1
|
Tekam CKS, Majumdar S, Kumari P, Prajapati SK, Sahi AK, Singh R, Krishnamurthy S, Mahto SK. Effects of extremely low-frequency (50 Hz) electromagnetic fields on vital organs of adult Wistar rats and viability of mouse fibroblast cells. RADIATION PROTECTION DOSIMETRY 2025; 201:88-104. [PMID: 39656829 DOI: 10.1093/rpd/ncae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
In recent years, scientific communities have been concerned about the potential health effects of periodic electromagnetic field exposure (≤1 h/d). The objective of our study is to determine the impact of extremely low-frequency pulsed electromagnetic fields (ELF-PEMF) (1-3 mT, 50 Hz) on mouse fibroblast (red fluorescent protein (RFP)-L929) cells and adult Wistar rats to gain a comprehensive understanding of biological effects. We observed that RFP-L929 exhibits no significant changes in cell proliferation and morphology but mild elevation in aspartate aminotransferases, alanine aminotransferases, total bilirubin, serum creatinine, and creatine kinase-myocardial band levels in ELF-PEMF exposed groups under in vitro and in vivo conditions. However, the histological examination showed no significant alterations in tissue structure and morphologies. Our result suggests that 50-Hz ELF-PEMF exposure (1-3 mT, 50 Hz) with duration (<1 h/d) can trigger mild changes in biochemical parameters, but it is insufficient to induce any pathological alterations.
Collapse
Affiliation(s)
- Chandra Kant Singh Tekam
- Tissue Engineering and Bio-microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata 700126, India
| | - Pooja Kumari
- Tissue Engineering and Bio-microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33613, United States
| | - Ajay Kumar Sahi
- Tissue Engineering and Bio-microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Richa Singh
- Tissue Engineering and Bio-microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Bio-microfluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
2
|
Barakat H, Aljutaily T, Alkhurayji RI, Aljumayi H, Alhejji KS, Almutairi SO. Protective Effects of a Brassica nigra Sprout Hydroalcoholic Extract on Lipid Homeostasis, Hepatotoxicity, and Nephrotoxicity in Cyclophosphamide-Induced Toxicity in Rats. Metabolites 2024; 14:690. [PMID: 39728471 DOI: 10.3390/metabo14120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Brassica nigra possesses a significant concentration of bioactive compounds and has been demonstrated to have a variety of pharmacological properties, although its sprout has not been extensively studied. Thus, the protective effects of Brassica nigra sprout hydroalcoholic extract (BNSE) on lipid homeostasis, hepatotoxicity, and nephrotoxicity in cyclophosphamide (CYP)-induced toxicity in rats were examined in this study. Methods: Four experimental rat groups (n = 8 for each group) were examined as follows: NR, normal rats that received normal saline by oral gavage daily; CYP, injected with a single dose of CYP at 250 mg kg-1 intraperitoneally (i.p.) and did not receive any treatment, receiving only normal saline by oral gavage daily; CYP + BNSE250, injected with a single dose of CYP at 250 mg kg-1 i.p. and treated with BNSE at 250 mg kg-1 by oral gavage daily for three weeks; and CYP + BNSE500, injected with a single dose of CYP at 250 mg kg-1 i.p. and treated with BNSE at 500 mg kg-1 by oral gavage daily for three weeks. Results: The results indicated a significant increase (p < 0.05) in triglyceride (TG), cholesterol (CHO), low-density lipoprotein cholesterol (LDL-c), and very low-density lipoprotein cholesterol (VLDL-c) levels in CYP-induced toxicity rats. The administration of BNSE at 250 and 500 mg kg-1 significantly (p < 0.05) attenuated TG, CHO, LDL-c, and VLDL-c at values comparable with the NR group. The most efficient treatment for improving the lipid profile and atherogenicity complication was BNSE at 500 mg kg-1, performing even better than 250 mg kg-1. Administrating BNSE at 250 or 500 mg kg-1 improved the liver's function in a dose-dependent manner. Comparing the lower dose of 250 mg kg-1 of BNSE with 500 mg kg-1 showed that administrating 250 mg kg-1 attenuated alanine transaminase (ALT) by 28.92%, against 33.36% when 500 mg kg-1 was given. A similar trend was observed in aspartate aminotransferase (AST), where 19.44% was recorded for BNSE at 250 mg kg-1 and 34.93% for BNSE at 500 mg kg-1. Higher efficiency was noticed for BNSE at 250 and 500 mg kg-1 regarding alkaline phosphatase (ALP). An improvement of 38.73% for BNSE at 500 mg kg-1 was shown. The best treatment was BNSE at 500 mg kg-1, as it markedly improved liver function, such as total bilirubin (T.B.), in a dose-dependent manner. The administration of BNSE attenuated the total protein (T.P.), albumin, and globulin levels to be close to or higher than the typical values in NR rats. Conclusions: BNSE might be used for its promising hypolipidemic, hepatoprotective, and nephroprotective potential and to prevent diseases related to oxidative stress. Further research on its application in humans is highly recommended.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raghad I Alkhurayji
- Al Bukayriyah General Hospital, Prince Niaf Ibn Abdulaziz, Ar Rawdah, Qassim Health Cluster, Ministry of Health, Al Bukayriyah 52725, Saudi Arabia
| | - Huda Aljumayi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid S Alhejji
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia
- Dariyah General Hospital, King Khalid Road, Qassim Health Cluster, Ministry of Health, Dariyah 58523, Saudi Arabia
| | - Sami O Almutairi
- Department of Clinical Nutrition, Almethnab General Hospital, Qassim Health Cluster, Ministry of Health, Al Mithnab 56526, Saudi Arabia
| |
Collapse
|
3
|
P A, M RJ, Joy JM, Visnuvinayagam S, Remya S, Mathew S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int J Biol Macromol 2024; 282:137084. [PMID: 39500428 DOI: 10.1016/j.ijbiomac.2024.137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Wound healing remains a critical challenge in healthcare, requiring advanced wound dressings with superior properties like transparency, absorbency, and biocompatibility. However, gaps exist in the use of marine-derived biopolymers for sustainable dressings. This study addresses this gap by combining κ-carrageenan (KC) with polyvinyl pyrrolidone (PVP) to develop transparent and absorbent biodegradable films through solvent casting and lyophilization techniques. Lyophilized films exhibited superior absorbency (9.17 g/cm2) and moisture management, with a water vapour transmission rate of 3990.67 g/m2/24 h, while solvent-cast films showed 78 % transmittance, enabling wound visualization. Mechanical testing revealed high tensile strength (31.5 MPa) and folding endurance (410 folds), ensuring durability. In vitro bactericidal assays confirmed efficacy against MRSA and E. coli, and in vivo tests on Wistar rats showed complete wound healing within 16 days with 91.1 % closure, outperforming untreated controls (76.7 %). This is the first study to explore lyophilized KC-PVP films for wound dressing applications, demonstrating potential for drug release, absorbency, and biodegradability. The innovative combination of biopolymers and fabrication techniques offers a sustainable, high-performance solution for wound care.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - S Visnuvinayagam
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - S Remya
- Fish Processing Technology, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
4
|
Cantorán-Castillo A, Beltrán-Salinas B, Antúnez-Treviño JM, Martínez-Pedraza R, Franco-Márquez R, Guzmán-García MA, Cerda-Flores RM, Perales-Pérez RV, Zakian C, Ancer-Rodriguez J, Márquez-Méndez M. Preventing bisphosphonate induced osteonecrosis of the jaw with a polyguanidine conjugate (GuaDex): A promising new approach. Bone 2024; 187:117211. [PMID: 39053792 DOI: 10.1016/j.bone.2024.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Osteonecrosis of the jaw (ONJ) is a relatively rare side effect after prolonged use of bisphosphonates, which are drugs used to treat bone resorption in osteoporosis and certain cancers. This study introduces a novel ONJ model in rats by combining exposure to bisphosphonates, oral surgery, and bacterial inoculation. Potential ONJ preventive effects of polyguanidine (GuaDex) or antibiotics were evaluated. The study consisted of twenty-four male Wistar rats were divided into four groups. Groups 1 to 3 were given weekly doses of i.v. Zoledronic acid (ZA), four weeks before and two weeks after an osteotomy procedure on their left mandibular first molar. Group 4 was a negative control. Streptococcus gordonii bacteria were introduced into the osteotomy pulp chamber and via the food for seven days. On day eight, the rats were given different treatments. Group 1 was given a GuaDex injection into the osteotomy socket, Group 2 was given an intramuscular (i.m.) injection of clindamycin, Group 3 (positive control) was given an i.m. injection of saline, and Group 4 was given an i.m. injection of saline. Blood samples were taken two weeks after the osteotomy procedure, after which the rats were euthanized. Bone healing, bone mineral density, histology, and blood status were analyzed. The results showed that Group 1 (GuaDex) had no ONJ, extensive ongoing bone regeneration, active healing activity, vascularization, and no presence of bacteria. Group 2 (clindamycin) showed early stages of ONJ, avascular areas, and bacteria. Group 3 showed stages of ONJ, inflammatory infiltrates, defective healing, and bacterial presence, and Group 4 had normal healing activity and no bacterial presence. Conclusion: ZA treatment and bacterial inoculation after tooth extraction inhibited bone remodeling/healing and induced ONJ characteristic lesions in the rats. Only GuaDex apparently prevented ONJ development, stimulated bone remodeling, and provided an antimicrobial effect.
Collapse
Affiliation(s)
- Arquímedes Cantorán-Castillo
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Belinda Beltrán-Salinas
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Jorge M Antúnez-Treviño
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Ricardo Martínez-Pedraza
- Faculty of Dentistry, Autonomous University of Nuevo Leon, Dr. Eduardo Aguirre Pequeno, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Rodolfo Franco-Márquez
- Department of Pathology and Cytopathology, Hospital Universitario, Autonomous University of Nuevo León, Av. Dr. J. Eleuterio Gonzalez S/N, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Mario A Guzmán-García
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Nuevo Leon, 66054 Gral. Escobedo, NL, Mexico
| | - Ricardo M Cerda-Flores
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Raúl V Perales-Pérez
- Odontología Avanzada Laser, Calle Juarez 109 Sur, Centro, 67500 Montemorelos, NL, Mexico
| | - Christian Zakian
- Kevork Instruments, Palacio de Justicia #888, Col. Anahuac, 66450 San Nicolas De Los Garza, NL, Mexico
| | - Jesús Ancer-Rodriguez
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico
| | - Marcela Márquez-Méndez
- Center for Research and Development on Health Science, Autonomous University of Nuevo Leon, Dr. J. Eluterio Gonzalez/Dr. Carlos Canseco, Mitras Centro, 64460 Monterrey, NL, Mexico.
| |
Collapse
|
5
|
Gundu S, Sahi AK, Kumari P, Tekam CS, Allu I, Singh R, Mahto SK. In vivo characterization of a luffa-based composite scaffold for subcutaneous implantation in rats. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1922-1946. [PMID: 38970296 DOI: 10.1080/09205063.2024.2363080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/28/2024] [Indexed: 07/08/2024]
Abstract
Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. In vivo studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the in vivo biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pooja Kumari
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Chandrakant Singh Tekam
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ishita Allu
- Department of Biomedical Engineering, University of Engineering (UCE), Osmania University, Hyderabad, India
| | - Richa Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
- Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
6
|
Pelpolage SW, Sasaki R, Shimada K, Nagura T, Uchino H, Han KH, Fukushima M. Oral Supplementation with Betaine Powder Ameliorated High Blood Pressure in Spontaneously Hypertensive Rats. Metabolites 2024; 14:390. [PMID: 39057713 PMCID: PMC11279126 DOI: 10.3390/metabo14070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Supplementation of betaine is associated with improved cardiac health, potentially due to its function in re-methylation of homocysteine, an independent risk factor for cardiovascular diseases. We investigated the effects of oral betaine supplementation on blood pressure homeostasis in spontaneously hypertensive (SHR) rats and Wistar Kyoto (WKY) rats in an 8 week-feeding trial with control (SHR-con and WKY-con) and 1% betaine supplemented (SHR-b and WKY-b) diets. Systolic, diastolic, and mean blood pressure in the SHR-b group were significantly lower at week 8 (p = 0.013, p = 0.011, p = 0.010, respectively). Furthermore, serum nitric oxide (NO) levels were significantly (p < 0.05) improved in the WKY-b and SHR-b groups, suggesting a healthy endothelial function. Additionally, the serum angiotensin I converting enzyme level in SHR-b rats was also significantly lowered, which may have been another reason for lower blood pressure. A significantly higher non-HDL level in the SHR-b group might reflect enhanced lipid secretion into the circulation in the form of very-low-density lipoprotein (VLDL). Betaine is known for its effect on the synthesis of phosphatidylcholine, a key component of VLDL. However, the long-term net outcomes of both blood pressure lowering and serum lipid increment should be further studied.
Collapse
Affiliation(s)
- Samanthi Wathsala Pelpolage
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Rie Sasaki
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Kenichiro Shimada
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Taizo Nagura
- Research Center, Nippon Beet Sugar Mfg., Co., Ltd., Obihiro 080-0831, Hokkaido, Japan; (T.N.)
| | - Hirokatsu Uchino
- Research Center, Nippon Beet Sugar Mfg., Co., Ltd., Obihiro 080-0831, Hokkaido, Japan; (T.N.)
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| |
Collapse
|
7
|
Maleki Sedgi F, Mohammad Hosseiniazar M, Alizadeh M. The effects of replacing ghee with rapeseed oil on liver steatosis and enzymes, lipid profile, insulin resistance and anthropometric measurements in patients with non-alcoholic fatty liver disease: a randomised controlled clinical trial. Br J Nutr 2024; 131:1985-1996. [PMID: 38501177 DOI: 10.1017/s0007114524000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), which is a prevalent hepatic condition worldwide, is expected to develop into the leading reason for end-stage fatty liver in the forthcoming decades. Incorporating rapeseed oil into a balanced diet may be beneficial in improving NAFLD. The goal of this trial was to evaluate the impact of substituting ghee with rapeseed oil on primary outcomes such as fatty liver and liver enzymes, as well as on secondary outcomes including glycaemic variables, lipid profile and anthropometric measurements in individuals with NAFLD. Over 12 weeks, 110 patients (seventy men and forty women; BMI (mean) 28·2 (sd 1·6 kg/m2); mean age 42 (sd 9·6) years), who daily consumed ghee, were assigned to the intervention or control group through random allocation. The intervention group was advised to substitute ghee with rapeseed oil in the same amount. The control group continued the consumption of ghee and was instructed to adhere to a healthy diet. Results showed a significant reduction in the steatosis in the intervention group in comparison with the control group (P < 0·001). However, a significant change in the levels of alanine aminotransferase (–14·4 μg/l), γ-glutamyl transferase (–1·8 μg/l), TAG (–39·7 mg/dl), total cholesterol (–17·2 mg/dl), LDL (–7·5 mg/dl), fasting blood glucose (–7·5 mg/dl), insulin (–3·05 mU/l), Homeostatic Model Assessment for Insulin Resistance (–0·9), Quantitative Insulin-Sensitivity Check Index (+0·01), weight (–4·3 kg), BMI (–0·04 kg/m2), waist (–5·6 cm) and waist:height ratio (–0·04) was seen in the intervention group. The consumption of rapeseed oil instead of ghee caused improvements in liver steatosis and enzymes, glycaemic variables and anthropometric measurements among individuals with NAFLD.
Collapse
Affiliation(s)
- Fatemeh Maleki Sedgi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Alizadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Mishra AH, Mohan S, Gutti P, Krishna S, Sundaraman S, Chakraborti S, Jaiswal AK, Nambi Raj NA, Mishra D. Bioselective and Radiopaque Zinc-Biopolymeric Complex-Based Porous Biomaterials Promote Mammalian Tissue Ingrowth In Vivo While Inhibiting Microbial Biofilm Gene Expression and Biofilm Formation. ACS APPLIED BIO MATERIALS 2024; 7:3701-3713. [PMID: 38748449 DOI: 10.1021/acsabm.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Metal-organic complexes have shown astounding bioactive properties; however, they are rarely explored as biomaterials. Recent studies showed that carboxymethyl-chitosan (CMC) genipin-conjugated zinc biomimetic scaffolds have unique bioselective properties. The biomaterial was reported to be mammalian cell-friendly; at the same time, it was found to discourage microbial biofilm formation on its surface, which seemed to be a promising solution to addressing the problem of trauma-associated biofilm formation and development of antimicrobial resistance. However, the mechanically frail characteristics and zinc overload raise concerns and limit the potential of the said biomaterials. Hence, the present work is focused on improving the strength of the earlier scaffold formulations, testing its in vivo efficacy and reaffirming its action against biofilm-forming microbe Staphylococcus aureus. Scaling up of CMC proportion increased rigidity, and 8% CMC was found to be the ideal concentration for robust scaffold fabrication. Freeze-dried CMC scaffolds with or without genipin (GP) cross-linking were conjugated with zinc using 2 M zinc acetate solution. Characterization results indicated that the CMC-Zn scaffolds, without genipin, showed mechanical properties close to bone fillers, resist in vitro enzymatic degradation until 4 weeks, are porous in nature, and have radiopacity close to mandibular bones. Upon implantation in a subcutaneous pocket of Wistar rats, the scaffolds showed tissue in-growth with simultaneous degradation without any signs of toxicity past 28 days. Neither were there any signs of toxicity in any of the vital organs. Considering many superior properties among the other formulations, the CMC-Zn scaffolds were furthered for biofilm studies. CMC-Zn showed negligible S. aureus biofilm formation on its surface as revealed by an alamar blue-based study. RT-PCR analysis revealed that CMC-Zn downregulated the expression of pro-biofilm effector genes such as icaC and clfB. A protein docking study predicted the inhibitory mechanism of CMC-Zn. Although it binds strongly when alone, at high density, it may cause inactivation of the transmembrane upstream activators of the said genes, thereby preventing their dimerization and subsequent inactivation of the effector genes. In conclusion, zinc-conjugated carboxymethyl-chitosan scaffolds are mechanically robust, porous, yet biodegradable, harmless to the host in the long term, they are radiopaque and prevent biofilm gene expression in notorious microbes; hence, they could be a suitable candidate for bone filler applications.
Collapse
Affiliation(s)
- Arushi Hitendra Mishra
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sanjukta Mohan
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Gutti
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sreevatsan Krishna
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sugunapriyadarshini Sundaraman
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Sourangshu Chakraborti
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - N Arunai Nambi Raj
- School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Debasish Mishra
- Bioinspired Design Lab, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Fadaly WAA, Elshaier YAMM, Ali FEM, El-Bahrawy AH, Abdellatif KRA, Nemr MTM. Vicinal diaryl pyrazole with tetrazole/urea scaffolds as selective angiotensin converting enzyme-1/cyclooxygenase-2 inhibitors: Design, synthesis, anti-hypertensive, anti-fibrotic, and anti-inflammatory. Drug Dev Res 2024; 85:e22217. [PMID: 38845214 DOI: 10.1002/ddr.22217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
As a hybrid weapon, two novel series of pyrazoles, 16a-f and 17a-f, targeting both COX-2 and ACE-1-N-domain, were created and their anti-inflammatory, anti-hypertensive, and anti-fibrotic properties were evaluated. In vitro, 17b and 17f showed COX-2 selectivity (SI = 534.22 and 491.90, respectively) compared to celecoxib (SI = 326.66) and NF-κB (IC50 1.87 and 2.03 μM, respectively). 17b (IC50 0.078 μM) and 17 f (IC50 0.094 μM) inhibited ACE-1 comparable to perindopril (PER) (IC50 0.048 μM). In vivo, 17b decreased systolic blood pressure by 18.6%, 17b and 17f increased serum NO levels by 345.8%, and 183.2%, respectively, increased eNOS expression by 0.97 and 0.52 folds, respectively and reduced NF-κB-p65 and P38-MAPK expression by -0.62, -0.22, -0.53, and -0.24 folds, respectively compared to l-NAME (-0.34, -0.45 folds decline in NF-κB-p65 and P38-MAPK, respectively). 17b reduced ANG-II expression which significantly reversed the cardiac histological changes induced by L-NAME.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yaseen A M M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Ali H El-Bahrawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Khaled R A Abdellatif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Pharmaceutical Sciences Department, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Wu TY, Hsieh YC, Yin WR, Cheng KY, Hou YT. Fabrication of a decellularized liver matrix-based hepatic patch for the repair of CCl4-induced liver injury. Biotechnol J 2024; 19:e2300570. [PMID: 38864387 DOI: 10.1002/biot.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
This article primarily introduces a new treatment for liver fibrosis/cirrhosis. We developed a hepatic patch by combining decellularized liver matrix (DLM) with the hepatocyte growth factor (HGF)/heparin-complex and evaluated its restorative efficacy. In vitro prophylactic results, the HGF/heparin-DLM patches effectively mitigated CCl4-induced hepatocyte toxicity and restored the cytotoxicity levels to the baseline levels by day 5. Furthermore, these patches restored albumin synthesis of injured hepatocytes to more than 70% of the normal levels within 5 days. In vitro therapeutic results, the urea synthesis of the injured hepatocytes reached 91% of the normal levels after 10 days of culture, indicating successful restoration of hepatic function by the HGF/heparin-DLM patches in both prophylactic and therapeutic models. In vivo results, HGF/heparin-DLM patches attached to the liver and gut exhibited a significant decrease in collagen content (4.44 times and 2.77 times, respectively) and an increase in glycogen content (1.19 times and 1.12 times, respectively) compared to the fibrosis group after 1 week, separately. In summary, liver function was restored and inflammation was inhibited through the combined effects of DLM and the HGF/heparin-complex in fibrotic liver. The newly designed hepatic patch holds promise for both in vitro and in vivo regeneration therapy and preventive health care for liver tissue engineering.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Hsieh
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Rong Yin
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Yi Cheng
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Te Hou
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Zolkeflee NKZ, Wong PL, Maulidiani M, Ramli NS, Azlan A, Mediani A, Tham CL, Abas F. Revealing metabolic and biochemical variations via 1H NMR metabolomics in streptozotocin-nicotinamide-induced diabetic rats treated with metformin. Biochem Biophys Res Commun 2024; 708:149778. [PMID: 38507867 DOI: 10.1016/j.bbrc.2024.149778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The increasing prevalence of lean diabetes has prompted the generation of animal models that mimic metabolic disease in humans. This study aimed to determine the optimum streptozotocin-nicotinamide (STZ-NA) dosage ratio to elicit lean diabetic features in a rat model. It also used a proton nuclear magnetic resonance (1H NMR) urinary metabolomics approach to identify the metabolic effect of metformin treatment on this novel rat model. Three different STZ-NA dosage regimens (by body weight: Group A: 110 mg/kg NA and 45 mg/kg STZ; Group B: 180 mg/kg NA and 65 mg/kg STZ and Group C: 120 mg/kg NA and 60 mg/kg STZ) were administered to Sprague-Dawley rats along with oral metformin. Group A diabetic rats (A-DC) showed favorable serum biochemical analyses and a more positive response toward oral metformin administration relative to the other STZ-NA dosage ratio groups. Orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed that glucose, citrate, pyruvate, hippurate, and methylnicotinamide differentiating the OPLS-DA of A-MTF rats (Group A diabetic rats treated with metformin) and A-DC model rats. Subsequent metabolic pathway analyses revealed that metformin treatment was associated with improvement in dysfunctions caused by STZ-NA induction, including carbohydrate metabolism, cofactor metabolism, and vitamin and amino acid metabolism. In conclusion, our results identify the best STZ-NA dosage ratio for a rat model to exhibit lean type 2 diabetic features with optimum sensitivity to metformin treatment. The data presented here could be informative to improve our understanding of non-obese diabetes in humans through the identification of possible activated metabolic pathways in the STZ-NA-induced diabetic rats model.
Collapse
Affiliation(s)
- Nur Khaleeda Zulaikha Zolkeflee
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pei Lou Wong
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - M Maulidiani
- School of Fundamental Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmed Mediani
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
El-Sayed AIM, El-Sheekh MM, Abo-Neima SE. Mycosynthesis of selenium nanoparticles using Penicillium tardochrysogenum as a therapeutic agent and their combination with infrared irradiation against Ehrlich carcinoma. Sci Rep 2024; 14:2547. [PMID: 38291218 PMCID: PMC10827740 DOI: 10.1038/s41598-024-52982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Over the past years, the assessment of myco-fabricated selenium nanoparticles (SeNPs) properties, is still in its infancy. Herein, we have highly stable myco-synthesized SeNPs using molecularly identified soil-isolated fungus; Penicillium tardochrysogenum OR059437; (PeSeNPs) were clarified via TEM, EDX, UV-Vis spectrophotometer, FTIR and zeta potential. The therapeutic efficacy profile will be determined, these crystalline PeSeNPs were examined for antioxidant, antimicrobial, MIC, and anticancer potentials, indicating that, PeSeNPs have antioxidant activity of (IC50, 109.11 μg/mL) using DPPH free radical scavenging assay. Also, PeSeNPs possess antimicrobial potential against Penicillium italicum RCMB 001,018 (1) IMI 193,019, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 4330 and Porphyromonas gingivalis RCMB 022,001 (1) EMCC 1699; with I.Z. diameters and MIC; 16 ± 0.5 mm and MIC 500 µg/ml, 11.9 ± 0.6 mm, 500 µg/ml and 15.9±0.6 mm, 1000 µg/ml, respectively. Additionally, TEM micrographs were taken for P. italicum treated with PeSeNPs, demonstrating the destruction of hyphal membrane and internal organelles integrity, pores formation, and cell death. PeSeNP alone in vivo and combined with a near-infrared physiotherapy lamp with an energy intensity of 140 mW/cm2 showed a strong therapeutic effect against cancer cells. Thus, PeSeNPs represent anticancer agents and a suitable photothermal option for treating different kinds of cancer cells with lower toxicity and higher efficiency than normal cells. The combination therapy showed a very large and significant reduction in tumor volume, the tumor cells showed large necrosis, shrank, and disappeared. There was also improvement in liver ultrastructure, liver enzymes, and histology, as well as renal function, urea, and creatinine.
Collapse
Affiliation(s)
- Abeer I M El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Sahar E Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
13
|
Liu Z, Daniels T, Campen MJ, Alvidrez RIM. Inflammatory atherosclerotic plaque identification by SPECT/CT imaging of LFA-1 using [ 111In] In-DANBIRT in a novel dyslipidemic rat model. Ann Nucl Med 2023; 37:635-643. [PMID: 37742306 DOI: 10.1007/s12149-023-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Atherosclerosis is prevalent globally, closely associated with dyslipidemia and other metabolic dysfunction. Early diagnosis of atherosclerosis is challenging due to limited diagnostic capabilities that need to be expanded with animal models with enhanced vascular biology like rats. Our previous research showed [111In] In-DANBIRT has potential as a diagnostic tool for detecting atherosclerosis in mice. The primary aim of the present study is to evaluate [111In] In-DANBIRT in a novel atherosclerotic rat with early- and late-stage atherosclerosis and metabolic disease. METHODS We characterized metabolic and body composition differences in these novel dyslipidemic rats under different diets using serum chemistry and dual-energy X-ray absorptiometry (DEXA) scan, respectively. We performed 1-h post-injection in vivo molecular imaging of ApoE knockout, lean Zucker (LZ) male rats at baseline and followed them into 10 weeks of either normal or high-fat/cholesterol diet implementation (22 weeks of age). RESULTS We identified significant differences in body composition and metabolic changes in ApoE knockout rats compared to ApoE wildtype rats. Our findings indicate an increased uptake of [111In] In-DANBIRT in ApoE knockout, lean Zucker (LZ) rats, particularly in the descending aorta, a location where early-stage atherosclerosis is commonly found. Our findings, however, also revealed that the ApoE knockout, Zucker diabetic fatty (ZDF) model has high mortality rate, which may be attributed to alterations of critical enzymes involved in regulating metabolism and liver function. CONCLUSION Our results are highly encouraging as they demonstrated the potential of [111In] In-DANBIRT to detect early-stage atherosclerosis in rats that might otherwise go unnoticed by other methods, showcasing the high sensitivity of [111In] In-DANBIRT. Our future studies will aim to establish a viable T2D atherosclerosis model in rats with more advanced stages of the disease to further demonstrate the reliability of [111In] In-DANBIRT as a diagnostic tool for patients in all stages of atherosclerosis.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Tamara Daniels
- Department of Radiopharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Matthew J Campen
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, 87131, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Department of Radiopharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.
- College of Pharmacy, Health Sciences Center, University of New Mexico, Albuquerque, NM, 87131, USA.
- Pittsburgh Liver Research Center Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Clinical and Translational Science Center, University of New Mexico, Albuquerque, NM, 87131, USA.
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA.
| |
Collapse
|
14
|
Yanchev NB, Delev DP, Vilmosh NB, Atanassova PK, Hrischev PI. Subchronic toxicity of Sideritis scardica, Lamiaceae on male Wistar rats. Folia Med (Plovdiv) 2023; 65:638-643. [PMID: 37655384 DOI: 10.3897/folmed.65.e86540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION Sideritisscardica, Lamiaceae, is a plant with anti-inflammatory, antirheumatic, digestive, and antimicrobial properties that is widely used in folk medicine throughout the Balkan Peninsula. The name derives from the Greek word 'sideros', meaning iron, and it is believed that the plant was also used by soldiers to heal wounds caused by cutting weapons.
Collapse
|
15
|
Ikhsan I, Idroes R, Azharuddin A, Nasution R, Yusnaini R, Iqhrammullah M. Fatty Acid-Rich Extract from Holothuria atra for Hyperuricemia via Expressions Modulation of GLUT9a and GLUT9b in Rat Model. Molecules 2023; 28:molecules28103981. [PMID: 37241722 DOI: 10.3390/molecules28103981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
An edible sea cucumber Holothuria atra has been hypothesized to have medicinal benefits against hyperuricemia owing to its bioactive compounds, including mono- and poly-unsaturated fatty acids. Herein, we aimed to investigate the fatty acids-rich extract produced from H. atra to treat hyperuricemic rats (Rattus novergicus). The extraction was carried out using n-hexane solvent and then administered to potassium oxonate-induced hyperuricemic rats, with allopurinol acting as a positive control. The extract (50, 100, 150 mg/kg body weight) and allopurinol (10 mg/kg) were administered QD through an oral route using a nasogastric tube. Serum uric acid, creatinine, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and blood urea nitrogen of the abdominal aortic blood were investigated. Our results suggested that the extract was rich in polyunsaturated (arachidonic acid) and monounsaturated fatty acids (oleic acid), in which its administration of 150 mg/kg could significantly reduce serum uric acid (p < 0.001), AST (p = 0.001), and ALT (p = 0.0302). The anti-hyperuricemic activity could be associated with the modulation of GLUT9 by the H. atra extract. In conclusion, the n-hexane extract from H. atra is a potential serum uric acid-lowering agent targeting GLUT9, where further investigations are crucially warranted.
Collapse
Affiliation(s)
- Ikhsan Ikhsan
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Surgery, Tgk. Chik Di Tiro General Hospital, Sigli 24116, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Azharuddin Azharuddin
- Department of Orthopedic and Traumatology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Orthopedic and Traumatology, Dr. Zainoel Abidin Hospital, Banda Aceh 24415, Indonesia
| | - Rosnani Nasution
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rika Yusnaini
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Psychology and Nursing, Faculty of Medicine, Malikussaleh University, Lhokseumawe 24351, Indonesia
| | - Muhammad Iqhrammullah
- Faculty of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23245, Indonesia
| |
Collapse
|
16
|
Ali A, Paladhi A, Hira SK, Singh BN, Pyare R. Bioactive ZnO-assisted 1393 glass scaffold promotes osteogenic differentiation: Some studies. J Biomed Mater Res B Appl Biomater 2023; 111:1059-1073. [PMID: 36583285 DOI: 10.1002/jbm.b.35214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
We developed ZnO-assisted 1393 bioactive glass-based scaffold with suitable mechanical properties through foam replica technique and observed to be suitable for bone tissue engineering application. However, the developed scaffolds' ability to facilitate cellular infiltration and integration was further assessed through in vivo studies in suitable animal model. Herein, the pure 1393 bioactive glass (BG) and ZnO-assisted 1393 bioactive glass- (ZnBGs; 1, 2, 4 mol% ZnO substitution for SiO2 in pure BG is named as Z1BG, Z2BG, Z3BG, respectively) based scaffolds were prepared through sol-gel route, followed by foam replica techniques and characterized by a series of in vitro and some in vivo tests. Different cell lines like normal mouse embryonic cells (NIH/3T3), mouse bone marrow stromal cells (mBMSc), peripheral blood mononuclear cells, that is, lymphocytes and monocytes (PBMC) and U2OS (carcinogenic human osteosarcoma cells) were used in determination and comparative analysis of the biological compatibility of the BG and ZnBGs. Also, the alkaline phosphatase (ALP) activity, and osteogenic gene expression by primer-specific osteopontin (OPN), osteocalcin (OCN), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were performed to study osteogenic differentiability of the stromal cells in different BGs. Moreover, radiological and histopathological tests were performed in bone defect model of Wister rats to evaluate the in vivo bone regeneration and healing. Interestingly, these studies demonstrate augmented biological compatibility, and superior osteogenic differentiation in ZnBGs, in particular Z3BG than the pure BG in most cases.
Collapse
Affiliation(s)
- Akher Ali
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Ram Pyare
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
17
|
Nakakaawa L, Gbala ID, Cheseto X, Bargul JL, Wesonga JM. Oral acute, sub-acute toxicity and phytochemical profile of Brassica carinata A. Braun microgreens ethanolic extract in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116121. [PMID: 36599374 DOI: 10.1016/j.jep.2022.116121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Currently, there is a remarkable increase in the consumption of microgreens, (young edible vegetables or herbs), as potential nutraceuticals for the management of diseases. Brassica carinata A. Braun is one of the traditional leafy vegetables cultivated in various parts of Sub- Saharan Africa. The plant is revered for its efficacy in the treatment of wounds and gastrointestinal disorders among other medicinal benefits. It is therefore crucial to characterize Brassica carinata microgreens for their phytoconstituents and ascertain their safety for use. AIM OF THE STUDY The study evaluated the oral acute and subacute toxicity of Brassica carinata microgreens ethanol extract (BMEE) in Wistar rats and identification of its chemical composition and profile. MATERIALS AND METHODS For acute toxicity (14 days), rats were grouped into four and received a single oral dose, the control group received distilled water, while others received 500 mg/kg, 1000 mg/kg, and 2000 mg/kg of BMEE. For the subacute toxicity (28 days), rats in four groups received daily doses of 250 mg/kg, 500 mg/kg or 1000 mg/kg and distilled water. Daily clinical observations like lethargy and mortality were conducted. Hematological, biochemical, and histopathological evaluations were performed at the end of each experiment. Phytochemical profile was determined using a UV-VIS spectrophotometer and Gas Chromatography coupled to Mass Spectrometry (GC-MS) analysis determined the potential bioactive components in the microgreens extract. RESULTS In both acute and sub-acute toxicity studies, no mortalities, indications of abnormality, or any treatment related adverse effects were observed at doses of 2000 mg/kg, 1000 mg/kg, 500 mg/kg, and 250 mg/kg. The LD50 of BMEE was above 2000 mg/kg. No significant (p > 0.05) changes in the hematological and biochemical parameters of the treated groups compared to the control groups in both studies. Histopathological examination of the liver, kidney, lungs, and heart revealed a normal architecture of the tissues in all the treated animals. Phytochemical analyses revealed the presence of flavonoids (most abundant), phenols and alkaloids. Phytol, linoleic acid, and 9,12,15-octadecatrienoic acid, among other compounds, were identified by GC-MS analysis. CONCLUSION The results showed that B. carinata microgreens ethanol extract is nontoxic and found to have several compounds with reported pharmacological significance suggesting safety for use.
Collapse
Affiliation(s)
- Lilian Nakakaawa
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic, Sciences Technology, and Innovation (PAUSTI), Juja, Kenya.
| | - Ifeoluwa D Gbala
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic, Sciences Technology, and Innovation (PAUSTI), Juja, Kenya.
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Juja, Kenya.
| | - John M Wesonga
- Department of Horticulture and Food Security, JKUAT, Juja, Kenya.
| |
Collapse
|
18
|
Iji OT, Ajibade TO, Esan OO, Awoyomi OV, Oyagbemi AA, Adetona MO, Omobowale TO, Yakubu MA, Oguntibeju OO, Nwulia E. Ameliorative effects of glycine on cobalt chloride-induced hepato-renal toxicity in rats. Animal Model Exp Med 2023; 6:168-177. [PMID: 37141004 PMCID: PMC10158950 DOI: 10.1002/ame2.12315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND The important roles of liver and kidney in the elimination of injurious chemicals make them highly susceptible to the noxious activities of various toxicants including cobalt chloride (CoCl2 ). This study was designed to investigate the role of glycine in the mitigation of hepato-renal toxicities associated with CoCl2 exposure. METHODS Forty-two (42) male rats were grouped as Control; (CoCl2 ; 300 ppm); CoCl2 + Glycine (50 mg/kg); CoCl2 + Glycine (100 mg/kg); Glycine (50 mg/kg); and Glycine (100 mg/kg). The markers of hepatic and renal damage, oxidative stress, the antioxidant defense system, histopathology, and immunohistochemical localization of neutrophil gelatinase associated lipocalin (NGAL) and renal podocin were evaluated. RESULTS Glycine significantly reduced the markers of oxidative stress (malondialdehyde content and H2 O2 generation), liver function tests (ALT, AST, and ALP), markers of renal function (creatinine and BUN), and decreased the expression of neutrophil gelatinase-associated lipocalin (NGAL) and podocin compared with rats exposed to CoCl2 toxicity without glycine treatment. Histopathology lesions including patchy tubular epithelial necrosis, tubular epithelial degeneration and periglomerular inflammation in renal tissues, and severe portal hepatocellular necrosis, inflammation, and duct hyperplasia were observed in hepatic tissues of rats exposed to CoCl2 toxicity, but were mild to absent in glycine-treated rats. CONCLUSION The results of this study clearly demonstrate protective effects of glycine against CoCl2 -induced tissue injuries and derangement of physiological activities of the hepatic and renal systems in rats. The protective effects are mediated via augmentation of total antioxidant capacity and upregulation of NGAL and podocin expression.
Collapse
Affiliation(s)
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwaseun Olanrewaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Moses Olusola Adetona
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Engineering & Technology, COPHS, Texas Southern University, Houston, Texas, USA
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, College of Medicine, Howard University, Washington, District of Columbia, USA
| |
Collapse
|
19
|
Okutan B, Schwarze UY, Berger L, Martinez DC, Herber V, Suljevic O, Plocinski T, Swieszkowski W, Santos SG, Schindl R, Löffler JF, Weinberg AM, Sommer NG. The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implants. BIOMATERIALS ADVANCES 2023; 146:213287. [PMID: 36669235 DOI: 10.1016/j.bioadv.2023.213287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Magnesium (Mg)-based implants are promising candidates for orthopedic interventions, because of their biocompatibility, good mechanical features, and ability to degrade completely in the body, eliminating the need for an additional removal surgery. In the present study, we synthesized and investigated two Mg-based materials, ultrahigh-purity ZX00 (Mg-Zn-Ca; <0.5 wt% Zn and <0.5 wt% Ca, in wt%; Fe-content <1 ppm) and ultrahigh-purity Mg (XHP-Mg, >99.999 wt% Mg; Fe-content <1 ppm), in vitro and in vivo in juvenile healthy rats to clarify the effect of the alloying elements Zn and Ca on mechanical properties, microstructure, cytocompatibility and degradation rate. Potential differences in bone formation and bone in-growth were also assessed and compared with state-of-the-art non-degradable titanium (Ti)-implanted, sham-operated, and control (non-intervention) groups, using micro-computed tomography, histology and scanning electron microscopy. At 6 and 24 weeks after implantation, serum alkaline phosphatase (ALP), calcium (Ca), and Mg level were measured and bone marrow stromal cells (BMSCs) were isolated for real-time PCR analysis. Results show that ZX00 implants have smaller grain size and superior mechanical properties than XHP-Mg, and that both reveal good biocompatibility in cytocompatibilty tests. ZX00 homogenously degraded with an increased gas accumulation 12 and 24 weeks after implantation, whereas XHP-Mg exhibited higher gas accumulation already at 2 weeks. Serum ALP, Ca, and Mg levels were comparable among all groups and both Mg-based implants led to similar relative expression levels of Alp, Runx2, and Bmp-2 genes at weeks 6 and 24. Histologically, Mg-based implants are superior for new bone tissue formation and bone in-growth compared to Ti implants. Furthermore, by tracking the sequence of multicolor fluorochrome labels, we observed higher mineral apposition rate at week 2 in both Mg-based implants compared to the control groups. Our findings suggest that (i) ZX00 and XHP-Mg support bone formation and remodeling, (ii) both Mg-based implants are superior to Ti implants in terms of new bone tissue formation and osseointegration, and (iii) ZX00 is more favorable due to its lower degradation rate and moderate gas accumulation.
Collapse
Affiliation(s)
- Begüm Okutan
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Uwe Y Schwarze
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Leopold Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Diana C Martinez
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria; Department of Oral Surgery, University Center for Dental Medicine, University of Basel, Mattenstrasse 40, 4058 Basel, Switzerland.
| | - Omer Suljevic
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Tomasz Plocinski
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Wojciech Swieszkowski
- Department of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland.
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal.
| | - Rainer Schindl
- Gottfried Schatz Research Center, Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria.
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Annelie M Weinberg
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Nicole G Sommer
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| |
Collapse
|
20
|
Atia T, Sakr HI, Damanhory AA, Moawad K, Alsawy M. The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study. Arch Physiol Biochem 2023; 129:168-179. [PMID: 32816576 DOI: 10.1080/13813455.2020.1806885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the protective effect of green tea on diabetic hepato-renal complications. Thirty male Wistar rats were randomly divided into five equal groups: normal control, diabetic control, glibenclamide-treated, green tea-treated, and combined therapy-treated groups; ethical approval number "BERC-014-01-20." After eight weeks, animals were sacrificed by CO2 euthanasia method, liver and kidney tissues were processed and stained for pathological changes, and blood samples were collected for biochemical analysis. Diabetic rats showed multiple hepato-renal morphological and apoptotic changes associated with significantly increased some biochemical parameters, while serum albumin and HDL decreased significantly compared to normal control (p < .05). Monotherapy can induce significant improvements in pathological and biochemical changes but has not been able to achieve normal patterns. In conclusion, green tea alone has a poor hypoglycaemic effect but can reduce diabetic complications, whereas glibenclamide cannot prevent diabetic complications. The addition of green tea to oral hypoglycaemic therapy has shown a potent synergistic effect.
Collapse
Affiliation(s)
- Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences Prince, Sattam Bin Abdulaziz University, Al-Kharj, KSA
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| | - Ahmed A Damanhory
- Batterjee Medical College, Jeddah, KSA
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Karim Moawad
- School of Biological Science, UCI, Irvine, CA, USA
| | - Moustfa Alsawy
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| |
Collapse
|
21
|
Endrini S, Abu Bakar FI, Abu Bakar MF, Abdullah N, Marsiati H. Phytochemical profiling, in vitro and in vivo xanthine inhibition and antihyperuricemic activity of Christia vespertilionis leaf. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
22
|
Effects of Phoenix dactylifera against Streptozotocin-Aluminium Chloride Induced Alzheimer's Rats and Their In Silico Study. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1725638. [PMID: 36654869 PMCID: PMC9842421 DOI: 10.1155/2023/1725638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023]
Abstract
Phoenix dactylifera is known for medicinal importance due to its antioxidant, antidiabetic, antidepressant, and anti-inflammatory properties. This study is aimed at evaluating the effect of P. dactylifera seeds to cure Alzheimer's disease (AD). AD was induced in the rats with streptozotocin + aluminium chloride followed by treatment of methanolic extract of P. dactylifera seeds. The blood glucose levels were determined at regular intervals, which showed a prominent decrease in the extracts treated group. Behavior tests, including the Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test, were used to evaluate memory patterns in rats. The results indicated that extract-treated rats significantly improved memory behavior compared to the diseased group. After dissection, the serum electrolytes, antioxidant enzymes, and choline esterase enzymes were measured in different organs. The serum parameters creatinine, urea, and bilirubin increased after extract treatment. Similarly, the level of antioxidant enzymes like peroxidases (POD), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS) in the extract-treated group showed improved results that were close to the normal control group. The enzyme (lipase, insulin, amylase, and acetylcholine) levels were found enhanced in extract groups as compared to diseased rats. High-performance liquid chromatography (HPLC) was used to determine the level of dopamine and serotonin neurotransmitters, which were increased significantly for P. dactylifera seeds with values of 0.18 μg/mg tissue and 0.56 μg/mg tissue, respectively. Overall, results showed that P. dactylifera seeds proved to be quite efficient in improving the memory and behavior of treated rats. The antioxidants and enzymes were also increased; therefore, it may be a potential candidate for treating AD.
Collapse
|
23
|
Anwar F, Omar Asar T, Al-Abassi FA, Kumar V, Alhayyani S. Natural sea salt in diet ameliorates better protection compared to table salt in the doxorubicin-induced cardiac remodeling. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2154491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turky Omar Asar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia
| | - Fahad A. Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
24
|
Saleh MA, Elmaaty AA, El Saeed HS, Saleh MM, Salah M, Ezz Eldin RR. Structure based design and synthesis of 3-(7-nitro-3-oxo-3,4-dihydroquinoxalin-2-yl)propanehydrazide derivatives as novel bacterial DNA-gyrase inhibitors: In-vitro, In-vivo, In-silico and SAR studies. Bioorg Chem 2022; 129:106186. [PMID: 36215786 DOI: 10.1016/j.bioorg.2022.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance (AMR) is one of the critical challenges that have been encountered over the past years. On the other hand, bacterial DNA gyrase is regarded as one of the most outstanding biological targets that quinolones can extensively inhibit, improving AMR. Hence, a novel series of 3-(7-nitro-3-oxo-3,4-dihydroquinoxalin-2-yl)propanehydrazide derivatives (3-6j) were designed and synthesized employing the quinoxaline-2-one scaffold and relying on the pharmacophoric features experienced by the quinolone antibiotic; ciprofloxacin. The antibacterial activity of the synthesized compounds was assessed via in-vitro approaches using eight different Gram-positive and Gram-negative bacterial species. Most of the synthesized compounds revealed eligible antibacterial activities. In particular, compounds 6d and 6e displayed promising antibacterial activity among the investigated compounds. For example, compounds 6d and 6e displayed MIC values of 9.40 and 9.00 µM, respectively, regarding S. aureus, and 4.70 and 4.50 µM, respectively, regarding S. pneumonia in comparison to ciprofloxacin (12.07 µM). The cytotoxicity of compounds 6d and 6e were performed on normal human WI-38 cell lines with IC50 values of 288.69 and 227.64 μM, respectively assuring their safety and selectivity. Besides, DNA gyrase inhibition assay of compounds 6d and 6e was carried out in comparison to ciprofloxacin, and interestingly, compounds 6d and 6e disclosed promising IC50 values of 0.242 and 0.177 μM, respectively, whereas ciprofloxacin displayed an IC50 value of 0.768 μM, assuring the proposed mechanism of action for the afforded compounds. Consequently, compounds 6d and 6e were further assessed via in-vivo approaches by evaluating blood counts, liver and kidney functions, and histopathological examination. Both compounds were found to be safer on the liver and kidney than the reference ciprofloxacin. Moreover, in-silico molecular docking studies were established and revealed reasonable binding affinities for all afforded compounds, particularly compound 6d which exhibited a binding score of -7.51 kcal/mol, surpassing the reference ciprofloxacin (-7.29 kcal/mol) with better anticipated stability at the DNA gyrase binding pocket. Moreover, ADME studies were conducted, disclosing an eligible bioavailability score of >0.55 for all afforded compounds, and reasonable GIT absorption without passing the blood brain barrier was attained for most investigated compounds, ensuring their efficacy and safety. Lastly, a structure activity relationship study for the synthesized compounds was established and unveiled that not only the main pharmacophores required for DNA gyrase inhibition are enough for exerting promising antimicrobial activities, but also derivatization with diverse aryl/hetero aryl aldehydes is essential for their enhanced antimicrobial potential.
Collapse
Affiliation(s)
- Marwa A Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt.
| | - Hoda S El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Egypt
| | - Mohammed Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Egypt
| | - Rogy R Ezz Eldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt.
| |
Collapse
|
25
|
Abdel-Rahman GN, Fouzy AS, Amer MM, Saleh EM, Hamed IA, Sabry BA. Control of carbendazim toxicity using banana peel powder in rats. BIOTECHNOLOGY REPORTS 2022; 36:e00773. [DOI: 10.1016/j.btre.2022.e00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
26
|
Yang T, Wang A, Nie D, Fan W, Jiang X, Yu M, Guo S, Zhu C, Wei G, Gan Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat Commun 2022; 13:6649. [PMID: 36333321 PMCID: PMC9636268 DOI: 10.1038/s41467-022-34357-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Mutual interference between surface ligands on multifunctional nanoparticles remains a significant obstacle to achieving optimal drug-delivery efficacy. Here, we develop ligand-switchable nanoparticles which resemble viral unique surfaces, enabling them to fully display diverse functions. The nanoparticles are modified with a pH-responsive stretchable cell-penetrating peptide (Pep) and a liver-targeting moiety (Gal) (Pep/Gal-PNPs). Once orally administered, the acidic environments trigger the extension of Pep from surface in a virus-like manner, enabling Pep/Gal-PNPs to traverse intestinal barriers efficiently. Subsequently, Gal is exposed by Pep folding at physiological pH, thereby allowing the specific targeting of Pep/Gal-PNPs to the liver. As a proof-of-concept, insulin-loaded Pep/Gal-PNPs are fabricated which exhibit effective intestinal absorption and excellent hepatic deposition of insulin. Crucially, Pep/Gal-PNPs increase hepatic glycogen production by 7.2-fold, contributing to the maintenance of glucose homeostasis for effective diabetes management. Overall, this study provides a promising approach to achieving full potential of diverse ligands on multifunctional nanoparticles.
Collapse
Affiliation(s)
- Tiantian Yang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Aohua Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Di Nie
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Weiwei Fan
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohe Jiang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Miaorong Yu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shiyan Guo
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Chunliu Zhu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Gang Wei
- grid.8547.e0000 0001 0125 2443Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203 China
| | - Yong Gan
- grid.9227.e0000000119573309State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.410749.f0000 0004 0577 6238NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing, 100050 China
| |
Collapse
|
27
|
Pardhiya S, Gautam R, Nirala JP, Murmu NN, Rajamani P. Modulatory role of Bovine serum albumin conjugated manganese dioxide nanoparticle on microwave radiation induced alterations in reproductive parameters of rat. Reprod Toxicol 2022; 113:136-149. [PMID: 36089154 DOI: 10.1016/j.reprotox.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
In recent decades, microwave (MW) radiations are being used extensively for various applications such as Wi-Fi, telecommunication, etc. due to which there have been grave concerns regarding the adverse effects of MW exposure on human health, particularly the reproductive system. MW cause damage to the reproductive system by generating free radicals, decreasing antioxidant defence, and inducing oxidative stress. Hence, the present study was aimed to counteract the harmful effect by using antioxidant enzymes mimicking nanoparticle, Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticle (MNP*). Male Wistar rats were exposed to MW and treated with MNP*, and their individual, as well as combined effect on reproductive parameters was investigated. Results showed that MW exposed rats had significantly reduced testosterone levels along with alterations in the testicular morphology. The antioxidant status decreased, and lipid peroxidation increased significantly in testis. MW exposure also showed altered sperm parameters such as a significant decrease in sperm count, viability, membrane integrity and mitochondrial activity with a significant increase in morphological abnormality and lipid peroxidation. As a result, the changes induced by MW may affect male fertility. However, upon combined exposure of MNP* and MW, these alterations were reduced significantly. Hence, it may be concluded that MNP* could reduce oxidative stress mediated damages in the reproductive system of rats owing to its antioxidant activity, and thus have a potential to act as a radioprotectant.
Collapse
Affiliation(s)
- Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nina Nancy Murmu
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
28
|
Prema D, Balashanmugam P, Kumar J, Venkatasubbu GD. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Arpornchayanon W, Subhawa S, Jaijoy K, Lertprasertsuk N, Soonthornchareonnon N, Sireeratawong S. Safety of the Oral Triphala Recipe from Acute and Chronic Toxicity Tests in Sprague-Dawley Rats. TOXICS 2022; 10:514. [PMID: 36136479 PMCID: PMC9503284 DOI: 10.3390/toxics10090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The Indian Ayurvedic herbal formula Triphala (TPL) is known for its pharmacological properties for immunomodulation, anti-inflammation, antioxidant, and anti-cancer. This study aimed to investigate the acute and chronic toxicities of the Triphala recipe in a rat model. METHODS To assess the acute toxicities, 5000 mg/kg of TPL was orally administered to Sprague-Dawley rats. For chronic toxicities, different dose levels of TPL at 600, 1200, and 2400 mg/kg/day were given daily for 270 days. General health and behaviors and the body and organ weights of the rats were monitored. At the end of the experiment, blood samples were evaluated for hematology and biochemistry profiles. The evaluation of the internal organs' appurtenance and necropsy was performed to confirm the tissue histopathology. RESULTS The results showed that there was no sign of acute toxicity in the TPL group with a decrease in sex organ weights. No significant differences in the rats' behaviors, physical health, body, or organ weights were found between the controls and the rats receiving the 270/day of oral Triphala at 600, 1200, and 2400 mg/kg/day. However, some alterations in blood chemistries and hematology, including glucose, BUN, red blood cells, Hb, HCT, and MCV, were observed without abnormalities in histopathology. CONCLUSIONS It has been demonstrated that the long-term use of TPL in rat models is safe. No toxic effects were found, suggesting possible safety for long-term use in humans.
Collapse
Affiliation(s)
| | - Subhawat Subhawa
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanjana Jaijoy
- McCormick Faculty of Nursing, Payap University, Chiang Mai 50000, Thailand
| | - Nirush Lertprasertsuk
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pharmacology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
30
|
Clerodendrum wallichii Merr Methanol Extract Protected Alcohol-Induced Liver Injury in Sprague-Dawley Rats by Modulating Antioxidant Enzymes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5635048. [PMID: 36051496 PMCID: PMC9427254 DOI: 10.1155/2022/5635048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Materials and Methods An oral acute toxicity study was carried out following OECD guidelines. Hepatotoxicity was induced by the administration of ethanol for 4 weeks. Hepatic enzymes and oxidative stress biomarkers were determined using commercial diagnostic kits. Results Treatment of rats with MECW (800 mg/kg) showed the highest reduction of body weight (4.76 ± 0.372 vs. 16.92 ± 0.846) and liver weight (3.06 ± 0.128 vs 5.55 ± 0.311). Treatment of rats with MECW at 200, 400, 600, 800, and 1000 mg/kg significantly (∗∗p < 0.01) reduced SGPT. Similarly, serum SGOT and ALP were significantly decreased by MECW (200, 400, 600, 800, and 1000 mg/kg). All used doses of MECW significantly increased antioxidant enzymes GSH and SOD. MECW (600 and 800 mg/kg) significantly promoted CAT levels in liver tissues; whereas, it significantly diminished oxidative biomarker, MDA. Histopathological observations of the liver showed improvement in the architecture of hepatic cells having signs of protection with a reduced number of inflammatory cells, vascular degeneration and congestion, cellular degeneration, necrosis, and significant reduction of fatty cells accumulation. Acute toxicity study resulted in the well-tolerability and safety of used doses of MECW (200–1000 mg/kg) in rats. Conclusion Our study clearly demonstrated the hepatoprotective effect of Clerodendrum wallichii extract against ethanol-induced liver injury in the laboratory rats model.
Collapse
|
31
|
Effect of Vitamin-D-Enriched Edible Mushrooms on Vitamin D Status, Bone Health and Expression of CYP2R1, CYP27B1 and VDR Gene in Wistar Rats. J Fungi (Basel) 2022; 8:jof8080864. [PMID: 36012852 PMCID: PMC9409838 DOI: 10.3390/jof8080864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency is highly prevalent in India and worldwide. Mushrooms are important nutritional foods, and in this context shiitake (Lentinula edodes), button (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms are known for their bioactive properties. The application of ultraviolet (UV) irradiation for the production of substantial amounts of vitamin D2 is well established. Levels of serum 25-hydroxy vitamin D (25-OHD), parathyroid hormone (PTH), calcium, phosphorus and alkaline phosphatase (ALP) were significantly (p < 0.05) improved in vitamin-D-deficient rats after feeding with UVB irradiated mushrooms for 4 weeks. Further, microscopic observations indicate an improvement in the osteoid area and the reduction in trabecular separation of the femur bone. In addition, the level of expression of the vitamin D receptor (VDR) gene and genes metabolizing vitamin D were explored. It was observed that in mushroom-fed and vitamin-D-supplemented groups, there was upregulation of CYP2R1 and VDR, while there was downregulation of CYP27B1 in the liver. Further, CYP2R1 was downregulated, while CYP27B1 and VDR were upregulated in kidney tissue.
Collapse
|
32
|
Zahid F, Batool S, Ud-Din F, Ali Z, Nabi M, Khan S, Salman O, Khan GM. Antileishmanial Agents Co-loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity. AAPS PharmSciTech 2022; 23:226. [PMID: 35970966 DOI: 10.1208/s12249-022-02384-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
The prime objective of this study was to develop amphotericin B (AMB) and rifampicin (RIF) co-loaded transfersomal gel (AMB-RIF co-loaded TFG) for effective treatment of cutaneous leishmaniasis (CL). AMB-RIF co-loaded TF was prepared by the thin-film hydration method and was optimized based on particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (%EE), and deformability index. Similarly, AMB-RIF co-loaded TFG was characterized in terms of rheology, spread ability, and pH. In vitro, ex vivo, and in vivo assays were performed to evaluate AMB-RIF co-loaded TF as a potential treatment option for CL. The optimized formulation had vesicles in nanosize range (167 nm) with suitable PDI (0.106), zeta potential (- 19.05 mV), and excellent %EE of RIF (66%) and AMB (85%). Moreover, it had appropriate deformability index (0.952). Additionally, AMB-RIF co-loaded TFG demonstrated suitable rheological behavior for topical application. AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG showed sustained release of the incorporated drugs as compared to AMB-RIF suspension. Furthermore, RIF permeation from AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG was enhanced fivefold and threefold, whereas AMB permeation was enhanced by eightfold and 6.6-fold, respectively. The significantly different IC50, higher CC50, and FIC50 (p < 0.5) showed synergistic antileishmanial potential of AMB-RIF co-loaded TF. Likewise, reduced lesion size and parasitic burden in AMB-RIF co-loaded TF-treated mouse group further established the antileishmanial effect of the optimized formulation. Besides, AMB-RIF co-loaded TFG showed a better safety profile. This study concluded that TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of CL.
Collapse
Affiliation(s)
- Fatima Zahid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Fakhar Ud-Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Zakir Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Muhammad Nabi
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Omer Salman
- Department of Pharmacy, Forman Christian University, Lahore, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan. .,Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
33
|
Armstrong SK, Oosthuyzen W, Gow AG, Salavati Schmitz S, Dear JW, Mellanby RJ. Investigation of a relationship between serum concentrations of microRNA-122 and alanine aminotransferase activity in hospitalised cats. J Feline Med Surg 2022; 24:e289-e294. [PMID: 35703473 PMCID: PMC9315172 DOI: 10.1177/1098612x221100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Current blood tests to diagnose feline liver diseases are suboptimal. Serum concentrations of microRNA (miR)-122 have been shown in humans, dogs and rodents to be a sensitive and specific biomarker for liver injury. To explore the potential diagnostic utility of measuring serum concentrations of miR-122 in cats, miR-122 was measured in a cohort of ill, hospitalised cats with known serum alanine aminotransferase (ALT) activity. METHODS In this retrospective study, cats were grouped into those with an ALT activity within the reference interval (0-83 U/l; n = 38) and those with an abnormal ALT activity (>84 U/l; n = 25). Serum concentrations of miR-122 were measured by real-time quantitative PCR and the relationship between miR-122 and ALT was examined. RESULTS miR-122 was significantly higher in the group with high ALT activity than the ALT group, within normal reference limits (P <0.0004). There was also a moderately positive correlation between serum ALT activity and miR-122 concentrations (P <0.001; r = 0.52). CONCLUSIONS AND RELEVANCE Concentrations of miR-122 were reliably quantified in feline serum and were higher in a cohort of cats with increased ALT activity than in cats with normal ALT activity. This work highlights the potential diagnostic utility of miR-122 as a biomarker of liver damage in cats and encourages further investigation to determine the sensitivity and specificity of miR-122 as a biomarker of hepatocellular injury in this species.
Collapse
Affiliation(s)
- Susan K Armstrong
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, The Hospital for Small Animals, University of Edinburgh, Edinburgh, UK
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Adam G Gow
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, The Hospital for Small Animals, University of Edinburgh, Edinburgh, UK
| | - Silke Salavati Schmitz
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, The Hospital for Small Animals, University of Edinburgh, Edinburgh, UK
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, The Hospital for Small Animals, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Paśko P, Okoń K, Prochownik E, Krośniak M, Francik R, Kryczyk-Kozioł J, Grudzińska M, Tyszka-Czochara M, Malinowski M, Sikora J, Galanty A, Zagrodzki P. The Impact of Kohlrabi Sprouts on Various Thyroid Parameters in Iodine Deficiency- and Sulfadimethoxine-Induced Hypothyroid Rats. Nutrients 2022; 14:nu14142802. [PMID: 35889759 PMCID: PMC9316894 DOI: 10.3390/nu14142802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/20/2023] Open
Abstract
Brassica sprouts, as the rich source of dietary glucosinolates, may have a negative effect on thyroid function. In this study, kohlrabi sprouts diet, combined with two models of rat hypothyroidism, was tested. TSH, thyroid hormones and histopathology analysis were completed with the evaluation of immunological, biochemical, haematological parameters, cytosolic glutathione peroxidase, thioredoxin reductase in the thyroid, and plasma glutathione peroxidase. A thermographic analysis was also adapted to confirm thyroid dysfunction. The levels of TSH, fT3 and fT4, antioxidant enzyme (GPX) as well as histopathology parameters remained unchanged following kohlrabi sprouts ingestion, only TR activity significantly increased in response to the sprouts. In hypothyroid animals, sprouts diet did not prevent thyroid damage. In comparison with the rats with iodine deficiency, kohlrabi sprouts diet decreased TNF-α level. Neither addition of the sprouts to the diet, nor sulfadimethoxine and iodine deficiency, caused negative changes in red blood cell parameters, glucose and uric acid concentrations, or kidney function. However, such a dietary intervention resulted in reduced WBC levels, and adversely interfered with liver function in rats, most likely due to a higher dietary intake of glucosinolates. Moreover, the possible impact of the breed of the rats on the evaluated parameters was indicated.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
- Correspondence:
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków, Poland;
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland;
- Institute of Health, State Higher Vocational School, Staszica 1, 33-300 Nowy Sącz, Poland
| | - Jadwiga Kryczyk-Kozioł
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Małgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| | - Mateusz Malinowski
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Jakub Sikora
- Department of Bioprocesses Engineering, Energetics and Automatization, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116b, 30-149 Kraków, Poland; (M.M.); (J.S.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (A.G.)
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (E.P.); (M.K.); (J.K.-K.); (M.T.-C.); (P.Z.)
| |
Collapse
|
35
|
Li Q, Li YL, Wang XY, He XD, Qian JY. Safety Assessment of Canola Oil Extracted by Aid of Pulsed Electric Field: Genetic, Acute and Subacute Toxicity. J Oleo Sci 2022; 71:959-974. [PMID: 35691838 DOI: 10.5650/jos.ess21445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulsed electric field (PEF) is a nonthermal technology resulting in the rupture of cell membranes and increasing the electrical conductivity and the permeability of intracellular material. There was little work about the safety of food treated by PEF. The acute, subacute oral, and genetic toxicities were investigated to explore the safety of canola oil extracted by aid of PEF treatment (PTCO). The results showed that no negative consequences were caused by PEF. PTCO was regarded as practically non-toxic with a LD50 higher than 40 g/kg bw. No oil intake-related mortality, clinical, weight gain and organ coefficient abnormalities were observed. The histopathological symptoms indicated a mild load but not obvious toxicities on liver and kidney. The 28-day subacute toxicity test confirmed that less than 10 g/kg·d bw of oil intake did not exhibit any intake-related changes in physical, physiological, biochemical, hematological, and histopathological signs. The less than 4 of atherosclerosis index suggested that no risk of cardiovascular disease caused by PTCO intake. It was speculated that the PEF treatment would not cause any safety issues to food products.
Collapse
Affiliation(s)
- Qian Li
- School of Food Science and Engineering, Yangzhou University
| | - Yong-Lian Li
- School of Food Science and Engineering, Yangzhou University
| | - Xin-Ying Wang
- School of Food Science and Engineering, Yangzhou University
| | - Xu-Dong He
- Yangzhou Center for Food and Drug Control
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University
| |
Collapse
|
36
|
El-Say KM, Felimban RI, Tayeb HH, Chaudhary AG, Omar AM, Rizg WY, Alnadwi FH, Abd-Allah FI, Ahmed TA. Pairing 3D-Printing with Nanotechnology to Manage Metabolic Syndrome. Int J Nanomedicine 2022; 17:1783-1801. [PMID: 35479768 PMCID: PMC9038162 DOI: 10.2147/ijn.s357356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction This work was aimed to develop a Curcuma oil-based self-nanoemulsifying drug delivery system (SNEDDS) 3D-printed polypills containing glimepiride (GMD) and rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes as a model for metabolic syndrome (MS). Methods Compartmentalized 3D printed polypills were prepared and studied in streptozotocin/poloxamer induced diabetic/dyslipidemic rats. The pharmacokinetic parameters of GMD and RSV in the prepared polypills were evaluated. Blood glucose level, lipid profile, antioxidant, and biochemical markers activities were investigated. Also, histopathological examination of the liver and pancreas was carried out. The atherosclerotic index, the area of islets of Langerhans, and liver steatosis lesion scores were calculated. Results The developed SNEDDS-loaded GMD/RSV polypills showed acceptable quality control characteristics with a high relative bioavailability of 217.16% and 224.28% for GMD and RSV, respectively, when compared with the corresponding non-SNEDDS pills. The prepared polypills showed dramatic lowering in blood glucose levels and substantial improvement in lipid profile and hepatic serum biomarkers as well as remarkable decrease in serum antioxidants in response to Poloxamer 407 intoxication. The prepared polypills decreased the risk of atherosclerosis and coronary disease by boosting the level of high-density lipoprotein and lowering both triglyceride and low-density lipoprotein. Microscopic examination showed normal hepatic sinusoids and high protection level with less detectable steatosis in the examined hepatocytes. Normal size pancreatic islets with apparently normal exocrine acini and pancreatic duct were also noticed. Conclusion This formulation strategy clearly shows the potential of the developed polypills in personalized medicine for treatment of patients with MS.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam H Tayeb
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fuad H Alnadwi
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, Pharmaceutical Technology Unit, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
37
|
The Effect of Thymus vulgaris on Hepatic Enzymes Activity and Apoptosis-Related Gene Expression in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2948966. [PMID: 35368767 PMCID: PMC8967521 DOI: 10.1155/2022/2948966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/04/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Many diseases, including diabetes, are involved in the development of liver disorders through changes in the expression of genes such as apoptosis-related genes. In the present study, the effect of Thymus vulgaris (T. vulgaris) on hepatic enzyme activity and apoptosis-related gene expression in streptozotocin (STZ)-induced diabetic rats was examined. In this study, 50 adult male Wistar rats weighing approximately 200–220 g were divided into five groups. Diabetes was induced by an intraperitoneal injection of STZ (60 mg/kg). Following 18 days, all the animals in different groups were weighed and blood samples were taken from their cardiac veins. Gas chromatography-mass spectrometry (GC-MS) analysis revealed 45 different compounds in the T. vulgaris, including thymol (39.1%), p-cymene (20.63%), and γ-terpinene (14.85%). The results showed a significant increase in liver enzymes (aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP)) in diabetic or STZ mice compared to the control group (healthy mice) (P < 0.0001). The levels of AST, ALT, and ALP in rats treated with 200 mg/kg and 400 mg/kg of T. vulgaris extract showed a significant decrease in these enzymes in comparison with diabetic rats (P < 0.0001). The expression of caspase 3 and 9 genes in the groups treated with thyme significantly decreased compared to diabetic mice (P < 0.0001), and the expression of B-cell lymphoma-2 (Bcl-2) in the group receiving 400 mg/kg of thyme significantly increased compared to diabetic mice (P < 0.0001). Due to its antioxidant compounds, thyme improves the liver tissue cells in STZ-induced diabetic mice by reducing caspases 3 and 9 as well as increasing Bcl-2.
Collapse
|
38
|
Asiedu-Gyekye IJ, Arhin E, Arthur SA, N'guessan BB, Amponsah SK. Genotoxicity, nitric oxide level modulation and cardio-protective potential of Kalanchoe Integra Var. Crenata (Andr.) Cuf Leaves in murine models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114640. [PMID: 34606947 DOI: 10.1016/j.jep.2021.114640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Advancement in cancer therapy has improved survival among patients. However, use of anticancer drugs like anthracyclines (e.g., doxorubicin) is not without adverse effects. Notable among adverse effects of doxorubicin (DOX) is cardiotoxicity, which ranges from mild transient blood pressure changes to potentially serious heart failure. Anecdotal reports suggest that Kalanchoe integra (KI) may have cardio-protective potential. AIMS OF THE STUDY This study sought to determine the cardio-protective potential of KI against doxorubicin-induced cardiotoxicity and also examined any possible genotoxic potential of KI in selected organs. Additionally, the nitric oxide modulatory potential of KI was assessed. MATERIALS AND METHODS The leaves of KI were collected, air-dried, pulverised and extracted using 70% ethanol. High-performance liquid chromatography (HPLC) fingerprinting was done for KI. Also, the single-cell gel electrophoresis assay (Comet assay) was employed to ascertain the genotoxic potential of KI. In assessment of cardio-protective potential of KI against doxorubicin-induced cardiotoxicity, a total of 42 female Sprague-Dawley rats were put into 7 groups (n = 6). Group I: vehicle control, received normal saline (1 mL/kg p.o) for 30 days. Group II: toxic control, received DOX (20 mg/kg i.p.) once on the 29th day. Group III: KI control, received KI (300 mg/kg p.o) for 30 days. Group IV: vitamin E control, received vitamin E (100 mg/kg p.o) for 30 days. Group V: KI treated-1, received KI (300 mg/kg p.o) for 30 days and DOX (20 mg/kg i.p) on the 29th day. Group VI: KI treated-2, received KI (600 mg/kg p.o) for 30 days and DOX (20 mg/kg i.p) on the 29th day. Group VII: vitamin E treated, received vitamin E (100 mg/kg p.o) for 30 days and DOX (20 mg/kg i.p) on the 29th day. Thirty-six (36) hours after last administration, rats were sacrificed. Blood samples were taken via cardiac puncture to determine levels of aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), creatine kinase (CK), lactate dehydrogenase (LDH), enzymatic antioxidants such as glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Nitric oxide level was also determined. Hearts of rats in each group were excised and taken through histopathological examination. RESULTS In the HPLC fingerprint analysis, 13 peaks were identified, and peak with retention time of 24.0 min had the highest peak area (3.223 x104 mAU). Comet assay showed that the KI extract was non-genotoxic. Pretreatment with KI protected rats against doxorubicin-induced cardiotoxicity as evidenced by the low levels of AST, ALT, ALP, CK and LDH compared with the controls (p < 0.05). SOD, CAT and GPX levels were also high for rats administered KI extracts, further showing that KI protected rats against doxorubicin-induced cardiotoxicity. KI also inhibited nitric oxide levels at 300 mg/kg and 600 mg/kg effective doses. Histological examination revealed that rats pretreated with KI showed no signs of abnormal myocardial fibres (shape, size and configuration). CONCLUSION Ethanolic (70%) leaf extract of KI showed no genotoxic potential and possessed cardioprotective effects against doxorubicin-induced cardiotoxicity in Sprague-Dawley rats. KI also inhibited nitric oxide production, thus, a potential nitric oxide scavenger.
Collapse
Affiliation(s)
- Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Emmanuel Arhin
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Stella Amaaba Arthur
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Benoit Banga N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, PO Box LG 43 Legon, Accra, Ghana.
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, Korle-Bu, Accra, Ghana.
| |
Collapse
|
39
|
Growth Performance, Nutrient Digestibility, Blood Profiles, and Gut Integrity of Growing Pigs Fed Pickled Fish Residue with Decreased Salt Content. FERMENTATION 2021. [DOI: 10.3390/fermentation8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the growth performance, nutrient digestibility, blood profiles and gut integrity of growing pigs, in response to an increase in pickled freshwater fish residue (PFR) intake following a decrease in salt content. Ninety-six crossbred growing pigs [(Landrace × Large White) × Duroc] with a body weight of 23.65 ± 0.24 kg were randomly assigned to one of four treatments (6 pens/treatment, 4 pigs/pen) in a randomized complete block design. The treatments included: a corn-soybean meal based diet without PFR inclusion (CON) or with PFR addition at 5 (PFR5), 10 (PFR10), and 15% (PFR15), respectively. Desalting via soaking and stirring caused a positive reduction in the salt present on the surface of PFR. Over the 42-day feeding period, an increased level of PFR quadratically increased gain:feed ratio such that gain:feed ratio for PFR10 was greater than that for CON (p < 0.05). Pigs fed PFR10 had greater crude protein digestibility, and lower aspartate aminotransferase and crypt depth than those fed the CON diet (p < 0.05). The linear improvements in crude protein and ether extract digestibility, duodenal villus height, and villus:crypt ratio were observed as the PFR content increased (p < 0.05). However, there were no significant effects on average daily feed intake, dry matter and ash digestibility, blood metabolites (total Ca, P, creatinine, and alkaline phosphatase). Altogether, up to 10% PFR can be included in corn-soybean meal diet without impairing protein digestibility and hepatic enzyme alteration. In fact, administering PFR with lower salt content to growing pigs ultimately promotes their growth performance and gut integrity.
Collapse
|
40
|
Garanina AS, Nikitin AA, Abakumova TO, Semkina AS, Prelovskaya AO, Naumenko VA, Erofeev AS, Gorelkin PV, Majouga AG, Abakumov MA, Wiedwald U. Cobalt Ferrite Nanoparticles for Tumor Therapy: Effective Heating versus Possible Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:38. [PMID: 35009988 PMCID: PMC8746458 DOI: 10.3390/nano12010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticles (MNPs) are widely considered for cancer treatment, in particular for magnetic hyperthermia (MHT). Thereby, MNPs are still being optimized for lowest possible toxicity on organisms while the magnetic properties are matched for best heating capabilities. In this study, the biocompatibility of 12 nm cobalt ferrite MNPs, functionalized with citrate ions, in different dosages on mice and rats of both sexes was investigated for 30 days after intraperitoneal injection. The animals' weight, behavior, and blood cells changes, as well as blood biochemical parameters are correlated to histological examination of organs revealing that cobalt ferrite MNPs do not have toxic effects at concentrations close to those used previously for efficient MHT. Moreover, these MNPs demonstrated high specific loss power (SLP) of about 400 W g-1. Importantly the MNPs retained their magnetic properties inside tumor tissue after intratumoral administration for several MHT cycles within three days. Thus, cobalt ferrite MNPs represent a perspective platform for tumor therapy by MHT due to their ability to provide effective heating without exerting a toxic effect on the organism. This opens up new avenues for smaller MNPs sizes while their heating efficiency is maintained.
Collapse
Affiliation(s)
- Anastasiia S. Garanina
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | - Alexey A. Nikitin
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | | | - Alevtina S. Semkina
- Department of Medical Nanobiotechnology, Russian National Research Medical University, 117997 Moscow, Russia;
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia;
| | - Alexandra O. Prelovskaya
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
| | - Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia;
| | - Alexander S. Erofeev
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter V. Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, 121205 Moscow, Russia;
| | - Alexander G. Majouga
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Maxim A. Abakumov
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Department of Medical Nanobiotechnology, Russian National Research Medical University, 117997 Moscow, Russia;
| | - Ulf Wiedwald
- National University of Science and Technology «MISiS», 119049 Moscow, Russia; (A.S.G.); (A.A.N.); (A.O.P.); (A.S.E.); (A.G.M.); (M.A.A.)
- Center for Nanointegration Duisburg-Essen, Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
41
|
Marghani BH, Fehaid A, Ateya AI, Ezz MA, Saleh RM. Photothermal therapeutic potency of plasmonic silver nanoparticles for apoptosis and anti-angiogenesis in testosterone induced benign prostate hyperplasia in rats. Life Sci 2021; 291:120240. [PMID: 34942164 DOI: 10.1016/j.lfs.2021.120240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
AIMS In this study, we used a near-infrared laser (NIR) to increase the potency of silver nanoparticles (AgNPs) to develop a novel, less invasive, and simple photothermal therapy technique for benign prostate hyperplasia (BPH). MATERIALS AND METHODS The shape, particle size, and zeta-potential of polyvinylpyrrolidone coated-AgNPs (PVP-AgNPs) were determined using transmission electron microscopy (TEM), Zeta-potential, and Particle size analyzer (ELSZ). To induce BPH, thirty-six male Sprague-Dawley (SD) rats were given intramuscular (i.m) injections of testosterone propionate (TP) at 5 mg/kg body weight (b.w)/day suspended in 0.1 ml of olive oil for 14 days. Photothermal therapy with AgNPs-NIR for 14 days was carried out. Prostate size, prostate index (PI), dihydrotestosterone (DHT), prostate-specific antigen (PSA), gross, hepatic, and renal toxicity, as well as antioxidant activity, apoptosis, and angiogenesis markers in prostatic tissues were measured. Histological examinations of prostates and biocompatibility of NIR-AgNPs on vital organs were also performed. KEY FINDINGS The aggregated spherical AgNPs with a mean size of 50-90 nm and a Zeta potential of -53.22 mV displayed high effectiveness in the NIR (532 nm-1 W) region by decreasing prostate size, PI, DHT, and PSA in BPH rats with no signs of gross, hepatic, or renal damage. As compared to alternative therapies, hyperthermia therapy increased antioxidant activities, induced apoptosis, inhibited angiogenesis, reduced histological alterations in the prostates of BPH rats, and improved biocompatibility of the vital organs. SIGNIFICANCE The current study demonstrated the effectiveness of plasmonic AgNPs photothermal therapy in the treatment of BPH.
Collapse
Affiliation(s)
- Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Alaa Fehaid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
42
|
Thakur B, Katoch S, Thakur SK, Kashyap CP, Patial V. Pharmaceutico-analytical standardization and preclinical safety evaluation of herbomineral formulation (Sameerpanag Ras) in rats. COMPARATIVE CLINICAL PATHOLOGY 2021; 30:935-944. [DOI: 10.1007/s00580-021-03290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/20/2021] [Indexed: 08/10/2024]
|
43
|
Abd El-Hameed NM, Abd El-Aleem SA, Khattab MA, Ali AH, Mohammed HH. Curcumin activation of nuclear factor E2-related factor 2 gene (Nrf2): Prophylactic and therapeutic effect in nonalcoholic steatohepatitis (NASH). Life Sci 2021; 285:119983. [PMID: 34599938 DOI: 10.1016/j.lfs.2021.119983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS Modern dietary habits have been associated with Nonalcoholic Steatohepatitis (NASH). Curcumin is a natural herbal found to suppress cellular oxidative states and could be beneficial in NASH. This study investigates the effect of curcumin in an animal model of NASH. MATERIALS AND METHODS Fifty rats were allocated into five groups. Control, High Fat Diet (HFD), curcumin prophylactic (CP) and therapeutic (CT) groups. HFD regimen was given for 16 weeks. Curcumin was given along with HFD (prophylactic) or after establishment of the model for two weeks (therapeutic). Livers and blood samples were harvested for histological, biochemical, and molecular studies. KEY FINDINGS Livers from HFD groups showed vascular, inflammatory, cellular degenerative and fibrotic changes. The hepatic damage was reflected by the increased serum liver enzymes. HFD groups showed excessive fibrotic change. Interestingly, curcumin administration as prophylactic or therapeutic significantly preserved and/or restored liver structure. This was evidenced by the normalization of the liver enzymes, preservation and/or reversibility of cellular changes and the decrease of the stage of fibrosis. Nuclear factor E2-related factor 2 gene (Nrf2) expression showed no changes in the HFD groups, however it showed upregulation in curcumin treated groups. Thus, the protective and therapeutic effect of curcumin could be induced through upregulation of the Nrf2 gene. Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers. SIGNIFICANCE Curcumin has a beneficial prophylactic and therapeutic effect that could hinder the development and/or treat NASH in susceptible livers.
Collapse
|
44
|
Protective Effects of Dietary Supplement Spirulina (Spirulina platensis) against Toxically Impacts of Monosodium Glutamate in Blood and Behavior of Swiss mouse. SEPARATIONS 2021. [DOI: 10.3390/separations8110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Well-known monosodium glutamate (E-621, MSG), originally used as a food flavor enhancer, was approved approximately in all countries, but the toxicity versus the safety of (MSG) are still unclear due to variable scientific toxicological reports. Moreover, it was reported to trigger elevated frequencies of nausea and headaches in humans and provide deleterious effects on laboratory animals. The objectives of the present study were to (i) estimate the possible toxic effects of the food additive MSG (ii) and the ameliorating protective effects of the dietary supplement spirulina (Spirulina platensis) on the biochemical parameters of blood and the damage produced in organs of Swiss mice after applying a supplementary daily dose of MSG for 4 weeks. (2) Methods: The present study was conducted on 20 mature Swiss mice, which were randomly organized into four groups of five Swiss mice. The treatments were (I) the control group, in which Swiss mice were fed only animal feed and drinking water; group II MSG1, which received 1 mL of MSG; group III MSG0.5, which was treated with 0.5 mL of MSG; and (IV) the group MSGS, which was treated with 1 mL of monosodium glutamate and 1 mL of spirulina (aiming to reduce the MSG toxicity). (3) Results: At the end of the experiment, Swiss mice treated with MSG demonstrated a passiveness regarding behavioral aspects. As we hypothesized, the parameters of the spirulina group reached similar values to the control group, and no histopathological observations have been found. Altogether, our findings evidenced that monosodium glutamate leads to histopathological changes in Swiss mice kidneys and caused important modifications for all biochemical parameters of the blood serum. Noticeably, the potential protective effect of Spirulina platensis was proved and was described by using the FTIR spectroscopy technique. (4) Conclusions: A diet rich in antioxidants and other plant-derived bioactive compounds may provide healthy nutrition, alleviating the potential side effects of some food additives.
Collapse
|
45
|
Wu X, Chen F, Zhao X, Pang C, Shi R, Liu C, Sun C, Zhang W, Wang X, Zhang J. QTL Mapping and GWAS Reveal the Genetic Mechanism Controlling Soluble Solids Content in Brassica napus Shoots. Foods 2021; 10:foods10102400. [PMID: 34681449 PMCID: PMC8535538 DOI: 10.3390/foods10102400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Oilseed-vegetable-dual-purpose (OVDP) rapeseed can effectively alleviate the land contradiction between crops and it supplements vegetable supplies in winter or spring. The soluble solids content (SSC) is an important index that is used to evaluate the quality and sugar content of fruits and vegetables. However, the genetic architecture underlying the SSC in Brassica napus shoots is still unclear. Here, quantitative trait loci (QTLs) for the SSC in B. napus shoots were investigated by performing linkage mapping using a recombinant inbred line population containing 189 lines. A germplasm set comprising 302 accessions was also used to conduct a genome-wide association study (GWAS). The QTL mapping revealed six QTLs located on chromosomes A01, A04, A08, and A09 in two experiments. Among them, two major QTLs, qSSC/21GY.A04-1 and qSSC/21NJ.A08-1, accounted for 12.92% and 10.18% of the phenotypic variance, respectively. In addition, eight single-nucleotide polymorphisms with phenotypic variances between 5.62% and 10.18% were identified by the GWAS method. However, no locus was simultaneously identified by QTL mapping and GWAS. We identified AH174 (7.55 °Brix and 7.9 °Brix), L166 (8.9 °Brix and 8.38 °Brix), and L380 (8.9 °Brix and 7.74 °Brix) accessions can be used as superior parents. These results provide valuable information that increases our understanding of the genetic control of SSC and will facilitate the breeding of high-SSC B. napus shoots.
Collapse
Affiliation(s)
- Xu Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.W.); (C.L.)
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
| | - Feng Chen
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
| | - Xiaozhen Zhao
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengke Pang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Shi
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Changle Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.W.); (C.L.)
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
| | - Chengming Sun
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
| | - Wei Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
| | - Xiaodong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Afairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (F.C.); (X.Z.); (C.P.); (R.S.); (C.S.); (W.Z.)
- Correspondence: (X.W.); (J.Z.)
| | - Jiefu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (X.W.); (C.L.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (X.W.); (J.Z.)
| |
Collapse
|
46
|
Comparison of individual and combination treatments with naproxen, prednisolone and hydroxychloroquine to treat Complete Freund's Adjuvant induced arthritis. Inflammopharmacology 2021; 29:1719-1731. [PMID: 34550498 DOI: 10.1007/s10787-021-00875-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Aim of this study was to evaluate and compare the efficacy of anti-arthritic drugs (naproxen, prednisolone, and hydroxychloroquine) alone and in combination. The in vitro anti-arthritic activity was evaluated by stabilization of human erythrocytes (HRBCs) membrane assays. In vivo activity was carried out using Complete Freund's Adjuvant (CFA) induced arthritic model in Wistar rat. Individual and combination drugs were administered for 21 days in rats 8 days post inoculation with CFA (0.15 ml injected in right hind paw). Body weight and paw edema were measured at different intervals. Combination treatments exhibited more HRBC stabilization than individual treatments. All individual and combination treatments reduced the level of C-reactive protein (CRP), liver function enzymes, malondialdehyde, white blood cells and platelets, with the most pronounced activity exhibited by the combination of three drugs. The level of oxidative stress biomarkers (reduced glutathione, catalase, and superoxide dismutase), red blood cells, and hemoglobin were notably increased in all treatment groups in contrasts to diseased control rats. Histopathological evaluation of the paw showed that all the treatments had reduced (p < 0.05-0.001) the arthritic indices in contrasts to diseased control rats. The serum concentrations of TNF-α and PGE2 were provoked in diseased control rats but had been notably (p < 0.0001) restored by treatments with individual and combination drugs. It was also found that combination treatments, more precisely triple drug was remarkably effective in treating arthritis. It can be concluded that naproxen, prednisolone, and hydroxychloroquine effectively ameliorated the CFA-induced arthritis and were more effective in combination as compared to individual drug therapy probably due to reduction in oxidative stress and inflammatory markers. Moreover, two lower doses (half NPH/2 and one-third NPH/3) of triple combination therapy naproxen, prednisolone, and hydroxychloroquine (NPH) showed no significant difference in anti-arthritic effect as compared to the highest dose level of NPH.
Collapse
|
47
|
Fayed EA, Ragab A, Ezz Eldin RR, Bayoumi AH, Ammar YA. In vivo screening and toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents. Bioorg Chem 2021; 116:105300. [PMID: 34525393 DOI: 10.1016/j.bioorg.2021.105300] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023]
Abstract
Based on the biological importance of the thiazole nucleus, we decided to prepare and evaluate the biological activity of some new isatin derivatives containing thiazole moiety. The 5-(piperidin-1-ylsulfonyl)indoline-2,3-dione (1) was prepared and used as a starting material in the synthesis of many isatin derivatives for anticonvulsant evaluation. All the newly synthesized thiazlidino/thiosemicarbazide-indolin-2-one derivatives screened in vivo for their anticonvulsant activity against pentylenetetrazole-induced convulsions in mice. The results were compared with phenobarbitone sodium as a standard anticonvulsant drug. Most of the tested compounds exhibited anticonvulsant activity with relative potency ranging from 0.02 to 0.2 in comparison to standard drug phenobarbitone. The most active compounds 3, 6a, 6c and 8, were exposed to further investigations in rats to evaluate the effect of most active derivatives on the haematological, liver, kidney functions as well as histopathological studies of the liver and kidney tissues. Finally, the most potent compounds 3, 6a, 6c and 8 observed good toxic properties for both liver and kidney function with mild variability changes on RBCs, WBCs, Platelets, Hb, AST, ALT, and creatinine level, as well as kidney and liver tissue and these good results obtained rather than used low dose from phenobarbitone.
Collapse
Affiliation(s)
- Eman A Fayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt.
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| | - Rogy R Ezz Eldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Saied University, Port Saied, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt.
| |
Collapse
|
48
|
Kim M, Kim JH, Hong S, Kwon B, Kim EY, Jung HS, Sohn Y. Effects of Melandrium firmum Rohrbach on RANKL‑induced osteoclast differentiation and OVX rats. Mol Med Rep 2021; 24:610. [PMID: 34184080 PMCID: PMC8258467 DOI: 10.3892/mmr.2021.12248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease characterized by reduced bone mineral density (BMD), which results in an increased risk of fracture. Melandrium firmum (Siebold & Zucc.) Rohrbach (MFR), 'Wangbulryuhaeng' in Korean, is the dried aerial portion of Melandrii Herba Rohrbach, which is a member of the Caryophyllaceae family and has been used to treat several gynecological conditions as a traditional medicine. However, to the best of our knowledge, the effect of MFR on osteoclast differentiation and osteoporosis has not been assessed. To evaluate the effects of MFR on osteoclast differentiation, tartrate‑resistant acid phosphatase staining, actin ring formation and bone resorption assays were used. Additionally, receptor activator of nuclear factor‑κB ligand‑induced expression of nuclear factor of activated T cell, cytoplasmic 1 (NFATc1) and c‑Fos were measured using western blotting and reverse transcription‑PCR. The expression levels of osteoclast‑related genes were also examined. To further investigate the anti‑osteoporotic effects of MFR in vivo, an ovariectomized (OVX) rat model of menopausal osteoporosis was established. Subsequently, the femoral head was scanned using micro‑computed tomography. The results revealed that MFR suppressed osteoclast differentiation, formation and function. Specifically, MFR reduced the expression levels of osteoclast‑related genes by downregulating transcription factors, such as NFATc1 and c‑Fos. Consistent with the in vitro results, administration of MFR water extract to OVX rats reduced BMD loss, and reduced the expression levels of NFATc1 and cathepsin K in the femoral head. In conclusion, MFR may contribute to alleviate osteoporosis‑like symptoms. These results suggested that MFR may exhibit potential for the prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sooyeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Boguen Kwon
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
49
|
Yohannes TG, Makokha AO, Okoth JK, Tenagashaw MW. Nutritional, Biochemical and Haematological Indices of White Albino Rats Fed Complementary Diets Developed from Selected Cereals and Legumes. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200911143035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Childhood malnutrition is a common public health problem in Ethiopia.
This animal study aims to evaluate the haematological, biochemical, and nutritional indices of
weanling albino rats fed on complementary diets developed from selected cereals and legumes.
Methods:
The nutritional qualities of the formulated blends were assessed biologically by feeding
white albino rats in order to determine feed intake, the growth rate, protein quality parameters, biochemical
and haematological properties. The commercial weaning diet (cerifam) and casein were
used as control diets. On the 28th day, blood samples were collected from three randomly selected
rats by decapitation. Full blood count analysis was carried out using the Automated Haematologic
Analyzer to determine haematological parameters. All the biochemical parameters were determined
using Mindray diagnostic kits.
Results and Discussion:
The food intake pattern showed that animals placed on diet 3, diet 4, casein,
and cerifam consumed more food than those fed on diet 1, diet 2, and diet 7. The mean
growth rate of animals fed on diet 3 and diet 4 was significantly (p<0.05) higher than those placed
on diet 1, diet 2, and diet 7 but similar to those fed with commercial diet and casein. The protein
quality evaluation of the diets showed that the protein efficiency ratio ranged from 1.20 to 2.43
while the biological value was in the range of 54.53 to 69.48%. The net protein utilization and true
digestibility were 65.62 to 70.21% and 59.01 to 64.01%, respectively. Serum total protein, albumin,
and globulin levels in rats given diet 3 and diet 4 were comparable to the controls and within
the normal range. Comparatively, the creatinine and urea levels of rats fed on the control and formulated
diets were within the normal range. The serum alanine aminotransferase values of rats fed
on the control and formulated diets ranged from 22.03 IU/L in diet 2 to 37.76 IU/L in diet 4 and
were not significantly different from each other. In this study, the packed cell volume and haemoglobin
values of the control and formulated diets were within the recommended range. Evidently,
diet 3 and diet 4 gave the best growth performance after the feeding trials.
Conclusion:
The haematological and biochemical indices indicate that these diets can support effective
growth and development in rats, and consumption of these diets has no detrimental effects
on the liver and renal function.
Collapse
Affiliation(s)
- Tsehayneh G. Yohannes
- Department of Human Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box: 62000-00200, Nairobi, Kenya
| | - Anselimo O. Makokha
- Department of Human Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box: 62000-00200, Nairobi, Kenya
| | - Judith K. Okoth
- Department of Human Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box: 62000-00200, Nairobi, Kenya
| | - Mesfin W. Tenagashaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
50
|
The Effect of Palm Oil-Fried Street Kokor on Liver and Kidney Biomarkers of Swiss Albino Mice. J Lipids 2021; 2020:8819749. [PMID: 33489379 PMCID: PMC7787862 DOI: 10.1155/2020/8819749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Foods fried with oils at streets contain many harmful substances for health. Locally fried foods are consumed commonly in our society, yet their health effect is not studied. Objective To assess the effect of palm oil-fried street kokor on liver and kidney biomarkers of Swiss Albino mice. Methods Thirty-two male and female Swiss Albino mice with the age of 10-12 weeks old were divided randomly into four groups of eight members with equal male and female subgroups. The control group (group I) received only a standard pellet, and the experimental groups (group II, group III, and group IV) received 10%, 20%, and 30% kokor of their daily food consumption, respectively. At the end of the 6th week, they were sacrificed by thoracoabdominal incision after anesthetizing by diethyl ether. Blood was taken from each mouse by cardiac puncture and analyzed for liver and kidney function tests. Result The serum levels of liver damage biomarkers (alanine transaminase (ALT) and aspartate transaminase (AST)) and kidney damage biomarkers (urea and creatinine) of experimental groups were increased significantly relative to the control groups (P < 0.05). Level of biochemical profiles increased as the dose of kokor increased. Conclusions Palm oil-fried street kokor damaged the liver and kidney of the mice, and the damage was exacerbated as the dose of kokor increased.
Collapse
|