disruption was associcataed with deteriorated cardiac function, expanded infarcted size, and exacerbated fibrosis and cardiomyocyte apoptosis. Further investigation demonstrated that mitochondrial dynamics imbalance was induced by circadian disruption. GXV intervention reversed the inflammatory status including down-regulation of NF-κB. Reserved cardiac function, limited infarct size, and ameliorated fibrosis and apoptosis were also observed in the GXV treated group. GXV maintained mitochondrial fission/fusion imbalance through suppressed expression of mitochondrial fission-associated proteins. CONCLUSION The study findings suggest that identified mitochondrial dysfunctions may underlie the link between circadian disruption and VR. GXV may exert cardioprotection after AMI with circadian disruption through regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Songyi Cheng
- Department of Cardiology, Nanjing Hospital of Chinese Medicineaffiliated to, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wu
- Department of Oncology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghao Pei
- Department of Intensive Care Unit, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Huaqin Tong
- Department of Cardiology, Yangzhou Hospital of Chinese Medicine, Yangzhou, China
| | - Manlu Fan
- Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Qian Xiang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Ding
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Xie
- Department of Cardiology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Haowen Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixin Sun
- Department of Cardiology, Yangcheng Hospital of Chinese Medicine, Yancheng, China
| | | | - Yongchun Zhu
- Department of Cardiology, Nanjing Hospital of Chinese Medicineaffiliated to, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Department of Cardiology, Nanjing Hospital of Chinese Medicineaffiliated to, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Lv L, Chen Q, Lu J, Zhao Q, Wang H, Li J, Yuan K, Dong Z. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol 2024; 401:131858. [PMID: 38360101 DOI: 10.1016/j.ijcard.2024.131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiuYu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongYan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaHao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - KeYing Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ZengXiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
11
|
Wang K, Zhou Z, Huang L, Kan Q, Wang Z, Wu W, Yao C. PINK1 dominated mitochondria associated genes signature predicts abdominal aortic aneurysm with metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166919. [PMID: 38251428 DOI: 10.1016/j.bbadis.2023.166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Abdominal aortic aneurysm (AAA) is typically asymptomatic but a devastating cardiovascular disorder, with overall mortality exceeding 80 % once it ruptures. Some patients with AAA may also have comorbid metabolic syndrome (MS), suggesting a potential common underlying pathogenesis. Mitochondrial dysfunction has been reported as a key factor contributing to the deterioration of both AAA and MS. However, the intricate interplay between metabolism and mitochondrial function, both contributing to the development of AAA, has not been thoroughly explored. In this study, we identified candidate genes related to mitochondrial function in AAA and MS. Subsequently, we developed a nomoscore model comprising hub genes (PINK1, ACSL1, CYP27A1, and SLC25A11), identified through the application of two machine learning algorithms, to predict AAA. We observed a marked disparity in immune infiltration profiles between high- and low-nomoscore groups. Furthermore, we confirmed a significant upregulation of the expression of the four hub genes in AAA tissues. Among these, ACSL1 showed relatively higher expression in LPS-treated RAW264.7 cell lines, while CYP27A1 exhibited a notable decrease. Moreover, SLC25A11 displayed a significant upregulation in AngII-treated VSMCs. Conversely, the expression level of PINK1 declined in LPS-stimulated RAW264.7 cell lines but significantly increased in AngII-treated VSMCs. In vivo experiments revealed that the activation of PINK1-mediated mitophagy inhibited the development of AAA in mice. In this current study, we have innovatively identified four mitochondrial function-related genes through integrated bioinformatic analysis. This discovery sheds light on the regulatory mechanisms and unveils promising therapeutic targets for the comorbidity of AAA and MS.
Collapse
Affiliation(s)
- Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qinghui Kan
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhecun Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Weibin Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
12
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
13
|
Luo Q, Shen Y, Zhai G, Chen L, Ou F, Yi L, Yang D, Pan H, Shi F. Role of covalent modification by hepatic aldehydes in dictamnine-induced liver injury. Toxicol Lett 2024; 392:12-21. [PMID: 38128889 DOI: 10.1016/j.toxlet.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Dictamnine is a representative furan-containing hepatotoxic compound. Administration of dictamnine caused acute liver injury in mice and the metabolic activation of furan to reactive epoxy intermediate was responsible for the hepatotoxicity. This study aimed to characterize the protein adduction by endogenous hepatic aldehydes and investigate its role in dictamnine-induced hepatotoxicity. In the liver sample of dictamnine-treated mice, the protein adduction by five aldehydes was characterized as lysine residue-aldehyde adducts using high-resolution UPLC-Q/Orbitrap MS after exhaustive proteolytic digestion. The levels of protein adduct were increased at 2-3 h after the treatment with dictamnine. The formation of protein adduction increased with increasing doses of dictamnine. Inhibition of the bioactivation by CYP3A inhibitor ketoconazole prevented the protein adduction. Treatment with 2,3-dihydro-dictamnine, an analog of dictamnine that was unable to form the epoxy intermediate, did not lead to an increase in protein adduction. Application of aldehyde dehydrogenase-2 activator ALDA-1 or nucleophilic trapping reagent N-acetyl-L-lysine significantly reduced the protein adduction and attenuated dictamnine-induced liver injury without affecting the bioactivation. In conclusion, the metabolic activation of the furan ring of dictamnine resulted in the protein adduction by multiple hepatic aldehydes and the protein modification played a crucial role in dictamnine-induced liver injury.
Collapse
Affiliation(s)
- Qi Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Yang Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Guohong Zhai
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Lin Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Furong Ou
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Department of Clinical Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Luxi Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Department of Clinical Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Hong Pan
- Department of Clinical Pharmacy, Zunyi Medical University, Zunyi 563003, China.
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
14
|
Chirathanaphirom S, Chuammitri P, Pongkan W, Manachai N, Chantawong P, Boonsri B, Boonyapakorn C. Differences in Levels of Mitochondrial DNA Content at Various Stages of Canine Myxomatous Mitral Valve Disease. Animals (Basel) 2023; 13:3850. [PMID: 38136887 PMCID: PMC10740553 DOI: 10.3390/ani13243850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Myxomatous mitral valve disease (MMVD) is the most common heart disease in small-breed dogs, often leading to heart failure. Oxidative stress in MMVD can harm mitochondria, decreasing their DNA content. This study assesses dogs' oxidative stress and mitochondrial DNA at different MMVD stages. Fifty-five small-breed dogs were categorized into four groups, including: A-healthy (n = 15); B-subclinical (n = 15); C-heart failure (n = 15); and D-end-stage MMVD (n = 10). Serum malondialdehyde (MDA) and mitochondrial DNA in peripheral blood were analyzed. Quantitative real-time PCR measured mitochondrial DNA, and PCR data were analyzed via the fold-change Ct method. Serum MDA levels were assessed using competitive high-performance liquid chromatography (HPLC). Mitochondrial DNA was significantly lower in group B (-0.89 ± 2.82) than in group A (1.50 ± 2.01), but significantly higher in groups C (2.02 ± 1.44) and D (2.77 ± 1.76) than B. MDA levels were notably elevated in groups B (19.07 ± 11.87 µg/mL), C (23.41 ± 12.87 μg/mL), and D (19.72 ± 16.81 μg/mL) in comparison to group A (9.37 ± 4.67 μg/mL). Nevertheless, this observed difference did not reach statistical significance. It is noteworthy that mitochondrial DNA content experiences a decline during the subclinical stage but undergoes an increase in cases of heart failure. Concurrently, oxidative stress exhibits an upward trend in dogs with MMVD. These findings collectively suggest a potential association between mitochondrial DNA, oxidative stress, and the progression of MMVD in small-breed dogs.
Collapse
Affiliation(s)
- Suphakan Chirathanaphirom
- Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.P.)
| | - Phongsakorn Chuammitri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Wanpitak Pongkan
- Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.P.)
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Nawin Manachai
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Pinkarn Chantawong
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Burin Boonsri
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| | - Chavalit Boonyapakorn
- Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (W.P.)
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.C.); (N.M.); (P.C.); (B.B.)
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai 50100, Thailand
| |
Collapse
|
15
|
Belosludtseva NV, Pavlik LL, Mikheeva IB, Talanov EY, Serov DA, Khurtin DA, Belosludtsev KN, Mironova GD. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int J Mol Sci 2023; 24:17300. [PMID: 38139129 PMCID: PMC10744270 DOI: 10.3390/ijms242417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Lubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
| | - Dmitriy A. Khurtin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| |
Collapse
|
16
|
Xu Q, Cao Y, Zhong X, Qin X, Feng J, Peng H, Su Y, Ma Z, Zhou S. Riboflavin protects against heart failure via SCAD-dependent DJ-1-Keap1-Nrf2 signalling pathway. Br J Pharmacol 2023; 180:3024-3044. [PMID: 37377111 DOI: 10.1111/bph.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies have shown that flavin adenine dinucleotide (FAD) exerts cardiovascular protective effects by supplementing short-chain acyl-CoA dehydrogenase (SCAD). The current study aimed to elucidate whether riboflavin (the precursor of FAD) could improve heart failure via activating SCAD and the DJ-1-Keap1-Nrf2 signalling pathway. EXPERIMENTAL APPROACH Riboflavin treatment was given to the mouse transverse aortic constriction (TAC)-induced heart failure model. Cardiac structure and function, energy metabolism and apoptosis index were assessed, and relevant signalling proteins were analysed. The mechanisms underlying the cardioprotection by riboflavin were analysed in the cell apoptosis model induced by tert-butyl hydroperoxide (tBHP). KEY RESULTS In vivo, riboflavin ameliorated myocardial fibrosis and energy metabolism, improved cardiac dysfunction and inhibited oxidative stress and cardiomyocyte apoptosis in TAC-induced heart failure. In vitro, riboflavin ameliorated cell apoptosis in H9C2 cardiomyocytes by decreasing reactive oxygen species (ROS). At the molecular level, riboflavin significantly restored FAD content, SCAD expression and enzymatic activity, activated DJ-1 and inhibited the Keap1-Nrf2/HO1 signalling pathway in vivo and in vitro. SCAD knockdown exaggerated the tBHP-induced DJ-1 decrease and Keap1-Nrf2/HO1 signalling pathway activation in H9C2 cardiomyocytes. The knockdown of SCAD abolished the anti-apoptotic effects of riboflavin on H9C2 cardiomyocytes. DJ-1 knockdown hindered SCAD overexpression anti-apoptotic effects and regulation on Keap1-Nrf2/HO1 signalling pathway in H9C2 cardiomyocytes. CONCLUSIONS AND IMPLICATIONS Riboflavin exerts cardioprotective effects on heart failure by improving oxidative stress and cardiomyocyte apoptosis via FAD to stimulate SCAD and then activates the DJ-1-Keap1-Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Qingping Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuhong Cao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Qin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Feng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Huan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongshao Su
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhichao Ma
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Sigui Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Kiyuna LA, Candido DS, Bechara LRG, Jesus ICG, Ramalho LS, Krum B, Albuquerque RP, Campos JC, Bozi LHM, Zambelli VO, Alves AN, Campolo N, Mastrogiovanni M, Bartesaghi S, Leyva A, Durán R, Radi R, Arantes GM, Cunha-Neto E, Mori MA, Chen CH, Yang W, Mochly-Rosen D, MacRae IJ, Ferreira LRP, Ferreira JCB. 4-Hydroxynonenal impairs miRNA maturation in heart failure via Dicer post-translational modification. Eur Heart J 2023; 44:4696-4712. [PMID: 37944136 DOI: 10.1093/eurheartj/ehad662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND AND AIMS Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.
Collapse
Affiliation(s)
- Ligia A Kiyuna
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Darlan S Candido
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Itamar C G Jesus
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Lisley S Ramalho
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Barbara Krum
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Ruda P Albuquerque
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | - Luiz H M Bozi
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
| | | | - Ariane N Alves
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, Brazil
| | - Nicolás Campolo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Alejandro Leyva
- Unidad de Bioquímica y Proteómica Analítica (UByPA), Instituto de Investigaciones Biológicas Celemente Estable & Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analítica (UByPA), Instituto de Investigaciones Biológicas Celemente Estable & Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Guilherme M Arantes
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, São Paulo, Brazil
| | - Edécio Cunha-Neto
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), São Paulo, Brazil
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR 3145A, 269 Campus Drive, Stanford, CA 94305, USA
| | - Wenjin Yang
- Foresee Pharmaceuticals, Co., Ltd, Taipei, Taiwan
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR 3145A, 269 Campus Drive, Stanford, CA 94305, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ludmila R P Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Brazilian National Institute of Vaccine Science and Technology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 2415 - Butanta, 05508-000 São Paulo-SP, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR 3145A, 269 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Du J, Yu D, Li J, Si L, Zhu D, Li B, Gao Y, Sun L, Wang X, Wang X. Asiatic acid protects against pressure overload-induced heart failure in mice by inhibiting mitochondria-dependent apoptosis. Free Radic Biol Med 2023; 208:545-554. [PMID: 37717794 DOI: 10.1016/j.freeradbiomed.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Mitochondrial dysfunction and subsequent cardiomyocyte apoptosis significantly contribute to pressure overload-induced heart failure (HF). A highly oxidative environment leads to mitochondrial damage, further exacerbating this condition. Asiatic acid (AA), a proven antioxidant and anti-hypertrophic agent, might provide a solution, but its role and mechanisms in chronic pressure overload-induced HF remain largely unexplored. METHODS We induced pressure overload in mice using transverse aortic constriction (TAC) and treated them with AA (100 mg/kg/day) or vehicle daily by oral gavage for 8 weeks. The effects of AA on mitochondrial dysfunction, oxidative stress-associated signaling pathways, and overall survival were evaluated. Additionally, an in vitro model using hydrogen peroxide-exposed neonatal rat cardiomyocytes was established to further investigate the role of AA in oxidative stress-induced mitochondrial apoptosis. RESULTS AA treatment significantly improved survival and alleviated cardiac dysfunction in TAC-induced HF mice. It preserved mitochondrial structure, reduced the LVW/BW ratio by 20.24%, mitigated TAC-induced mitochondrial-dependent apoptosis by significantly lowering the Bax/Bcl-2 ratio and cleaved caspase-9/3 levels, and attenuated oxidative stress. AA treatment protected cardiomyocytes from hydrogen peroxide-induced apoptosis, with concurrent modulation of mitochondrial-dependent apoptosis pathway-related proteins and the JNK pathway. CONCLUSIONS Our findings suggest that AA effectively combats chronic TAC-induced and hydrogen peroxide-induced cardiomyocyte apoptosis through a mitochondria-dependent mechanism. AA reduces cellular levels of oxidative stress and inhibits the activation of the JNK pathway, highlighting its potential therapeutic value in the treatment of HF.
Collapse
Affiliation(s)
- Junjie Du
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongmin Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dawei Zhu
- Department of Cardiothoracic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211000, China
| | - Ben Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yizhou Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lifu Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xufeng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
Wang X, Wu H, An J, Zhang G, Chen Y, Fu L, Tao L, Liang G, Shen X. Cyclovirobuxine D alleviates aldosterone-induced myocardial hypertrophy by protecting mitochondrial function depending on the mutual regulation of Nrf2-SIRT3. Biomed Pharmacother 2023; 167:115618. [PMID: 37793277 DOI: 10.1016/j.biopha.2023.115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Cyclovirobuxine D (CVB-D) is a natural alkaloid that exhibits multiple pharmacological activities, such as anti-inflammatory, anti-oxidative stress, and anti-cancer properties. However, its specific protective mechanism of action for myocardial hypertrophy remains unresolved. PURPOSE This work was to investigate the ameliorative impact of CVB-D in myocardial hypertrophy, and to elucidate aldosterone (ALD)-induced myocardial hypertrophy by inhibiting the SIRT3 mediated Nrf2 activation. METHODS The myocardial hypertrophy model was reproduced by ALD both in vitro and in vivo, and the protective effect of CVB-D on myocardium and mitochondria was evaluated by TEM, H&E, qPCR, Western blot and ChIP. An immunoprecipitation experiment was adopted to evaluate the acetylation level of Nrf2 and the binding between SIRT3 and Nrf2. Additionally, bardoxolone-methyl (BAR, an Nrf2 agonist), ML385 (an Nrf2 inhibitor), resveratrol (RES, a SIRT3 agonist), and 3-TYP (a SIRT3 inhibitor) were used to confirm the molecular mechanism of CVB-D. Lastly, a molecular docking technique was employed to predict the binding site of SIRT3 and Nrf2 proteins. RESULTS Our findings suggested that CVB-D improved mitochondrial function, leading to a reduction in ALD-induced cardiomyocyte hypertrophy. By CVB-D treatment, there was an activation of mutual regulation between Nrf2 and SIRT3. Specifically, CVB-D resulted in the increase of Nrf2 protein in the nucleus and activated Nrf2 signaling pathway, thus up-regulating SIRT3. The activation of SIRT3 and the protective action of mitochondrion disappeared because of the intervention of ML385. After CVB-D activated SIRT3, the acetylation level of Nrf2 decreased, followed by activating the Nrf2 pathway. The activation of Nrf2 and mitochondrial protection by CVB-D were reversed by 3-TYP. Our results are also supported by Co-IP and molecular docking analysis, revealing that CVB-D promotes SIRT3-mediated Nrf2 activation. CONCLUSION Thus, CVB-D ameliorates ALD-induced myocardial hypertrophy by recovering mitochondrial function by activating the mutual regulation of Nrf2 and SIRT3. Thus, CVB-D could be a beneficial drug for myocardial hypertrophy.
Collapse
Affiliation(s)
- Xueting Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; Medical College, Guizhou University, Huaxi District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Hongkun Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Jiangfei An
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Guangqiong Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China
| | - Guiyou Liang
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants (The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, Guian New District, 550025 Guizhou, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guian New District, 550025 Guizhou, China.
| |
Collapse
|
20
|
Meng XM, Yuan JH, Zhou ZF, Feng QP, Zhu BM. Evaluation of time-dependent phenotypes of myocardial ischemia-reperfusion in mice. Aging (Albany NY) 2023; 15:10627-10639. [PMID: 37819785 PMCID: PMC10599719 DOI: 10.18632/aging.205103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND A mouse model of myocardial ischemia-reperfusion (I/R) is widely used to study myocardial ischemia-reperfusion injury (I/RI). However, few studies focus on the direct comparison of the extent of pathological events resulting from variant durations of ischemia and reperfusion process. METHODS A mouse model of I/RI was established by ligation and perfusion of the left anterior descending coronary artery (LAD), and the dynamic changes were recorded by electrocardiogram at different stages of I/R. Subsequently, reperfusion duration was used as a variable to directly compare the phenotypes of different myocardial injury degrees induced by 3 h, 6 h and 24 h reperfusion from myocardial infarct size, myocardial apoptosis, myocardial enzyme, and inflammatory cytokine levels. RESULTS All mice subjected to myocardial I/R surgery showed obvious myocardial infarction, extensive myocardial apoptosis, dynamic changes in serum myocardial enzyme and inflammatory cytokines, at least for the first 24 h of reperfusion. The infarct size and apoptosis rates gradually increased with the extension of reperfusion time. The peaks of serum myocardial enzyme and inflammatory cytokines occurred at 6 h and 3 h of reperfusion, respectively. We also established I/R mice models with 30 and 60 mins of ischemia. After 21 days of remodeling, longer periods of ischemia increased the degree of fibrosis and reduced cardiac function. CONCLUSIONS In summary, we conclude that reperfusion durations of 3 h, 6 h, and 24 h induces different injury phenotypes in ischemia-reperfusion mouse model. At the same time, the ischemia duration before reperfusion also affects the degree of cardiac remodeling.
Collapse
Affiliation(s)
- Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Han Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Fang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi-Pu Feng
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Gökçe Y, Danisman B, Akcay G, Derin N, Yaraş N. L-Carnitine improves mechanical responses of cardiomyocytes and restores Ca 2+ homeostasis during aging. Histochem Cell Biol 2023; 160:341-347. [PMID: 37329457 DOI: 10.1007/s00418-023-02215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
L-Carnitine (β-hydroxy-γ-trimethylaminobutyric acid, LC) is a crucial molecule for the mitochondrial oxidation of fatty acids. It facilitates the transport of long-chain fatty acids into the mitochondrial matrix. The reduction in LC levels during the aging process has been linked to numerous cardiovascular disorders, including contractility dysfunction, and disrupted intracellular Ca2+ homeostasis. The aim of this study was to examine the effects of long-term (7 months) LC administration on cardiomyocyte contraction and intracellular Ca2+ transients ([Ca2+]i) in aging rats. Male albino Wistar rats were randomly assigned to either the control or LC-treated groups. LC (50 mg/kg body weight/day) was dissolved in distilled water and orally administered for a period of 7 months. The control group received distilled water alone. Subsequently, ventricular single cardiomyocytes were isolated, and the contractility and Ca2+ transients were recorded in aging (18 months) rats. This study demonstrates, for the first time, a novel inotropic effect of long-term LC treatment on rat ventricular cardiomyocyte contraction. LC increased cardiomyocyte cell shortening and resting sarcomere length. Furthermore, LC supplementation led to a reduction in resting [Ca2+]i level and an increase in the amplitude of [Ca2+]i transients, indicative of enhanced contraction. Consistent with these results, decay time of Ca2+ transients also decreased significantly in the LC-treated group. The long-term administration of LC may help restore the Ca2+ homeostasis altered during aging and could be used as a cardioprotective medication in cases where myocyte contractility is diminished.
Collapse
Affiliation(s)
- Yasin Gökçe
- Faculty of Medicine, Department of Biophysics, Harran University, Sanliurfa, Turkey.
| | - Betul Danisman
- Faculty of Medicine, Department of Biophysics, Ataturk University, Erzurum, Turkey
| | - Guven Akcay
- Faculty of Medicine, Department of Biophysics, Hitit University, Corum, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Nazmi Yaraş
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
22
|
Yang Y, Wang X, Yan P, Wang D, Luo T, Zhou Y, Chen S, Liu Q, Hou J, Wang P. Transmembrane protein 117 knockdown protects against angiotensin-II-induced cardiac hypertrophy. Hypertens Res 2023; 46:2326-2339. [PMID: 37488300 PMCID: PMC10550824 DOI: 10.1038/s41440-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of pathological cardiac hypertrophy. Transmembrane protein 117 modulate mitochondrial membrane potential that may be involved in the regulation of oxidative stress and mitochondrial function. However, its role in the development of angiotensin II (Ang-II)-induced cardiac hypertrophy is unclear. Cardiac-specific TMEM117-knockout and control mice were subjected to cardiac hypertrophy induced by Ang-II infusion. Small-interfering RNAs against TMEM117 or adenovirus-based plasmids encoding TMEM117 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) before Ang-II stimulation. We found that TMEM117 was upregulated in hypertrophic hearts and cardiomyocytes and TMEM117 deficiency attenuated Ang-II-induced cardiac hypertrophy in vivo. Consistently, the in vitro data demonstrated that Ang-II-induced cardiomyocyte hypertrophy significantly alleviated by TMEM117 knockdown. Conversely, overexpression of TMEM117 exacerbated cardiac hypertrophy and dysfunction. An Ang II-induced increase in cardiac (cardiomyocyte) oxidative stress was alleviated by cardiac-specific knockout (knockdown) of TMEM117 and was worsened by TMEM117 supplementation (overexpression). In addition, TMEM117 knockout decreased endoplasmic reticulum stress induced by Ang-II, which was reversed by TMEM117 supplementation. Furthermore, TMEM117 deficiency mitigated mitochondrial injury in hypertrophic hearts and cardiomyocyte, which was abolished by TMEM117 supplementation (overexpression). Taken together, these findings suggest that upregulation of TMEM117 contributes to the development of cardiac hypertrophy and the downregulation of TMEM117 may be a new therapeutic strategy for the prevention and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Xinquan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Peng Yan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Tao Luo
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Yaqiong Zhou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Shichao Chen
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Qiting Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
23
|
Dridi H, Santulli G, Bahlouli L, Miotto MC, Weninger G, Marks AR. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023; 13:1409. [PMID: 37759809 PMCID: PMC10527470 DOI: 10.3390/biom13091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| |
Collapse
|
24
|
Tu W, Li L, Yi M, Chen J, Wang X, Sun Y. Dapagliflozin attenuates high glucose-and hypoxia/reoxygenation-induced injury via activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy in H9c2 cardiomyocytes. Arch Physiol Biochem 2023:1-11. [PMID: 37655809 DOI: 10.1080/13813455.2023.2252200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the protective effect of dapagliflozin on H9c2 cardiomyocyte function under high glucose and hypoxia/reoxygenation (HG-H/R) conditions and identified the underlying molecular mechanisms. Dapagliflozin reduced the level of lactate dehydrogenase and reactive oxygen species in cardiomyocytes under HG-H/R conditions and was accompanied by a decrease in caspase-3/9 activity. In addition, Dapagliflozin significantly reduced mitochondrial permeability transition pore opening and increased ATP content, accompanied by upregulation of OPA1 with autophagy-related protein molecules and activation of the AMPK/mTOR signalling pathway in HG-H/R treated cardiomyocytes. OPA1 knockdown or compound C treatment attenuated the protective effects of dapagliflozin on the cardiomyocytes under HG-H/R conditions. Downregulation of OPA1 expression increased mitochondrial intolerance in cardiomyocytes during HG-H/R injury and the AMPK-mTOR-autophagy signalling is a key mechanism for protecting mitochondrial function and reducing cardiomyocyte apoptosis. Collectively, dapagliflozin exerted protective effects on the cardiomyocytes under HG-H/R conditions. Dapagliflozin attenuated myocardial HG-H/R injury by activating AMPK/mTOR-OPA1-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Weiling Tu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Liang Li
- Department of Cardiology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Ming Yi
- Department of Cardiology, The Second Affiliated Integrated Chinese and Western Medicine Hospital of Hunan University of Chinese Medicine, Liuyang Hospital of Traditional Chinese Medicine, Liuyang, P.R. China
| | - Junyu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, P.R. China
| | - Xiaoqing Wang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, P.R. China
| | - Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, P.R. China
| |
Collapse
|
25
|
Li C, Zhou Y, Niu Y, He W, Wang X, Zhang X, Wu Y, Zhang W, Zhao L, Zheng H, Song W, Gao H. Deficiency of Pdk1 drives heart failure by impairing taurine homeostasis through Slc6a6. FASEB J 2023; 37:e23134. [PMID: 37561545 DOI: 10.1096/fj.202300272r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
3-Phosphoinositide-dependent protein kinase-1 (Pdk1) as a serine/threonine protein kinase plays a critical role in multiple signaling pathways. Analysis of the gene expression omnibus database showed that Pdk1 was significantly downregulated in patients with heart diseases. Gene set enrichment analysis of the proteomics dataset identified apoptotic- and metabolism-related signaling pathways directly targeted by Pdk1. Previously, our research indicated that Pdk1 deletion-induced metabolic changes might be involved in the pathogenesis of heart failure; however, the underlying mechanism remains elusive. Here, we demonstrated that deficiency of Pdk1 resulted in apoptosis, oxidative damage, and disturbed metabolism, both in vivo and in vitro. Furthermore, profiling of metabonomics by 1 H-NMR demonstrated that taurine was the major differential metabolite in the heart of Pdk1-knockout mice. Taurine treatment significantly reduced the reactive oxygen species production and apoptosis, improved cardiac function, and prolonged the survival time in Pdk1 deficient mice. Proteomic screening identified solute carrier family 6 member 6 (Slc6a6) as the downstream that altered taurine levels in Pdk1-expression cells. Consistently, cellular apoptosis and oxidative damage were rescued by Slc6a6 in abnormal Pdk1 expression cells. These findings collectively suggest that Pdk1 deficiency induces heart failure via disturbances in taurine homeostasis, triggered by Slc6a6.
Collapse
Affiliation(s)
- Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, China
| | - Yi Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenting He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenli Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
26
|
Li YH, Wang XH, Huang WW, Tian RR, Pang W, Zheng YT. Severe fever with thrombocytopenia syndrome virus induces platelet activation and apoptosis via a reactive oxygen species-dependent pathway. Redox Biol 2023; 65:102837. [PMID: 37544244 PMCID: PMC10428115 DOI: 10.1016/j.redox.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV) and with a high fatality rate. Thrombocytopenia is a major clinical manifestation observed in SFTS patients, but the underlying mechanism remains largely unclear. Here, we explored the effects of SFTSV infection on platelet function in vivo in severely infected SFTSV IFNar-/- mice and on mouse and human platelet function in vitro. Results showed that SFTSV-induced platelet clearance acceleration may be the main reason for thrombocytopenia. SFTSV-potentiated platelet activation and apoptosis were also observed in infected mice. Further investigation showed that SFTSV infection induced platelet reactive oxygen species (ROS) production and mitochondrial dysfunction. In vitro experiments revealed that administration of SFTSV or SFTSV glycoprotein (Gn) increased activation, apoptosis, ROS production, and mitochondrial dysfunction in separated mouse platelets, which could be effectively ameliorated by the application of antioxidants (NAC (N-acetyl-l-cysteine), SKQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) and resveratrol). In vivo experiments showed that the antioxidants partially rescued SFTSV infection-induced thrombocytopenia by improving excessive ROS production and mitochondrial dysfunction and down-regulating platelet apoptosis and activation. Furthermore, while SFTSV and Gn directly potentiated human platelet activation, it was completely abolished by antioxidants. This study revealed that SFTSV and Gn can directly trigger platelet activation and apoptosis in an ROS-MAPK-dependent manner, which may contribute to thrombocytopenia and hemorrhage during infection, but can be abolished by antioxidants.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Hui Wang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Department of Pediatric Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wen-Wu Huang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Office of Science and Technology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wei Pang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
27
|
Gu J, Zhang LN, Gu X, Zhu Y. Identification of hub genes associated with oxidative stress in heart failure and their correlation with immune infiltration using bioinformatics analysis. PeerJ 2023; 11:e15893. [PMID: 37609434 PMCID: PMC10441528 DOI: 10.7717/peerj.15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Both oxidative stress and the immune response are associated with heart failure (HF). In this study, our aim was to identify the hub genes associated with oxidative stress andimmune infiltration of HF by bioinformatics analysis and experimental verification. The expression profile of GSE36074 was obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened by GEO2R. The genes related to oxidative stress were extracted from GeneCards websites. Then, the functional enrichment analysis of oxidative stress-related DEGs (OSRDEGs) was performed using DAVID. In addition, we constructed a protein-protein interaction (PPI) network using the STRING database and screened for hub genes with Cytoscape software. We also used CIBERSORTx to analyze immune infiltration in mice heart tissues between the TAC and Sham groups and explored the correlation between immune cells and hub genes. Finally, the hub genes were carried out using reverse transcription quantitative PCR (RT-qPCR), immunohistochemistry (IHC) and western blot. A total of 136 OSRDEGs were found in GSE36074. Enrichment analysis revealed that these OSRDEGs were enriched in the mitochondrion, HIF-1, FoxO, MAPK and TNF signaling pathway. The five hub genes (Mapk14, Hif1a, Myc, Hsp90ab1, and Hsp90aa1) were screened by the cytoHubba plugin. The correlation analysis between immune cells and hub genes showed that Mapk14 was positively correlated with Th2 Cells, while Hif1a and Hsp90ab1exhibited a negative correlation with Th2 Cells; Myc exhibited a negative correlation with Monocytes; whereas, Hsp90aa1 was negatively correlated with NK Resting. Finally, five hub genes were validated by RT-qPCR, IHC and western blot. Mapk14, Hif1a, Myc, Hsp90ab1, and Hsp90aa1 are hub genes of HF and may play a critical role in the oxidative stress of HF. This study may provide new targets for the treatment of HF, and the potential immunotherapies are worthy of further study.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Li Na Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Department of Cardiology, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
28
|
Cao X, Yao F, Zhang B, Sun X. Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng. Front Pharmacol 2023; 14:1218803. [PMID: 37547332 PMCID: PMC10399631 DOI: 10.3389/fphar.2023.1218803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Gorący A, Rosik J, Szostak J, Szostak B, Retfiński S, Machaj F, Pawlik A. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets 2023; 27:593-608. [PMID: 37477241 DOI: 10.1080/14728222.2023.2240021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Heart failure is a complex clinical syndrome resulting from the unsuccessful compensation of symptoms of myocardial damage. Mitochondrial dysfunction is a process that occurs because of an attempt to adapt to the disruption of metabolic and energetic pathways occurring in the myocardium. This, in turn, leads to further dysfunction in cardiomyocyte processes. Currently, many therapeutic strategies have been implemented to improve mitochondrial function, but their effectiveness varies widely. AREAS COVERED This review focuses on new models of therapeutic strategies targeting mitochondrial function in the treatment of heart failure. EXPERT OPINION Therapeutic strategies targeting mitochondria appear to be a valuable option for treating heart failure. Currently, the greatest challenge is to develop new research models that could restore the disrupted metabolic processes in mitochondria as comprehensively as possible. Only the development of therapies that focus on improving as many dysregulated mitochondrial processes as possible in patients with heart failure will be able to bring the expected clinical improvement, along with inhibition of disease progression. Combined strategies involving the reduction of the effects of oxidative stress and mitochondrial dysfunction, appear to be a promising possibility for developing new therapies for a complex and multifactorial disease such as heart failure.
Collapse
Affiliation(s)
- Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Szymon Retfiński
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
30
|
Pereira WR, Ferreira JCB, Artioli GG. Commentary: Aldehyde dehydrogenase, redox balance and exercise physiology: What is missing? Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111470. [PMID: 37364662 DOI: 10.1016/j.cbpa.2023.111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in reactive aldehyde detoxification. Approximately 560 million people (about 8% of the world's population) carry a point mutation in the aldehyde dehydrogenase 2 gene (ALDH2), identified as ALDH2*2, which leads to decreased ALDH2 catalytic activity. ALDH2*2 variant is associated with an accumulation of toxic reactive aldehydes and consequent disruption of cellular metabolism, which contributes to the establishment and progression of several degenerative diseases. Consequences of aldehyde accumulation include impaired mitochondrial functional, hindered anabolic signaling in the skeletal muscle, impaired cardiovascular and pulmonary function, and reduced osteoblastogenesis. Considering that aldehydes are endogenously produced through redox processes, it is expected that conditions that have a high energy demand, such as exercise, might be affected by impaired aldehyde clearance in ALDH2*2 individuals. Despite the large body of evidence supporting the importance of ALDH2 to ethanol metabolism, redox homeostasis and overall health, specific research investigating the impact of ALDH2*2 on phenotypes relevant to exercise performance are notoriously scarce. In this commentary, we highlight the consolidated knowledge on the impact of ALDH2*2 on physiological processes that are relevant to exercise.
Collapse
Affiliation(s)
- Wagner Ribeiro Pereira
- Applied Physiology & Nutrition Research Group, University of Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
31
|
Tabassum G, Singh P, Gurung R, Hakami MA, Alkhorayef N, Alsaiari AA, Alqahtani LS, Hasan MR, Rashid S, Kumar A, Dev K, Dohare R. Investigating the role of Kinesin family in lung adenocarcinoma via integrated bioinformatics approach. Sci Rep 2023; 13:9859. [PMID: 37330525 PMCID: PMC10276827 DOI: 10.1038/s41598-023-36842-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
Lung cancer is the leading cause of mortality from cancer worldwide. Lung adenocarcinoma (LUAD) is a type of non-small cell lung cancer (NSCLC) with highest prevalence. Kinesins a class of motor proteins are shown to be involved in carcinogenesis. We conducted expression, stage plot and survival analyses on kinesin superfamily (KIF) and scrutinized the key prognostic kinesins. Genomic alterations of these kinesins were studied thereafter via cBioPortal. A protein-protein interaction network (PPIN) of selected kinesins and 50 closest altering genes was constructed followed by gene ontology (GO) term and pathway enrichment analyses. Multivariate survival analysis based on CpG methylation of selected kinesins was performed. Lastly, we conducted tumor immune infiltration analysis. Our results found KIF11/15/18B/20A/2C/4A/C1 to be significantly upregulated and correlated with poor survival in LUAD patients. These genes also showed to be highly associated with cell cycle. Out of our seven selected kinesins, KIFC1 showed the highest genomic alteration with highest number of CpG methylation. Also, CpG island (CGI) cg24827036 was discovered to be linked to LUAD prognosis. Therefore, we deduced that reducing the expression of KIFC1 could be a feasible treatment strategy and that it can be a wonderful individual prognostic biomarker. CGI cg24827036 can also be used as a therapy site in addition to being a great prognostic biomarker.
Collapse
Affiliation(s)
- Gulnaz Tabassum
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, 13343, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Atul Kumar
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
32
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
33
|
Shabani M, Jamali Z, Bayrami D, Salimi A. Vanillic acid alleviates methamphetamine-induced mitochondrial toxicity in cardiac mitochondria via antioxidant activity and inhibition of MPT Pore opening: an in-vitro study. BMC Pharmacol Toxicol 2023; 24:33. [PMID: 37208773 DOI: 10.1186/s40360-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Methamphetamine is widely abused in all parts of the world. It has been reported that short-term and long-term methamphetamine exposure could damage the dopaminergic system and induce cardiomyopathy and cardiotoxicity via mitochondrial dysfunction and oxidative stress. Vanillic acid (VA), a phenolic acid compound derived from plants, is known for its antioxidant and mitochondrial protection properties. METHODS In the current study we used VA for attenuating of Methamphetamine-induced mitochondrial toxicity in cardiac mitochondria. Isolated mitochondria obtained from rat heart were grouped as: control, methamphetamine (250 µM), VA (10, 50 and 100 µM) was cotreated with methamphetamine (250 µM) and VA (100 µM) alone. After 60 min, mitochondrial fraction including: succinate dehydrogenases (SDH) activity, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation (LPO) were evaluated. RESULTS Methamphetamine exposure significantly disrupted mitochondrial function and induced ROS formation, lipid peroxidation, GSH depletion, MMP collapse and mitochondrial swelling, while VA significantly increased SDH activity as indicator of mitochondrial toxicity and dysfunction. VA also significantly decreased ROS formation, lipid peroxidation, mitochondrial swelling, MMP collapse and depletion of GSH in cardiac mitochondria in the presence of methamphetamine. CONCLUSION These findings suggested that VA is able to reduce methamphetamine-induced mitochondrial dysfunction and oxidative stress. Our results demonstrate that VA could potentially serve as a promising and accessible cardioprotective agent against methamphetamine-induced cardiotoxicity, via antioxidant and mitochondrial protection properties.
Collapse
Affiliation(s)
- Mohammad Shabani
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Deniz Bayrami
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
34
|
Hoehlschen J, Hofreither D, Tomin T, Birner-Gruenberger R. Redox-driven cardioprotective effects of sodium-glucose co-transporter-2 inhibitors: comparative review. Cardiovasc Diabetol 2023; 22:101. [PMID: 37120524 PMCID: PMC10148992 DOI: 10.1186/s12933-023-01822-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 05/01/2023] Open
Abstract
Sodium-glucose co-transporter-2 inhibitors are used in the treatment of diabetes but are also emerging as cardioprotective agents in heart diseases even in the absence of type 2 diabetes. In this paper, upon providing a short overview of common pathophysiological features of diabetes, we review the clinically reported cardio- and nephroprotective potential of sodium-glucose co-transporter-2 inhibitors currently available on the market, including Dapagliflozin, Canagliflozin, and Empagliflozin. To that end, we summarize findings of clinical trials that have initially drawn attention to the drugs' organ-protective potential, before providing an overview of their proposed mechanism of action. Since we particularly expect that their antioxidative properties will broaden the application of gliflozins from therapeutic to preventive care, special emphasis was put on this aspect.
Collapse
Affiliation(s)
- Julia Hoehlschen
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Dominik Hofreither
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, TU Wien, Wien, Austria.
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
35
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
36
|
DT-010 Exerts Cardioprotective Effects by Regulating the Crosstalk between the AMPK/PGC-1 α Pathway and ERp57. Cardiovasc Ther 2023; 2023:8047752. [PMID: 36817353 PMCID: PMC9937773 DOI: 10.1155/2023/8047752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
The AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway performs a crucial role in energy metabolism and mitochondrial network. Our previous study found that DT-010, a novel danshensu (DSS) and tetramethylpyrazine (TMP) conjugate, had significant cardioprotective properties in vitro and in vivo. We also reported that ERp57 served as a major target of DSS using the chemical proteomics approach. In this article, we focus on exploring the interrelationship between the regulation of the AMPK/PGC-1α pathway and promoting ERp57 expression induced by DT-010 in tert-butylhydroperoxide- (t-BHP-) induced H9c2 cell injury. The results showed that DT-010 activated the AMPK/PGC-1α pathway and increased ERp57 protein expression. Importantly, the above phenomenon as well as the mitochondrial function can be partially reversed by siRNA-mediated ERp57 suppression. Meanwhile, silencing AMPK significantly inhibited the ERp57 expression induced by DT-010. In addition, molecular docking and kinase assay in vitro revealed that DT-010 had no direct regulation effects on AMPK activity. Taken together, DT-010 exerted cardioprotective effects by regulating the crosstalk of AMPK/PGC-1α pathway and ERp57, representing a potential therapeutic agent for ischemic heart disease.
Collapse
|
37
|
Luca AC, Curpăn AȘ, Iordache AC, Mîndru DE, Țarcă E, Luca FA, Pădureț IA. Cardiotoxicity of Electronic Cigarettes and Heat-Not-Burn Tobacco Products-A Problem for the Modern Pediatric Cardiologist. Healthcare (Basel) 2023; 11:healthcare11040491. [PMID: 36833024 PMCID: PMC9957306 DOI: 10.3390/healthcare11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS) have become increasingly popular among adolescents, either as an alternative to conventional cigarettes (CCs) or as a newly acquired recreational habit. Although considered by most users as a safer option for nicotine intake, these devices pose significant health risks, resulting in multisystem damage. Heat-not-burn products, which, unlike ENDS, contain tobacco, are also alternatives to CCs that consumers use based on the idea that their safety profile is superior to that of cigarettes. Recent studies in the USA and EU show that adolescents are particularly prone to using these devices. Pediatric cardiologists, as well as other healthcare professionals, should be aware of the complications that may arise from acute and chronic consumption of these substances, considering the cardiovascular damage they elicit. This article summarized the known data about the impact of ENDS on the cardiovascular system, with emphasis on the pathophysiological and molecular changes that herald the onset of systemic lesions alongside the clinical cardiovascular manifestations in this scenario.
Collapse
Affiliation(s)
- Alina-Costina Luca
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandrina-Ștefania Curpăn
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bd. Carol I, 20A, 700505 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Alin-Constantin Iordache
- Department of Mother and Child Medicine–Pediatric Cardiology, “Grigore T. Popa”, University of Medicine and Pharmacy of Iasi, 16 Universitatii Str., 700115 Iași, Romania
| | - Dana Elena Mîndru
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Elena Țarcă
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Surgery II—Pediatric Surgery, Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Florin-Alexandru Luca
- Department BMTM, “Gheorghe Asachi” Technical University of Iasi, 700050 Iaşi, Romania
| | | |
Collapse
|
38
|
Zhang Q, Yin J, Zou Y. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in heart failure rats. Heart Vessels 2023; 38:857-868. [PMID: 36717388 DOI: 10.1007/s00380-022-02231-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 02/01/2023]
Abstract
Chronic heart failure (CHF), a conventional, complex, and severe syndrome, is generally defined by myocardial output inadequate to satisfy the metabolic requirements of body tissues. Recently, miR-568 was identified to be down-regulated in CHF patients' sera and negatively correlated with left ventricular mass index in symptomatic CHF patients with systolic dysfunction. Nevertheless, the role of miR-568 during CHF development remains obscure. The current study is aimed to investigate the role of miR-568 in CHF. The MTT assay, flow cytometry analysis, RT-qPCR analysis, western blot analysis and luciferase reporter assays were conducted to figure out the function and potential mechanism of miR-568 in vitro. Rats were operated with aortic coarctation to establish CHF animal model. The effects of miR-568 and SMURF2 on CHF rats were evaluated by hematoxylin-eosin staining, Masson's staining, serum index testing, cardiac ultrasound detection, and TUNEL staining assays. We discovered that miR-568 level was downregulated by H2O2 treatment in cardiomyocytes. In mechanism, miR-568 directly targeted and negatively regulated SMURF2. In function, SMURF2 overexpression reversed the effects of miR-568 on cardiac function and histological changes in vivo. Additionally, SMURF2 overexpression reversed the effects of miR-568 on the content of LDH, AST, CK and CK-MB in vivo. Moreover, SMURF2 overexpression reversed the effects of miR-568 on oxidative stress response in vivo. MiR-568 mitigated cardiomyocytes apoptosis, oxidative stress response and cardiac dysfunction via targeting SMURF2 in CHF rats. This discovery may serve as a potential biomarker for CHF treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Jun Yin
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei, China
| | - Yong Zou
- Department of Cardiology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang'an District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
39
|
Li K, Wan B, Li S, Chen Z, Jia H, Song Y, Zhang J, Ju W, Ma H, Wang Y. Mitochondrial dysfunction in cardiovascular disease: Towards exercise regulation of mitochondrial function. Front Physiol 2023; 14:1063556. [PMID: 36744035 PMCID: PMC9892907 DOI: 10.3389/fphys.2023.1063556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases are exceedingly high worldwide. Pathological heart remodeling, which is developed as a result of mitochondrial dysfunction, could ultimately drive heart failure. More recent research target exercise modulation of mitochondrial dysfunction to improve heart failure. Therefore, finding practical treatment goals and exercise programs to improve cardiovascular disease is instrumental. Better treatment options are available with the recent development of exercise and drug therapy. This paper summarizes pathological states of abnormal mitochondrial function and intervention strategies for exercise therapy.
Collapse
Affiliation(s)
- Kunzhe Li
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Bingzhi Wan
- Physical Education Department, Xidian University, Xi’an, China
| | - Sujuan Li
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Zhixin Chen
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Yinping Song
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Jiamin Zhang
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Wenyu Ju
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Han Ma
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China,*Correspondence: Youhua Wang,
| |
Collapse
|
40
|
Wan S, Cui Z, Wu L, Zhang F, Liu T, Hu J, Tian J, Yu B, Liu F, Kou J, Li F. Ginsenoside Rd promotes omentin secretion in adipose through TBK1-AMPK to improve mitochondrial biogenesis via WNT5A/Ca 2+ pathways in heart failure. Redox Biol 2023; 60:102610. [PMID: 36652744 PMCID: PMC9860421 DOI: 10.1016/j.redox.2023.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ginsenoside Rd is an active ingredient in Panax ginseng CA Mey and can be absorbed into the adipose tissue. Adipokines play an important role in the treatment of cardiovascular diseases. However, the potential benefit of Rd on heart failure (HF) and the underlying mechanism associated with the crosstalk between adipocytes and cardiomyocytes remains to be illustrated. Here, the results identified that Rd improved cardiac function and inhibited cardiac pathological changes in transverse aortic constriction (TAC), coronary ligation (CAL) and isoproterenol (ISO)-induced HF mice. And Rd promoted the release of omentin from the adipose tissue and up-regulated omentin expression in lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes. Further, Rd could increase TBK1 and AMPK phosphorylation in adipocytes. And also, the TBK1-AMPK signaling pathway regulated the expression of omentin in LPS-induced adipocytes. Moreover, the omentin mRNA expression was significantly decreased by TBK1 knockdown in LPS-induced 3T3-L1 adipocytes. Additionally, molecular docking and SPR analysis confirmed that Rd had a certain binding ability with TBK1, and co-treatment with TBK1 inhibitors or TBK1 knockdown partially abolished the effect of Rd on increasing the omentin expression and the ratio of p-AMPK to AMPK in adipocytes. Moreover, we found that circulating omentin level diminished in the HF patients compared with healthy subjects. Meanwhile, the adipose tissue-specific overexpression of omentin improved cardiac function, reduced myocardial infarct size and ameliorated cardiac pathological features in CAL-induced HF mice. Consistently, exogenous omentin reduced mtROS levels and restored ΔψM to improve oxygen and glucose deprivation (OGD)-induced cardiomyocytes injury. Further, omentin inhibited the WNT5A/Ca2+ signaling pathway and promoted mitochondrial biogenesis function to ameliorate myocardial ischemia injury. However, WNT5A knockdown inhibited the impairment of mitochondrial biogenesis and partially counteracted the cardioprotective effect of omentin in vitro. Therefore, this study indicated that Rd promoted omentin secretion from adipocytes through the TBK1-AMPK pathway to improve mitochondrial biogenesis function via WNT5A/Ca2+ signaling pathway to ameliorate myocardial ischemia injury, which provided a new therapeutic mechanism and potential drugs for the treatment of HF.
Collapse
Affiliation(s)
- Shiyao Wan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - ZeKun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingui Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangwei Tian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
41
|
Piamsiri C, Maneechote C, Jinawong K, Arunsak B, Chunchai T, Nawara W, Chattipakorn SC, Chattipakorn N. GSDMD-mediated pyroptosis dominantly promotes left ventricular remodeling and dysfunction in post-myocardial infarction: a comparison across modes of programmed cell death and mitochondrial involvement. J Transl Med 2023; 21:16. [PMID: 36627703 PMCID: PMC9830763 DOI: 10.1186/s12967-023-03873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) has recently accounted for more than one-third of global mortality. Multiple molecular pathological pathways, such as oxidative stress, inflammation, and mitochondrial dysfunction, have been recognized as possible mechanisms in the development of MI. Furthermore, different phases of ischemic injury following the progression of MI were also associated with multiple types of programmed cell death (PCDs), including apoptosis, necroptosis, ferroptosis, and pyroptosis. However, it remains unknown whether which types of PCDs play the most dominant role in post-myocardial infarction (post-MI). METHOD In this study, we used a preclinical rat model of MI induced by permanent left anterior descending coronary artery (LAD) ligation (n = 6) or a sham operated rat model (n = 6). After a 5-week experiment, cardiac function and morphology, mitochondrial studies, and molecular signaling analysis of PCDs were determined. RESULTS Herein, we demonstrated that post-MI rats had considerably impaired cardiac geometry, increased oxidative stress, myocardial injuries, and subsequently contractile dysfunction. They also exhibited worsened cardiac mitochondrial function and dynamic imbalance. More importantly, we found that post-MI mediated abundant myocardial cell death through multiple PCDs, including apoptosis, necroptosis, and pyroptosis, but not ferroptosis. CONCLUSION In this study, we provide the first insights into the mechanism of PCDs by pyroptosis, which is leveraged as the most dominant mode of cell death after MI.
Collapse
Affiliation(s)
- Chanon Piamsiri
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayodom Maneechote
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Kewarin Jinawong
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Busarin Arunsak
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Titikorn Chunchai
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wichwara Nawara
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Siriporn C Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nipon Chattipakorn
- grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand ,grid.7132.70000 0000 9039 7662Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
42
|
Guo Y, Wen J, He A, Qu C, Peng Y, Luo S, Wang X. iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation. J Adv Res 2023; 43:175-186. [PMID: 36585107 PMCID: PMC9811328 DOI: 10.1016/j.jare.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Despite the high morbidity and mortality of heart failure with preserved fraction (HFpEF), there are currently no effective therapies for this condition. Moreover, the pathophysiological basis of HFpEF remains poorly understood. OBJECTIVE The aim of the present study was to investigate the role of inducible nitric oxide synthase (iNOS) and its underlying mechanism in a high-fat diet and Nω-nitro-L-arginine methyl ester-induced HFpEF mouse model. METHODS The selective iNOS inhibitor L-NIL was used to examine the effects of short-term iNOS inhibition, whereas the long-term effects of iNOS deficiency were evaluated using iNOS-null mice. Cardiac and mitochondrial function, oxidative stress and Akt S-nitrosylation were then measured. RESULTS The results demonstrated that both pharmacological inhibition and iNOS knockout mitigated mitochondrial dysfunction, oxidative stress and Akt S-nitrosylation, leading to an ameliorated HFpEF phenotype in mice. In vitro, iNOS directly induced Akt S-nitrosylation at cysteine 224 residues , leading to oxidative stress, while inhibiting insulin-mediated glucose uptake in myocytes. CONCLUSION Altogether, the present findings suggested an important role for iNOS in the pathophysiological development of HFpEF, indicating that iNOS inhibition may represent a potential therapeutic strategy for HFpEF.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junjie Wen
- Division of Cardiology, West China Guang'an Hospital of Sichan University, Guang'an 638500, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuce Peng
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
43
|
Hatahet J, Cook TM, Bonomo RR, Elshareif N, Gavini CK, White CR, Jesse J, Mansuy-Aubert V, Aubert G. Fecal microbiome transplantation and tributyrin improves early cardiac dysfunction and modifies the BCAA metabolic pathway in a diet induced pre-HFpEF mouse model. Front Cardiovasc Med 2023; 10:1105581. [PMID: 36844730 PMCID: PMC9944585 DOI: 10.3389/fcvm.2023.1105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
More than 50% of patients with heart failure present with heart failure with preserved ejection fraction (HFpEF), and 80% of them are overweight or obese. In this study we developed an obesity associated pre-HFpEF mouse model and showed an improvement in both systolic and diastolic early dysfunction following fecal microbiome transplant (FMT). Our study suggests that the gut microbiome-derived short-chain fatty acid butyrate plays a significant role in this improvement. Cardiac RNAseq analysis showed butyrate to significantly upregulate ppm1k gene that encodes protein phosphatase 2Cm (PP2Cm) which dephosphorylates and activates branched-chain α-keto acid dehydrogenase (BCKDH) enzyme, and in turn increases the catabolism of branched chain amino acids (BCAAs). Following both FMT and butyrate treatment, the level of inactive p-BCKDH in the heart was reduced. These findings show that gut microbiome modulation can alleviate early cardiac mechanics dysfunction seen in the development of obesity associated HFpEF.
Collapse
Affiliation(s)
- Jomana Hatahet
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Tyler M Cook
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Raiza R Bonomo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Nadia Elshareif
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Chaitanya K Gavini
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Chelsea R White
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Jason Jesse
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Virginie Mansuy-Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Gregory Aubert
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.,Division of Cardiology, Department of Internal Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
44
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
45
|
Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration. Bioact Mater 2022; 23:247-260. [PMID: 36439087 PMCID: PMC9676151 DOI: 10.1016/j.bioactmat.2022.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration (IVDD). However, the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells (BMSCs) transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis. Herein, we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10 (Co-Q10), a promising hydrophobic antioxidant which targets mitochondria ROS, into the lecithin micelles, which renders the insoluble Co-Q10 dispersible in water as stable colloids. These micelles are injectable, which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro, and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models. Compared to mere use of Co-Q10, the Co-Q10 loaded micelle possessed better bioactivities, which elevated the viability, restored mitochondrial structure as well as function, and enhanced production of ECM components in rat BMSCs. Moreover, it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model. Therefore, these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS, and might be a potential therapeutic agent for IVDD.
Collapse
|
46
|
Li XF, Wan CQ, Mao YM. Analysis of pathogenesis and drug treatment of chronic obstructive pulmonary disease complicated with cardiovascular disease. Front Med (Lausanne) 2022; 9:979959. [PMID: 36405582 PMCID: PMC9672343 DOI: 10.3389/fmed.2022.979959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airflow limitation, and is associated with abnormal inflammatory responses in the lungs to cigarette smoke and toxic and harmful gases. Due to the existence of common risk factors, COPD is prone to multiple complications, among which cardiovascular disease (CVD) is the most common. It is currently established that cardiovascular comorbidities increase the risk of exacerbations and mortality from COPD. COPD is also an independent risk factor for CVD, and its specific mechanism is still unclear, which may be related to chronic systemic inflammation, oxidative stress, and vascular dysfunction. There is evidence that chronic inflammation of the airways can lead to destruction of the lung parenchyma and decreased lung function. Inflammatory cells in the airways also generate reactive oxygen species in the lungs, and reactive oxygen species further promote lung inflammation through signal transduction and other pathways. Inflammatory mediators circulate from the lungs to the whole body, causing intravascular dysfunction, promoting the formation and rupture of atherosclerotic plaques, and ultimately leading to the occurrence and development of CVD. This article reviews the pathophysiological mechanisms of COPD complicated by CVD and the effects of common cardiovascular drugs on COPD.
Collapse
Affiliation(s)
- Xiao-Fang Li
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Cheng-Quan Wan
- Department of Neonatology, Luoyang Maternal and Child Health Hospital,, Luoyang, Henan, China
| | - Yi-Min Mao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
47
|
Sato R, Vatic M, da Fonseca GWP, von Haehling S. Sarcopenia and Frailty in Heart Failure: Is There a Biomarker Signature? Curr Heart Fail Rep 2022; 19:400-411. [PMID: 36261756 DOI: 10.1007/s11897-022-00575-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Sarcopenia and frailty are common in patients with heart failure (HF) and are strongly associated with prognosis. This review aims to examine promising biomarkers that can guide physicians in identifying sarcopenia and frailty in HF. RECENT FINDINGS Traditional biomarkers including C-reactive protein, aminotransaminase, myostatin, and urinary creatinine as well as novel biomarkers including microRNAs, suppression of tumorigenicity 2 (ST2), galectin-3, and procollagen type III N-terminal peptide may help in predicting the development of sarcopenia and frailty in HF patients. Among those biomarkers, aminotransferase, urinary creatinine, and ST2 predicted the prognosis in HF patients with sarcopenia and frailty. This review outlines the current knowledge of biomarkers that are considered promising for diagnosing sarcopenia and frailty in HF. The listed biomarkers might support the diagnosis, prognosis, and therapeutic decisions for sarcopenia and frailty in HF patients.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075, Gottingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075, Gottingen, Germany
| | | | - Stephan von Haehling
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany.
| |
Collapse
|
48
|
Laflamme DP. Key nutrients important in the management of canine myxomatous mitral valve disease and heart failure. J Am Vet Med Assoc 2022; 260:S61-S70. [PMID: 36191141 DOI: 10.2460/javma.22.07.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The most common cause of heart failure in dogs is myxomatous mitral valve disease (MMVD), which accounts for approximately 75% of canine heart disease cases and is especially common in smaller dogs. Although low-sodium diets have been recommended for humans with heart diseases for decades, there is little evidence to support this practice in dogs. In recent years, however, it has become clear that other nutrients are important to heart health. Dogs with heart disease secondary to MMVD experience patterns of metabolic changes that include decreased mitochondrial energy metabolism and ATP availability, with increased oxidative stress and inflammation. These changes occur early in disease and progress with worsening heart disease. Key nutrients that may support normal function and address these changes include omega-3 fatty acids, medium-chain triglycerides, magnesium, antioxidants including vitamin E and taurine, and the amino acids methionine and lysine. The long-chain omega-3 fatty acids provide anti-inflammatory, antithrombotic, and other benefits. Medium-chain fatty acids and ketones derived from medium-chain triglycerides provide an alternative energy source for cardiac mitochondria and help reduce free radical production. Magnesium supports mitochondrial function, normal cardiac rhythm, and provides other benefits. Both vitamin E and taurine counter oxidative stress, and taurine also has direct cardiac benefits. Dogs with MMVD have reduced plasma methionine. Methionine and lysine are important for carnitine production as well as other functions. This article reviews the evidence supporting the functions and benefits of these and other nutrients in MMVD and other cardiac conditions.
Collapse
|
49
|
Identifying the Effect of Nuanxin Capsules on Myocardial Injury Induced by Chronic Hypoxia via Network Pharmacology Analysis and Experimental Validation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2399462. [PMID: 36246984 PMCID: PMC9553472 DOI: 10.1155/2022/2399462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Nuanxin capsule (NX), an in-hospital preparation of Guangdong Provincial Hospital of Chinese Medicine, has been used in heart failure (HF) treatment for 15 years, but its mechanism and protective effect have not been investigated. This study was aimed at exploring the mechanism and protective effect of NX on HF treatment via network pharmacology analysis and experimental validation. Network pharmacology analysis predicted that NX was involved in the regulation of response to apoptotic process and hypoxia via protecting cellular damage and mitochondrial dysfunction against chronic hypoxia. Its mechanism may be involved in the regulation of the PI3K-Akt signaling pathway, HIF-1 signaling pathway, AMPK signaling pathway, and MAPK signaling pathway. Experimental validation indicated that NX was capable of improving cellular viability, restoring cellular morphology, and suppressing cellular apoptosis cellular. NX also exerted cardioprotection by inhibiting mitochondrial membrane potential injury and protecting mitochondrial respiratory and energy metabolism in a chronic hypoxia cellular model, which was consistent with the results of network pharmacology prediction. In addition, the screened active compounds of NX did have a good binding with their key targets, indicating NX may exert protective effect through multicompounds and multitargets. In conclusion, NX had a protective effect on HF through cellular and mitochondrial protection against chronic hypoxia via multicompounds, multitargets, and multipathways, and its mechanism may be involved in modulating the PI3K-Akt signaling pathway, HIF-1 signaling pathway, AMPK signaling pathway, and MAPK signaling pathway.
Collapse
|
50
|
Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the Dysregulation of Mitochondrial Homeostasis and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3617086. [PMID: 36132224 PMCID: PMC9484955 DOI: 10.1155/2022/3617086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.
Collapse
|