1
|
Liu L, Zhuang H, Tian X, Zhou Y, Wang F, Liu Z, Li J, Jiao M, Xue S, Li J, Jiang W, Mao Y. Understanding the probiotic potential of Lactobacillus plantarum: Antioxidant capacity, non-specific immunity and intestinal microbiota improvement effects on Manila clam Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109971. [PMID: 39423904 DOI: 10.1016/j.fsi.2024.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Lactic acid bacteria (LAB) have beneficial effects on aquatic animals, improving their immune system and intestinal microbiota. Nevertheless, the probiotic effects of LAB on the Manila clam Ruditapes philippinarum remain poorly understood. Herein, the effects of administering Lactobacillus plantarum at final doses of 1 × 105 CFU/L (T5 group), 1 × 107 CFU/L (T7 group), and 1 × 109 CFU/L (T9 group) in the rearing water for eight weeks were evaluated for the antioxidant capacity, non-specific immunity, resistance to Vibrio parahaemolyticus infection, and intestinal microbiota of R. philippinarum. The rearing water without the addition of L. plantarum served as a control. The results showed that the T7 and T9 groups demonstrated a significant elevation in the disease resistance of clams against V. parahaemolyticus, in the activities of alkaline phosphatase and lysozyme in the hepatopancreas, and in the expression of antioxidant- and immune-related genes, including SOD, GPx, and GST. Meanwhile, the T7 group showed a significant enhancement in superoxide dismutase and catalase activities and CAT expression, while the T9 group experienced a remarkable elevation in reduced glutathione content. Only catalase activity was markedly elevated in the T5 group. The expression of SOD, CAT, GPx, and GST was significantly elevated in three treatment groups following the V. parahaemolyticus challenge. The T7 group exhibited a significant increase in intestinal microbiota richness. Significant increases were noted in Firmicutes abundance across all three treatment groups and in Actinobacteriota in the T5 and T7 groups. Additionally, the opportunistic pathogen Escherichia-Shigella abundance significantly decreased in three treatment groups. Furthermore, administration of 1 × 107 CFU/L L. plantarum enhanced the stability of the intestinal microecosystem, whereas a dose of 1 × 109 CFU/L might have a negative effect. The application of three doses of L. plantarum significantly enhanced intestinal microbiota functions related to the immune response and oxidative stress regulation, while a higher dose (1 × 109 CFU/L) might inhibit several functions. In conclusion, the application of L. plantarum in the rearing water exerted beneficial effects on the antioxidant capacity, non-specific immunity, resistance to V. parahaemolyticus, and the intestinal microbiota stability and functions of R. philippinarum. The beneficial effects of L. plantarum on R. philippinarum were dose-dependent, and the final dose of 1 × 107 CFU/L exhibited the optimal effects.
Collapse
Affiliation(s)
- Longzhen Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Haonan Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China; Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Xiangli Tian
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yujia Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Fangyi Wang
- Weifang Fisheries Technology Extension Station, Wei fang, 261061, China
| | - Zirong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Jiamin Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Minghui Jiao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Suyan Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Jiaqi Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Weiwei Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Yuze Mao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
2
|
Zhu Z, Shi W, Li F, Zhang M, Luo K, Tong D, Yu Y, Zhang X, Lu L, Yan M. Studies on immunological characteristics and transcriptomic analysis of Litopenaeus vannamei low salt-tolerance family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105265. [PMID: 39265856 DOI: 10.1016/j.dci.2024.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Litopenaeus vannamei is a widely distributed euryhaline aquatic animal, affected by low salinity, which can impact its disease resistance and immunity. However, there is a limited understanding of the adaptation mechanisms of L. vannamei with different genetic backgrounds to low salinity. Therefore, the present study aimed to compare the immunity characteristics and transcriptomics of L. vannamei low salt-tolerant (FG I/J) and low salt-sensitive (control) families. Also, the disease resistance and immune parameters (including [THC], hemolymph cell viability, lysozyme activity [LZM], phenoloxidase content [PO], interleukin-6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) of the FG I/J and control families of L. vannamei under low salinity (5‰) and ambient salinity (24‰) were examined. Additionally, hepatopancreas transcriptomics of the FG I/J and control families were analyzed at a salinity of 5‰. The results showed that the FG I/J family had higher disease resistance to Vibrio parahaemolyticus and stronger immunological capacity than the control family. Transcriptomic analysis showed significantly enriched energy metabolism and immune regulation pathways. Therefore, we speculated that energy metabolism provides sufficient energy for immunological modulation in the FG I/J family to deal with long-term low-salt stress and achieve high growth and survival rates.
Collapse
Affiliation(s)
- Zhihang Zhu
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention & Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, 271018, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Li
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Min Zhang
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Kui Luo
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Coastal Biological Germplasm Resources Conservation and Utilization, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China.
| |
Collapse
|
3
|
Yohana MA, Ray GW, Yang Q, Shiyu K, Tan B, Wu J, Mao M, Bo Ge Z, Feng L. Comprehensive analysis of butyric acid impact on immunology, histopathology, gene expression, and metabolomic responses in pacific shrimp experiencing cold stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101293. [PMID: 39053237 DOI: 10.1016/j.cbd.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
In this study, our objective was to investigate the impact of dietary butyric acid (BA) on the homeostasis mechanism of Pacific shrimp under cold stress. Specifically, we analyzed its effects on immunity, antioxidant capacity, gene expression, and metabolomics response. To carry out this research, Litopenaeus vannamei were fed a diet supplemented with BA for 8 weeks. Following this feeding period, a total of 180 shrimp, with an average weight of 12.76 ± 0.38 g, were exposed to cold conditions, with the temperature decreasing from 28 °C to 14 °C within an hour. The results of our study revealed survival rates ranging from 90 % to 100 %. Shrimp that were fed a diet containing 1.5 % BA exhibited a significant increase in acid phosphatase (ACP) and alkaline phosphatase (AKP) activity. Conversely, the control groups showed an increase in aspartate aminotransferase (AST) and alanine transaminase (ALT) activity. Shrimp that consumed diets containing 1.5 % BA displayed the lowest malondialdehyde (MDA) levels with the highest superoxide dismutase (SOD) content. The shrimp fed the BA diet exhibited tightly organized hepatic tubules with a star-shaped lumen filled with numerous B and R cells. Furthermore, shrimp fed the BA diet demonstrated a significant increase in caspase 3 (CASP) expression. There were no significant variations in the expression levels of prophenoloxidase (ProPO), manganese superoxide dismutase (MnSOD), and glutathione S-transferase (GST) The metabolites of Dl-carnitine, acetyl-l-carnitine, propionylcarnitine, hexanoylcarnitine, palmitoylcarnitine, decanoylcarnitine, and Dl-carnitine exhibited significantly increased expression in shrimp that were fed BA, suggesting their role in the lipolysis process. Based on the findings, adding 2 % BA to the diet of Pacific shrimp helps reduce inflammation and oxidative stress when they are under cold stress.
Collapse
Affiliation(s)
- Mpwaga Alatwinusa Yohana
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Gyan Watson Ray
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China.
| | - Kou Shiyu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Jiahua Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Minling Mao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Zhan Bo Ge
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| | - Lan Feng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, PR China
| |
Collapse
|
4
|
Yang H, Du D, Zhang Q, Teame T, Wang A, Hao Q, Liu S, Ding Q, Yao Y, Yang Y, Ran C, Li S, Zhang Z, Zhou Z. Dietary Bacillus velezensis T23 fermented products supplementation improves growth, hepatopancreas and intestine health of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109595. [PMID: 38692381 DOI: 10.1016/j.fsi.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-β was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.
Collapse
Affiliation(s)
- Hongwei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Dongdong Du
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Tigray Agricultural Research Institute (TARI), Mekelle, Tigray, Ethiopia
| | - Anran Wang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Norway-China Joint Lab on Fish Gut Microbiota, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Shubin Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengkang Li
- Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Kunpeng Institute of Modern Agriculture of Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528225, China.
| |
Collapse
|
5
|
Widanarni W, Gustilatov M, Ekasari J, Julyantoro PGS, Waturangi DE, Sukenda S. Unveiling the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing and virulence gene expression and enhancing immunity. JOURNAL OF FISH DISEASES 2024; 47:e13932. [PMID: 38373053 DOI: 10.1111/jfd.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to evaluate and unveil the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing (QS) and virulence gene expression and enhancing shrimp's immunity. The shrimp with an average body weight of 0.50 ± 0.09 g were reared in containers with a volume of 2.5 L, 21 units, and a density of 20 shrimp L-1. The shrimp were cultured for 5 days, with each treatment including biofloc system maintenance with a C/N ratio of 10 and a control treatment without biofloc, followed by a challenge test through immersion using V. parahaemolyticus at densities of 103, 105, and 107 CFU mL-1 initially. The results of the in vitro experiment showed that biofloc suspension can inhibit and disperse biofilm formation, as well as reduce the exo-enzyme activity (amylase, protease, and chitinase) of V. parahaemolyticus. Furthermore, the biofloc treatment significantly reduced the expression of the QS regulatory gene OpaR, the PirB toxin gene, and the virulence factor genes T6SS1 and T6SS2 in both in vitro and in vivo. The biofloc system also increased the expression of shrimp immunity-related genes (LGBP, proPO, SP, and PE) and the survival rate of white shrimp challenged with V. parahaemolyticus.
Collapse
Affiliation(s)
- Widanarni Widanarni
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Muhamad Gustilatov
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Julie Ekasari
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, Indonesia
| | | | - Sukenda Sukenda
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor, West Java, Indonesia
| |
Collapse
|
6
|
Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, Zhu T, Zhao Y, Che X. Exposure to polystyrene nanoplastics induces apoptosis, autophagy, histopathological damage, and intestinal microbiota dysbiosis of the Pacific whiteleg shrimp (Litopenaeus vannamei). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170924. [PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Haojuan Yuan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Na Rihan
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Tian Zhu
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
7
|
Čanak I, Kostelac D, Jakopović Ž, Markov K, Frece J. Lactic Acid Bacteria of Marine Origin as a Tool for Successful Shellfish Farming and Adaptation to Climate Change Conditions. Foods 2024; 13:1042. [PMID: 38611348 PMCID: PMC11011843 DOI: 10.3390/foods13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Climate change, especially in the form of temperature increase and sea acidification, poses a serious challenge to the sustainability of aquaculture and shellfish farming. In this context, lactic acid bacteria (LAB) of marine origin have attracted attention due to their ability to improve water quality, stimulate the growth and immunity of organisms, and reduce the impact of stress caused by environmental changes. Through a review of relevant research, this paper summarizes previous knowledge on this group of bacteria, their application as protective probiotic cultures in mollusks, and also highlights their potential in reducing the negative impacts of climate change during shellfish farming. Furthermore, opportunities for further research and implementation of LAB as a sustainable and effective solution for adapting mariculture to changing climate conditions were identified.
Collapse
Affiliation(s)
| | | | | | | | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (I.Č.); (D.K.); (K.M.)
| |
Collapse
|
8
|
Noman M, Kazmi SSUH, Saqib HSA, Fiaz U, Pastorino P, Barcelò D, Tayyab M, Liu W, Wang Z, Yaseen ZM. Harnessing probiotics and prebiotics as eco-friendly solution for cleaner shrimp aquaculture production: A state of the art scientific consensus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169921. [PMID: 38199379 DOI: 10.1016/j.scitotenv.2024.169921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
In recent years, the advancement and greater magnitude of products, which led to the intensification in shrimp aquaculture is the result of utilization of modern tools and synchronization with other fields of science like microbiology and biotechnology. This intensification led to the elevation of disorders such as the development of several diseases and complications associated with biofouling. The use of antibiotics in aquaculture is discouraged due to their certain hazardous paraphernalia. Consequently, there has been a growing interest in exploring alternative strategies, with probiotics and prebiotics emerging as environmentally friendly substitutes for antibiotic treatments in shrimp aquaculture. This review highlighted the results of probiotics and prebiotics administration in the improvement of water quality, enhancement of growth and survival rates, stress resistance, health status and disease resistance, modulation of enteric microbiota and immunomodulation of different shrimp species. Additionally, the study sheds light on the comprehensive role of prebiotics and probiotics in elucidating the mechanistic framework, contributing to a deeper understanding of shrimp physiology and immunology. Besides their role in growth and development of shrimp aquaculture, the eco-friendly behavior of prebiotics and probiotics have made them ideal to control pollution in aquaculture systems. This comprehensive exploration of prebiotics and probiotics aims to address gaps in our understanding, including the economic aspects of shrimp aquaculture in terms of benefit-cost ratio, and areas worthy of further investigation by drawing insights from previous studies on different shrimp species. Ultimately, this commentary seeks to contribute to the evolving body of knowledge surrounding prebiotics and probiotics, offering valuable perspectives that extend beyond the ecological dimensions of shrimp aquaculture.
Collapse
Affiliation(s)
- Muhammad Noman
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Govt. Associate College (Boys), Eminabad 52460, Pakistan
| | - Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Usama Fiaz
- Govt. Associate College (Boys), Eminabad 52460, Pakistan
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino 10154, Italy
| | - Damià Barcelò
- Catalan Institute for Water Research (ICRA-CERCA), Girona 17003, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Muhammad Tayyab
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
9
|
Kabir MA, Rabbane MG, Hernandez MR, Shaikh MAA, Moniruzzaman M, Chang X. Impaired intestinal immunity and microbial diversity in common carp exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109800. [PMID: 37993011 DOI: 10.1016/j.cbpc.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Waterborne cadmium (Cd) accumulates in the fish intestine and causes irreversible toxicity by disrupting intestinal immunity and microbial diversity. To explore the toxicity of environmentally available high Cd concentration on intestinal immunity and microbial diversity of fish, we selected the widely used bioindicator model species, Common carp (Cyprinus carpio). Literature review and Cd pollution data supported sequential doses of 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 mg/L Cd for 30 days. Based on intestinal tissue Cd accumulation, previous studies, and environmentally available Cd data, 0.4 and 1.6 mg/L Cd were selected for further studies. Intestinal Cd bioaccumulation increased significantly to ~100 times in fish exposed to 1.6 mg/L Cd. We observed villous atrophy, increased goblet cells with mucus production, muscularis erosion, and thickened lamina propria due to intense inflammatory cell infiltration in the intestine at this Cd concentration. Cd-induced immunosuppression occurred with increased lysozyme, alkaline phosphate (AKP), and acid phosphate (ACP). High levels of catalase (CAT), total antioxidant capacity (T-AOC), malondialdehyde (MDA), and hydrogen peroxide (H2O2) suggested induced oxidative stress and poor metabolism by α-amylase and lipase suppression for Cd toxicity. Proteobacteria (41.2 %), Firmicutes (21.8 %), and Bacteroidetes (17.5 %) were the dominant bacterial phyla in the common carp intestine. Additionally, potential pathogenic Cyanobacteria increased in Cd-treated fish. The decrease of beneficiary bacteria like Aeromonas, and Cetobacterium indicated Cd toxicity. Overall, these findings indicate harmful consequences of high Cd concentration in the intestinal homeostasis and health status of fish.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, PR China; Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Golam Rabbane
- Department of Fisheries, University of Dhaka, Dhaka 1000, Bangladesh
| | - Marco R Hernandez
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Qudrat-I-Khuda Road, Dhanmandi, Dhaka 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Division, Soil and Environment Section, BCSIR Laboratories, Qudrat-I-Khuda Road, Dhanmandi, Dhaka 1205, Bangladesh
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
10
|
Sepordeh S, Jafari AM, Bazzaz S, Abbasi A, Aslani R, Houshmandi S, Rad AH. Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry. Curr Pharm Biotechnol 2024; 25:1245-1263. [PMID: 37702234 DOI: 10.2174/1389201025666230912123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. OBJECTIVES With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. RESULTS Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. CONCLUSION Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
Collapse
Affiliation(s)
- Sama Sepordeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Ghosh AK. Functionality of probiotics on the resistance capacity of shrimp against white spot syndrome virus (WSSV). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108942. [PMID: 37451524 DOI: 10.1016/j.fsi.2023.108942] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Shrimp aquaculture is currently regarded as a significant commercial and food production sector due to its growing importance as a source of human-consumable protein, As shrimp farming has become more intensive, disease outbreaks have become more common, necessitating the overuse of antimicrobial drugs, which has had a number of unintended consequences. The white spot syndrome virus (WSSV) is now recognized as one of the world's most pervasive and potentially fatal diseases affecting shrimp. However, there is currently no cure to prevent the disease's uncontrolled incidence and spread. Probiotics are currently favoured over these antimicrobial substances because of their ability to stimulate disease resilience in shrimp farms by strengthening the immune systems naturally. Probiotics for bacterial infections such as vibriosis are well documented, whereas research is still required to identify the legitimate strains for viral diseases. The utilization of these probiotics as a therapy for and preventative measure against WSSV in shrimp farming is a cutting-edge method that has proven to be effective. Some probiotic strains, such as Bacillus spp, Lactobacillus, and Pediococcus pentosaceus, have been displayed to enhance the innate immunity of shrimp against WSSV, reduce viral load, increase digestibility and growth, and support the gut microbiome of the host in multiple investigations. The present review explores recent developments regarding the function of probiotics in shrimp, with a focus on their anti-WSSV activity.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
12
|
Miyasaka H, Koga A, Maki TA. Recent progress in the use of purple non-sulfur bacteria as probiotics in aquaculture. World J Microbiol Biotechnol 2023; 39:145. [PMID: 37014486 DOI: 10.1007/s11274-023-03592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The use of probiotics in aquaculture is widely recognized as an ecological and cost-effective approach to raising healthy, pathogen-tolerant aquatic animals, including fish and shrimp. In particular for shrimp, probiotics are viewed as a promising countermeasure to the recent severe damage to the shrimp industry by bacterial and viral pathogens. Purple non-sulfur bacteria (PNSB) are Gram-negative, non-pathogenic bacteria with wide application potential in agriculture, wastewater treatment, and bioenergy/biomaterials production. In aquaculture, lactic bacteria and Bacillus are the major probiotic bacteria used, but PNSB, like Rhodopseudomonas and Rhodobacter, are also used. In this review, we summarize the previous work on the use of PNSB in aquaculture, overview the previous studies on the stimulation of innate immunity of shrimp by various probiotic microorganisms, and also share our results in the probiotic performance of Rhodovulum sulfidophilum KKMI01, a marine PNSB, which showed a superior effect in promotion of growth and stimulation of immunity in shrimp at a quite low concentration of 1 × 103 cfu (colony forming unit)/ml in rearing water.
Collapse
Affiliation(s)
- Hitoshi Miyasaka
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan.
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan.
| | - Aoi Koga
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| | - Taka-Aki Maki
- Department of Applied Life Science, Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Ciamo Co. Ltd., G-2F Sojo University, 4-22-1 Ikeda, Nishiku, Kumamoto, 860-0082, Japan
- Matsumoto Institute of Microorganisms Co. Ltd, 2904 Niimura, Matsumoto, Nagano, 390-1241, Japan
| |
Collapse
|
13
|
Tseng KC, Huang HT, Huang SN, Yang FY, Li WH, Nan FH, Lin YJ. Lactobacillus plantarum isolated from kefir enhances immune responses and survival of white shrimp (Penaeus vannamei) challenged with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108661. [PMID: 36906049 DOI: 10.1016/j.fsi.2023.108661] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Lactobacillus plantarum is known for its probiotics benefit to host, although the effects vary among strains. This study conducted a feeding experiment of three Lactobacillus strains, MRS8, MRS18 and MRS20, which were isolated from kefir and incorporated into the diets of shrimp to evaluate the effects of non-specific immunity, immune-related gene expression, and disease resistance of white shrimp (Penaeus vannamei) against Vibrio alginolyticus. To prepare the experimental feed groups, the basic feed was mixed with different concentrations of L. plantarum strains MRS8, MRS18, and MRS 20, which were incorporated at 0 CFU (control), 1 × 106 CFU (groups 8-6, 18-6, and 20-6), and 1 × 109 CFU (groups 8-9, 18-9, and 20-9) per gram of diet for an in vivo assay. During the rearing period for 28 days of feeding each group, immune responses, namely the total hemocyte count (THC), phagocytic rate (PR), phenoloxidase activity, and respiratory burst were examined on days 0, 1, 4, 7, 14, and 28. The results showed that groups 20-6, 18-9 and 20-9 improved THC, and groups 18-9 and 20-9 improved phenoloxidase activity and respiratory burst as well. The expression of immunity-related genes was also examined. Group 8-9 increased the expression of LGBP, penaeidin 2 (PEN2) and CP, group 18-9 increased the expression of proPO1, ALF, Lysozyme, penaeidin 3 (PEN3) and SOD, and group 20-9 increased the expression of LGBP, ALF, crustin, PEN2, PEN3, penaeidin 4 (PEN4) and CP (p < 0.05). Groups 18-6, 18-9, 2-6, and 20-9 were further used in the challenge test. After feeding for 7 days and 14 days, Vibrio alginolyticus was injected into white shrimp and observed the shrimp survival for 168 h. The results showed that compared to the control, all groups improved the survival rate. Especially, feeding group 18-9 for 14 days improved the survival rate of white shrimp (p < 0.05). After the challenge test for 14 days, the midgut DNA of survival white shrimps was extracted to analyze the colonization of L. plantarum. Among the groups, (6.61 ± 3.58) × 105 CFU/pre shrimp of L. plantarum in feeding group 18-9 and (5.86 ± 2.27) × 105 CFU/pre shrimp in group 20-9 were evaluated by qPCR. Taken together, group 18-9 had the best effects on the non-specific immunity, the immune-related gene expression, and the disease resistance, which might be due to the benefit of the probiotic colonization.
Collapse
Affiliation(s)
- Kuo-Chun Tseng
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Shu-Ning Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Fang-Yi Yang
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan.
| |
Collapse
|
14
|
In Vitro Evaluation of Postbiotics Produced from Bacterial Isolates Obtained from Rainbow Trout and Nile Tilapia against the Pathogens Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. Foods 2023; 12:foods12040861. [PMID: 36832935 PMCID: PMC9957526 DOI: 10.3390/foods12040861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The use of antibiotics in aquaculture leads to the proliferation of multidrug-resistant bacteria, and an urgent need for developing new alternatives to prevent and control disease has, thus, arisen. In this scenario, postbiotics represent a promising tool to achieve this purpose; thus, in this study, isolation and selection of bacteria to further produce and evaluate their postbiotics antibacterial activity against fish pathogens was executed. In this respect, bacterial isolates from rainbow trout and Nile tilapia were obtained and tested in vitro against Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida. From 369 obtained isolates, 69 were selected after initial evaluation. Afterwards, additional screening was carried out by spot-on-lawn assay to finally select twelve isolates; four were identified as Pediococcus acidilactici, seven as Weissella cibaria, and one as Weissella paramesenteroides by matrix assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS). Selected bacteria were used to obtain postbiotic products to test their antagonistic activity through coculture challenge and broth microdilution assays. The influence of incubation time prior to postbiotic production on antagonistic behavior was also recorded. Two isolates identified as W. cibaria were able to significantly reduce (p < 0.05) A. salmonicida subsp. salmonicida's growth in the coculture challenge up to 4.49 ± 0.05 Log CFU/mL, and even though the reduction in Y. ruckeri was not as effective, some inhibition on the pathogen's growth was reported; at the same time, most of the postbiotic products obtained showed more antibacterial activity when obtained from broth cultures incubated for 72 h. Based on the results obtained, the preliminary identification of the isolates that expressed the highest inhibitory activity was confirmed by partial sequencing as W. cibaria. Through our study, it can be concluded that postbiotics produced by these strains are useful to inhibit the growth of the pathogens and could, thereby, be applicable in further research to develop suitable tools as feed additives for disease control and prevention in aquaculture.
Collapse
|
15
|
Felix N, Manikandan K, Uma A, Kaushik SJ. Evaluation of single cell protein on the growth performance, digestibility and immune gene expression of Pacific white shrimp, Penaeus vannamei. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Guo Y, Zhang L, Liang Y, Li P, Zhang T, Meng F, Liu B, Zhang H, Fu W, Wang W, Liang J, Tian X. Effects of dietary yeast culture on health status in digestive tract of juvenile Pacific white shrimp Litopenaeus Vannamei. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100065. [PMID: 36419603 PMCID: PMC9680107 DOI: 10.1016/j.fsirep.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
A feeding trial was conducted to investigate the effects of dietary yeast culture (YC) on health status in digestive tract of juvenile Pacific white shrimp Litopenaeus Vannamei. Shrimps (initial weight: 3.33 ± 0.06 g) were fed with graded levels of dietary YC (control, 0.3%, 0.5% and 1.0%). Results of the present study showed that villus height and the ratio between villus height and crypt depth in the digestive tract of juvenile shrimp was significantly increased by dietary 0.5% and 1.0%YC (P < 0.05). Besides, dietary 0.5% and 1.0%YC significantly activities of phenoloxidase (PO), lysozyme (LZ), acid phosphatase (ACP) and alkaline phosphatase (AKP) (P < 0.05), significantly up-regulated mRNA levels of prophenoloxidase (propo), lysozyme (lz), anti-lipopolysaccharide factor (alf), crustin and penaienadin (P < 0.05) and down-regulated mRNA levels of caspase-1, nuclear factor κB p65 (nf-κbp65) myeloid differentiation primary response protein (myd88) and toll like receptor (tlr) in the digestive tract of juvenile shrimp (P < 0.05). Compared with the control, dietary 0.5%YC increased Chao1 index in the digestive tract of juvenile shrimp. In addition, compared with the control, dietary 0.5% and 1.0%YC significantly increased relative abundance of Lactobacillus (P < 0.05). It can be concluded that dietary YC made positive contribution to health status in digestive tract of juvenile shrimp through improving morphology and microbiota, enhancing immune function, and inhibiting inflammation of digestive tract.
Collapse
Affiliation(s)
- Yanlin Guo
- GBW Biotechnology Group, Qingdao 266111, China
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266237, China
| | - Lei Zhang
- GBW Biotechnology Group, Qingdao 266111, China
| | - Yi Liang
- GBW Biotechnology Group, Qingdao 266111, China
| | - Peigen Li
- GBW Biotechnology Group, Qingdao 266111, China
| | | | - Fankui Meng
- GBW Biotechnology Group, Qingdao 266111, China
| | - Baotong Liu
- GBW Biotechnology Group, Qingdao 266111, China
| | | | - Wenzhong Fu
- GBW Biotechnology Group, Qingdao 266111, China
| | - Wei Wang
- GBW Biotechnology Group, Qingdao 266111, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266237, China
| |
Collapse
|
17
|
Jastaniah SDS, Hafsan H, Tseng CJ, Karim YS, Hamza MU, Hameed NM, Al-Zubaidi SH, Almotlaq SSK, Yasin G, Iswanto AH, Dadras M, Chorehi MM. Effects of Dietary Pectin and Lactobacillus salivarius ATCC 11741 on Growth Performance, Immunocompetence, Gut Microbiota, Antioxidant Capacity, and Disease Resistance in Narrow-Clawed Crayfish, Postantacus leptodactylus. AQUACULTURE NUTRITION 2022; 2022:1861761. [PMID: 36860450 PMCID: PMC9973152 DOI: 10.1155/2022/1861761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The present study was conducted to clarify the effects of Lactobacillus salivarius (LS) ATCC 11741 and pectin (PE) on growth performance, digestive enzymes activity, gut microbiota composition, immune parameters, antioxidant defense as well as disease resistance against Aeromonas hydrophila in narrow-clawed crayfish, Postantacus leptodactylus. During 18 weeks trial feeding, 525 narrow-clawed crayfish juvenile (8.07 ± 0.1 g) fed with seven experimental diets including control (basal diet), LS1 (1 × 107 CFU/g), LS2 (1 × 109 CFU/g), PE1 (5 g/kg), PE2 (10 g/kg), LS1PE1 (1 × 107 CFU/g +5 g/kg), and LS2PE2 (1 × 109 CFU/g +10 g/kg). After 18 weeks, growth parameters (final weight, weight gain, and specific growth rate) and feed conversion rate were significantly improved in all treatments (P < 0.05). Besides, diets incorporated with LS1PE1 and LS2PE2 significantly increased the activity of amylase and protease enzymes compared to LS1, LS2, and control groups (P < 0.05). Microbiological analyses revealed that the total heterotrophic bacteria count (TVC) and lactic acid bacteria (LAB) of narrow-clawed crayfish fed diets containing LS1, LS2, LS1PE1, and LS2PE2 were higher than control group. The highest total haemocyte count (THC), large-granular (LGC) and semigranular cells (SGC) count, and hyaline count (HC) was obtained in LS1PE1 (P < 0.05). Similarly, higher immunity activity (lysozyme (LYZ), phenoloxidase (PO), nitroxidesynthetase (NOs), and alkaline phosphatase (AKP)) observed in the LS1PE1 treatment compared to the control group (P < 0.05). The glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity remarkably enhanced in LS1PE1 and LS2PE2, while malondialdehyde (MDA) content reduced in these two treatments. In addition, specimens belonging to LS1, LS2, PE2, LS1PE1, and LS2PE2 groups presented higher resistance against A. hydrophila compared to the control group. In conclusion, feeding narrow-clawed crayfish with synbiotic had higher efficiency on growth parameters, immunocompetence, and disease resistance compared to single consumption of prebiotics and probiotics.
Collapse
Affiliation(s)
| | - Hafsan Hafsan
- Biology Department, Universitas Islam Negeri Alauddin, Indonesia
| | - Cheng-jui Tseng
- Assistant Professor, Rattanakosin International College of Creative Entrepreneurship, Rajamangala University of Technology Rattanakosin, Thailand
| | - Yasir Salam Karim
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | | | | | | | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - A. Heri Iswanto
- Public Health Department, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Mahnaz Dadras
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
18
|
Du Y, Xu W, Wu T, Li H, Hu X, Chen J. Enhancement of growth, survival, immunity and disease resistance in Litopenaeus vannamei, by the probiotic, Lactobacillus plantarum Ep-M17. FISH & SHELLFISH IMMUNOLOGY 2022; 129:36-51. [PMID: 36041627 DOI: 10.1016/j.fsi.2022.08.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Green ecological prevention and control technology is a hot spot for aquatic disease research in recent years, and lactic acid bacteria is an important type of probiotic widely used in aquaculture. In this study, a strain of Lactobacillus plantarum Ep-M17 was isolated from the intestine of healthy grouper, which showed good antibacterial activity in vitro. To investigate the application prospects of Ep-M17 as a probiotic, we added it to the diet and fed Litopenaeus vannamei, and then detected its influence on the growth performance, survival rate, disease resistance, intestinal tissue structure, gene transcription, and the flora in the gut of shrimp. The results showed that feeding Ep-M17 increased the specific growth rate, reduced the feed conversion rate, improved the survival rate, and achieved a 76.9% relative protection rate after Vibrio parahaemolyticus E1 infection in shrimp. Histological examination displayed that Ep-M17-fed shrimp had a thick intestinal villi layer, which enhanced the protection against pathogen damage. It was also found that Ep-M17 significantly increased the activity levels of immune and digestion-related enzymes SOD, CAT, TRY, AKP, LIP, and AMS in the gut of shrimp, especially after V. parahaemolyticus E1 infection, these enzymes increased significantly higher than that of control. Transcriptome analysis revealed that Ep-M17 activated significantly differential expression of genes in immune, nutritional, metabolic, and Signal Transduction-related pathways in the gut of shrimp. In addition, Ep-M17 enriched the bacterial diversity of the shrimp gut, with a significant increase in many low-abundance bacterial species, a significant decrease in the number of pathogenic bacteria like Vibrio, and a significant increase in the number of beneficial bacteria. The above results evaluated that Ep-M17 as a potential probiotic can promote the growth and improve the disease resistance of shrimp by regulating the nutritional immune response and flora of the intestine.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Han M, Gao T, Liu G, Zhu C, Zhang T, Sun M, Li J, Ji F, Si Q, Jiang Q. The effect of a polystyrene nanoplastic on the intestinal microbes and oxidative stress defense of the freshwater crayfish, Procambarus clarkii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155722. [PMID: 35525353 DOI: 10.1016/j.scitotenv.2022.155722] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The widespread generation and accumulation of plastic waste has become a globally recognized problem. However, there are limited reports on the adverse effects of nanomaterials on freshwater crustaceans. This study tested the acute effects of different concentrations (0, 5, 10, and 20 mg/L) after 48 h exposure of 75 nm polystyrene nanoplastic on intestinal microbes, and oxidative stress parameters of freshwater crayfish, Procambarus clarkii. High-throughput sequencing analysis revealed the richness, diversity, and composition of intestinal microbiota in P. clarkii exposed to polystyrene nanoplastic. At the genus level, abundances of Lactobacillus, Faecalibaculum, Niveibacterium, and Candidatus Bacilloplasma were significantly different. The reduced abundance of Lactobacillus could affect the balance of intestinal microbes through quantitative disadvantage, which may lead to reduced immunity of P. clarkii. Streptococcus salivarius, Clostridium butyricum and Lachnospiraceae bacterium10-1 in intestinal tract reached maximum abundance at a polystyrene concentration of 20 mg/L. The increase in the number of some pathogenic bacteria may upset the balance of intestinal microorganisms through the number of dominance, and the decrease in the relative abundance of lactic acid bacteria. Probiotics, such as Lactobacillus salivarius, Lactobacillus murinus, Lactobacillus gasseri, Lactobacillus reuteri, Lactobacillus iners AB-1, and Lactobacillus crispatus in the intestinal tract reached the lowest value at a concentration of 10 mg/L. The reduced abundance of Lactobacillus can affect the balance of intestinal microbes through quantitative disadvantage, which may lead to reduced immunity in P. clarkii. At nanoplastic 10 mg/L, the relative abundance of intestinal pathogens increased, while the relative abundance of lactic acid bacteria and other probiotics decreased. With increases in nanoplastic concentrations, the values of glutathione (GSH), superoxide dismutase (SOD), acid phosphatase (ACP), lysozyme (LZM), alkaline phosphatase (AKP), peroxidase (POD), glutathione peroxidase (GPX), and protein carbonylation were significantly changed. Our data suggested that Lactobacillus may play an adjunctive role in the treatment of oxidative stress in P. clarkii exposed to 75 nm polystyrene. This study represents an important step towards a better understanding of the toxic effects of nanoplastics on aquatic crustaceans.
Collapse
Affiliation(s)
- Mingming Han
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China; Biology Program, School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Jiajia Li
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qin Si
- Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210424, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
20
|
Fan Y, Feng J, Xie N, Ling F, Wang Z, Ma K, Hua X, Li J. RNA-seq Provides Novel Insights into Response to Acute Salinity Stress in Oriental River Prawn Macrobrachium nipponense. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:820-829. [PMID: 35915287 DOI: 10.1007/s10126-022-10151-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is an important aquaculture species in China, Vietnam, and Japan. This species could survive in the salinity ranging from 7 to 20 ppt and accelerate growth in the salinity of 7 ppt. To identify the genes and pathways in response to acute high salinity stress, M. nipponense was exposed to the acute high salinity of 25 ppt. Total RNA from hepatopancreas, gills, and muscle tissues was isolated and then sequenced using high-throughput sequencing method. Differentially expressed genes (DGEs) were identified, and a total of 632, 836, and 1246 DEGs with a cutoff of significant twofold change were differentially expressed in the hepatopancreas, gills, and muscle tissues, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were conducted. These DEGs were involved in the GO terms of cellular process, metabolic process, membrane, organelle, binding, and catalytic activity. The DEGs of hepatopancreas and gill tissues were mainly enriched in PPAR signaling pathway, longevity regulating pathway, protein digestion and absorption, and the DEGs of muscle tissue in arginine biosynthesis, adrenergic signaling in cardiomyocytes, cardiac muscle contraction, and cGMP-PKG signaling pathway. Real-time PCR conducted with fifteen selected DEGs indicated high reliability of digital analysis using RNA-Seq. The results indicated that the M. nipponense may regulate essential mechanisms such as metabolism, oxidative stress, and ion exchange to adapt the alternation of environment, when exposed to acute high salinity stress. This work reveals the numbers of genes modified by salinity stress and some important pathways, which could provide a comprehensive insight into the molecular responses to high salinity stress in M. nipponense and further boost the understanding of the potential molecular mechanisms of adaptation to salinity stress for euryhaline crustaceans.
Collapse
Affiliation(s)
- Yaoran Fan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Nan Xie
- Hangzhou Fishery Research Institute, Hangzhou, China
| | - Feiyue Ling
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zefei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Keyi Ma
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xueming Hua
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
21
|
Wei C, Luo K, Wang M, Li Y, Pan M, Xie Y, Qin G, Liu Y, Li L, Liu Q, Tian X. Evaluation of Potential Probiotic Properties of a Strain of Lactobacillus plantarum for Shrimp Farming: From Beneficial Functions to Safety Assessment. Front Microbiol 2022; 13:854131. [PMID: 35401447 PMCID: PMC8989281 DOI: 10.3389/fmicb.2022.854131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years the safety of probiotics has received increasing attention due to the possible transfer and spread of virulence factors (VFs) and antibiotic resistance genes (ARGs) among microorganisms. The safety of a strain of Lactobacillus plantarum named W2 was evaluated in phenotype and genotype in the present study. Its probiotic properties were also evaluated both in vivo and in vitro, including adherence properties, antibacterial properties and beneficial effects on the growth and immunity of Pacific white shrimp, Penaeus vannamei. Hemolysis tests, antibiotic resistance tests and whole genome sequence analysis showed that W2 had no significant virulence effects and did not carry high virulence factors. W2 was found to be sensitive to chloramphenicol, clindamycin, gentamicin, kanamycin and tetracycline, and to be resistant to ampicillin and erythromycin. Most ARGs have no transfer risk and a few have transfer risk but no significant enrichment in human-associated environments. The autoaggregation of W2 was 82.6% and the hydrophobicity was 81.0%. Coaggregation rate with Vibrio parahaemolyticus (24.9%) was significantly higher than Vibrio's autoaggregation rate (17.8%). This suggested that W2 had adhesion potential to mucosal/intestinal surfaces and was able to attenuate the adherence of V. parahaemolyticus. In addition, several adhesion-related protein genes, including 1 S-layer protein, 1 collagen-binding protein and 9 mucus-binding proteins were identified in the W2 genome. W2 had efficiently antagonistic activity against 7 aquatic pathogenic strains. Antagonistic components analysis indicated that active antibacterial substances might be organic acids. W2 can significantly promote the growth of shrimp when supplemented with 1 × 1010 cfu/kg live cells. Levels of 7 serological immune indicators and expression levels of 12 hepatopancreatic immune-related genes were up-regulated, and the mortality of shrimp exposed to V. parahaemolyticus was significantly reduced. Based on the above, L. plantarum W2 can be applied safely as a potential probiotic to enhance the growth performance, immunity capacity and disease resistance of P. vannamei.
Collapse
Affiliation(s)
- Cong Wei
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mingyang Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yongmei Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Miaojun Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangcai Qin
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yijun Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Aziz T, Sarwar A, Naveed M, Shahzad M, Aqib Shabbir M, Dablool AS, ud Din J, Ali Khan A, Naz S, Cui H, Lin L. Bio-Molecular Analysis of Selected food derivedLactiplantibacillusstrains for CLA Production Reveals possibly a complex mechanism. Food Res Int 2022; 154:111031. [DOI: 10.1016/j.foodres.2022.111031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
|
23
|
Koga A, Goto M, Hayashi S, Yamamoto S, Miyasaka H. Probiotic Effects of a Marine Purple Non-Sulfur Bacterium, Rhodovulum sulfidophilum KKMI01, on Kuruma Shrimp (Marsupenaeus japonicus). Microorganisms 2022; 10:microorganisms10020244. [PMID: 35208699 PMCID: PMC8876596 DOI: 10.3390/microorganisms10020244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are used as probiotics in shrimp aquaculture; however, no studies have examined the probiotic effects of PNSB in shrimp at the gene expression level. In this study, we examined the effects of a marine PNSB, Rhodovulum sulfidophilum KKMI01, on the gene expression of kuruma shrimp (Marsupenaeus japonicus). Short-term (3 days) effects of R. sulfidophilum KKMI01 on the gene expression in shrimp were examined using small-scale laboratory aquaria experiments, while long-term (145 days) effects of R. sulfidophilum KKMI01 on the growth performance and gene expression were examined using 200-ton outdoor aquaria experiments. Gene expression levels were examined using qRT-PCR. Results of the short-term experiments showed the upregulation of several molting-related genes, including cuticle proteins, calcification proteins, and cuticle pigment protein, suggesting that PNSB stimulated the growth of shrimp. The upregulation of several immune genes, such as prophenoloxidase, antimicrobial peptides, and superoxide dismutase, was also observed. In the 145-day outdoor experiments, the average body weight at harvest time, survival rate, and feed conversion ratio were significantly improved in PNSB-treated shrimp, and upregulation of molting and immune-related genes were also observed. When PNSB cells were added to the rearing water, the effective dosage of PNSB was as low as 103 cfu/mL, which was more than a million times dilution of the original PNSB culture (2–3 × 109 cfu/mL), indicating that R. sulfidophilum KKMI01 provides a feasible and cost-effective application as a probiotic candidate in shrimp aquaculture.
Collapse
|
24
|
He Z, Zhong Y, Hou D, Hu X, Fu Z, Liu L, Zhang S, Sun C. Integrated Analysis of mRNA-Seq and MiRNA-Seq Reveals the Molecular Mechanism of the Intestinal Immune Response in Marsupenaeus japonicus Under Decapod Iridescent Virus 1 Infection. Front Immunol 2022; 12:807093. [PMID: 35116034 PMCID: PMC8804360 DOI: 10.3389/fimmu.2021.807093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
The intestine is not only an important digestive organ but also an important immune organ for shrimp; it plays a key role in maintaining homeostasis. Decapod iridescent virus 1 (DIV1) is a new type of shrimp-lethal virus that has received extensive attention in recent years. To date, most studies of the shrimp intestinal immune response under viral infections have relied on single omics analyses; there is a lack of systematic multi-omics research. In the current study, intestinal mRNA-seq and microRNA (miRNA)-seq analyses of Marsupenaeus japonicus under DIV1 infection were performed. A total of 1,976 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Among them, 21 DEMs were negatively correlated with 194 DEGs from a total of 223 correlations. Functional annotation analysis revealed that M. japonicus can regulate glycosaminoglycan biosynthesis (chondroitin sulfate, dermatan sulfate, and keratan sulfate), vitamin metabolism (retinol metabolism and ascorbate and aldarate metabolism), immune pathway activation (Toll and IMD signaling pathways, Wnt signaling pathway, IL-17 signaling pathway, and Hippo signaling pathway), immunity enzyme activity promotion (triose-phosphate isomerase), antimicrobial peptide (AMP) expression, reactive oxygen species (ROS) production, and cell apoptosis through miRNAs to participate in the host’s antiviral immune response, while DIV1 can influence Warburg effect-related pathways (pyruvate metabolism, glycolysis/gluconeogenesis, and citrate cycle), glycosphingolipid biosynthesis-related pathways (glycosphingolipid biosynthesis—globo and isoglobo series and glycosphingolipid biosynthesis—lacto and neolacto series), and the tight junction and adhesion junction of the intestinal mucosal epithelium through the host’s miRNAs and mRNA to promote its own invasion and replication. These results indicate that intestinal miRNAs play important roles in the shrimp immune response against DIV1 infection. This study provides a basis for further study of the shrimp intestinal antiviral immune response and for the formulation of effective new strategies for the prevention and treatment of DIV1 infection.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xianye Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Zhibin Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Luyao Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| |
Collapse
|
25
|
Dawood A, Zuberi A, Shi W. Plant-based β-mannanase supplemented diet modulates the gut microbiota and up-regulates the expression of immunity and digestion-related genes in Cyprinus carpio. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2021.2018327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aneesa Dawood
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Amina Zuberi
- Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
26
|
Liu L, Cai X, Ai Y, Li J, Long H, Ren W, Huang A, Zhang X, Xie ZY. Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 120:345-352. [PMID: 34883257 DOI: 10.1016/j.fsi.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.
Collapse
Affiliation(s)
- Lei Liu
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| | - Yu Ai
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Juan Li
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| |
Collapse
|
27
|
Wang Y, Wang Y, Lin X, Gou Z, Fan Q, Jiang S. Effects of Clostridium butyricum, Sodium Butyrate, and Butyric Acid Glycerides on the Reproductive Performance, Egg Quality, Intestinal Health, and Offspring Performance of Yellow-Feathered Breeder Hens. Front Microbiol 2021; 12:657542. [PMID: 34603221 PMCID: PMC8481923 DOI: 10.3389/fmicb.2021.657542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/12/2021] [Indexed: 01/24/2023] Open
Abstract
Butyrate has been reported to promote the performance and growth of chickens. The specific roles and efficacy of different sources of butyrate remained unclear. Thus, the present study aimed to investigate and compare the effects of Clostridium butyricum (CB), sodium butyrate (SB), and butyric acid glycerides (tributyrin, BAG) on the reproductive performance, egg quality, intestinal health, and offspring performance of yellow-feathered breeder hens. A total of 300 Lingnan yellow-feathered breeder hens were assigned to five treatment groups: control (CL), 1×108CFU/kg CB (CBL), 1×109CFU/kg CB (CBH), 500mg/kg SB, and 300mg/kg BAG. Results showed that the laying performance and egg quality were increased by CBL, CBH, and BAG. Both CB treatments increased the hatchability of fertilized eggs. Maternal supplementation with both levels of CB significantly elevated the growth performance of offspring. Treatment with CBL, CBH, SB, and BAG all improved the oviduct-related variables and reduced the plasmal antioxidant variables. The CBH, CBL, and BAG treatments also improved the intestinal morphology to different degrees. Jejunal contents of IL-6 were decreased by CBH and BAG, while those of IL-4, IL-6, IL-1β, and IgY were decreased by SB. Transcripts of nutrient transporters in jejunal mucosa were also upregulated by CBH, CBL, and SB treatments and expression of Bcl-2-associated X protein was decreased by CBL, CBH, and BAG. In cecal contents, CBL increased the abundance of Firmicutes and Bacillus, while CBH decreased the abundance of Proteobacteria. Also, the co-occurrence networks of intestinal microbes were regulated by CBH and BAG. In conclusion, dietary inclusion of CB and BAG improved the reproductive parameters, egg quality, and intestinal morphology of breeders. CB also influenced the hatching performance of breeders and growth performance of the offspring, while SB improved the oviduct-related variables. These beneficial effects may result from the regulation of cytokines, nutrient transporters, apoptosis, and gut microbiota; high-level CB had more obvious impact. Further study is needed to explore and understand the correlation between the altered gut microbiota induced by butyrate and the performance, egg quality, intestinal health, and also offspring performance.
Collapse
Affiliation(s)
- Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
28
|
Chiu ST, Chu TW, Simangunsong T, Ballantyne R, Chiu CS, Liu CH. Probiotic, Lactobacillus pentosus BD6 boost the growth and health status of white shrimp, Litopenaeus vannamei via oral administration. FISH & SHELLFISH IMMUNOLOGY 2021; 117:124-135. [PMID: 34343542 DOI: 10.1016/j.fsi.2021.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
This study aims to assess and determine the oral-administration of probiotic, Lactobacillus pentosus BD6 on growth performance, immunity and disease resistance of white shrimp, Litopenaeus vannamei. Lac. pentosus BD6 effectively inhibited the growth of aquatic pathogens, which was used in the test. Shrimp were fed with the control diet (without probiotic supplement) for 60 days and the probiotic-containing diets at 107, 108, 109, and 1010 cfu kg-1, respectively. Shrimp fed with the diet containing probiotic at the doses of 109-10 cfu kg-1 showed significant increase in growth performance as well as feed efficiency than that of the control. After a challenge test with Vibrio alginolyticus, shrimp fed with a probiotic diet at a dose of 1010 cfu kg-1 showed a significantly lower mortality as compared to the control and that of shrimp fed the diet containing probiotic at the levels up to 107-8 cfu kg-1. In addition, a therapeutic potential of Lac. pentosus BD6 was discovered because the cumulative mortalities of shrimp fed with probiotic and pathogen V. parahaemolyticus simultaneously were significantly lower when compared to control shrimp. Probiotic in diet at a dose of 109-10 cfu kg-1 significantly increased PO activity of shrimp, while shrimp receiving probiotic at the doses of 108-10 cfu kg-1 showed significant increase in lysozyme activity and phagocytic activity. Shrimp fed with the diet containing probiotic at the level of 1010 cfu kg-1 also indicated higher gene expression of prophenoloxidase (proPO) I, but not proPO II, lipopolysaccharide and β-1,3-glucan-binding protein and penaeidin 4. Analysis of the bacterial microbiota of the shrimp intestine revealed that oral administration of probiotic increased the relative abundance of beneficial bacteria and reduced the abundance of harmful pathogenic bacteria in the gut flora of shrimp. Despite no statistically significant difference, an analysis of microbial diversity recorded higher species richness, Shannon-Weaver diversity index and evenness in the probiotic group, compared to the control group. It was concluded that Lac. pentosus BD6 has great antibacterial ability against a wide range of pathogens and has therapeutic potential to reduce the mortality of shrimp infected with V. parahaemolyticus. Additionally, dietary Lac. pentosus BD6 at the level of 1010 cfu kg-1 was recommended to improve growth performance, immunity and disease resistance of shrimp against V. alginolyticus.
Collapse
Affiliation(s)
- Shieh-Tsung Chiu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Tah-Wei Chu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | | | - Rolissa Ballantyne
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chiu-Shia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
29
|
Duan Y, Wang Y, Huang J, Li H, Dong H, Zhang J. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei. MARINE POLLUTION BULLETIN 2021; 167:112220. [PMID: 33836332 DOI: 10.1016/j.marpolbul.2021.112220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) and lead (Pb) are two hazardous pollutants that threaten shrimp farming. The intestine is an important organ for digestion and immunity. We separately exposed Pacific white shrimp Litopenaeus vannamei to 500 μg/L Cd or 500 μg/L Pb seawater for 7 days, and 45 shrimp from each group were used to evaluate the changes of intestinal histopathological, oxidative stress, and microbiota composition. After Cd and Pb exposure, shrimp intestine appeared significant mucosal damage and oxidative stress, and the microbiota variation were induced. Specifically, the abundance of the phyla Bacteroidetes and Actinobacteria were induced, that of Proteobacteria and Firmicutes were deduced. The abundances of putative beneficial bacteria (Lactobacillus, Weissella, Demequina, Formosa and Ruegeria) and potentially pathogenic bacteria (Vibrio and Photobacterium) were fluctuated. Furthermore, the nutrient metabolic function of intestinal microbes was significantly altered. We concluded that Cd and Pb exposure had negative effects on the intestinal health of shrimp.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
30
|
Duan Y, Xiong D, Wang Y, Zhang Z, Li H, Dong H, Zhang J. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143311. [PMID: 33229098 DOI: 10.1016/j.scitotenv.2020.143311] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 05/23/2023]
Abstract
Microplastics (MPs) are a hazardous pollutant of world concern that threaten aquatic organisms and ecosystems. In this study, we chose the worldwide-distributed shrimp Litopenaeus vannamei as a model and investigated the toxicological effects of five types of MPs on L. vannamei using several omics approaches. After 14 days of exposure to MPs, obvious intestinal microbiota variation was observed, such as increased abundances of Bacteroidetes and Proteobacteria and a decreased abundance of Firmicutes. Specifically, MPs induced several putative opportunistic pathogens and reduced lactic acid- and short-chain fatty acid-producing bacteria. Alternatively, MPs altered haemolymph proteome profiles, but the five types of MPs had different effects on the enriched pathways and the expression of immune-related proteins. Furthermore, MPs also caused haemolymph metabolite variation, especially in amino acid and alpha-linolenic acid metabolism, and 28 differential metabolites were altered in the five MP-treated groups. Changes in intestinal bacteria were correlated with the haemolymph proteins and metabolites of the shrimp. Overall, these results reveal the toxicological effects of MPs on the intestinal microbiota and the host's immunity and metabolism in shrimp.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Dalin Xiong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| |
Collapse
|
31
|
Rad AH, Abbasi A, Kafil HS, Ganbarov K. Potential Pharmaceutical and Food Applications of Postbiotics: A Review. Curr Pharm Biotechnol 2021; 21:1576-1587. [PMID: 32416671 DOI: 10.2174/1389201021666200516154833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.
Collapse
Affiliation(s)
- Aziz H Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| |
Collapse
|
32
|
Zheng X, Feyaerts AF, Van Dijck P, Bossier P. Inhibitory Activity of Essential Oils against Vibrio campbellii and Vibrio parahaemolyticus. Microorganisms 2020; 8:microorganisms8121946. [PMID: 33302532 PMCID: PMC7763747 DOI: 10.3390/microorganisms8121946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Vibriosis, caused by Vibrio strains, is an important bacterial disease and capable of causing significant high mortality in aquatic animals. Essential oils (EOs) have been considered as an alternative approach for the treatment of aquatic bacterial diseases. In this study, we evaluated the antibacterial activity of essential oils (n = 22) or essential oil components (EOCs, n = 12) against Vibrio strains belonging to the harveyi clade. It was verified by three different approaches, e.g., (i) a bacterial growth assay, comparing Vibrio growth with or without EO(C)s at various concentrations; (ii) a vapor-phase-mediated susceptibility assay, comparing the effect of EO(C)s on bacterial growth through the vapor phase; and (iii) a quorum sensing-inhibitory assay, based on specific inhibition of quorum sensing-regulated bioluminescence. The results showed that, in the bacterial growth assay, EOs of Melaleuca alternifolia and Litsea citrata at 0.0001%, Eucalyptus citriodora at 0.01% can inhibit the growth of Vibrio campbellii BB120. These EOs can also prevent the growth of V. parahaemolyticus strains but need to be present at a higher concentration (0.1%). Moreover, in the vapor-phase-mediated susceptibility assay, EOs of M. alternifolia, L. citrata and E. citriodora can inhibit the growth of V. campbellii BB120 through their vapor phase. However, V. parahaemolyticus strains (CAIM170, LMG2850 and MO904) cannot be inhibited by these EOs. Additionally, in the quorum sensing-inhibitory assay, EOs of Mentha pulegium, Cuminum cyminum, Zingiber officinalis, and E. citriodora, all at 0.001%, have quorum sensing-inhibitory activity in V. campbellii BB120. Taken together, our study provides substantial evidence that usage of the major components, individually or in combination, of the tested commercial EOs (extracted from M. alternifolia, L. citrata, and E. citriodora) could be a promising approach to control V. campbellii BB120.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Adam F. Feyaerts
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (A.F.F.); (P.V.D.)
- Laboratory of Molecular Cell Biology, KU Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (A.F.F.); (P.V.D.)
- Laboratory of Molecular Cell Biology, KU Leuven, 3001 Leuven, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| |
Collapse
|
33
|
Xu A, Shang-Guan J, Li Z, Gao Z, Huang YC, Chen Q. Effects of dietary asafoetida (Ferula sinkiangensis K. M. Shen) levels on feeding attraction activity, growth performance, healthiness, and digestive enzyme activity in juvenile Lateolabrax japonicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1991-2003. [PMID: 32681211 DOI: 10.1007/s10695-020-00849-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The study was to investigate effects of asafoetida (Ferula sinkiangensis K. M. Shen) powder on feeding attraction activity (FAA), growth performance, healthiness, and digestive enzyme activity of juvenile Lateolabrax japonicus. Six concentration levels (0, 5, 10, 15, 20, and 25 g/kg diets) were formulated for luring and feeding experiment. Results showed that asafoetida could stimulate the appetite of L. japonicus at the dietary levels from 10 to 25 g/kg; reduce the feed conversion ratio (FCR) and feed intake (FI) at 10-20 g/kg; increase the weight gain (WG) and specific growth rate (SGR) at 5-10 g/kg; increase the hepatosomatic index (HSI), body crude lipid content, serum total protein (TP) content, and lysozyme activity at 10-15 g/kg; decrease the moisture at 10-15 g/kg; and increase the serum total superoxide dismutase (T-SOD) activity at 5-15 g/kg, when compared with the control group (p < 0.05). Digestive enzyme activities including amylase (AMS) and trypsin in the intestine were significantly affected by the asafoetida powder (p < 0.05). Regression analyses between the FAA, FCR, WG, SGR, HSI, LZM, T-SOD, AMS, trypsin, and the dietary asafoetida powder levels showed that the optimal additional amount was 16.95, 13.65, 8.36, 8.15, 15.45, 9.94, 8.75, 11.77, and 7.07 g/kg, respectively, indicating that the optimal amount of asafoetida powder was located in 7.07-16.95 g/kg diet. However, combined with the significant difference analyses obtained from the current study, we would suggest the additive suitable dosage was 10 g/kg.
Collapse
Affiliation(s)
- Anle Xu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jingbo Shang-Guan
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China.
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| | - Zhan Gao
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yong Chun Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Qiang Chen
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
34
|
Borges N, Keller-Costa T, Sanches-Fernandes GMM, Louvado A, Gomes NCM, Costa R. Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annu Rev Anim Biosci 2020; 9:423-452. [PMID: 33256435 DOI: 10.1146/annurev-animal-062920-113114] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.
Collapse
Affiliation(s)
- Nuno Borges
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - Gracinda M M Sanches-Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , ,
| | - António Louvado
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Newton C M Gomes
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; ,
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal; , , , .,Centre of Marine Sciences, Algarve University, 8005-139 Faro, Portugal.,Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Chen M, Chen XQ, Tian LX, Liu YJ, Niu J. Improvement of growth, intestinal short-chain fatty acids, non-specific immunity and ammonia resistance in Pacific white shrimp (Litopenaeus vannamei) fed dietary water-soluble chitosan and mixed probiotics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108791. [PMID: 32413493 DOI: 10.1016/j.cbpc.2020.108791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/18/2022]
Abstract
This study was to explore the impacts of water-soluble chitosan and mixed probiotics on growth performance, intestinal short-chain fatty acids (SCFAs) and immunity and ammonia resistance in Litopenaeus vannamei. Shrimp were fed one of four experimental diets including basal diet (CON), 0.10% water-soluble chitosan diet (WSC), 0.30% mixed probiotics (MP) and 0.10% water-soluble chitosan +0.30% mixed probiotics (SYN) for 8 weeks. Results showed shrimp fed with dietary MP and SYN diets could significantly improve growth performance and feed utilization in comparison with those of shrimp fed with CON diet (P < 0.05). Acetic acid content was significantly higher in shrimp fed with all supplemented diets compared to that in shrimp fed with CON diet (P < 0.05). Compared to shrimp fed with CON diet, dietary WSC and MP significantly influenced the contents and/or activities of aspartate aminotransferase (AST), total protein (TP), superoxide dismutase (SOD), lysozyme (LZM) in serum, SOD, malondialdehyde (MDA), acid phosphatase (ACP) in hepatopancreas and SOD and MDA in intestine. In addition, the gene expression levels of prophenoloxidase (proPO), penaiedin 3a (Pen-3a), crustin (Crustin), serine proteinase (SP), GPX and SOD in hepatopancreas, were significantly upregulated compared to those in CON diet at some time points (P < 0.05). Significantly higher survival rate in all supplemented diets were observed after ammonia challenge (P < 0.05). Therefore, the above results indicated dietary WSC and MP or SYN could enhance intestinal SCFAs content, stimulated antioxidant capacity and immune response, and increase the ammonia resistance of Litopenaeus vannamei. Besides, the growth performance was also improved by dietary MP and SYN.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xian-Quan Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Xia Tian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Jian Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
36
|
Shi Y, Zhong L, Liu Y, Zhang J, Lv Z, Li Y, Hu Y. Effects of Dietary Andrographolide Levels on Growth Performance, Antioxidant Capacity, Intestinal Immune Function and Microbioma of Rice Field Eel ( Monopterus Albus). Animals (Basel) 2020; 10:E1744. [PMID: 32992929 PMCID: PMC7599621 DOI: 10.3390/ani10101744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
An eight-week feeding trial was conducted to investigate the effects of dietary andrographolide on the growth performance, antioxidant capacity in the liver, intestinal inflammatory response and microbiota of Monopterus albus. A total of 900 health fish (25.00 ± 0.15 g) were randomly divided into five groups: AD1 (the basal diet) as the control, and AD2, AD3, AD4 and AD5 groups, which were fed the basal diet supplemented with 75, 150, 225 and 300 mg/kg andrographolide, respectively. The results showed that compared with the control group, dietary andrographolide supplementation (1) significantly increased trypsin and lipase activities in the intestine, and increased the weight gain rate but not significantly; (2) significantly increased the levels of glutathione reductase (GR), glutathione (GSH) and glutathione peroxidase (GPx) and the content of in the liver; significantly decreased the contents of reactive oxygen species (ROS) and malondialdehyde (MDA); remarkably upregulated the Nrf2, SOD1, GSTK and GSTO mRNA levels in the liver; downregulated the Keap1 mRNA level; (3) significantly increased the villi length and goblet cell numbers in the intestine, remarkably upregulated the Occludin mRNA level in the intestine, downregulated the Claudin-15 mRNA level; (4) remarkably upregulated the IL-10, TGF-β1 and TGF-β3 mRNA levels in the intestine; downregulated the IL-12β and TLR-3 mRNA levels; (5) significantly decreased the richness and diversity of the intestinal microbioma, increased the percentages of Fusobacteria and Firmicutes and significantly decreased the percentages of Cyanobacteria and Proteobacteria. In conclusion, these results showed that dietary low-dose andrographolide (75 and 150 mg/kg) promoted growth and antioxidant capacity, regulated the intestinal microbioma, enhanced intestinal physical and immune barrier function in rice field eel.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Lei Zhong
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yanli Liu
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Junzhi Zhang
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Zhao Lv
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Yao Li
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
| | - Yi Hu
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (L.Z.); (Y.L.); (J.Z.); (Z.L.); (Y.L.)
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
37
|
Uengwetwanit T, Uawisetwathana U, Arayamethakorn S, Khudet J, Chaiyapechara S, Karoonuthaisiri N, Rungrassamee W. Multi-omics analysis to examine microbiota, host gene expression and metabolites in the intestine of black tiger shrimp ( Penaeus monodon) with different growth performance. PeerJ 2020; 8:e9646. [PMID: 32864208 PMCID: PMC7430268 DOI: 10.7717/peerj.9646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the correlation between shrimp growth and their intestinal bacteria would be necessary to optimize animal's growth performance. Here, we compared the bacterial profiles along with the shrimp's gene expression responses and metabolites in the intestines between the Top and the Bottom weight groups. Black tiger shrimp (Penaeus monodon) were collected from the same population and rearing environments. The two weight groups, the Top-weight group with an average weight of 36.82 ± 0.41 g and the Bottom-weight group with an average weight of 17.80 ± 11.81 g, were selected. Intestines were aseptically collected and subjected to microbiota, transcriptomic and metabolomic profile analyses. The weighted-principal coordinates analysis (PCoA) based on UniFrac distances showed similar bacterial profiles between the two groups, suggesting similar relative composition of the overall bacterial community structures. This observed similarity was likely due to the fact that shrimp were from the same genetic background and reared under the same habitat and diets. On the other hand, the unweighted-distance matrix revealed that the bacterial profiles associated in intestines of the Top-weight group were clustered distinctly from those of the Bottom-weight shrimp, suggesting that some unique non-dominant bacterial genera were found associated with either group. The key bacterial members associated to the Top-weight shrimp were mostly from Firmicutes (Brevibacillus and Fusibacter) and Bacteroidetes (Spongiimonas), both of which were found in significantly higher abundance than those of the Bottom-weight shrimp. Transcriptomic profile of shrimp intestines found significant upregulation of genes mostly involved in nutrient metabolisms and energy storage in the Top-weight shrimp. In addition to significantly expressed metabolic-related genes, the Bottom-weight shrimp also showed significant upregulation of stress and immune-related genes, suggesting that these pathways might contribute to different degrees of shrimp growth performance. A non-targeted metabolome analysis from shrimp intestines revealed different metabolic responsive patterns, in which the Top-weight shrimp contained significantly higher levels of short chain fatty acids, lipids and organic compounds than the Bottom-weight shrimp. The identified metabolites included those that were known to be produced by intestinal bacteria such as butyric acid, 4-indolecarbaldehyde and L-3-phenyllactic acid as well as those produced by shrimp such as acyl-carnitines and lysophosphatidylcholine. The functions of these metabolites were related to nutrient absorption and metabolisms. Our findings provide the first report utilizing multi-omics integration approach to investigate microbiota, metabolic and transcriptomics profiles of the host shrimp and their potential roles and relationship to shrimp growth performance.
Collapse
Affiliation(s)
- Tanaporn Uengwetwanit
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Umaporn Uawisetwathana
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sopacha Arayamethakorn
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Juthatip Khudet
- Shrimp Genetic Improvement Center, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Sage Chaiyapechara
- Aquaculture Service Development Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Wanilada Rungrassamee
- Microarray Research Team, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|
38
|
Vallejo-Cordoba B, Castro-López C, García HS, González-Córdova AF, Hernández-Mendoza A. Postbiotics and paraprobiotics: A review of current evidence and emerging trends. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:1-34. [PMID: 32892831 DOI: 10.1016/bs.afnr.2020.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been coined to indicate that non-viable microorganisms or bacterial-free extracts may provide benefits to the host by offering additional bioactivities to probiotics, including but not limited to anti-inflammatory, immunomodulatory, anti-proliferative and antioxidant activities. Despite in vitro and in vivo studies that support the promising use of postbiotics and paraprobiotics as health promoters, the mechanism of action and the signaling pathway involved have not yet been fully elucidated. Therefore, the aim of this chapter is to provide an overview of novel probiotic-related concepts and the scientific evidence that supports their bioactivities as well as the possible mechanisms underlying their health-promoting effects. Additionally, current trends in food, feed, and pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Veracruz, Veracruz, Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico.
| |
Collapse
|
39
|
Postbiotics and paraprobiotics: From concepts to applications. Food Res Int 2020; 136:109502. [PMID: 32846581 DOI: 10.1016/j.foodres.2020.109502] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been used to describe non-viable microorganisms or bacterial-free extracts that may provide benefits to the host by offering bioactivities additional to probiotics. However, several aspects related to these postbiotics and paraprobiotics bioactivities remain unexplored or are poorly understood. Therefore, the aim of this work is to provide an overview of the general aspects and emerging trends of postbiotics and paraprobiotics, such as conceptualization of terms, production, characterization, bioactivities, health-promoting effects, bioengineering approaches, and applications. In vitro and in vivo studies have demonstrated that some postbiotics and paraprobiotics exhibit bioactivities such as anti-inflammatory, immunomodulatory, anti-proliferative, antioxidant, and antimicrobial. These bioactivities could be involved in health-promoting effects observed in human and clinical trials, but despite the scientific evidence available, the mechanisms of action and the signaling pathways involved have not been fully elucidated. Nevertheless, paraprobiotics and postbiotics possess valuable potential for the development of biotechnological products with functional ingredients for the nutraceutical industry.
Collapse
|
40
|
Effect of a novel postbiotic containing lactic acid bacteria on the intestinal microbiota and disease resistance of rainbow trout (Oncorhynchus mykiss). Biotechnol Lett 2020; 42:1957-1962. [PMID: 32449071 DOI: 10.1007/s10529-020-02919-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study was aimed to assess the effect of a novel postbiotic on bacterial community composition and structure within the intestinal ecosystem of rainbow trout (Oncorhynchus mykiss), as well as evaluate its capacity to protect rainbow trout from Lactococcus garvieae infection. RESULTS After 30 days of dietary postbiotic supplementation, high-throughput 16S rRNA gene sequencing revealed that bacterial community composition, diversity and richness were significantly higher in treated fish than in control fish. The proportion of sequences affiliated to the phylum Tenericutes, and to a lesser extent, the phyla Spirochaetes and Bacteroidetes was increased in fish fed a postbiotic-enriched diet compared to control fish, whereas the abundance of Fusobacteria was higher in control fish. Moreover, the treated fish showed significantly (p < 0.05) improved protection against L. garvieae compared to control fish. CONCLUSIONS These findings suggest that dietary postbiotic supplementation may represent an environmentally friendly strategy for preventing and controlling diseases in aquaculture.
Collapse
|
41
|
Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol 2020; 129:116-136. [PMID: 32141152 DOI: 10.1111/jam.14628] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host's health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.
Collapse
Affiliation(s)
- E Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - H Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - S H Lee
- School of Life Science, Handong University, Pohang, Republic of Korea
| | - M Soltani
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia.,Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S H Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Tamil Nadu, Kanchipuram, India
| | - S K Song
- School of Life Science, Handong University, Pohang, Republic of Korea
| |
Collapse
|
42
|
Effects of Dietary Clostridium butyricum on the Growth, Digestive Enzyme Activity, Antioxidant Capacity, and Resistance to Nitrite Stress of Penaeus monodon. Probiotics Antimicrob Proteins 2020; 11:938-945. [PMID: 29858778 DOI: 10.1007/s12602-018-9421-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the effects of the dietary probiotic Clostridium butyricum (CB) on the growth, intestine digestive enzyme activity, antioxidant capacity and resistance to nitrite stress, and body composition of Penaeus monodon. For 56 days, shrimps were fed diets containing different levels of C. butyricum (1 × 109 CFU g-1), 0% (control), 0.5% (CB1), 1.0% (CB2), and 2.0% (CB3), as treatment groups, followed by an acute nitrite stress test for 48 h. The results indicated that dietary supplementation of C. butyricum increased the growth of shrimp in the CB2 and CB3 groups. The survival rate of shrimp increased after nitrite stress for 24 and 48 h. The intestine amylase and trypsin activities increased in all three C. butyricum groups, while the lipase activity was only affected in the CB3 group. The superoxide dismutase (SOD) activity as well as heat shock protein 70 (hsp70) and ferritin gene expression levels were increased in the intestines of shrimps cultured under normal conditions for 56 days, while the catalase (CAT) activity was not changed and glutathione peroxidase (GPx) activity was only increased in the CB2 and CB3 groups. After exposure to nitrite stress for 24 and 48 h, the intestine antioxidant enzyme (SOD, CAT, and GPx) activity and gene (hsp70 and ferritin) expression levels in the three C. butyricum groups were higher than those of the control. C. butyricum had no effects on the whole body composition of the shrimp. These results revealed that C. butyricum improved the growth as well as enhanced the intestine digestive enzyme and antioxidant activities of P. monodon against nitrite stress, and C. butyricum may be a good probiotic for shrimp aquaculture.
Collapse
|
43
|
Pérez-Sánchez T, Mora-Sánchez B, Vargas A, Balcázar JL. Changes in intestinal microbiota and disease resistance following dietary postbiotic supplementation in rainbow trout (Oncorhynchus mykiss). Microb Pathog 2020; 142:104060. [PMID: 32058028 DOI: 10.1016/j.micpath.2020.104060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
This experimental study was aimed to investigate whether the dietary supplementation of a postbiotic obtained as a food product fermented with two lactic acid bacteria could induce changes in the intestinal microbiota and prevent the development of Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). After 30 days of dietary postbiotic supplementation, bacterial community composition and structure was significantly different between the treated and control groups. A higher bacterial diversity and richness in the intestinal samples was found in treated fish, as compared to those samples from untreated fish. Dietary postbiotic supplementation also conferred increased protection against L. garvieae infection. These findings suggest that the establishment of a beneficial microbiota is essential to prevent diseases or protect the host from foreign agents.
Collapse
Affiliation(s)
- Tania Pérez-Sánchez
- Navarran European Business Innovation Center (CEIN), 31110, Noáin (Navarra), Spain; Pentabiol S.L., 31191, Esquíroz (Navarra), Spain
| | - Brenda Mora-Sánchez
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Zaragoza, 50013, Zaragoza, Spain; Department of Animal Health, Centro Veterinario de Diagnóstico e Investigación (CEVEDI), School of Veterinary Medicine, Universidad Nacional Autónoma de Nicaragua-León, Nicaragua
| | - Augusto Vargas
- Laboratory of Biotechnology and Aquatic Pathology, Faculty of Veterinary Sciences, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain; University of Girona, 17004, Girona, Spain.
| |
Collapse
|
44
|
|
45
|
Foysal MJ, Nguyen TTT, Chaklader MR, Siddik MAB, Tay CY, Fotedar R, Gupta SK. Marked variations in gut microbiota and some innate immune responses of fresh water crayfish, marron ( Cherax cainii, Austin 2002) fed dietary supplementation of Clostridium butyricum. PeerJ 2019; 7:e7553. [PMID: 31523510 PMCID: PMC6716501 DOI: 10.7717/peerj.7553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of Clostridium butyricum as a dietary probiotic supplement in fishmeal based diet on growth, gut microbiota and immune performance of marron (Cherax cainii). Marron were randomly distributed into two different treatment groups, control and probiotic fed group. After 42 days of feeding trial, the results revealed a significant (P < 0.05) increase in growth due to increase in number of moults in marron fed probiotics. The probiotic diet also significantly enhanced the total haemocyte counts (THC), lysozyme activity in the haemolymph and protein content of the tail muscle in marron. Compared to control, the 16S rRNA sequences data demonstrated an enrichment of bacterial diversity in the probiotic fed marron where significant increase of Clostridium abundance was observed. The abundance for crayfish pathogen Vibrio and Aeromonas were found to be significantly reduced post feeding with probiotic diet. Predicted metabolic pathway revealed an increased activity for the metabolism and absorption of carbohydrate, degradation of amino acid, fatty acid and toxic compounds, and biosynthesis of secondary metabolites. C. butyricum supplementation also significantly modulated the expression level of immune-responsive genes of marron post challenged with Vibrio mimicus. The overall results suggest that C. butyricum could be used as dietary probiotic supplement in marron aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Thi Thu Thuy Nguyen
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Muhammad A B Siddik
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
46
|
Li H, Xu C, Zhou L, Dong Y, Su Y, Wang X, Qin JG, Chen L, Li E. Beneficial effects of dietary β-glucan on growth and health status of Pacific white shrimp Litopenaeus vannamei at low salinity. FISH & SHELLFISH IMMUNOLOGY 2019; 91:315-324. [PMID: 31129185 DOI: 10.1016/j.fsi.2019.05.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
An 8-week trial was conducted to evaluate the effect of dietary β-glucan supplement (0, 0.01%, 0.02%, or 0.04%) on growth and health of Pacific white shrimp Litopenaeus vannamei at low salinity of 3 practical salinity unit (psu). The L. vannamei fed 0.02% and 0.04% β-glucan gained more weight and showed higher activities of protease, amylase, superoxide dismutase, and glutathione peroxidase in the intestine than in the control (0% β-glucan). The L. vannamei fed 0.04% β-glucan had a higher condition factor than those fed the control diet. Amylase activity in the hepatopancreas of L. vannamei fed 0.02% β-glucan was higher than those fed the control diet. Dietary β-glucan supplement increased the mRNA expressions of Toll-like receptor, myostatin, immune deficiency or heat shock protein 70, but decreased the mRNA expressions of tumor necrosis factor-α and C-type lectin 3 in both hepatopancreas and intestine. The response of intestine microbiota in L. vannamei fed 0.04% β-glucan was further compared to the control. The 0.04% β-glucan supplement reduced richness and diversity of the intestinal microbial community as indicated by the low values of Chao1 estimator, ACE estimator, Simpson index and Shannon diversity index. Abundances of Bacillus, Chitinibacter, Geobacillus and Vibrio in the intestine increased, while Flavobacterium, Microbacterium and Mycobacterium decreased significantly in L. vannamei fed 0.04% β-glucan compared to the control. This study indicates that dietary β-glucan supplement at 0.02%-0.04% can significantly improve digestibility, antioxidant capacity and immunity in L. vannamei, and thus improve growth performance and survival at low salinity. These beneficial effects of β-glucan probably are related to the dominance of probiotics over potential pathogens in the intestine.
Collapse
Affiliation(s)
- Huifeng Li
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China; School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Li Zhou
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yangfan Dong
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yujie Su
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
47
|
Martínez-Antonio EM, Racotta IS, Ruvalcaba-Márquez JC, Magallón-Barajas F. Modulation of stress response and productive performance of Litopenaeus vannamei through diet. PeerJ 2019; 7:e6850. [PMID: 31119075 PMCID: PMC6511226 DOI: 10.7717/peerj.6850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/26/2019] [Indexed: 11/29/2022] Open
Abstract
The high tolerance of Litopenaeus vannamei to a wide range of salinity (1–50 psu) makes this species an excellent candidate for culture under low salinity, decreasing shrimp epidemics and water pollution in some coastal areas. However, salinity levels outside the optimal range could impose several physiological constraints that would in turn affect growth and survival, particularly in the presence of additional stressors (e.g. high densities, handling practices, and hypoxia). Despite shrimp susceptibility to individual stressors has been widely addressed, information regarding response to chronic and acute stressors combined and its relation to diet is scarce. Thus, the aim of our study was to determine the effect of diet on the susceptibility to chronic (low salinity) and acute (hypoxia and escape response) stressors in terms of culture performance and physiological indicators. We evaluated overall performance during culture of L. vannamei at low salinity (6 psu), fed with an experimental diet with low protein and high carbohydrate content (26% protein and 6% fish meal plus probiotic mixture) and compared to a commercial formula with high protein and low carbohydrate content (40% crude protein and 20% fish meal without probiotic mixture). At the end of the rearing experiment, shrimp were exposed to two types of acute stress, hypoxia and escape. Biochemical (hemocyanin, total proteins, glucose, and lactate) and bioenergetic (adenylic energy charge and arginine phosphate levels) variables were measured to assess chronic stress response (salinity) and acute stress response (hypoxia or escape). The experimental diet resulted in higher muscle energy status that was not affected by low salinity, although lipid levels were lower under this condition. This diet partially counteracted the low performance at low salinity and promoted greater protein efficiency. Hypoxia induced strong hyperglycemic and lactate increase as response, whereas escape response was characterized by a depletion of arginine phosphate levels, with a stronger decrease in shrimp fed experimental diet, due to the high initial level of this reserve. Some data (glucose levels in hemolymph and lipids in hepatopancreas) suggest that shrimp under chronic stress conditions (low salinity and high densities) present a low ability to respond to subsequent acute stressors such as hypoxia or escape. This work indicates that diet can increase the energy status of shrimp, enabling them to overcome potential multifactorial stressors, which are common in farming systems.
Collapse
Affiliation(s)
- Eliza M. Martínez-Antonio
- Programa de Acuicultura, Centro de Investigaciones Biológicas del Noroeste S. C., La Paz, B.C.S., Mexico
| | - Ilie S. Racotta
- Programa de Acuicultura, Centro de Investigaciones Biológicas del Noroeste S. C., La Paz, B.C.S., Mexico
| | - Juan C. Ruvalcaba-Márquez
- Programa de Acuicultura, Centro de Investigaciones Biológicas del Noroeste S. C., La Paz, B.C.S., Mexico
| | - Francisco Magallón-Barajas
- Programa de Acuicultura, Centro de Investigaciones Biológicas del Noroeste S. C., La Paz, B.C.S., Mexico
| |
Collapse
|
48
|
Wang A, Ran C, Wang Y, Zhang Z, Ding Q, Yang Y, Olsen RE, Ringø E, Bindelle J, Zhou Z. Use of probiotics in aquaculture of China-a review of the past decade. FISH & SHELLFISH IMMUNOLOGY 2019; 86:734-755. [PMID: 30553887 DOI: 10.1016/j.fsi.2018.12.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
China is the largest aquaculture producer in the world. Antibiotics were extensively used to ensure the development of the intensive aquaculture; however, the use of antibiotics causes safety- and environment-associated problems. As an alternative strategy to antibiotics, aquatic probiotics have attracted attention. The microbial organisms used as probiotics or tested as potential probiotics in Chinese aquaculture belong to various taxonomic divisions, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and yeast. Moreover, the mixture of probiotic strains and synbiotics are also widely used. Studies on the mode of action of aquatic probiotics have extended our understanding of the probiotic effects, and novel mechanisms have been discovered, such as interference of quorum sensing. However, use of probiotics in Chinese aquaculture is still at an initial stage, and there are potential risks for some probiotic applications in aquaculture. Further regulation and management are required to normalize the production and usage of aquatic probiotics. In this review, we discuss species, effects, and mode of actions of probiotics in Chinese aquaculture since 2008. Challenges and future directions for research are also discussed.
Collapse
Affiliation(s)
- Anran Wang
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium; Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chao Ran
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yanbo Wang
- Marine Resource & Nutritional Biology, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, China
| | - Zhen Zhang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qianwen Ding
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yalin Yang
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jérôme Bindelle
- Liege University, Gembloux Agro-Bio Tech, AgroBioChem/TERRA, Precision Livestock and Nutrition Unit/AgricultureIsLife, Passage des Deportes, 2, 5030, Gembloux, Belgium
| | - Zhigang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
49
|
Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D. Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Front Microbiol 2019; 10:57. [PMID: 30804896 PMCID: PMC6378274 DOI: 10.3389/fmicb.2019.00057] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Resistance to antibiotics is escalating and threatening humans and animals worldwide. Different countries have legislated or promoted the ban of antibiotics as growth promoters in livestock and aquaculture to reduce this phenomenon. Therefore, to improve animal growth and reproduction performance and to control multiple bacterial infections, there is a potential to use probiotics as non-antibiotic growth promoters. Lactic acid bacteria (LAB) offer various advantages as potential probiotics and can be considered as alternatives to antibiotics during food-animal production. LAB are safe microorganisms with abilities to produce different inhibitory compounds such as bacteriocins, organic acids as lactic acid, hydrogen peroxide, diacetyl, and carbon dioxide. LAB can inhibit harmful microorganisms with their arsenal, or through competitive exclusion mechanism based on competition for binding sites and nutrients. LAB endowed with specific enzymatic functions (amylase, protease…) can improve nutrients acquisition as well as animal immune system stimulation. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to antibiotics in poultry, pigs, ruminants, and aquaculture production.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Yanath Belguesmia
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Ruth Raspoet
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Eric Auclair
- Phileo Lesaffre Animal Care, Marcq-en-Barœul, France
| | - Frédérique Gancel
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| | - Isabelle Kempf
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Djamel Drider
- EA7394-ICV, Institut Charles Viollette, Université de Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
50
|
Dong Y, Yang Y, Liu J, Awan F, Lu C, Liu Y. Inhibition of Aeromonas hydrophila-induced intestinal inflammation and mucosal barrier function damage in crucian carp by oral administration of Lactococcus lactis. FISH & SHELLFISH IMMUNOLOGY 2018; 83:359-367. [PMID: 30236608 DOI: 10.1016/j.fsi.2018.09.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
This study explored the immunomodulatory effect and inhibition effects of the candidate probiotic Lactococcus lactis 16-7, which was isolated from crucian carp, on Aeromonas hydrophila infection in crucian carp. The experimental fish were divided into two groups; one was fed a diet supplemented with L. lactis, while the other was fed the control probiotic-free diet. After feeding for 42 d with the experimental diets, the fish that received the diet supplemented with probiotics exhibited a significantly enhanced serum superoxide dismutase activity, phagocytic activities of innate immune cells, and the expression levels of immune-related genes [interferon-γ (INF-γ), interleukin-1β (IL-1β), interleukin-11 (IL-11), tumour necrosis factor α (TNF-α) and myeloid differentiation factor 88 (MyD88)], indicating that L. lactis 16-7 could activate the non-specific immune system of crucian carp. At the end of the feeding trial, the crucian carps in each group were orally infected with A. hydrophila NJ-35. The results show that L. lactis 16-7 could prevent the increase in d-lactic acid concentration and inflammatory response caused by A. hydrophila in crucian carp. Compared with A. hydrophila group, L. lactis 16-7 preserved the integrity of intestinal villi and mitigated A. hydrophila-induced reduce in the transcriptional levels of tight junction (TJ) proteins zonula occludens-1 (ZO-1) and occludin, indicating that L. lactis 16-7 could reduce intestinal mucosal barrier damage and inflammation induced by A. hydrophila in crucian carp. In addition, L. lactis 16-7 could effectively antagonize the colonization of A. hydrophila in the intestine. Overall, these data clearly indicate that L. lactis 16-7 has the potential to be developed as a probiotic agent against A. hydrophila infection in aquaculture.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Yang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|