1
|
Jiang D, Li S, Liang Y, Xu R, Qi Q, Wang B, Zhang C. 16S rRNA and transcriptome analysis of the FOS-mediated alleviation of Aeromonas hydrophila-induced intestinal damage in Megalobrama amblycephala. Int J Biol Macromol 2023; 253:127040. [PMID: 37742888 DOI: 10.1016/j.ijbiomac.2023.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
This study was conducted to elucidate the effects of FOS that alleviate Aeromonas hydrophila-induced intestinal damage. The results showed that A. hydrophila disrupted the intestinal structure and increased intestinal permeability, causing abnormalities in mucosal pathology. Additionally, A. hydrophila induced an imbalance in the intestinal flora and disturbed its stability. Dietary FOS ameliorated the injury to the intestinal structure of fish, but also in part improved the condition of the intestinal tight junction complex. Transcriptomic analysis showed that 120 genes were up-regulated and 320 genes were down-regulated. The intestinal immune network for the IgA production signalling pathway was enriched following A. hydrophila infection, and the change in the FOS group was mainly in the Tight junction signalling pathway. Similarly, dietary FOS reduced the disruption of the intestinal microbiota induced by A. hydrophila and improved the intestinal microbiota's stability; FOS was also partially implicated in the upregulation of Tight junction and Adhesion junction pathways by transcriptomic analysis. After further analysis, it was found that fish fed FOS had upregulated expression of genes related to apoptosis, antigen presentation, and the T-cell-mediated immune response in the intestine compared with those in the A. hydrophila group, which may be related to changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Dongxue Jiang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Shengnan Li
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Yuexia Liang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450040, People's Republic of China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
2
|
Yao T, Wang R, Han P, Liu X, Wang X. Identification of olive flounder (Paralichthys olivaceus) toll-like receptor genes: Involvement in immune response to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108841. [PMID: 37209756 DOI: 10.1016/j.fsi.2023.108841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Toll-like receptor (TLR) genes are best known for their roles in the innate immune defense. However, studies focusing on the reaction mechanisms of TLR genes in olive flounder (Paralichthys olivaceus) immune responses are still limited. In this study, 11 TLR family members (PoTLRs) were identified and classified from P. olivaceus genome. Phylogenetic analysis showed that PoTLRs were highly conserved in olive flounder. The analysis of motif prediction and gene structure indicated that TLRs had high sequence similarity. The expression patterns in developmental stages and different tissues showed that TLR members were spatially and temporally specific. RNA-Seq analysis of temperature stress and Edwardsiella tarda infection suggested that TLR members were involved in inflammatory responses, PoTLR5b and PoTLR22 showed significant differences in response to both temperature stress and E. tarda stress, indicating their potential immune functions. The results of this study suggested that TLR genes played important roles in the innate immune response of olive flounder, and would provide a solid basis for further study of their functions.
Collapse
Affiliation(s)
- Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 315832, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, 315832, China.
| | - Ruoxin Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China.
| | - Ping Han
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315832, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, 315832, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, 315832, China.
| |
Collapse
|
3
|
Rather MA, Agarwal D, Bhat TA, Khan IA, Zafar I, Kumar S, Amin A, Sundaray JK, Qadri T. Bioinformatics approaches and big data analytics opportunities in improving fisheries and aquaculture. Int J Biol Macromol 2023; 233:123549. [PMID: 36740117 DOI: 10.1016/j.ijbiomac.2023.123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Aquaculture has witnessed an excellent growth rate during the last two decades and offers huge potential to provide nutritional as well as livelihood security. Genomic research has contributed significantly toward the development of beneficial technologies for aquaculture. The existing high throughput technologies like next-generation technologies generate oceanic data which requires extensive analysis using appropriate tools. Bioinformatics is a rapidly evolving science that involves integrating gene based information and computational technology to produce new knowledge for the benefit of aquaculture. Bioinformatics provides new opportunities as well as challenges for information and data processing in new generation aquaculture. Rapid technical advancements have opened up a world of possibilities for using current genomics to improve aquaculture performance. Understanding the genes that govern economically relevant characteristics, necessitates a significant amount of additional research. The various dimensions of data sources includes next-generation DNA sequencing, protein sequencing, RNA sequencing gene expression profiles, metabolic pathways, molecular markers, and so on. Appropriate bioinformatics tools are developed to mine the biologically relevant and commercially useful results. The purpose of this scoping review is to present various arms of diverse bioinformatics tools with special emphasis on practical translation to the aquaculture industry.
Collapse
Affiliation(s)
- Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India.
| | - Deepak Agarwal
- Institute of Fisheries Post Graduation Studies OMR Campus, Vaniyanchavadi, Chennai, India
| | | | - Irfan Ahamd Khan
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Sujit Kumar
- Department of Bioinformatics and Computational Biology, Virtual University Punjab, Pakistan
| | - Adnan Amin
- Postgraduate Institute of Fisheries Education and Research Kamdhenu University, Gandhinagar-India University of Kurasthra, India; Department of Aquatic Environmental Management, Faculty of Fisheries Rangil- Ganderbel -SKUAST-K, India
| | - Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha 751002, India
| | - Tahiya Qadri
- Division of Food Science and Technology, SKUAST-K, Shalimar, India
| |
Collapse
|
4
|
Muduli C, Paria A, Srivastava R, Rathore G, Lal KK. Aeromonas hydrophila infection induces Toll-like receptor 2 ( tlr2) and associated downstream signaling in Indian catfish, Clarias magur (Hamilton, 1822). PeerJ 2021; 9:e12411. [PMID: 34909268 PMCID: PMC8641487 DOI: 10.7717/peerj.12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Motile Aeromonas septicaemia (MAS), caused by Aeromonas hydrophila, is one of the most significant bacterial disease responsible for mortality in Indian catfish, Clarias magur, a potential aquaculture species in the Indian subcontinent. In fish, innate immunity elicited by pathogen recognition receptors (PRRs) plays an important role in providing protection against bacterial infection. Information on PRRs including Toll-like receptors (tlrs) and their response to bacterial pathogens remains unexplored in magur. Toll-like receptor 2 (tlr2), a phylogenetically conserved germ-line encoded PRR recognizes specific microbial structure and trigger MyD88-dependent signaling pathway to induce release of various cytokines responsible for innate immune response. In the present study, tlr2 gene of magur was characterized and downstream signaling was studied following challenge with A. hydrophila. The full-length cDNA of magur tlr2 (mtlr2) comprised of 3,066 bp with a single open reading frame of 2,373 bp encoding 790 amino acids having a theoretical pI value of 6.11 and molecular weight of 90 kDa. Structurally, it comprised of signal peptide (1–42aa), one leucine-rich repeat region (LRR) at N-terminal (LRR1-NT: 50–73 aa) and C-terminal (LRR-CT: 588–608 aa), twenty LRRs in between, one trans-membrane (Tm) domain (609–631aa) followed by cytoplasmic TIR domain (670–783aa). Phylogenetically, mtlr2 is closely related to pangasius and channel catfish. Highest basal expression of mtlr2, myd88 and il-1β in spleen, nf-kb in anterior kidney was observed. Lowest basal expression of mtlr2 in skin and myd88, nf-kb and il-1β in muscle was detected. Significant up-regulation of mtlr2 and downstream expression occurred at 3, 8, 24 h post infection to A. hydrophila in important immune organs such as liver, spleen, intestine and kidney. These findings highlight the vital role of tlr2 in eliciting innate immune defence against A. hydrophila infection.
Collapse
Affiliation(s)
- Chinmayee Muduli
- Fish Health Management and Exotics Division, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Anutosh Paria
- Fish Health Management and Exotics Division, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Ranjana Srivastava
- Fish Health Management and Exotics Division, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Gaurav Rathore
- Fish Health Management and Exotics Division, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| | - Kuldeep K Lal
- Fish Conservation Division, National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Gao FY, Pang JC, Wang M, Lu MX, Liu ZG, Cao JM, Ke XL, Yi MM. Structurally diverse genes encode TLR13 in Nile tilapia: The two receptors can recognize Streptococcus 23S RNA and conduct signal transduction through MyD88. Mol Immunol 2021; 132:60-78. [PMID: 33545626 DOI: 10.1016/j.molimm.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune system, which is the first line of defence against pathogens and pathogenic products in fish. In the present study, we cloned the full-length cDNA and genome sequences of two TLR13 s (OnTLR13a, OnTLR13b) from Nile tilapia (Oreochromis niloticus). TLR family motifs, i.e., the leucine-rich repeat (LRR) domains and Toll/interleukin (IL)-1 receptor (TIR) domains, were conserved in the putative proteins OnTLR13a and OnTLR13b, with fifteen LRR domains and one TIR domain. Four exons and three introns were identified in the OnTLR13a genome sequence, and three exons and two introns were identified in the OnTLR13b genome sequence. In healthy Nile tilapia tissues, OnTLR13a and OnTLR13b were ubiquitously expressed in all 11 tested tissues/organs. The highest expression levels were observed in the spleen (OnTLR13a) and blood (OnTLR13b), and the lowest expression levels were observed in the liver (OnTLR13a) and stomach (OnTLR13b). The expression level of OnTLR13b at 5.5 days postfertilization (dpf) was significantly higher than that at the other 8 time points (2.5, 3.5, 4.5, 5, 6, 6.5, 7.5 and 8.5 dpf). Upon stimulation with an intraperitoneal injection of 200 μL (107 CFU/mL) Streptococcus agalactiae, the expression levels of OnTLR13a and OnTLR13b were significantly upregulated in the intestine and gill. After cotransfection with MyD88, OnTLR13a significantly increased MyD88-dependent NF-κB activation in 293 T cells. However, OnTLR13b significantly impaired MyD88-dependent NF-κB activation. In addition, TLR13a slightly increased MyD88-dependent AP-1 activation, and TLR13b significantly increased MyD88-dependent AP-1 activation. TLR13a significantly increased MyD88-dependent interferon-β (IFN-β) activation, and TLR13b had no effect on MyD88-dependent IFN-β activation. These findings suggest that although the deduced protein structure of OnTLR13 is evolutionarily conserved between OnTLR13 and other TLR members, its signal transduction function is markedly different. Co-immunoprecipitation (Co-IP) assays showed that both OnTLR13a and OnTLR13b could interact with OnMyD88. RNA pulldown assays showed that TLR13a and TLR13b could combine with the 23S rRNA of S. agalactiae. These results indicate that TLR13a and TLR13b play important roles in the innate immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Ji-Cai Pang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Mai-Xin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China.
| | - Zhi-Gang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Jian-Meng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Xiao-Li Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Meng-Meng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| |
Collapse
|
6
|
NF-κB signaling induces inductive expression of the downstream molecules and IgD gene in the freshwater carp, Catla catla. 3 Biotech 2020; 10:445. [PMID: 33014688 DOI: 10.1007/s13205-020-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022] Open
Abstract
Toll-like receptors (TLRs) in innate immune system act as primary sensors in detecting the microbial components and activate their signaling cascades to induce NF-κB (nuclear factor NF-κB) towards the augmentation of immunoglobulin (Ig) synthesis. To gain insights into the efficacy of NF-κB pathway in immunoglobulin D (IgD) synthesis in the Indian Major Carp Catla catla, cloning and sequencing of TLR-signaling downstream molecules [TRAF3 (TNF receptor-associated factor 3), NEMO (nuclear factor-kappa B essential modulator), NF-κB and BAFF (B cell activating factor)] were performed by infecting the fish with pathogens. mRNA expression analysis of the downstream molecules and IgD showed significant up-regulation of these genes in kidney (P ≤ 0.001) as compared to spleen (P ≤ 0.05). To ascertain the role of NF-κB pathway in IgD synthesis, the primary cell culture of kidney and spleen in monolayer cell suspension was treated with NF-κB inhibitor (BAY 11-7082) and down-regulation of BAFF, NEMO, NF-κB, and IgD gene was observed. These results highlight the importance of NF-κB signaling pathway in augmenting the IgD gene expression in the freshwater carp, Catla catla.
Collapse
|
7
|
Zhao CS, Fang DA, Xu DP. Toll-like receptors (TLRs) respond to tributyltin chloride (TBT-Cl) exposure in the river pufferfish (Takifugu obscurus): Evidences for its toxic injury function. FISH & SHELLFISH IMMUNOLOGY 2020; 99:526-534. [PMID: 32097718 DOI: 10.1016/j.fsi.2020.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Tributyltin chloride (TBT-Cl) residual in water body had become a noticeable ecological problem for aquatic ecosystems. Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors that play key roles in detecting nonself antigens and immune system activation. In this study, we explored the effect of TBT-Cl exposure on four TLRs expression in river pufferfish, Takifugu obscurus. The four T. obscurus Toll-like receptors (To-TLRs) contained different types of domains such as leucine-rich repeats (LRRs), leucine-rich repeats, typical subfamily (LRR_TYP) and other special domains. The To-TLRs mRNA transcripts expressed in all tissues, also To-TLR2 was investigated with higher level in kidney, as well as To-TLR3 in kidney, while To-TLR18 in liver and To-TLR22 in intestine. After the acute and chronic exposure of TBT-Cl, To-TLR2 and To-TLR3 mRNA transcripts were significantly down-regulated in gill. However, To-TLR18 and To-TLR22 were significantly up-regulated in gill and liver. Moreover, the histology and immunohistochemistry (IHC) results showed the different injury degrees of TBT-Cl in liver and gill and implied the cytoplasm reorganization after TBT-Cl stress and the function of immunoregulation for To-TLRs to TBT-Cl exposure. All the results indicated that To-TLRs might involve in sensing and mediating innate immune responses caused by TBT-Cl for keeping detoxification homeostasis.
Collapse
Affiliation(s)
- Chang-Sheng Zhao
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reache of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Di-An Fang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reache of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China; College of Fisheries and Life Science, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306, China
| | - Dong-Po Xu
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reache of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China.
| |
Collapse
|
8
|
Fan H, Wang L, Wen H, Wang K, Qi X, Li J, He F, Li Y. Genome-wide identification and characterization of toll-like receptor genes in spotted sea bass (Lateolabrax maculatus) and their involvement in the host immune response to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2019; 92:782-791. [PMID: 31288100 DOI: 10.1016/j.fsi.2019.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Toll-like receptor (TLR) genes are the earliest reported pathogen recognition receptors (PRRs) and have been extensively studied. These genes play pivotal roles in the innate immune defense against pathogen invasion. In this study, a total of 16 tlr genes were identified and characterized in spotted sea bass (Lateolabrax maculatus). The tlr genes of spotted sea bass were classified into five subfamilies (tlr1-subfamily, tlr3-subfamily, tlr5-subfamily, tlr7-subfamily, and tlr11-subfamily) according to the phylogenetic analysis, and their annotations were confirmed by a syntenic analysis. The protein domain analysis indicated that most tlr genes had the following three major TLR protein domains: a leucine-rich repeat (LRR) domain, a transmembrane region (TM) and a Toll/interleukin-1 receptor (TIR) domain. The tlr genes in spotted sea bass were distributed in 11 of 24 chromosomes. The mRNA expression levels of 16 tlr genes in response to Vibrio harveyi infection were quantified in the head kidney. Most genes were downregulated following V. harveyi infection, while only 5 tlr genes, including tlr1-1, tlr1-2, tlr2-2, tlr5, and tlr7, were significantly upregulated. Collectively, these results help elucidate the crucial roles of tlr genes in the immune response of spotted sea bass and may supply valuable genomic resources for future studies investigating fish disease management.
Collapse
Affiliation(s)
- Hongying Fan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Lingyu Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Kuiqin Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Xin Qi
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Jifang Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Feng He
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China
| | - Yun Li
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
9
|
Zhang L, Wang C, Liu H, Fu P. The important role of phagocytosis and interleukins for nile tilapia (Oreochromis niloticus) to defense infection of Aeromonas hydrophila based on transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 92:54-63. [PMID: 31152843 DOI: 10.1016/j.fsi.2019.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Tilapia is an important economic fish worldwide. It is vital to understand the mechanism of immune response for the prevention and treatment the infection of Aeromonas hydrophila. Based on high-throughput sequencing of Illumina HiSeq™, we found differentially expressed genes in the immune-related pathway were classified into phagosome, cytokine-cytokine receptor interaction and toll-like receptor signaling pathway. Gene Ontology terms were divided into three categories of transporting function, DNA replication activity and energy supply activity. The first one was related to phagocytosis and the process or transporting of antigen driven by tubulins; the second one was to differentiation and proliferation of lymphocyte activated by cytokines; and the former two both needed energy provided by the third one. According to colchicine assay, cross-immune assay, ELISA of interleukins and classical phagocytosis assay, phagocytosis and interleukins were verified to be most important to defense the infection of A. hydrophila.
Collapse
Affiliation(s)
- Longgang Zhang
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China; Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, 250013, China; Shandong Provincial Freshwater Aquatic Products Quality Inspection Center, Jinan, 250013, China
| | - Chao Wang
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China; Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, 250013, China; Shandong Provincial Freshwater Aquatic Products Quality Inspection Center, Jinan, 250013, China.
| | - Han Liu
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China; Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, 250013, China; Shandong Provincial Freshwater Aquatic Products Quality Inspection Center, Jinan, 250013, China
| | - Peisheng Fu
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China; Shandong Provincial Key Laboratory of Freshwater Genetics and Breeding, Jinan, 250013, China; Shandong Provincial Freshwater Aquatic Products Quality Inspection Center, Jinan, 250013, China
| |
Collapse
|
10
|
Wu M, Guo L, Zhu KC, Guo HY, Liu B, Jiang SG, Zhang DC. Genomic structure and molecular characterization of Toll-like receptors 1 and 2 from golden pompano Trachinotus ovatus (Linnaeus, 1758) and their expression response to three types of pathogen-associated molecular patterns. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:34-40. [PMID: 29723549 DOI: 10.1016/j.dci.2018.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Toll-like receptors (TLRs) play an essential role in the immune response. Here two Toll-like receptors from golden pompano (Trachinotus ovatus), ToTLR1 and ToTLR2, were characterized, the full-length cDNAs were 3126 bp and 7430 bp, and the deduced proteins consisted of 801 and 825 amino acids, respectively. ToTLR1 and ToTLR2 both contained the typical TLR domain architecture including signal peptide, leucine rich repeat (LRR), C-terminal LRR domain at the extracellular region and Toll/interleukin (IL)-1 receptor (TIR) domain in the cytoplasmic region. ToTLR1 only had one intron and two exons, but ToTLR2 consisted of twelve introns and thirteen exons. The promoters of ToTLR1 and ToTLR2 contained several putative transcription factor binding sites. Phylogenetic analysis showed that ToTLR1 and ToTLR2 were clustered into the clade of TLR1 and TLR2, respectively. Tissues distribution analysis indicated that both genes were ubiquitously expressed in all examined tissues, with higher expression levels observed in blood, head-kidney and spleen. After injection with poly inosinic:cytidylic [poly(I:C)], flagellin and lipopolysaccharides (LPS), ToTLR1 and ToTLR2 mRNAs were significantly up-regulated in the immune related tissues, indicating the possible the role of ToTLR1 and ToTLR2 in defense against pathogenic microbes. Further research should be carried out to identify ligands of fish TLR1 and TLR2 in order to understand the function of these receptors.
Collapse
Affiliation(s)
- Meng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; College of Fisheries and Life Science, Shanghai Ocean University, 200090 Shanghai, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; College of Fisheries and Life Science, Shanghai Ocean University, 200090 Shanghai, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Tran HB, Lee YH, Guo JJ, Cheng TC. De novo transcriptome analysis of immune response on cobia (Rachycentron canadum) infected with Photobacterium damselae subsp. piscicida revealed inhibition of complement components and involvement of MyD88-independent pathway. FISH & SHELLFISH IMMUNOLOGY 2018; 77:120-130. [PMID: 29578048 DOI: 10.1016/j.fsi.2018.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/02/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Cobia, Rachycentron canadum, one of the most important aquatic species in Taiwan, has suffered heavy losses from Photobacterium damselae subsp. piscicida, which is the causal agent of photobacteriosis. In this study, the transcriptomic profiles of livers and spleens from Pdp-infected and non-infected cobia were obtained for the first time by Illumina-based paired-end sequencing method with a focus on immune-related genes. In total, 164,882 high quality unigenes were obtained in four libraries. Following Pdp infection, 7302 differentially expressed unigenes from liver and 8600 differentially expressed unigenes from spleen were identified. Twenty-seven of the differently expressed genes were further validated by RT-qPCR (average correlation coefficient 0.839, p-value <0.01). Results indicated a negative regulation of complement components and increased expression of genes involved in MyD88-independent pathway. Moreover, a remarkable finding was the increased expression of IL-10, implying an inadequacy of immune responses. This study not only characterized several putative immune pathways, but also provided a better understanding of the molecular responses to photobacteriosis in cobia.
Collapse
Affiliation(s)
- Hung Bao Tran
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yen-Hung Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Pingtung 92845, Taiwan
| | - Jiin-Ju Guo
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Pingtung 92845, Taiwan
| | - Ta-Chih Cheng
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
13
|
Han Z, Xiao S, Li W, Ye K, Wang ZY. The identification of growth, immune related genes and marker discovery through transcriptome in the yellow drum (Nibea albiflora). Genes Genomics 2018; 40:881-891. [PMID: 30047113 DOI: 10.1007/s13258-018-0697-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/20/2018] [Indexed: 11/30/2022]
Abstract
Yellow drum (Nibea albiflora) is a commercially important marine fish, which is widely distributed in the coastal waters of China, Japan and Korea. Wild yellow drum resources have dramatically declined due to overfishing and ocean pollution. Genetic data can contribute to biodiversity conservation and protection. And molecular markers can play important roles in genetic breeding and aid in germplasm preservation in fish. In this study, 11 tissues (brain, heart, liver, kidney, muscle, head kidney, skin, fin, spleen, gonad and air bladder) were collected for pooled RNA sequencing. The unigenes were assembled using Trinity and EvidentialGene, and were then aligned to nr, nt, Swiss-Prot GO, KEGG, and KOG for annotation. Molecular markers (e.g. simple sequence repeat, SSR and single nucleotide polymorphism, SNP) were detected using MIcroSAtellite identification tool (MISA) and Genome Analysis Tool Kit (GATK). All clean reads were assembled into 109,209 transcripts, and 31,183 unigenes were generated after pruning and classifying, ranging from 201 to 19,857 bp in length (1230 bp in average), and 26,728 (85.7%) assembled unigenes had significant hits in public databases. Total of 27 and 103 unigenes were respectively identified as involved in growth- and immune-related pathways in the N. albiflora transcriptome. In addition, we identified a considerable quantity of molecular markers, including 11,484 SSRs and 56,186 SNPs. The growth- and immune-relevant genes and the molecular markers identified here provided a meaningful reference gene set and laid a foundation for future genetic selection and breeding for this species.
Collapse
Affiliation(s)
- Zhaofang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Kun Ye
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
14
|
Zheng LB, Mao Y, Wang J, Chen RN, Su YQ, Hong YQ, Hong YJ, Hong YC. Excavating differentially expressed antimicrobial peptides from transcriptome of Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2018; 75:109-114. [PMID: 29408708 DOI: 10.1016/j.fsi.2018.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Larimichthys crocea, the special marine economy fish, owns the largest annual yield for a single species in China. One of the most significant factors affecting large yellow croaker culture is the diseases, especially the threat of marine white spot disease which caused by a protozoan Cryptocaryon irritans. Antimicrobial peptides (AMPs) have been demonstrated to be active against bacterium, fungi and parasites, showing their potential usefulness in aquaculture as substitutes for antibiotics. Many researches have been carried out about the AMPs concentrating on the activity resist on C. irritans, and piscidin-like of L. crocea owning widely antibacterial spectrum and strong activity against C. irritans was screened in our team. In the paper, taking advantage of the large yellow croaker hepatic comparison transcriptome in response to C. irritans at 3d post infection, seven kinds of AMPs have been excavated from the differently expressed genes, including LEAP2 like, LEAP-2A, hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type 4 and bactericidal permeability increasing protein (BPI). Hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type4 and BPI were up-regulated to protect large yellow croaker from being damaged by C. irritans infection; while LEAP2 like and LEAP-2A were down-regulated, they might be as a negative-feedback regulation factor or some other regulatory mechanisms to adjust the immune response in the process of C. irritans infection. The differential expression changes were verified with quantitative real-time PCR (qRT-PCR) to illustrate the reliability of the sequenced data. Hearteningly, piscidin-5-like type 4 was a novel type which was high similar to other piscidin-5-like types. Interestingly, the infection may well cause alternative splicing of LEAP-2A mRNA, which was a surprised phenomenon and finding after C. irritans infection, but more further study was needed to be conducted. Therefore, the data showed that these AMPs were involved in the immune response to the C. irritans infection. In all, these results implied that the immune response of AMPs to C. irritans infection was a complex and sophisticated regulatory process.
Collapse
Affiliation(s)
- Li-Bing Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Ruan-Ni Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China.
| | - Yue-Qun Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Jian Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Cong Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| |
Collapse
|
15
|
Lauriano ER, Faggio C, Capillo G, Spanò N, Kuciel M, Aragona M, Pergolizzi S. Immunohistochemical characterization of epidermal dendritic-like cells in giant mudskipper, Periophthalmodon schlosseri. FISH & SHELLFISH IMMUNOLOGY 2018; 74:380-385. [PMID: 29337248 DOI: 10.1016/j.fsi.2018.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Giant Mudskipper, Periophthalmodon schlosseri (Pallas, 1770), is euryhaline, amphibious, and air-breathing fish. These fishes live in close association to mangrove forests and often spend over 90% of time out of water, in adjacent mudflats. They have developed morphological and physiological adaptations to satisfy their unique lifestyles. The skin is the primary interface between the body and the environment, and has a central role in host defence. The initiation of immune responses to antigens in the vertebrate skin has often been attributed to epidermal Langerhans'cells (LC) that are dendritic cells (DC), antigen-presenting cells (APC) which reside in the epidermis. Dendritic cells have been characterized morphologically and functionally in the teleost fish tissues such as rainbow trout, salmonids, medaka, African catfish and zebrafish. However, there is no evidence of the presence of DCs and their role in mudskippers immunity. The aim of this preliminary study was to characterize, through use of specific antibodies: Toll-like receptor 2, S100, serotonin (5-HT), and Vesicular acetylcholine transporter VAChT, a specific DC-like subpopulation in Pn. schlosseri's epidermis.
Collapse
Affiliation(s)
- E R Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - G Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - N Spanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - M Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Jagiellonian University Medical College, ul. Kopernika 15, 31-105 Krakow, Poland
| | - M Aragona
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - S Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
16
|
Fan Y, Zhou Y, Zeng L, Jiang N, Liu W, Zhao J, Zhong Q. Identification, structural characterization, and expression analysis of toll-like receptors 2 and 3 from gibel carp (Carassius auratus gibelio). FISH & SHELLFISH IMMUNOLOGY 2018; 72:629-638. [PMID: 29183810 DOI: 10.1016/j.fsi.2017.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors (TLRs) are important components of innate immunity. TLRs recognize pathogen-associated molecular patterns (PAMPs) and initiate downstream signaling pathways in response. In present study, we report the identification of two TLRs from gibel carp (Carassius auratus gibelio), TLR2 and TLR3 (designated CagTLR2 and CagTLR3, respectively). We report on the genomic structures and mRNA expression patterns of CagTLR2 and CagTLR3. Five exons and four introns were identified from the genomic DNA sequence of CagTLR3 (4749 bp in total length); this genomic organization is similar to that of TLR3 in zebrafish and human. However, only one intron was identified from the CagTLR2 genomic locus (3166 bp in total length); this unique genomic organization of CagTLR2 is different from that of TLR2 in fish and humans. The cDNAs of CagTLR2 and CagTLR3 encoded 791 and 904 amino acid residues, respectively. CagTLR2 and CagTLR3 contained two distinct structural/functional motifs of the TLR family: a leucine-rich repeat (LRR) domain in the extracellular portion and a toll/interleukin-1 receptor (TIR) domain in the intracellular portion. The positions of critical amino acid residues involed in PAMP recognition and signaling pathway transduction in mammalian TLRs were conserved in CagTLR2 and CagTLR3. Phylogenetic analysis revealed a closer clustering of CagTLR2 and CagTLR3 with TLRs from freshwater fish than with marine fish species. In healthy gibel carp, transcripts of these genes were detected in all examined tissues, and high expression levels of CagTLR2 and CagTLR3 were observed in liver and brain, respectively. Following injection with CyHV-2, expression levels of CagTLR2 and CagTLR3 were significantly upregulated in the spleens of gibel carp after three days, and CagTLR3 transcript levels were rapidly increased in head kidney after 12 h. These results suggest that CagTLR2 and CagTLR3 are functionally involved in the induction of antiviral immune response.
Collapse
Affiliation(s)
- Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Jianqing Zhao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwang Zhong
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
17
|
Li H, Yang G, Ma F, Li T, Yang H, Rombout JHWM, An L. Molecular characterization of a fish-specific toll-like receptor 22 (TLR22) gene from common carp (Cyprinus carpio L.): Evolutionary relationship and induced expression upon immune stimulants. FISH & SHELLFISH IMMUNOLOGY 2017; 63:74-86. [PMID: 28192255 DOI: 10.1016/j.fsi.2017.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/05/2023]
Abstract
In the host innate immune system, various pattern recognition receptors (PRRs) recognize conserved pathogens-associated molecular patterns (PAMPs), and represent an efficient first line of defense against invading pathogens. TLR22 is one of the fish-specific Toll-like receptors (TLRs), identified in a variety of fish species. In this study, we report the cloning and identification of a TLR22 cDNA from the gills of common carp (Cyprinus carpio L.). The full-length CcTLR22 cDNA was 3301 bp long, including a 32 bp 5'-untranslated region (UTR), an open reading frame (ORF) of 2838 bp and a 432 bp 3'-UTR.The CcTLR22 protein was found to comprise a signal peptide, 16 LRR domains, a LRRCT domain in the extracellular region and a TIR domain in the cytoplasmic region, which fits with the characteristic TLR domain architecture. The genomic organization of CcTLR22 was identified, which was encoded by an uninterrupted exon. Sequence alignment and phylogenetic analysis showed that all known teleost TLR22 members were clustered into an independent clade of the TLR22 family, and showed high amino acid identities with other fish TLRs. Real-time PCR assay showed that CcTLR22 mRNA was expressed in almost all tissues examined, while the levels obviously varied among different tissues. When challenged with poly(I:C) (a viral model) or A. hydrophila bacteria, the expression level of CcTLR22 was up-regulated in a variety of common carp tissues. These results indicate that CcTLR22 plays a significant role in systemic as well as mucosal defence after viral or bacterial stimulation or infection.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Fei Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Ting Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Huiting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Jan H W M Rombout
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 9101, Wageningen 6700 HB, The Netherlands
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China.
| |
Collapse
|
18
|
Jayaramu PK, Tripathi G, Pavan Kumar A, Keezhedath J, Pathan MK, Kurcheti PP. Studies on expression pattern of toll-like receptor 5 (TLR5) in Edwardsiella tarda infected Pangasianodon hypophthalmus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:68-73. [PMID: 28159691 DOI: 10.1016/j.fsi.2017.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
TLR5 is one of the important PRR (pathogen recognition receptors) and plays a fundamental role in pathogen recognition and activation of innate immune responses. It recognizes bacterial flagellin and stimulates the production of proinflammatory cytokines, through signalling via the adaptor protein MyD88. In this study, we characterized partial TLR5 (soluble form) gene from Pangasianodon hypophthalmus and analysed its expression profile upon challenge by Edwardsiella tarda. Bioinformatic analysis of gene sequence revealed a putative protein of 266 amino acids with four Leucine rich repeats. Quantitative expression analysis of TLR 5S showed its wide distribution in various organs and tissues. However, significant expression of TLR5S was observed in liver and spleen at 12 h (∼207.8 fold, p < 0.05). Significant upregulation was observed in kidney at 72 h.p.i. (50 folds, p < 0.05) indicating that the kidney provides longer protection almost till the activation of the adaptive immune system. This study enriches the knowledge of TLR5S in boosting the innate immunity against bacterial invasion in fish.
Collapse
Affiliation(s)
| | - Gayatri Tripathi
- Division of Aquatic Environment and Health Management, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - A Pavan Kumar
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Jeena Keezhedath
- Division of Aquatic Environment and Health Management, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Mujahid Khan Pathan
- Division of Fish Genetics and Biotechnology, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Pani Prasad Kurcheti
- Division of Aquatic Environment and Health Management, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
19
|
Fu Q, Zeng Q, Li Y, Yang Y, Li C, Liu S, Zhou T, Li N, Yao J, Jiang C, Li D, Liu Z. The chemokinome superfamily in channel catfish: I. CXC subfamily and their involvement in disease defense and hypoxia responses. FISH & SHELLFISH IMMUNOLOGY 2017; 60:380-390. [PMID: 27919758 DOI: 10.1016/j.fsi.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Chemokines are a superfamily of structurally related chemotactic cytokines exerting significant roles in regulating cell migration and activation. They are defined by the presence of four conserved cysteine residues and are divided into four subfamilies depending on the arrangement of the first two conserved cysteines residues: CXC, CC, C and CX3C. In this study, a complete set of 17 CXC chemokine ligand (CXCL) genes was systematically identified and characterized from channel catfish genome through data mining of existing genomic resources. Phylogenetic analysis allowed annotation of the 17 CXC chemokines. Extensive comparative genomic analyses supported their annotations and orthologies, revealing the existence of fish-specific CXC chemokines and the expansion of CXC chemokines in the teleost genomes. The analysis of gene expression after bacterial infection indicated the CXC chemokines were expressed in a gene-specific manner. CXCL11.3 and CXCL20.3 were expressed significantly higher in resistant fish than in susceptible fish after ESC infection, while CXCL20.2 were expressed significantly higher in resistant fish than in susceptible fish after columnaris infection. The expression of those CXC chemokines, therefore can be a useful indicator of disease resistance. A similar pattern of expression was observed between resistant and susceptible fish with biotic and abiotic stresses, ESC, columnaris and hypoxia, suggesting that high levels of expression of the majority of CXC chemokines, with exception of CXC11 and CXC20, are detrimental to the host.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
20
|
Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C. Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. FISH & SHELLFISH IMMUNOLOGY 2016; 59:250-255. [PMID: 27818343 DOI: 10.1016/j.fsi.2016.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern recognition molecules that play a crucial role in innate immunity. The structural conservation of the archaic TLR system suggests that the regulation of the immune response might be similar in fish and mammals. Several TLRs (TLR-1, -2, and -4) are expressed by activated macrophages, "foam cells" in human atherosclerotic lesions. To date, 20 different TLRs were identified in more than a dozen different fish species. In this study we found that feeding goldfish, Carrassius auratus, a high-cholesterol diet (HCD) resulted macrophage foam cell formation in the intestinal tissues. The expression of TLR2 has been found in foam cells and in the cytoplasm of enterocytes, however the staining was more intense at the apical surface of polarized intestinal epithelial cells and in the lamina propria. In the intestinal epithelial cells and in the lamina propria cells of the control fish the TLR2 was expressed at low levels. The intestinal epithelium is directly involved in the mucosal immune response through its expression of proinflammatory genes, release of inflammatory cytokines, and recruitment of inflammatory cells.
Collapse
Affiliation(s)
- E R Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - S Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - G Capillo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - M Kuciel
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
21
|
Zhang H, Hu G, Liu Q, Zhang S. Cloning and expression study of a Toll-like receptor 2 (tlr2) gene from turbot, Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2016; 59:137-148. [PMID: 27713068 DOI: 10.1016/j.fsi.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 2 (TLR2) in mammals is a member of the ancient Toll-like family of receptors that predominantly recognizes conserved components of Gram-positive bacteria. In the present study, a tlr2 gene and its 5'-flanking sequence were cloned from turbot, Scophthalmus maximus, its responsive expressions to various immunostimulants were subsequently studied in vivo. The turbot (sm)tlr2 gene spans over 9.0 kb with a structure of 12 exon-11 intron and encodes 816 amino acids. The deduced protein shows the highest sequence identity (76.1%) to Japanese flounder Tlr2 and possesses a signal peptide sequence, a leucine-rich repeat (LRR) domain composed of 19 LRR motifs, a transmembrane region and a Toll/interleukin-1 receptor (TIR) domain. Phylogenetic analysis grouped it with other neoteleostei Tlr2as. A number of transcription factor binding sites known to be important for the basal transcriptional activity of TLR3 and response of TLR2 to lipopolysaccharide (LPS) signalling in mammals were predicted in the 5'-flanking sequence of smtlr2. Quantitative real-time PCR (qPCR) analysis demonstrated the constitutive expression of smtlr2 mRNA in all twelve examined tissues with higher levels in the lymphomyeloid-rich tissues and liver. Further, smtlr2 expression was up-regulated following stimulation with LPS, peptidoglycan (PGN) or polyinosinic: polycytidylic acid [poly(I:C)] in the gills, head kidney, spleen and muscle. Finally, for all three immunostimulants, a two-wave induced smtlr2 expression was observed in the head kidney and spleen in a 7-day time course and the strongest inducibility in the head kidney. These findings suggest a possible role of Smtlr2 in the immune responses to the infections of a broad range of pathogens that include Gram-positive and Gram-negative bacteria and RNA virus.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guobin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Qiuming Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
22
|
Fink IR, Pietretti D, Voogdt CGP, Westphal AH, Savelkoul HFJ, Forlenza M, Wiegertjes GF. Molecular and functional characterization of Toll-like receptor (Tlr)1 and Tlr2 in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2016; 56:70-83. [PMID: 27368535 DOI: 10.1016/j.fsi.2016.06.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs.
Collapse
Affiliation(s)
- Inge R Fink
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Danilo Pietretti
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Carlos G P Voogdt
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, PO Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Li YW, Xu DD, Li X, Mo ZQ, Luo XC, Li AX, Dan XM. Identification and characterization of three TLR1 subfamily members from the orange-spotted grouper, Epinephelus coioides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:180-189. [PMID: 27037219 DOI: 10.1016/j.dci.2016.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/27/2016] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs), which play important roles in host defense against pathogen infection, are the most intensively studied pattern recognition receptors (PRRs). In this study, we identified three novel TLR1 subfamily members, including TLR1 (EcTLR1b), TLR2 (EcTLR2b) and TLR14 (EcTLR14), from the orange-spotted grouper (Epinephelus coioides). EcTLR1b and EcTLR2b displayed low sequence identity with the previously reported grouper TLR1 (EcTLR1a) and TLR2 (EcTLR2a), respectively. The open reading frames (ORFs) of EcTLR1b, EcTLR2b and EcTLR14 contain 2484 bp, 2394 bp and 2640 bp, which encode the corresponding 827 amino acids (aa), 797 aa and 879 aa, respectively. All three TLRs have leucine-rich repeat (LRR) domains (including an LRR-NT (except for EcTLR1b), several LRR motifs and an LRR-CT), a trans-membrane region and a Toll/interleukin-1 receptor (TIR) domain. The TIR domains of the three TLRs exhibited conserved boxes, namely box1, box2 and box3, and their 3D models were similar to those of human TLR1 or TLR2. Sequence alignment demonstrated that the TIR domains of the three TLRs shared higher sequence identity with those of other species than the full-length receptors. Phylogenetic analysis indicated that EcTLR1s and EcTLR2s are characterized by their differing evolutionary status, whereas EcTLR14 was found to be in the same group as other piscine TLR14/18s. The three TLRs were ubiquitously expressed in seven tested tissues of healthy groupers, although their expression profiles were different. Post Cryptocaryon irritans infection, TLR1s expression was up-regulated in the gills. The expression of TLR2b was mainly increased in the spleen, but decreased in the gills, which was similar to the expression pattern of TLR2a post C. irritans infection. Unlike EcTLR1b and EcTLR2b, however, the grouper TLR14 transcript was substantially induced in both tissues post challenge. These findings may be helpful in understanding the innate immune mechanism of host anti-parasite infection.
Collapse
Affiliation(s)
- Yan-Wei Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Dong-Dong Xu
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, Guangdong Province, PR China
| | - Xia Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China
| | - Ze-Quan Mo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, PR China.
| | - Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China.
| |
Collapse
|
24
|
Liu F, Su B, Gao C, Zhou S, Song L, Tan F, Dong X, Ren Y, Li C. Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 55:654-661. [PMID: 27368539 DOI: 10.1016/j.fsi.2016.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The pathogen recognition receptors (PRRs), which can recognize the conserved pathogen-associated molecular patterns (PAMPs) of the bacteria, play key roles in the mucosal surfaces for pathogen recognition and activation of immune signaling pathways. However, our understanding of the PRRs and their activities in mucosal surfaces in the critical early time points during pathogen infection is still limited. Towards to this end, here, we sought to identify the Toll-like receptor 2 (TLR2) in turbot as well as its expression profiles in mucosal barriers following bacterial infection in the early time points. The full-length TLR2 transcript consists of open reading frame (ORF) of 2451 bp encoding the putative peptide of 816 amino acids. The phylogenetic analysis revealed the turbot TLR2 showed the closest relationship to Paralichthys olivaceus. The TLR2 mRNA expression could be detected in all examined tissues, with the most abundant expression level in liver, and the lowest expression level in skin. In addition, TLR2 showed different expression patterns following Vibrio anguillarum and Streptococcus iniae infection, but was up-regulated following both challenge, especially post S. iniae challenge. Characterization of TLR2 will probably contribute to understanding of a number of infectious diseases and broaden the knowledge of interactions between host and pathogen, which will eventually help in the development of novel intervention strategies for farming turbot.
Collapse
Affiliation(s)
- Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yichao Ren
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
25
|
He LB, Wang H, Luo LF, Jiang SH, Liu LY, Li YM, Huang R, Liao LJ, Zhu ZY, Wang YP. Characterization, expression analysis and localization pattern of toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes in grass carp Ctenopharyngodon idella. JOURNAL OF FISH BIOLOGY 2016; 89:1434-1440. [PMID: 27221024 DOI: 10.1111/jfb.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
In this study, the toll-like receptor 1 (tlr1) and toll-like receptor 2 (tlr2) genes of grass carp Ctenopharyngodon idella were cloned and characterized. tlr1 and tlr2 were found to be highly expressed in immune system organs such as spleen, middle kidney and heart kidney. The expression level of tlr1 and tlr2 was found to be up-regulated at the later stage of viral challenge process. Moreover, subcellular localization indicated that Tlr1 and Tlr2 shared similar localization pattern and both of them may locate in the plasma membrane of transfected cells.
Collapse
Affiliation(s)
- L B He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - H Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - L F Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - S H Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Department of Zoology, College of Life Sciences, Kim Il Song University, Pyongyang, Democratic People's Republic of Korea
| | - L Y Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Y M Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - R Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - L J Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Z Y Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Y P Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
26
|
Li XP, Sun L. Toll-like receptor 2 of tongue sole Cynoglossus semilaevis: Signaling pathway and involvement in bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 51:321-328. [PMID: 26947353 DOI: 10.1016/j.fsi.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Toll-like receptor (TLR) 2 is a member of the TLR family that plays a pivotal role in innate immunity. In mammals, TLR2 is known to recognize specific microbial structures and trigger MyD88-dependent signaling to induce various cytokine responses. In this study, we examined the expression and function of the tongue sole Cynoglossus semilaevis TLR2, CsTLR2. CsTLR2 is composed of 898 amino acid residues and shares 25.6%-27.3% overall sequence identities with known teleost TLR2. CsTLR2 is a transmembrane protein with a toll/interleukin-1 receptor domain and eight leucine-rich repeats. Expression of CsTLR2 occurred in multiple tissues and was upregulated during bacterial infection. Stimulation of the CsTLR2 pathway led to enhanced expression of MyD88-dependent signaling molecules. Recombinant CsTLR2 (rCsTLR2) corresponding to the extracellular region was able to bind to a wide range of bacteria. Under both in vitro and in vivo conditions, rCsTLR2 significantly reduced bacterial infection. These observations add new insights into the signaling and function of teleost TLR2.
Collapse
Affiliation(s)
- Xue-Peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Fu Q, Li Y, Yang Y, Li C, Yao J, Zeng Q, Qin Z, Liu S, Li D, Liu Z. Septin genes in channel catfish (Ictalurus punctatus) and their involvement in disease defense responses. FISH & SHELLFISH IMMUNOLOGY 2016; 49:110-121. [PMID: 26700173 DOI: 10.1016/j.fsi.2015.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Septins are an evolutionarily conserved family of GTP-binding proteins. They are involved in diverse processes including cytokinesis, apoptosis, infection, neurodegeneration and neoplasia. In this study, through thorough data mining of existed channel catfish genomic resources, we identified a complete set of 15 septin genes. Septins were classified into four subgroups according to phylogenetic analysis. Extensive comparative genomic analysis, including domain and syntenic analysis, supported their annotation and orthologies. The expression patterns of septins in channel catfish were examined in healthy tissues and after infection with two major bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. In healthy channel catfish, most septin genes were ubiquitously expressed and presented diversity patterns in various tissues, especially mucosal tissues, proposing the significant roles septin genes may play in maintaining homeostasis and host immune response activities. After bacterial infections, most septin genes were regulated, but opposite direction in expression profiles were found with the two bacterial pathogens: the differentially expressed septin genes were down-regulated in the intestine after E. ictaluri infection while generally up-regulated in the gill after F. columnare infection, suggesting a pathogen-specific and tissue-specific pattern of regulation. Taken together, these results suggested that septin genes may play complex and important roles in the host immune responses to bacterial pathogens in channel catfish.
Collapse
Affiliation(s)
- Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
28
|
Brietzke A, Arnemo M, Gjøen T, Rebl H, Korytář T, Goldammer T, Rebl A, Seyfert HM. Structurally diverse genes encode Tlr2 in rainbow trout: The conserved receptor cannot be stimulated by classical ligands to activate NF-κB in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:75-88. [PMID: 26348603 DOI: 10.1016/j.dci.2015.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/31/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
The mammalian toll-like receptor 2 (TLR2) is a dominant receptor for the recognition of Gram-positive bacteria. Its structure and functional properties were unknown in salmonid fish. In RT-PCR and RACE experiments, we obtained the full-length cDNA sequence encoding Tlr2 from rainbow trout (Oncorhynchus mykiss) as well as a copy of an unspliced nonsense message from a highly segmented gene. The primary structure of the encoded receptor complies with the domain structure and ligand-binding sites known from mammals and other fish species and sorts well into the evolutionary tree of teleostean Tlr2s. We retrieved a gene version encoding the receptor on a single exon (tlr2a) and also a partial sequence of a second gene variant being segmented into multiple exons (tlr2b). Surprisingly, the abundances of both transcript variants accounted only for ∼10% of all Tlr2-encoding transcripts in various tissues and cell types of healthy fish. This suggests the expression of several distinct tlr2 gene variants in rainbow trout. We expressed tlr2a in HEK-293 cells, but were unable to demonstrate its functionality through NF-κB activation. Neither synthetic lipopeptides known to stimulate mammalian TLR2 nor different bacterial challenges induced OmTLR2-mediated NF-κB activation, not in HEK-293 or in salmon CHSE-214 cells. Positive demonstration of TLR2-MYD88 interaction excluded that its functional impairment caused the failure of NF-κB activation. We discuss impaired heterodimerization with a necessary Tlr partner as one from among several alternatives to explain the dysfunction of Tlr2a in the interspecies reconstitution system of TLR signaling.
Collapse
Affiliation(s)
- Andreas Brietzke
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Marianne Arnemo
- University of Oslo, School of Pharmacy, Department of Pharmaceutical Biosciences, PO Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Tor Gjøen
- University of Oslo, School of Pharmacy, Department of Pharmaceutical Biosciences, PO Box 1068 Blindern, NO-0316 Oslo, Norway
| | - Henrike Rebl
- Rostock University Medical Center, Department of Cell Biology, Schillingallee 69, 18057 Rostock, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
29
|
Ao J, Mu Y, Wang K, Sun M, Wang X, Chen X. Identification and characterization of a novel Toll-like receptor 2 homologue in the large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 48:221-227. [PMID: 26551050 DOI: 10.1016/j.fsi.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) are key components of innate immunity that play significant roles in immune defence against pathogen invasion. In the present study, we identified a novel TLR2 homologue (LycTLR2b) in large yellow croaker (Larimichthys crocea) that shared low sequence identity with the previously reported large yellow croaker TLR2 (tentatively named LycTLR2a). The full-length cDNA of LycTLR2b was 2926 nucleotides (nt) long and encoded a protein consisting of 797 amino acids (aa). The deduced LycTLR2b protein exhibited a typical TLR domain architecture including a signal peptide, seven leucine-rich repeats (LRRs) in the extracellular region, a transmembrane domain, and a Toll-Interleukin 1 receptor (TIR) domain in the cytoplasmic region. Phylogenetic analysis showed that both LycTLR2a and LycTLR2b fall into a major clade formed by all TLR2 sequences, and are divided into two distinct branches. Genomic organization revealed that the LycTLR2b gene lacks intron, which is similar to zebrafish and human TLR2 genes, whereas the LycTLR2a gene contains multiple introns, as found in damselfish TLR2a and Fugu TLR2 genes. Syntenic analysis suggested that the occurrence of LycTLR2a and LycTLR2b may result from a relatively recent genome duplication event. LycTLR2b mRNA was constitutively expressed in all tissues examined although at different levels. Following bacterial vaccine challenge, LycTLR2b expression levels were significantly up-regulated in both spleen and head kidney tissues. Taken together, these results indicated that two different TLR2 homologues, which may play roles in antibacterial immunity, exist in large yellow croaker.
Collapse
Affiliation(s)
- Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Kunru Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Min Sun
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Xianhui Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration, Daxue Road 178, Xiamen 361005, PR China.
| |
Collapse
|
30
|
Jiang C, Zhang J, Yao J, Liu S, Li Y, Song L, Li C, Wang X, Liu Z. Complement regulatory protein genes in channel catfish and their involvement in disease defense response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:33-41. [PMID: 26111998 DOI: 10.1016/j.dci.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
Complement system is one of the most important defense systems of innate immunity, which plays a crucial role in disease defense responses in channel catfish. However, inappropriate and excessive complement activation could lead to potential damage to the host cells. Therefore the complement system is controlled by a set of complement regulatory proteins to allow normal defensive functions, but prevent hazardous complement activation to host tissues. In this study, we identified nine complement regulatory protein genes from the channel catfish genome. Phylogenetic and syntenic analyses were conducted to determine their orthology relationships, supporting their correct annotation and potential functional inferences. The expression profiles of the complement regulatory protein genes were determined in channel catfish healthy tissues and after infection with the two main bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. The vast majority of complement regulatory protein genes were significantly regulated after bacterial infections, but interestingly were generally up-regulated after E. ictaluri infection while mostly down-regulated after F. columnare infection, suggesting a pathogen-specific pattern of regulation. Collectively, these findings suggested that complement regulatory protein genes may play complex roles in the host immune responses to bacterial pathogens in channel catfish.
Collapse
Affiliation(s)
- Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
31
|
Fan ZJ, Jia QJ, Yao CL. Characterization and expression analysis of Toll-like receptor 2 gene in large yellow croaker, Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2015; 44:129-137. [PMID: 25687392 DOI: 10.1016/j.fsi.2015.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Toll-like receptor 2 (TLR2) plays an important role in innate immune responses. Here we describe the isolation and characterization of the full-length cDNA sequence of toll-like receptor 2 in large yellow croaker Larimichthys crocea (LcTLR2). The LcTLR2 cDNA contains a 5'-terminal untranslated region (5'-UTR) of 135 bp, an open reading frame (ORF) of 2478 bp encoding a polypeptide of 825 amino acid residues and a 3'-UTR of 50 bp. Subcellular localization analysis suggested that the LcTLR2-pEGFP was mainly expressed in cytoplasm. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis revealed a broad expression of LcTLR2 in most examined tissues, with the most predominant expression in blood, followed by spleen, and the weakest expression in stomach. The expression levels of LcTLR2 after injection with Vibrio parahaemolyticus, Lipopolysaccharides (LPS) and poly inosinic:cytidylic (polyI:C) were investigated in spleen, head-kidney and liver. Our results showed that LcTLR2 transcripts increased significantly after all the three immune challenges (p < 0.05). However, compared with polyI:C and LPS, higher expression levels of LcTLR2 were induced in all examined tissues after V. parahaemolyticus stimulation. In addition, the expression levels of LcTLR2 after flagellin, polyI:C, peptidoglycan (PGN) and LPS challenge in LCK were investigated, our findings showed that high LcTLR2 transcripts were induced after flagellin and PGN stimulation, suggesting that LcTLR2 might play a vital role in fish defense against bacterial infection. Furthermore, compared with LPS, flagellin and peptidoglycan might play an important role in LcTLR2 induction in large yellow croaker.
Collapse
Affiliation(s)
- Ze-Jun Fan
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Qiao-Jing Jia
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Cui-Luan Yao
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
32
|
Yao J, Mu W, Liu S, Zhang J, Wen H, Liu Z. Identification, phylogeny and expression analysis of suppressors of cytokine signaling in channel catfish. Mol Immunol 2015; 64:276-84. [DOI: 10.1016/j.molimm.2014.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 02/08/2023]
|
33
|
Zhang X, Wang S, Chen S, Chen Y, Liu Y, Shao C, Wang Q, Lu Y, Gong G, Ding S, Sha Z. Transcriptome analysis revealed changes of multiple genes involved in immunity in Cynoglossus semilaevis during Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2015; 43:209-218. [PMID: 25543033 DOI: 10.1016/j.fsi.2014.11.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Half-smooth tongue sole (Cynoglossus semilaevis) is one of the most valuable marine aquatic species in Northern China. Given to the rapid development of aquaculture industry, the C. semilaevis was subjected to disease-causing bacteria Vibrio anguillarum. It therefore is indispensable and urgent to understand the mechanism of C. semilaevis host defense against V. anguillarum infection. In the present study, the extensively analysis at the transcriptome level for V. Anguillarum disease in tongue sole was carried out. In total, 94,716 high quality contigs were generated from 75,884,572 clean reads in three libraries (HOSG, NOSG, and CG). 22,746 unigenes were identified when compared with SwissProt, an NR protein database and NT nucleotide database. 954 genes exhibiting the differentially expression at least one pair of comparison in all three libraries were identified. GO enrichment for these genes revealed gene response to biotic stimulus, immune system regulation, and immune response and cytokine production. Further, the pathways such as complement and coagulation cascades and Vibrio cholerae infection pathways were enriched in defensing of pathogen. Besides, 13,428 SSRs and 118,239 SNPs were detected in tongue sole, providing further support for genetic variation and marker-assisted selection in future. In summary, this study identifies several putative immune pathways and candidate genes deserving further investigation in the context of development of therapeutic regimens and lays the foundation for selecting resistant lines of C. semilaevis against V. anguillarum.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China; Laboratory of Marine Biodiversity and Global Change, College of Oceanography and Environmental Science, Xiamen University, 182 Daxue Road, Xiamen 361005, Fujian, China
| | - Shaolin Wang
- Department of Psychiatry & Neurobiology Science, University of Virginia, 1670 Discovery Drive, Suite 110, Charlottesville 22911, VA, USA
| | - Songlin Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yadong Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Changwei Shao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Qilong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Yang Lu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Guangye Gong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China
| | - Shaoxiong Ding
- Laboratory of Marine Biodiversity and Global Change, College of Oceanography and Environmental Science, Xiamen University, 182 Daxue Road, Xiamen 361005, Fujian, China
| | - Zhenxia Sha
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China.
| |
Collapse
|
34
|
González-Stegmaier R, Romero A, Estepa A, Montero J, Mulero V, Mercado L. Effects of recombinant flagellin B and its ND1 domain from Vibrio anguillarum on macrophages from gilthead seabream (Sparus aurata L.) and rainbow trout (Oncorhynchus mykiss, W.). FISH & SHELLFISH IMMUNOLOGY 2015; 42:144-152. [PMID: 25449380 DOI: 10.1016/j.fsi.2014.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Flagellin is the principal component of flagellum in Gram negative and positive bacteria, and it is also the ligand that activates the Toll-like receptor 5 (TLR5) in mammals and fish. In higher vertebrates, flagellin induces the activation of the membrane-bound TLR5 (TLR5M), which promotes the expression of proinflammatory cytokines and chemokines and the co-stimulatory molecules present in antigen-presenting cells needed for the activation of T cells. In the present study, we report the production of two recombinant proteins of Vibrio anguillarum: i) a full length flagellin B (FlaB) (rFla) and ii) the amino-terminus of the D1 domain (rND1) of the same protein, the region mainly responsible for binding to TLR5 and for the immunostimulatory activity of flagellin. The effects of these recombinant proteins were assessed in vitro using head kidney macrophages of gilthead seabream (Sparus aurata L., Perciformes, Sparidae) and rainbow trout (Oncorhynchus mykiss W., Salmoniformes, Salmonidae). In both species, 3 h of stimulation with rFla and rND1 induced expression of the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and of the chemokine IL-8. In gilthead seabream macrophages stimulated with rFla and rND1, a 900- and 6-fold increase were observed for IL-1β transcription, while a 900- and 3-fold increase were recorded for IL-8 transcription, respectively, as compared to non-stimulated macrophages. In rainbow trout, rFla increased expression of IL-8 40-fold in macrophages, whereas rND1 increased expression of the chemokine 3-fold, as compared to non-stimulated cells. The results obtained for rFla and rND1 demonstrate their modulatory capabilities in vitro, suggesting that rFla and rND1 could be evaluated as immunostimulatory candidates for use in farmed fish. However, further in vivo studies are needed to confirm and expand on the present results.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | - Alex Romero
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Amparo Estepa
- Institute of Molecular and Cell Biology, Universidad Miguel Hernandez de Elche, Spain
| | - Jana Montero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
35
|
Ali A, Rexroad CE, Thorgaard GH, Yao J, Salem M. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front Genet 2014; 5:348. [PMID: 25352861 PMCID: PMC4196580 DOI: 10.3389/fgene.2014.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to "organismal systems" with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Department of Zoology, Faculty of Science, Benha University Benha, Egypt
| | - Caird E Rexroad
- The National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture Agricultural Research Service Leetown, WV USA
| | - Gary H Thorgaard
- School of Biological Sciences, Washington State University Pullman, WA, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| |
Collapse
|
36
|
Sun L, Liu S, Wang R, Li C, Zhang J, Liu Z. Pathogen recognition receptors in channel catfish: IV. Identification, phylogeny and expression analysis of peptidoglycan recognition proteins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:291-299. [PMID: 24814805 DOI: 10.1016/j.dci.2014.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) can recognize bacterial cell wall (peptidoglycan) and activate innate immune system. In addition to its function as pathogen recognition receptors (PRRs), PGRPs are also involved in directly killing bacteria, and regulating multiple signaling pathways. Recently, we have reported catfish PRRs including nucleotide-binding domain, leucine-rich repeat containing receptors (NLRs), retinoic acid inducible gene I (RIG-I) like receptors (RLRs), and Toll-like receptors (TLRs). In this study, we identified and characterized the PGRP gene family in channel catfish which included two members, PGLYRP-5 and PGLYRP-6. Phylogenetic analysis, syntenic analysis and protein structural analysis were conducted to determine their identities and evolutionary relationships. In order to gain insight into the roles of PGRPs in catfish innate immune responses, quantitative real-time PCR was used to investigate the expression profiles in catfish healthy tissues and after bacterial infection. Both PGLYRP-5 and PGLYRP-6 were ubiquitously expressed in all 12 healthy tissues, and most highly expressed in gill and spleen, respectively. Distinct expression patterns were observed for PGRPs after infection with Edwardsiella ictaluri and Flavobacterium columnare, both Gram-negative bacteria. After infection with E. ictaluri, both PGLYRP-5 and PGLYRP-6 were significantly down-regulated at a certain time-point, while both genes were generally up-regulated in the gill after infection with F. columnare. Collectively, these findings suggested that PGRPs may play complex roles in the host immune response to bacterial pathogens in catfish.
Collapse
Affiliation(s)
- Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA.
| |
Collapse
|
37
|
Yao J, Li C, Zhang J, Liu S, Feng J, Wang R, Li Y, Jiang C, Song L, Chen A, Liu Z. Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:74-86. [PMID: 24560653 DOI: 10.1016/j.dci.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Nitric oxide is well known for its roles in immune responses. As such, its synthesizing enzymes have been extensively studied from various species including some teleost fish species. However, the NOS genes have not been characterized in channel catfish (Ictalurus punctatus). In this study, we identified and characterized three NOS genes including one NOS1 and two NOS2 genes in channel catfish. Comparing with the NOS genes from other fish species, the catfish NOS genes are highly conserved in their structural features. Phylogenetic and syntenic analyses allowed determination of NOS1 and NOS2 genes of channel catfish and their orthology relationships. Syntenic analysis, as well as the phylogenetic analysis, indicated that the two NOS2 genes of catfish were lineage-specific duplication. The NOS genes were broadly expressed in most tested tissues, with NOS1 being expressed at the highest levels in the brain, NOS2b1 highly expressed in the skin and gill, and NOS2b2 lowly expressed in most of the tested tissues. The most striking findings of this study was that the expression of the NOS genes are highly regulated after bacterial infection, with time-dependent expression patterns that parallel the migration of macrophages. After Edwardsiella ictaluri challenge, dramatically different responses among the three NOS genes were observed. NOS1 was only significantly in the skin early after infection, while NOS2b1 was rapidly upregulated in gill, but more up-regulated in trunk kidney with the progression of the disease, suggesting such differences in gene expression may be reflective of the migration of macrophages among various tissues of the infected fish. In contrast to NOS1 and NOS2b1, NOS2b2 was normally expressed at very low levels, but it is induced in the brain and liver while significantly down-regulated in most other tissues.
Collapse
Affiliation(s)
- Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ailu Chen
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
38
|
Pietretti D, Wiegertjes GF. Ligand specificities of Toll-like receptors in fish: indications from infection studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:205-222. [PMID: 23981328 DOI: 10.1016/j.dci.2013.08.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs.
Collapse
Affiliation(s)
- Danilo Pietretti
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| |
Collapse
|
39
|
Aoki T, Hikima JI, Hwang SD, Jung TS. Innate immunity of finfish: primordial conservation and function of viral RNA sensors in teleosts. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1689-1702. [PMID: 23462146 DOI: 10.1016/j.fsi.2013.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/25/2013] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
During the past decade, huge progress has been made in research into teleost PAMPs (pathogen-associated molecule patterns) recognition receptors (PRRs). Numerous fish PRR genes have been identified, and the primordial functions of PRRs involved in the innate immune response to viral infection (especially those responsible for sensing viral RNA) have been increasingly clarified in teleosts. Particular progress has been made in our understanding of Toll-like receptors (TLRs) and retinoic acid inducible gene I (RIG-I)-like receptors (RLRs). However, there are important evolutionary differences between teleosts and mammals; for instance, seven TLR repertoires (TLR5S, -14, -19, -20, -21, -22 and -23) are present in teleosts but not in mammals, indicating that some TLRs likely possess different functions. Thus, comparison of PRRs in teleosts and mammals may help us understand the immune responses triggered by host-pathogen interactions in teleosts. In this article, the evolutionary conservations and divergences in the PRR mechanisms of teleosts and mammals are examined, with a focus on their molecular features and the recognition of viral RNA by fish TLRs and RLRs. In addition, the mechanism of type I interferon gene expression in teleosts, which is enhanced after the recognition of viral RNA by fish TLRs and RLRs, is also introduced.
Collapse
Affiliation(s)
- Takashi Aoki
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, 900, Gajwa-dong, Jinju, Gyeongnam 660-710, South Korea.
| | | | | | | |
Collapse
|
40
|
Callol A, Roher N, Amaro C, MacKenzie S. Characterization of PAMP/PRR interactions in European eel (Anguilla anguilla) macrophage-like primary cell cultures. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1216-1223. [PMID: 23911651 DOI: 10.1016/j.fsi.2013.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
The eel (Anguilla anguilla) has been identified as a vulnerable species with stocks dramatically declining over the past decade. In an effort to support the species from overfishing of wild stocks increased interest in eel aquaculture has been notable. In order to expand the scarce knowledge concerning the biology of this species significant research efforts are required in several fields of biology. The development of cell culture systems to study the immune response is a key step towards an increased understanding of the immune response and to develop resources to support further study in this threatened species. Macrophages are one of the most important effector cells of the innate immune system. The capacity to engulf pathogens and orchestrate the immune response relies on the existence of different surface receptors, such as scavenger receptors and toll-like receptors. We have developed and described an eel macrophage-like in vitro model and studied its functional and transcriptomic responses. Macrophage-like cells from both head kidney and purified peripheral blood leukocytes were obtained and phagocytic activity measured for different whole bacteria and yeast. Moreover, based on PAMP-PRR association the innate immune response of both head kidney and PBL derived macrophage-like cells was evaluated against different pathogen-associated molecular patterns (PAMPs). Results highlight that peptidoglycan stimulation strongly induces inflammatory mRNA expression reflected in the up-regulation of pro-inflammatory genes IL1β and IL18 in PBL derived cells whereas IL8 is upregulated in head kidney derived cells. Furthermore TLR2 mRNA abundance is regulated by all stimuli supporting a multifunctional role for this pathogen recognition receptor (PRR) in eel macrophage-like cells.
Collapse
Affiliation(s)
- A Callol
- Departamento de Microbiología y Ecología, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
41
|
Zhang R, Zhang LL, Ye X, Tian YY, Sun CF, Lu MX, Bai JJ. Transcriptome profiling and digital gene expression analysis of Nile tilapia (Oreochromis niloticus) infected by Streptococcus agalactiae. Mol Biol Rep 2013; 40:5657-68. [DOI: 10.1007/s11033-013-2667-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 09/14/2013] [Indexed: 01/01/2023]
|
42
|
Elucidation of novel structural scaffold in rohu TLR2 and its binding site analysis with peptidoglycan, lipoteichoic acid and zymosan ligands, and downstream MyD88 adaptor protein. BIOMED RESEARCH INTERNATIONAL 2013; 2013:185282. [PMID: 23956969 PMCID: PMC3727187 DOI: 10.1155/2013/185282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/17/2022]
Abstract
Toll-like receptors (TLRs) play key roles in sensing wide array of microbial signatures and induction of innate immunity. TLR2 in fish resembles higher eukaryotes by sensing peptidoglycan (PGN) and lipoteichoic acid (LTA) of bacterial cell wall and zymosan of yeasts. However, in fish TLR2, no study yet describes the ligand binding motifs in the leucine rich repeat regions (LRRs) of the extracellular domain (ECD) and important amino acids in TLR2-TIR (toll/interleukin-1 receptor) domain that could be engaged in transmitting downstream signaling. We predicted these in a commercially important freshwater fish species rohu (Labeo rohita) by constructing 3D models of TLR2-ECD, TLR2-TIR, and MyD88-TIR by comparative modeling followed by 40 ns (nanosecond) molecular dynamics simulation (MDS) for TLR2-ECD and 20 ns MDS for TLR2-TIR and MyD88-TIR. Protein (TLR2-ECD)-ligands (PGN, LTA, and zymosan) docking in rohu by AutoDock4.0, FlexX2.1, and GOLD4.1 anticipated LRR16-19, LRR12-14, and LRR20-CT as the most important ligand binding motifs. Protein (TLR2-TIR)-protein (MyD88-TIR) interaction by HADDOCK and ZDOCK predicted BB loop, α B-helix, α C-helix, and CD loop in TLR2-TIR and BB loop, α B-helix, and CD loop in MyD88-TIR as the critical binding domains. This study provides ligands recognition and downstream signaling.
Collapse
|
43
|
Wang R, Feng J, Li C, Liu S, Zhang Y, Liu Z. Four lysozymes (one c-type and three g-type) in catfish are drastically but differentially induced after bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2013; 35:136-145. [PMID: 23639933 DOI: 10.1016/j.fsi.2013.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
Lysozyme is an important component of the innate immune system. In this study, four lysozyme genes including one c-type lysozyme and three g-type lysozymes were identified from channel catfish (Ictalurus punctatus). The lysozyme genes are highly conserved in their structural features as compared to those from other species. Phylogenetic analyses were conducted allowing annotation of these genes. Additional analyses using conserved syntenies allowed determination of orthologies for the c-type lysozyme. Phylogenetic analysis indicated that the g-type lysozyme may have gone through species-specific gene duplications leading to multiple copies in some teleost species. Channel catfish possessed three copies of the g-type lysozyme genes. Expression analysis revealed that the catfish lysozyme genes were expressed in a broad range of tissues. The highest levels of expression were found in head kidney, liver, spleen, and trunk kidney, compatible with the immune functions of these tissues/organs. The c-type and g-type lysozymes were drastically induced after bacterial infection, but exhibited large differences in the extent of induction and the tissue with the highest level of induction, with the g-type lysozyme being most highly induced in the head kidney whereas the other three lysozymes being most highly induced in the liver, suggesting their cooperative actions in the immune responses but difference in their detailed functions.
Collapse
Affiliation(s)
- Ruijia Wang
- Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
44
|
Zhang J, Liu S, Rajendran KV, Sun L, Zhang Y, Sun F, Kucuktas H, Liu H, Liu Z. Pathogen recognition receptors in channel catfish: III phylogeny and expression analysis of Toll-like receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:185-194. [PMID: 23396097 DOI: 10.1016/j.dci.2013.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Toll-like receptors (TLRs) were the earliest characterized and the most extensively studied pathogen recognition receptors (PRRs). The majority of tetrapod TLR orthologs have been found in teleost fish. In addition, a group of "fish-specific" TLRs have been identified. In catfish, a number of TLR-related sequences have been reported, but systematic phylogenetic analyses have not been conducted. In this study, we conducted phylogenetic and comparative analysis of 20 catfish TLR genes against their counterparts from various species. TLR25 and TLR26 are TLRs identified only in channel catfish. Phylogenetic analyses suggested that four catfish TLR genes have duplicated copies in the genome, i.e., TLR4, TLR5, TLR8, and TLR20. Six fish-specific TLRs were identified, and the vast majority of these belong to the TLR11 subfamily. In healthy catfish tissues, most of the tested TLR genes were ubiquitously expressed although expression levels varied among the 11 tested tissues. We tested nine TLRs for their expression in response to Edwardsiella ictaluri infection. They were significantly up-regulated in the spleen and liver, but down-regulated in the head kidney, suggesting their involvement in the immune responses against the intracellular bacterial pathogen in a tissue-specific manner in catfish, perhaps through rapid migration of phagocytes to infection sites.
Collapse
Affiliation(s)
- Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Quiniou SMA, Boudinot P, Bengtén E. Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, Ictalurus punctatus: identification of novel fish TLRs. Immunogenetics 2013; 65:511-30. [DOI: 10.1007/s00251-013-0694-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
|
46
|
Chen L, Li Q, Su J, Yang C, Li Y, Rao Y. Trunk kidney of grass carp (Ctenopharyngodon idella) mediates immune responses against GCRV and viral/bacterial PAMPs in vivo and in vitro. FISH & SHELLFISH IMMUNOLOGY 2013; 34:909-919. [PMID: 23333439 DOI: 10.1016/j.fsi.2013.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Trunk kidney is a vital organ for excretion in teleosts. There have been sporadic reports of processing pathogens for the immune function in trunk kidney. However, molecular processes of pathogen recognition receptors (PRRs) responding to virus and viral/bacterial pathogen-associated molecular patterns (PAMPs) are poorly elucidated in trunk kidney. In the present study, we investigated transcriptional profiles of twelve representative immune-related genes (TLRs (TLR3, TLR7 and TLR22); RLRs (RIG-I, MDA5 and LGP2); NLRs (NOD1 and NOD2); adapter molecules (MyD88 and IPS-1); effector molecule type I interferon (IFN-I) and immunoglobulin M (IgM)) in trunk kidney tissue of grass carp (Ctenopharyngodon idella) (designated as Ci) injection of grass carp reovirus (GCRV) utilizing quantitative real-time RT-PCR (qRT-PCR). Furthermore, mRNA expression patterns of these genes (IgM excepted) were examined post GCRV infection and polyinosine-polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS) or peptidoglycan (PGN) stimulation in primary trunk kidney cells of grass carp. The relative values of CiTLR3, CiTLR22 and CiMyD88 were increased post GCRV challenge and viral/bacterial PAMPs stimulation. The mRNA transcriptions of CiTLR7 were obviously activated with GCRV challenge. Remarkably, the mRNA expressions of CiRIG-I, CiMDA5, CiLGP2 and CiIPS-1 were largely up-regulated with GCRV challenge and viral/bacterial PAMPs stimulation. Interestingly, the expression tendencies of CiNOD1 and CiNOD2 were differential not only in GCRV challenge and poly(I:C) stimulation, but also in LPS and PGN stimulation. It was demonstrated that CiIFN-I induced powerful anti-viral and anti-bacterial effects in trunk kidney. In addition, the expression of CiIgM was induced at 72 h post GCRV injection in vivo. Collectively, these results suggest that trunk kidney of grass carp serves as an important immune organ, and plays crucial roles in triggering anti-viral and anti-bacterial immune responses both in vivo and in vitro.
Collapse
Affiliation(s)
- Lijun Chen
- Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, No. 22, Xinong Rd., Yangling, Shaanxi Province 712100, China
| | | | | | | | | | | |
Collapse
|
47
|
Xu T, Meng F, Zhu Z, Wang R. Characterization and comprehensive analysis of the miiuy croaker TLR2 reveals a direct evidence for intron insert and loss. FISH & SHELLFISH IMMUNOLOGY 2013; 34:119-128. [PMID: 23069786 DOI: 10.1016/j.fsi.2012.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/07/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Toll-like receptor 2 (TLR2) is a member of an ancient pattern recognition receptor family, conserved from insects to mammals and it is best known as a receptor for recognizing conserved components of Gram-positive bacteria. In present study, the genomic structure of TLR2 gene from miiuy croaker was identified and characterized. It comprises twelve exons and eleven introns. The lengths of exons 3 to 10 of miiuy croaker TLR2 and exons 2 to 9 of fugu and pufferfish TLR2 are exactly the same, but most importantly, both of fugu and pufferfish have only eleven exons and ten introns. An intron insert event probably happened on exon 1 of miiuy croaker TLR2 after its divergence from ancestor of zebrafish, and an intron loss event probably happened on those of Tetraodontiformes TLR2 after the divergence with ancestor of miiuy croaker. Our study showed the direct evidence and strongly supported the intron insert and loss on fish TLR2. The pathogen injection experiments indicated that TLR2 might not be an important responder to Gram-negative bacteria in miiuy croaker. Molecular evolutionary analyses indicated TLR2 genes were under strong purifying selection pressure, showing a quite strong functional constraint in both of fish and mammals, despite of their distinct living environment conditions.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan 316000, PR China.
| | | | | | | |
Collapse
|
48
|
Abstract
Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.
Collapse
|
49
|
Varriale S, Ferraresso S, Giacomelli S, Coscia MR, Bargelloni L, Oreste U. Evolutionary analysis of Antarctic teleost Toll-like receptor 2. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1076-1085. [PMID: 22960217 DOI: 10.1016/j.fsi.2012.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
In the present study we address the investigation of TLR2 evolutionary selection in two Antarctic teleosts, Trematomus bernacchii (Nototheniidae) and Chionodraco hamatus (Channichthyidae). The nucleotide sequence of TLR2 has been determined in both species, encoding 20 leucine-rich repeats (LRRs) in the extracellular region and a classical Toll/IL-1R (TIR) domain in the intracellular region. High expression level of T. bernacchii TLR2 was found in spleen and skin. Using different methods we identified six codons that underwent Darwinian selection while 20 were found to be negatively selected. Molecular models of C. hamatus and T. bernacchii TLR2 ectodomain as well as of the TIR domain were built by Homology Modeling. Molecular Dynamics simulations were performed in water for 15 ns. The sites under positive selection were residing on the convex side of the solenoid, four out of six were in a 35-residue-long region including the central/N-terminal domain boundary: two in the external loop of LRR11 and the other two in the LRR12 loop. This region has been demonstrated to be the functional site of ligand interaction in human TLR2 structure. Antarctic TLR2 models showed more flexibility than TLR2 from the temperate species Gasterosteus aculeatus. These results suggest that the selective pressure has shaped TLR2 molecule in such a way that increased its activity under the peculiar Antarctic environmental conditions.
Collapse
|
50
|
Class II, major histocompatibility complex, transactivator (CIITA) in channel catfish: identification and expression patterns responding to different pathogens. Mol Biol Rep 2012; 39:11041-50. [DOI: 10.1007/s11033-012-2007-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023]
|