1
|
Vasudhevan P, Suresh A, Singh S, Sharma K, Sridevi G, Dixit S, Thangavel P. Cadmium accumulation, sub-cellular distribution and interactions with trace metals (Cu, Zn, Fe, Mn) in different rice varieties under Cd stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:130. [PMID: 40123020 DOI: 10.1007/s10653-025-02438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Rice (Oryza sativa L.) is a staple food in most Asian countries, although it serves as a significant carrier of cadmium (Cd) accumulation. Developing low-Cd accumulating rice varieties is crucial for minimizing Cd contamination in soil and rice grains while also mitigating harmful health consequences. In the present study examined the Cd accumulation and sub-cellular distribution of both high Cd (IR-50) and low Cd (White Ponni) rice varieties under Cd-treated hydroponic nutrient solutions. The results showed that under all Cd treatments, overall plant height, plant fresh and dry biomass reduced substantially in both rice varieties compared to the control. Both rice varieties accumulated more Cd in their roots than shoots, with IR-50 accumulating higher Cd levels. Iron (Fe) concentrations were higher in both roots and shoots of both rice varieties compared to other trace elements. Translocation factor (TF) values were < 1, indicating limited Cd translocation from roots to shoots. Cd was mainly distributed in the epidermis, cortex, and bulliform cells of both rice varieties roots, and shoots. The peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes activity significantly increased in both IR-50 and WP rice varieties when exposed to Cd treatment. The current study concluded that the IR-50 rice variety accumulated and distributed more Cd than the WP rice variety under different Cd treatments. As a result, WP exhibited higher Cd tolerance, while IR-50 became more susceptible to Cd stress.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| | - Aparna Suresh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174 103, India
- Division of Research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Kamal Sharma
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, 281 406, India
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140 401, India
- Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Palaniswamy Thangavel
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
2
|
Khan MN, Islam S, Siddiqui MH. Regulation of anaplerotic enzymes by melatonin enhances resilience to cadmium toxicity in Vigna radiata (L.) R. Wilczek. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109522. [PMID: 39854787 DOI: 10.1016/j.plaphy.2025.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 01/15/2025] [Indexed: 01/26/2025]
Abstract
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H+-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.7%), pyruvate kinase (79.2%), phosphoenolpyruvate carboxylase (38.9%) pyruvate dehydrogenase (41.5%), malate dehydrogenase (49.2%), citrate synthase (37.7%), isocitrate dehydrogenase (33.1%), ATP synthase (63.6%), and ATPase (38.6%). Incubation of Cd-stressed seedlings with Mel also improved the activity of nitrate reductase by 89.4%, nitrite reductase by 78.2%, and glutamine synthetase by 35.3% that resulted in higher level of ammonium and their subsequent assimilation to amino acids and proteins. Activation of these enzymes was strongly associated with Mel-induced regulation of H+-ATPase activity that improved K+ retention and N assimilation capacity of the Cd-stressed seedlings of mung bean. The coordinated mechanism of action of tricarboxylic acid (TCA) cycle, N metabolism, and higher K+ levels were helpful in providing protection against detrimental effects of Cd toxicity through improving the defense system and energy level of the plants. However, inclusion of sodium orthovanadate (PM H+-ATPase inhibitor) to the incubation medium reversed the positive effect of Mel and suppressed the performance of plants under Cd-stress. The findings of the study indicate that under Cd stress, the regulatory mechanisms of anaplerotic enzymes and antioxidant defense are mediated by Mel, and this process is facilitated by the retention of K+ induced by H+-ATPase.
Collapse
Affiliation(s)
- M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shaistul Islam
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Liao S, Ling Y, Gao Y, Ma G, Li X, Chen L, Hu L, Xie Y. Enhanced cadmium tolerance in perennial ryegrass via exogenous application of Enterobacter hormaechei strain X20. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117905. [PMID: 39986050 DOI: 10.1016/j.ecoenv.2025.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Cadmium (Cd) contamination in soils poses a critical environmental challenge, jeopardizing both agricultural productivity and food safety. The utilization of plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy for mitigating the adverse effects of heavy metal stress on plant health and development. This study investigates the effectiveness of Enterobacter hormaechei X20 in enhancing Cd tolerance in perennial ryegrass, a species renowned for its phytoremediation potential. Strain X20 demonstrated multiple PGPR traits, including phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore secretion. Under Cd stress, X20 significantly stimulated plant growth, elevated canopy height, and preserved leaf water content. Additionally, X20 inoculation enhanced Cd uptake and reestablished ion homeostasis by augmenting Fe2+, Cu2+, Zn2+, and Mn2+ levels. It also improved photosynthetic efficiency, particularly by optimizing PSII activity, and strengthened antioxidant defense, alleviating oxidative stress. Metabolomic analysis revealed significant modulations in amino acid and sugar metabolism, marked by increased in serine and glycine levels under Cd stress. Furthermore, fructose and glucose levels rose, while sucrose levels declined, reflecting metabolic reprogramming that facilitates stress adaptation. These findings suggest that Enterobacter hormaechei X20 holds great promise as a bioinoculant for enhancing phytoremediation efficiency and plant resilience in Cd-contaminated soils, providing a sustainable strategy for managing heavy metal pollution in agriculture.
Collapse
Affiliation(s)
- Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Ling
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China.
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Gao S, Lin M, Zhao M, Yan J, Lu H, Zhan Y, Xin Y, Zeng F. Fraxinus mandshurica galacturonosyltransferase 1 and 12 play negative roles in cadmium tolerance via cell wall remodeling. Int J Biol Macromol 2025; 306:141510. [PMID: 40020828 DOI: 10.1016/j.ijbiomac.2025.141510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Cadmium (Cd) contamination poses critical risks to soil ecosystems, agricultural productivity, and human health. Fraxinus mandshurica, a widely cultivated tree species in landscaping and afforestation, exhibits heightened sensitivity to Cd toxicity. The cell wall, composed of various biological macromolecules, acts as a primary defense mechanism against Cd stress. Galacturonosyltransferase (GAUT) is crucial in cell wall component synthesis and biomass accumulation. However, the involvement of GAUT in metal stress resistance has remained unreported. In this study, FmGAUT1 and FmGAUT12 were obtained from F. mandshurica treated by Cd. Transgenic tobacco overexpressing FmGAUT1 and FmGAUT12 exhibited increased Cd sensitivity, as evidenced by inhibited plant height, reduced fresh weight, and increased reactive oxygen species (ROS) production. In overexpression plants, the cellulose and pectin contents in the cell wall decreased to 52.33 %-55.56 % and 4.30 %-5.17 %, respectively. The reduction in uronic acid, pectin (especially low-methylated pectin), cellulose, and hemicellulose content compromised cell wall binding ability to Cd. Furthermore, the translocation factor and related gene expression levels significantly declined in FmGAUT1 and FmGAUT12 overexpressing lines, resulting in excessive Cd accumulation (1.84-fold and 1.95-fold) in roots. Conversely, silencing FmGAUT1 and FmGAUT12 in F. mandshurica facilitated cell wall remodeling and improved Cd tolerance. These findings reveal the roles of GAUTs in metal stress responses and suggest their potential as targets for genetic improvement strategies to enhance Cd tolerance in plants.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Meihan Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mengfan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jialin Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Han Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Xin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Sheikh L, Naz N, Oranab S, Younis U, Alarfaj AA, Alharbi SA, Ansari MJ. Minimization of cadmium toxicity and improvement in growth and biochemical attributes of spinach by using acidified biochar. Sci Rep 2025; 15:5880. [PMID: 39966549 PMCID: PMC11836445 DOI: 10.1038/s41598-025-90746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
Cadmium stress significantly affects plant growth by disrupting essential physiological and biochemical functions. It slows nutrient intake, causing slowed development and decreased biomass. Cd also produces reactive oxygen species, causing oxidative stress, which harms cell components like lipids, proteins, and DNA. This lowers chlorophyll levels, making photosynthesis difficult and stunting development. Cd's toxicity affects hormone balance, enzyme activity, and cell structural integrity, leading to poor plant growth and decreased agricultural output. Acidified biochar (BC) can effectively overcome this problem. Biochar features high cation exchange capacity (CEC) and oxygen-containing functional groups may aid in the immobilization of heavy metals in soil via surface complexation and precipitation. Cd immobilization can be increased by treating biochar with acid, which exposes additional adsorption sites. It can significantly enhance plant growth by improving soil structure, encouraging water retention, and improving microbial activity as a slow-release nutrient. This study investigates the effects of combining BC as amendments to spinach, both with Cd and without stress. Four treatments (control, 0.45BC, 0.90BC, and 1.20BC) were applied using a completely randomized design in four replications. Results showed that 1.20BC treatment showed a significant increase in shoot fresh weight (86.21%), root fresh weight (96.20%), shoot dry weight (223.24%), root dry weight (42.38%), total soluble sugar (16.05%), total soluble protein (54.70%), compared to the 0BC under 20 mg Cd/kg soil contamination. Additionally, there were notable improvements in chlorophyll a (121.26%), chlorophyll b (10.91%), and total chlorophyll (32.12%) above the control in Cd stress, also showing the potential of 1.20BC. A significant increase in N, P, and K concentrations of shoot and root of spinach was also noted, which validated the effectiveness of 1.20BC over 0BC under cadmium stress. It is concluded that applying 1.20BC can potentially alleviate the Cd-induced stress in spinach.
Collapse
Affiliation(s)
- Laraib Sheikh
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan, Bahawalpur, Punjab, Pakistan
| | - Nargis Naz
- Botany Department, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Sadaf Oranab
- Deptartment of Bioscience and Technology, Emerson University, Multan, Punjab, Pakistan
| | - Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Rahim Yar Khan, Bahawalpur, Punjab, Pakistan.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Hayat U, Ul Din K, Ahmad M, Zulfiqar U, Sajjad M, Maqsood MF, Soufan W, Prasad PVV, Djalovic I. Salicylic acid confers cadmium tolerance in wheat by regulating photosynthesis, yield and ionic homeostasis. Sci Rep 2025; 15:3698. [PMID: 39880835 PMCID: PMC11779808 DOI: 10.1038/s41598-025-87236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants. Hence, an experiment was conducted to explore the roles of foliar application of SA in ameliorating Cd toxicity in two wheat varieties. The treatments comprised of, a) Cd stress: i) Cd0 = control (No Cd), Cd1 = 500 µM Cd stress at 30 days after sowing (DAS); SA applications: (i) SA0 = control (No SA) (ii) SA1 = 0.5 mM SA at 32 DAS, and c) Wheat varieties: (i) Anaj-17 and (ii) Akbar-19. The experiment was carried out with three replicates in a completely randomized design (CRD). The findings of the study have revealed that Cd stress prominently reduced the plant growth and yield, gaseous exchange attributes, and relative water content of both wheat varieties, and more reduction was observed in Anaj-17 as compared to Akbar-19. Plant height, economic yield, photosynthetic rate, and relative water content were decreased by (9.80 and 8.20%), (12.2 and 6.58%), (20 and 11.32%), and (12.5 and 10%) in Anaj-17 and Akbar-19 respectively. Further, SPAD value and chlorophyll fluorescence decreased under Cd toxicity in both wheat cultivars as compared to non-stress conditions. Contrarily, electrolyte leakage and Cd contents were increased in the plants as compared to the control. However, the foliar applications of SA in Cd-stressed plants significantly improved the plant growth and yield attributes, relative water content, gas exchange attributes, and chlorophyll content in both wheat varieties as compared to control-no SA applied. In addition, chlorophyll fluorescence and nutrient uptake were also improved under SA applications as compared to control. However, SA played an ameliorative role in reducing Cd-toxicity by reducing the electrolyte leakage and Cd uptake by the plants. Among the varieties, Akbar-19 outperformed the Anaj-17 to impart Cd toxicity under SA applications based on plant morphophysiological attributes. Hence, the outcomes of the experiment recommended that the foliar treatment of SA amended the Cd tolerance of wheat varieties by improving plant physiological and biochemical attributes.
Collapse
Affiliation(s)
- Umer Hayat
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Maryium Sajjad
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, 30, Novi Sad, 21000, Serbia.
| |
Collapse
|
7
|
Ma J, Pan Y, Huang W, Fan Z, Liu S, Huang Y, Yao S, Hao C, Jiang Q, Li T. Overexpression of tae-miR9670 enhances cadmium tolerance in wheat by targeting mTERFs without yield penalty. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136448. [PMID: 39522224 DOI: 10.1016/j.jhazmat.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that poses significant hazards to both crop productivity and human health. MicroRNAs (miRNAs) play pivotal roles in plant growth, development and responses to environmental stresses, yet little is known about their roles in regulating Cd tolerance in wheat. In this study, we identified tae-miR9670, a Triticeae-specific miRNA, as responsive to Cd exposure in wheat through miRNAome analysis. Tae-miR9670 can target genes that encode mitochondrial transcription termination factors (mTERFs), mediating their mRNA cleavage and suppressing their expression. Overexpression of tae-miR9670 significantly enhanced Cd tolerance in wheat seedlings, as demonstrated by increased biomass and reduced levels of malondialdehyde (MDA), H2O2, and Cd content. Consequently, multiple downstream genes involved in ROS scavenging, detoxification and heavy metal transport were upregulated in tae-miR9670 overexpression plants. Moreover, the grain Cd content in mature plants overexpressing tae-miR9670 was reduced by over 60 % compared to wild-type controls. Our results also indicated that overexpressing tae-miR9670 in wheat preserved yield-related traits, thereby overcoming the trade-off between stress resistance and grain yield. Overall, our findings provide new insights into the role of tae-miR9670 in Cd tolerance in wheat and its potential application in breeding low-Cd cultivars.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihua Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyao Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiyan Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Yan M, Wang W, Jin L, Deng G, Han X, Yu X, Tang J, Han X, Ma M, Ji L, Zhao K, Zou L. Emerging antibiotic and heavy metal resistance in spore-forming bacteria from pig manure, manure slurry and fertilized soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123270. [PMID: 39541816 DOI: 10.1016/j.jenvman.2024.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Spore-forming bacteria (SFB), like Bacillus, are the gram-positive bacteria with broad-spectrum activity that is one of the commonly used strains of probiotics. However, these bacteria also have significant resistance. In this study, we systematically investigated pig manure, manure slurry and soil by 16S rRNA high-throughput sequencing and traditional culture techniques. We found the SFB was widespread in manure, manure slurry and soil, Firmicutes was one of the main dominant phyla in pig manure, manure slurry and soil, the relative abundance of Bacillus were 0.98%, 0.01%, and 2.57%, respectively, and metals such as copper have complex relationships with bacteria. We isolated 504 SFB from 369 samples, with the highest number identified as Bacillus subtilis. SFB strains showed varying degrees of antibiotic resistance; the greatest against erythromycin, followed by imipenem. The MICs of SFB varied greatly against different heavy metals; with high (est) resistance against Zn2+, followed by Cu2+. Second-generation whole genome sequencing (WGS) revealed that nine Bacillus strains carried different subtypes of vancomycin resistance genes, among which vanRM had the highest frequency. The strain W129 included the vanRA-vanRM-vanSA-vanZF cluster. The nine Bacillus strains also contained antibiotic genes such as aminoglycoside (ant(9)-Ia), β-lactam (bcII), and macrolide (msrE). Twenty-six Bacillus isolates carried copper resistance clusters, including csoR-copZ, copA-copZ-csoR, and copZ-copA. WGS showed that strain W166 carried 11 vancomycin resistance genes and 11 copper resistance genes. There were 4 vancomycin resistance genes and 14 copper resistance genes on the W129 chromosome. Strain W129 also harbors the plasmid pLKYM01 that contains an intact transposon consisting of insertion sequence and vancomycin resistance genes vanYF and vanRA. This study explores the potential risks of using pig manure and fertilized soil to inform safe and effective use of probiotics in agriculture. It highlights scientific evidence for concern over the safe utilization and control of animal waste products.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-products (Hangzhou), Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Jin
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guoyou Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Junni Tang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Ji
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
9
|
Menhas S, Hayat K, Lin D, Shahid M, Bundschuh J, Zhu S, Hayat S, Liu W. Citric acid-driven cadmium uptake and growth promotion mechanisms in Brassica napus. CHEMOSPHERE 2024; 368:143716. [PMID: 39515533 DOI: 10.1016/j.chemosphere.2024.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.5 mM) on Brassica napus grown in Cd-contaminated (30 mg kg-1) growth medium through a controlled pot experiment. Cd exposure alone significantly impaired various plant physiological parameters in B. napus. Whereas CA application significantly (p < 0.05) enhanced physiological attributes, Cd detoxification and tolerance by modulating key genes involved in photosynthesis and Cd transport, including the metal-transporting P1B-type ATPases (Cd/zinc heavy metal-transporting ATPase 1; HMA1) and light-harvesting chlorophyll a/b-binding 3 (LHCB3). Notably, CA application increased Cd accumulation in stems and leaves by 4% and 35%, respectively, enhancing bioconcentration factors (BCF) by 12% in stems and 40% in leaves while reducing root BCF by 10%. This translocation was facilitated by the upregulation of HMA4, HMA2, and plant Cd resistance (PCR2) genes in plant leaves, improving Cd mobility within the plant. Furthermore, CA induced a 34% increase in phytochelatins and a 32% upregulation in metallothioneins, accompanied by a significant reduction in oxidative stress markers, including a 40% decrease in hydrogen peroxide and a 44% decline in malondialdehyde levels in leaves. Enhanced antioxidant enzyme activity and osmolyte accumulation further contributed to improved Cd detoxification/sequestration in leaves, reduced oxidative stress, and improved photosynthetic efficiency, resulting in enhanced plant biomass production and Cd tolerance. Transcriptomic analysis showed that CA treatment substantially influenced the expression of 12,291 differentially expressed genes (DEGs), with 750 common genes consistently downregulated in CK vs Cd treatment group but upregulated in Cd vs Cd-CA treatment group. Additionally, CA modulated 11 DEGs associated with 32 gene ontologies in the citrate pathway under Cd stress, highlighting its targeted regulatory effect on metabolic pathways involved in Cd stress response. This study offers novel insights into the synergistic role of CA in promoting plant growth and regulating Cd uptake in B. napus, highlighting its potential to enhance phytoremediation strategies.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Kashif Hayat
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Daohui Lin
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia; Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia
| | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Sikandar Hayat
- College of Medicine, Xian International University, Xian, 710000, Shaanxi, PR China
| | - Weiping Liu
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China
| |
Collapse
|
10
|
Frohn S, Haas FB, Chavez BG, Dreyer BH, Reiss EV, Ziplys A, Weichert H, Hiltemann S, Ugalde JM, Meyer AJ, D'Auria JC, Rensing SA, Schippers JHM. Evolutionary Conserved and Divergent Responses to Copper Zinc Superoxide Dismutase Inhibition in Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400938 DOI: 10.1111/pce.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
After an initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutases (CuZnSODs) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia Polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homoeostasis in all plant species analysed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Collapse
Affiliation(s)
- Stephanie Frohn
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Bernd H Dreyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Erik V Reiss
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Ziplys
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heiko Weichert
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Saskia Hiltemann
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - José M Ugalde
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
11
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
12
|
Neyshabouri FA, Ghotbi-Ravandi AA, Shariatmadari Z, Tohidfar M. Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley. Biometals 2024; 37:1147-1160. [PMID: 38615113 DOI: 10.1007/s10534-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
Collapse
Affiliation(s)
- Fatemeh Alzahra Neyshabouri
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Chatterjee Y, Pareek A, Singla-Pareek SL. OsLdh7, a rice lactate dehydrogenase, confers stress resilience in rice under cadmium stress through NAD +/NADH regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109009. [PMID: 39154420 DOI: 10.1016/j.plaphy.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Lactate dehydrogenase (Ldh, EC 1.1.1.27), an oxidoreductase enzyme catalyses the interconversion of pyruvate to L-lactate and vice-versa with concomitant oxidation and reduction of NADH and NAD+. The enzyme functions as a ROS sensor and mitigates stress response by maintaining NAD+/NADH homeostasis. In this study, we delineated the role of the Ldh enzyme in imparting cadmium stress tolerance in rice. Previously, we identified a putatively active Ldh in rice (OsLdh7) through insilico modelling. Biochemical characterization of the OsLdh7 enzyme revealed it to be optimally active at pH 6.6 in the forward direction and pH 9 in the reverse direction. Overexpression of OsLdh7 in rice cv. IR64, increased tolerance of the transgenic lines to cadmium stress compared to the wild type (WT) at both seedling and reproductive stages. The transgenic lines showed increased enzyme activity in the reverse direction under cadmium stress, attributed to elevated cytosolic pH resulting from increased calcium concentration. This increased NADH content is highly essential for functioning of the ROS scavenging enzymes, RbohD and MPK6. qPCR analysis revealed that the overexpression lines had increased transcript abundance of these genes indicating an effective ROS scavenging mechanism. Additionally, the overexpression lines showed an efficient cadmium sequestration mechanism compared to the WT by increasing the transcript levels of the vacuolar transporters of cadmium as well as total phytochelatin content. Thus, our findings indicated OsLdh7 imparts cadmium stress tolerance in rice through a two-pronged approach by mitigating ROS and sequestering cadmium ions, highlighting its potential for crop improvement programs.
Collapse
Affiliation(s)
- Yajnaseni Chatterjee
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
14
|
Yazicioglu H, Hocaoglu-Ozyigit A, Ucar B, Yolcu S, Yalcin IE, Suner S, Ozyigit II. Physiological alterations and genotoxic damage under combined aluminum and cadmium treatments in Bryophyllum daigremontianum clones. Mol Biol Rep 2024; 51:1019. [PMID: 39331170 DOI: 10.1007/s11033-024-09936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Cadmium (Cd) is one of the most important stress factors in plants, with its high mobility in soils, ease of uptake by plants and toxicity at low concentrations. Aluminum (Al) is another phytotoxic metal, the accumulation of which is a crucial agricultural complication for plants, especially in acidic soils. METHODS AND RESULTS In this study, Bryophyllum daigremontianum clone plantlets were obtained from bulbiferous spurs of a mother plant and separated into four different groups and watered with Hoagland solution and mixtures containing 0, 50, 100, and 200 µM of AlCl3 and CdCl2 each for 75 days. Control groups were maintained under the same conditions without Al and Cd treatment. To simulate acidic soil conditions typical of environments where Al toxicity is prevalent, the soil pH was adjusted to 4.5 by spraying the sulphuric acid (0.2%) with 2-day intervals after each irrigation day. After harvesting, growth parameters such as shoot length and thickness, root, shoot and leaf fresh and dry weights were measured, along with physiological parameters like mineral nutrient status, total protein, and photosynthetic pigment concentrations (chlorophyll a, b, a/b, total chlorophyll, and carotenoid) in both control and experimental groups of B. daigremontianum clones. In response to Al and Cd applications, the plant height, shoot thickness and carotenoid levels were declined, whereas the increments were found in leaf/shoot/root fresh weight, root dry weight, and total protein content. Moreover, differences in genomic alterations were investigated using 21 ISSR and 19 RAPD markers, which both have been used extensively as genetic markers to specify phylogenetic relationships among different cultivars as well as stress-dependent genetic alterations. RAPD primers were used due to their arbitrary sequences and the unknown genome sequence of the plant material used. In contrast, ISSR primers were preferred for a genome-wide genotoxic effect scan via non-arbitrary and more common genetic markers. Distinct types of band polymorphisms detected via RAPD and ISSR markers include band loss, and new band formation under a combination of Al and Cd stress. 17 ISSR and 14 RAPD primers generated clear electrophoretic bands. CONCLUSION The study revealed that combined application of Al and Cd affect B. daigremontianum clones in terms of growth, physiology and genotoxicity related to the increasing concentrations.
Collapse
Affiliation(s)
- Hulya Yazicioglu
- Institute of Pure and Applied Sciences, Marmara University, Istanbul, 34722, Türkiye
| | | | - Bihter Ucar
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Türkiye
| | - Salim Suner
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye
| | - Ibrahim Ilker Ozyigit
- Faculty of Science, Marmara University, Istanbul, 34722, Türkiye.
- Environmental Issues Application and Research Center, Marmara University, Istanbul, 34722, Türkiye.
| |
Collapse
|
15
|
Collado-Arenal AM, Exposito-Rodriguez M, Mullineaux PM, Olmedilla A, Romero-Puertas MC, Sandalio LM. Cadmium exposure induced light/dark- and time-dependent redox changes at subcellular level in Arabidopsis plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135164. [PMID: 39032180 DOI: 10.1016/j.jhazmat.2024.135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.
Collapse
Affiliation(s)
- Aurelio M Collado-Arenal
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | | | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| |
Collapse
|
16
|
Bhardwaj T, Kour J, Chouhan R, Devi K, Singh H, Gandhi SG, Ohri P, Bhardwaj R, Alsahli AA, Ahmad P. Integrated transcriptomic and physio-molecular studies unveil the melatonin and PGPR induced protection to photosynthetic attributes in Brassica juncea L. under cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134875. [PMID: 38936187 DOI: 10.1016/j.jhazmat.2024.134875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Cd is highly mobile, non-essential trace element, that has become serious environmental issue due to its elevated concentration in soil. The present study was taken up to work out salutary effect of melatonin (Mlt) and PGPR ((Pseudomonas putida (Pp), Pseudomonas fluorescens (Pf) in 10 days old Cd stressed (0.3 mM) Brassica juncea L. seedlings. The present work investigated growth characteristics, photosynthetic pigments, secondary metabolites in melatonin-PGPR inoculated B. juncea seedlings. It was backed by molecular studies entailing RT-PCR and transcriptomic analyses. Our results revealed, substantial increase in photosynthetic pigments and secondary metabolites, after treatment with melatonin, P.putida, P. fluorescens in Cd stressed B. juncea seedlings, further validated with transcriptome analysis. Comparative transcriptome analyses identified 455, 5953, 3368, 2238 upregulated and 4921, 430, 137, 27 down regulated DEGs, Cn-vs-Cd, Cd-vs-Mlt, Cd-vs-Mlt-Pp-Pf, Cd-vs-Mlt-Pp-Pf-Cd comparative groups respectively. In depth exploration of genome analyses (Gene ontology, Kyoto encyclopaedia of genes), revealed that Cd modifies the expression patterns of most DEGs mainly associated to photosystem and chlorophyll synthesis. Also, gene expression studies for key photosynthetic genes (psb A, psb B, CHS, PAL, and PSY) suggested enhanced expression in melatonin-rhizobacteria treated Cd stressed B. juncea seedlings. Overall, results provide new insights into probable mechanism of Mlt-PGPR induced protection to photosynthesis in Cd stressed B. juncea plants.
Collapse
Affiliation(s)
- Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu 180001, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya College, Jalandhar, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Canal Road, Jammu 180001, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC-Pulwama, 192301 Jammu and Kashmir, India
| |
Collapse
|
17
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
18
|
Zhang R, Chen P, Ju Z, Tang H. Phytotoxic responses of acrocarpous moss Campylopus schmidii as bioindicators in copper and cadmium contaminated environments: A comprehensive assessment. CHEMOSPHERE 2024; 364:143082. [PMID: 39142395 DOI: 10.1016/j.chemosphere.2024.143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Mosses play a vital role in environmental research as reliable biomonitoring tools. This study aims to understand the accumulation and distribution patterns of Cu and Cd in the acrocarpous moss [Campylopus schmidii (Müll. Hal.) A. Jaeger] (C.schmidii). In controlled in vitro experiments, C.schmidii cultures were exposed to varying concentrations of copper (Cu) and cadmium (Cd) stress (0, 10, 25, 50 μmol/L) in aquatic media. The study systematically evaluated the moss's response, including observing appearance features, oxidative traits, and accumulation characteristics. Scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses were employed. They aimed to characterize and determine the distribution of metal particles in different parts of the mosses under high concentration treatments (50 μmol/L Cd, 50 μmol/L Cu, 50 μmol/L Cu and Cd). Results indicated that C.schmidii exhibited greater tolerance to Cu compared to Cd, as evidenced by significantly higher soluble protein content and lipid peroxidation with increasing concentrations. However, Cd stress induced severe damage, including widespread chlorosis, reduced chlorophyll content, and surface fragmentation. Both Cu and Cd were found to stimulate antioxidant levels by increasing the activity of hydrogen peroxide and peroxidase, thus reducing the accumulation of free radicals in C.schmidii. Additionally, the results revealed differential metal distribution. Higher Cu (2.23%) and lower Cd (0.54%) accumulation were observed at the bottom of gametophores, with Cd content 180.46% higher than Cu at the top. This study provides valuable insights into the potential application of acrocarpous mosses for biomonitoring and phytoremediation. It suggests specific strategies for metal deposition and absorption, such as utilizing upper, younger parts for Cd absorption and lower parts for Cu remediation in soil.
Collapse
Affiliation(s)
- Rong Zhang
- Department of North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China.
| | - Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| | - Zhuang Ju
- Key Laboratory for Research and Utilization of Characteristic Biological Resources, Co-built by Sichuan and Chongqing, Chongqing Jinfo Mountain Advanced Research Institute, Chongqing, 401147, PR China.
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, 623000, PR China.
| |
Collapse
|
19
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Fan W, Yu H, Yan J, Qin M, Li R, Jia T, Liu Z, Ahmad P, El-Sheikh MA, Yadav KK, Rodríguez-Díaz JM, Zhang L, Liu P. Variety-dependent responses of common tobacco with differential cadmium resistance: Cadmium uptake and distribution, antioxidative activity, and gene expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116596. [PMID: 38896899 DOI: 10.1016/j.ecoenv.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Cadmium (Cd), which accumulates in tobacco leaves, enters the human body through inhalation of smoke, causing harmful effects on health. Therefore, identifying the pivotal factors that govern the absorption and resistance of Cd in tobacco is crucial for mitigating the harmful impact of Cd. In the present study, four different Cd-sensitive varieties, namely, ZhongChuan208 (ZC) with resistance, ZhongYan100 (ZY), K326 with moderate resistance, and YunYan87 (YY) with sensitivity, were cultivated in hydroponic with different Cd concentrations (20 µM, 40 µM, 60 µM and 80 µM). The results indicated that plant growth was significantly decreased by Cd. Irrespective of the Cd concentration, ZC exhibited the highest biomass, while YY had the lowest biomass; ZY and K326 showed intermediate levels. Enzymatic (APX, CAT, POD) and nonenzymatic antioxidant (Pro, GSH) systems showed notable variations among varieties. The multifactor analysis suggested that the ZC and ZY varieties, with higher levels of Pro and GSH content, contribute to a decrease in the levels of MDA and ROS. Among all the Cd concentrations, ZC exhibited the lowest Cd accumulation, while YY showed the highest. Additionally, there were significant differences observed in Cd distribution and translocation factors among the four different varieties. In terms of Cd distribution, cell wall Cd accounted for the highest proportion of total Cd, and organelles had the lowest proportion. Among the varieties, ZC showed lower Cd levels in the cell wall, soluble fraction, and organelles. Conversely, YY exhibited the highest Cd accumulation in all tissues; K326 and ZY had intermediate levels. Translocation factors (TF) varied among the varieties under Cd stress, with ZC and ZY showing lower TF compared to YY and K326. This phenomenon mainly attributed to regulation of the NtNramp3 and NtNramp5 genes, which are responsible for the absorption and transport of Cd. This study provides a theoretical foundation for the selection and breeding of tobacco varieties that are resistant to or accumulate less Cd.
Collapse
Affiliation(s)
- Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Hua Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama-192301, Jammu and Kashmir, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong province 271018, China.
| |
Collapse
|
21
|
Wang J, Liu X, Chen Y, Zhu FL, Sheng J, Diao Y. Physiological and transcriptomic analyses reveal the cadmium tolerance mechanism of Miscanthus lutarioriparia. PLoS One 2024; 19:e0302940. [PMID: 38748679 PMCID: PMC11095687 DOI: 10.1371/journal.pone.0302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.
Collapse
Affiliation(s)
- Jia Wang
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Xinyu Liu
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yiran Chen
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Feng lin Zhu
- Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiajing Sheng
- State Key Laboratory of Hybrid Rice, Hubei Lotus Engineering Center, College of Life Sciences, Wuhan University, Wuhan, 430023, P. R. China
| | - Ying Diao
- School of life science and technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
22
|
Cao H, Song K, Hu Y, Li Q, Ma T, Li R, Chen N, Zhu S, Liu W. The role of exogenous hydrogen sulfide in mitigating cadmium toxicity in plants: A comprehensive meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30273-30287. [PMID: 38613761 DOI: 10.1007/s11356-024-33298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Reducing the accumulation of cadmium (Cd) and mitigating its toxicity are pivotal strategies for addressing Cd pollution's threats to agriculture and human health. Hydrogen sulfide (H2S) serves as a signaling molecule, playing a crucial role in plant stress defense mechanisms. Nevertheless, a comprehensive assessment of the impact of exogenous H2S on plant growth, antioxidant properties, and gene expression under Cd stress remains lacking. In this meta-analysis, we synthesized 575 observations from 27 articles, revealing that exogenous H2S significantly alleviates Cd-induced growth inhibition in plants. Specifically, it enhances root length (by 8.71%), plant height (by 15.67%), fresh weight (by 15.15%), dry weight (by 22.54%), and chlorophyll content (by 27.99%) under Cd stress conditions. H2S boosts antioxidant enzyme activity, particularly catalase (CAT), by 39.51%, thereby reducing Cd-induced reactive oxygen species (ROS) accumulation. Moreover, it impedes Cd translocation from roots to shoots, resulting in a substantial 40.19% reduction in stem Cd content. Additionally, H2S influences gene expression in pathways associated with antioxidant enzymes, metal transport, heavy metal tolerance, H2S biosynthesis, and energy metabolism. However, the efficacy of exogenous H2S in alleviating Cd toxicity varies depending on factors such as plant species, concentration of the H2S donor sodium hydrosulfide (NaHS), application method, and cultivation techniques. Notably, NaHS concentrations exceeding 200 μM may adversely affect plants. Overall, our study underscores the role of exogenous H2S in mitigating Cd toxicity and elucidates its mechanism, providing insights for utilizing H2S to combat Cd pollution in agriculture.
Collapse
Affiliation(s)
- Hanping Cao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Kejin Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingying Hu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Qingxiao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing, 400715, China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
23
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
24
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
25
|
El-Saadony MT, Desoky ESM, El-Tarabily KA, AbuQamar SF, Saad AM. Exploiting the role of plant growth promoting rhizobacteria in reducing heavy metal toxicity of pepper (Capsicum annuum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27465-27484. [PMID: 38512572 DOI: 10.1007/s11356-024-32874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Microorganisms are cost-effective and eco-friendly alternative methods for removing heavy metals (HM) from contaminated agricultural soils. Therefore, this study aims to identify and characterize HM-tolerant (HMT) plant growth-promoting rhizobacteria (PGPR) isolated from industry-contaminated soils to determine their impact as bioremediators on HM-stressed pepper plants. Four isolates [Pseudomonas azotoformans (Pa), Serratia rubidaea (Sr), Paenibacillus pabuli (Pp) and Bacillus velezensis (Bv)] were identified based on their remarkable levels of HM tolerance in vitro. Field studies were conducted to evaluate the growth promotion and tolerance to HM toxicity of pepper plants grown in HM-polluted soils. Plants exposed to HM stress showed improved growth, physio-biochemistry, and antioxidant defense system components when treated with any of the individual isolates, in contrast to the control group that did not receive PGPR. The combined treatment of the tested HMT PGPR was, however, relatively superior to other treatments. Compared to no or single PGPR treatment, the consortia (Pa+Sr+Pp+Bv) increased the photosynthetic pigment contents, relative water content, and membrane stability index but lowered the electrolyte leakage and contents of malondialdehyde and hydrogen peroxide by suppressing the (non) enzymatic antioxidants in plant tissues. In pepper, Cd, Cu, Pb, and Ni contents decreased by 88.0-88.5, 63.8-66.5, 66.2-67.0, and 90.2-90.9% in leaves, and 87.2-88.1, 69.4-70.0%, 80.0-81.3, and 92.3%% in fruits, respectively. Thus, these PGPR are highly effective at immobilizing HM and reducing translocation in planta. These findings indicate that the application of HMT PGPR could be a promising "bioremediation" strategy to enhance growth and productivity of crops cultivated in soils contaminated with HM for sustainable agricultural practices.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, 6150, W.A., Murdoch, Australia
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
26
|
Gaddam SR, Sharma A, Trivedi PK. miR397b-LAC2 module regulates cadmium stress response by coordinating root lignification and copper homeostasis in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133100. [PMID: 38042003 DOI: 10.1016/j.jhazmat.2023.133100] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Non-essential heavy metal cadmium (Cd) is toxic to plants and animals. Cadmium affects plant photosynthesis, respiration, and causes water imbalance and may lead to plant death. Cadmium induces toxicity by interfering with the essential metal copper (Cu) homeostasis, which affects plant nutrition. Though root lignin biosynthesis is positively regulated by Cd stress, the underlying mechanisms promoting lignin accumulation and controlling Cd-induced Cu limitation responses are unclear. Here, we elucidated the role of Cu-responsive microRNA (miR397b) in Arabidopsis thaliana plants for Cd stress by targeting the LACCASE2 (LAC2) gene. This study demonstrated the fundamental mechanism of miR397b-mediated Cd stress response by enhancing the lignin content in root tissues. We developed miR397b over-expressing plants, which showed considerable Cd stress tolerance. Plants with knockdown function of LAC2 also showed significant tolerance to Cd stress. miR397b overexpressing and lac2 mutant plants showed root reduction, higher biomass and chlorophyll content, and significantly lower Reactive Oxygen Species (ROS). This study demonstrated the miR397b-mediated Cd stress response in Arabidopsis by enhancing the lignin content in root tissues. We conclude that modulation in miR397b can be potentially used for improving plants for Cd tolerance and Cu homeostasis.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Ashish Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India.
| |
Collapse
|
27
|
Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168826. [PMID: 38042185 DOI: 10.1016/j.scitotenv.2023.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Cadmium (Cd) is a highly toxic heavy metal that adversely affects humans, animals, and plants, even at low concentrations. It is widely distributed and has both natural and anthropogenic sources. Plants readily absorb and distribute Cd in different parts. It may subsequently enter the food chain posing a risk to human health as it is known to be carcinogenic. Cd has a long half-life, resulting in its persistence in plants and animals. Cd toxicity disrupts crucial physiological and biochemical processes in plants, including reactive oxygen species (ROS) homeostasis, enzyme activities, photosynthesis, and nutrient uptake, leading to stunted growth and reduced biomass. Although plants have developed defense mechanisms to mitigate these damages, they are often inadequate to combat high Cd concentrations, resulting in yield losses. Nanoparticles (NPs), typically smaller than 100 nm, possess unique properties such as a large surface area and small size, making them highly reactive compared to their larger counterparts. NPs from diverse sources have shown potential for various agricultural applications, including their use as fertilizers, pesticides, and stress alleviators. Recently, NPs have emerged as a promising strategy to mitigate heavy metal stress, including Cd toxicity. They offer advantages, such as efficient absorption by crop plants, the reduction of Cd uptake, and the enhancement of mineral nutrition, antioxidant defenses, photosynthetic parameters, anatomical structure, and agronomic traits in Cd-stressed plants. The complex interaction of NPs with calcium ions (Ca2+), intracellular ROS, nitric oxide (NO), and phytohormones likely plays a significant role in alleviating Cd stress. This review aims to explore the positive impacts of diverse NPs in reducing Cd accumulation and toxicity while investigating their underlying mechanisms of action. Additionally, it discusses research gaps, recent advancements, and future prospects of utilizing NPs to alleviate Cd-induced stress, ultimately promoting improved plant growth and yield.
Collapse
Affiliation(s)
- Sunil Soni
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Ambuj Bhushan Jha
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar 382030, Gujarat, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Central University of Gujarat, Sector-30, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
28
|
Yin M, Mi J, Wang X, Xing C, Wan X, Zhang F, Yang H, He F, Hu H, Chen L. Interspecific variations in growth, physiology and Cd accumulation between Populus deltoides and P. × canadensis in response to Cd pollution under two soil types. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115951. [PMID: 38211512 DOI: 10.1016/j.ecoenv.2024.115951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Both acid and alkaline purple soils in China are increasingly affected by Cd contamination. The selection of fast-growing trees suitable for remediating different soil types is urgent, yet there is a severe lack of relevant knowledge. In this study, we conducted a controlled pot experiment to compare the growth, physiology, and Cd accumulation efficiency of two widely recognized poplar species, namely Populus deltoides and P. × canadensis, under Cd contamination (1 mg kg-1) in acid and alkaline purple soils. The objective was to determine which poplar species is best suited for remediating different soil types. Our findings are as follows: (1) the total biomass of both poplars remained largely unaffected by Cd pollution in both soil types. Notably, under Cd pollution, the total biomass of P. deltoides in acid purple soil was 1.53 times greater than that in alkaline purple soil. (2) Cd pollution did not significantly induce oxidative damage in the leaves of either poplar species in both soil types. However, in acid purple soil, Cd contamination led to a 21% increase in NO3- concentration and a 44% increase in NH4+ concentration in P. × canadensis leaves, whereas in alkaline purple soil, it led to a 59% increase in NH4+ concentration in P. deltoides leaves. (3) Cd concentrations in all root orders of P. × canadensis were significantly higher than those in P. deltoides, especially in the first three root orders, under alkaline purple soil. The total Cd accumulation by P. × canadensis in Cd-polluted alkaline purple soil was 2.18 times higher than that in Cd-polluted acid purple soil, a difference not observed in P. deltoides. (4) redundancy analysis indicated that the sequestration effect of higher soil organic matter on Cd availability in acid purple soil was more pronounced than the release effects caused by lower pH. In conclusion, P. × canadensis is better suited for remediating alkaline purple soil due to its higher capacity for Cd uptake, while P. deltoides is more suitable for remediating Cd-contaminated acid purple soil due to its better growth conditions and greater Cd enrichment capability.
Collapse
Affiliation(s)
- Man Yin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxuan Mi
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Cailan Xing
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueqin Wan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Fan Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hanbo Yang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Fang He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Hongling Hu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Lianghua Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China; Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
29
|
Prazyan A, Podlutskii M, Volkova P, Kazakova E, Bitarishvili S, Shesterikova E, Saburov V, Makarenko E, Lychenkova M, Korol M, Kazakov E, Moiseev A, Geras’kin S, Bondarenko E. Comparative Analysis of the Effect of Gamma-, Electron, and Proton Irradiation on Transcriptomic Profile of Hordeum vulgare L. Seedlings: In Search for Molecular Contributors to Abiotic Stress Resilience. PLANTS (BASEL, SWITZERLAND) 2024; 13:342. [PMID: 38337875 PMCID: PMC10857502 DOI: 10.3390/plants13030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The development of adaptation strategies for crops under ever-changing climate conditions is a critically important food security issue. Studies of barley responses to ionising radiation showed that this evolutionarily ancient stress factor can be successfully used to identify molecular pathways involved in adaptation to a range of abiotic stressors. In order to identify potential molecular contributors to abiotic stress resilience, we examined the transcriptomic profiles of barley seedlings after exposure to γ-rays, electrons, and protons. A total of 553 unique differentially expressed genes with increased expression and 124 with decreased expression were detected. Among all types of radiation, the highest number of differentially expressed genes was observed in electron-irradiated samples (428 upregulated and 56 downregulated genes). Significant upregulation after exposure to the three types of radiation was shown by a set of ROS-responsive genes, genes involved in DNA repair, cell wall metabolism, auxin biosynthesis and signalling, as well as photosynthesis-related genes. Most of these genes are known to be involved in plant ROS-mediated responses to other abiotic stressors, especially with genotoxic components, such as heavy metals and drought. Ultimately, the modulation of molecular pathways of plant responses to ionising radiation may be a prospective tool for stress tolerance programmes.
Collapse
Affiliation(s)
- Alexander Prazyan
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Mikhail Podlutskii
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | | | - Elizaveta Kazakova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Ekaterina Shesterikova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Vyacheslav Saburov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Ekaterina Makarenko
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Maria Lychenkova
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Marina Korol
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Evgeniy Kazakov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Alexander Moiseev
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia
| | - Stanislav Geras’kin
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| | - Ekaterina Bondarenko
- Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 249035 Obninsk, Russia
| |
Collapse
|
30
|
Hussain B, Riaz L, Li K, Hayat K, Akbar N, Hadeed MZ, Zhu B, Pu S. Abiogenic silicon: Interaction with potentially toxic elements and its ecological significance in soil and plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122689. [PMID: 37804901 DOI: 10.1016/j.envpol.2023.122689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Kun Li
- Sichuan Academy of Forestry, Chengdu, 610081, Sichuan, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Naveed Akbar
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | | | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
31
|
Vandionant S, Hendrix S, Alfano R, Plusquin M, Cuypers A. Comparing cadmium-induced effects on the regulation of the DNA damage response and cell cycle progression between entire rosettes and individual leaves of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108105. [PMID: 37883918 DOI: 10.1016/j.plaphy.2023.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Cadmium (Cd) activates the DNA damage response (DDR) and inhibits the cell cycle in Arabidopsis thaliana through the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1. The aim of this study was to investigate which individual leaf best reflects the Cd-induced effects on the regulation of the DDR and cell cycle progression in rosettes, enabling a more profound interpretation of the rosette data since detailed information, provided by the individual leaf responses, is lost when studying the whole rosette. Wild-type A. thaliana plants were cultivated in hydroponics and exposed to different Cd concentrations. Studied individual leaves were leaf 1 and 2, which emerged before Cd exposure, and leaf 3, which emerged upon Cd exposure. The DDR and cell cycle regulation were studied in rosettes as well as individual leaves after several days of Cd exposure. Varying concentration-dependent response patterns were observed between the entire rosette and individual leaves. Gene expression of selected DDR and cell cycle regulators showed higher similarity in their response between the rosette and the individual leaf emerged during Cd exposure than between both individual leaves. The same pattern was observed for plant growth and cell cycle-related parameters. We conclude that Cd-induced effects on the regulation of the DDR and cell cycle progression in the leaf that emerged during Cd exposure, resemble those observed in the rosette the most, which contributes to the interpretation of the rosette data in the framework of plant development and after exposure to Cd.
Collapse
Affiliation(s)
- Stéphanie Vandionant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
32
|
Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131862. [PMID: 37329597 DOI: 10.1016/j.jhazmat.2023.131862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jochen Bundschuh
- Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, ROC; School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, South Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China.
| |
Collapse
|
33
|
He G, Saleem M, Deng T, Zhong Z, He T, Wu J. Unraveling the Mechanism of StWRKY6 in Potato ( Solanum tuberosum)'s Cadmium Tolerance for Ensuring Food Safety. Foods 2023; 12:2303. [PMID: 37372512 DOI: 10.3390/foods12122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The WRKY transcription factor plays a crucial role in plant stress adaptation. Our research has found that WRKY6 in Solanum tuberosum (potatoes) is closely related to cadmium (Cd) tolerance. Therefore, investigating the mechanism of StWRKY6 in plant resistance to Cd toxicity is of great scientific importance for food safety. This research further analyzed the gene structure and functional regions of the nuclear transcription factor WRKY6 in potatoes, discovering that StWRKY6 contains W box, GB/box, ABRE, and other elements that can act as a nuclear transcription regulatory factor to execute multiple functional regulations. The results of the heterologous expression of StWRKY6 in Arabidopsis under Cd stress showed that the overexpression line (StWRKY6-OE) had significantly higher SAPD values and content of reactive oxygen species scavenging enzymes than the wild type, indicating that StWRKY6 plays a crucial role in protecting the photosynthetic system and promoting carbohydrate synthesis. Transcriptome analysis also revealed that the Cd-induced expression of StWRKY6 up-regulated many potential gene targets, including APR2, DFRA, ABCG1, VSP2, ERF013, SAUR64/67, and BBX20, which are involved in Cd chelation (APR2, DFRA), plant defense (VSP2, PDF1.4), toxic substance efflux (ABCG1), light morphology development (BBX20), and auxin signal (SAUR64/67). These genes coordinate the regulation of Cd tolerance in the StWRKY6 overexpression line. In summary, this study identified a potential gene set of the co-expression module of StWRKY6, providing useful evidence for the remediation of Cd-contaminated soil and the genetic breeding of low Cd-accumulating crops, thereby ensuring food safety.
Collapse
Affiliation(s)
- Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Academy of Agricultural Sciences, Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Office 314, 1627 Harris Way, Montgomery, AL 36104, USA
| | - Tingfei Deng
- National Products Research Center of Guizhou Province, Guiyang 550025, China
| | - Zhuoyan Zhong
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jiahai Wu
- Guizhou Provincial Academy of Agricultural Sciences, Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China
| |
Collapse
|
34
|
Zia-Ur-Rehman M, Bani Mfarrej MF, Usman M, Azhar M, Rizwan M, Alharby HF, Bamagoos AA, Alshamrani R, Ahmad Z. Exogenous application of low and high molecular weight organic acids differentially affected the uptake of cadmium in wheat-rice cropping system in alkaline calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121682. [PMID: 37094734 DOI: 10.1016/j.envpol.2023.121682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Anthropogenic cadmium (Cd) in arable soils is becoming a global concern due to its harmful effects on crop yield and quality. The current study examined the role of exogenously applied low molecular weight organic acids (LMWOAs) including oxalic acid (OxA), tartaric acid (TA) and high molecular weight organic acids (HMWOAs) like citric acid (CA) and humic acid (HA) for the bioavailability of Cd in wheat-rice cropping system. Maximum increase in root dry-weight, shoot dry-weight, and grain/paddy yields was recorded with HA for both crops. The HA significantly decreased AB-DTPA Cd in contaminated soils which remained 41% for wheat and 48% for rice compared with their respective controls. The minimum concentration of Cd in roots, shoots and grain/paddy was observed in HA treatment in both crops. The organic acids significantly increased the growth parameters, photosynthetic activity, and relative leaf moisture contents for both wheat and rice crops compared to that with the contaminated control. Application of OxA and TA increased the bioavailability of Cd in soils and plant tissues while CA and HA decreased the bioavailability of Cd in soils and plants. The highest decrease in Cd uptake, bioaccumulation, translocation factor, immobilization, translocation, harvest, and health risk indices were observed with HA while maximum increase was recorded with OxA for both wheat and rice. The results concluded that use of HMWOAs is effective in soil Cd immobilization being maximum with HA. While LMWOAs can be used for the phytoextraction of Cd in contaminated soils having maximum potential with OxA.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Azhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan; Engro Fertilizers Limited 19-a, 4th Floor, Ali Block, New Garden Town, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Punjab, Pakistan.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Zahoor Ahmad
- University of Central Punjab, Constituent College, Yazman Road, Bahawalpur, 63100, Pakistan
| |
Collapse
|