1
|
Feng L, Zhang J, Ma C, Li K, Zhai J, Cai S, Yin J. Application prospect of polysaccharide in the development of vaccine adjuvants. Int J Biol Macromol 2025; 297:139845. [PMID: 39824409 DOI: 10.1016/j.ijbiomac.2025.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Vaccination is an effective strategy for preventing infectious diseases. Subunit vaccines offer more precise targeting and safer protection compared with traditional inactivated virus vaccines. However, due to their poor immunogenicity, subunit vaccines necessitate the use of adjuvants to stimulate the immune system. Adjuvants have long been incorporated into vaccines to enhance the body's immune response, allowing for reduced dosage and lower production costs. Despite the development of numerous vaccine adjuvants, few exhibit the necessary potency and low toxicity for clinical use, often due to limited efficacy or adverse side effects. This underscores the urgent need for novel human vaccine adjuvants that are safe, effective, and cost-efficient. Recent studies have identified certain natural polysaccharides as promising human vaccine adjuvants due to their immunostimulatory properties, low toxicity, and high safety profiles, which enhance both humoral and cellular immunity. These natural polysaccharides are primarily derived from traditional Chinese medicine (TCM) plants, bacteria, and yeast. This review comprehensively analyzes several promising polysaccharide adjuvants, discussing their clinical applications, market potential, and immunoregulatory activities. In summary, the future prospects of polysaccharides provide valuable insights for the application and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Feng
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jiarui Zhang
- Department of Intensive Care Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China
| | - Kai Li
- Department of Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Wang X, Zhu L, Du Z, Li H, Hou L, Li C, Jiang X, Zhang J, Pei C, Li L, Kong X. Host-derived Pediococcus acidilactici B49: A promising probiotic for immunomodulation and disease control in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110148. [PMID: 39848418 DOI: 10.1016/j.fsi.2025.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/26/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Finding effective alternatives to antibiotics is crucial for sustainable aquaculture. Host-derived probiotics have great potential as a promising alternative to antibiotics for immune regulation and disease control in fish farming. However, limited research exists regarding the application of native probiotics in largemouth bass (Micropterus salmoides). This study aims to evaluate the potential of the endogenous strain Pediococcus acidilactici B49 as a probiotic in modulating host immunity and disease control through in vitro and in vivo experiments. The results demonstrated that P. acidilactici B49 exhibited no hemolytic activity and displayed susceptibility to most tested antibiotics. It successfully survived and colonized in the intestinal tract of the largemouth bass. Furthermore, this strain showed remarkable antibacterial activity against common aquatic pathogens, including gram-positive and gram-negative bacteria, and also exhibited resistance against Aeromonas hydrophila on the head kidney leukocytes of largemouth bass in vitro. Following an 8-week feeding trial, P. acidilactici B49 improved host immunity by increasing intestinal lysozyme activity, enhancing IL-8 expression, reducing TGF-β expression, and enhancing IgM levels in both serum and intestinal mucus. It also potentiated the phagocytic activity of peripheral blood lymphocytes. In addition, the B49 feeding group showed a significant increase in intestinal villus height. The challenge test with A. hydrophila demonstrated that the administration of P. acidilactici B49 effectively maintained intestinal barrier integrity, reduced gut inflammation, decreased pathogen load in the spleen, and improved survival rates in largemouth bass. In conclusion, the host-derived strain P. acidilactici B49 exhibited broad-spectrum antibacterial ability, biosafety, and intestinal colonization in largemouth bass. It effectively improved immune function, intestinal health, and resistance against A. hydrophila in the host. Therefore, P. acidilactici B49 is a promising probiotic for immunomodulation and disease control in largemouth bass aquaculture.
Collapse
Affiliation(s)
- Xinru Wang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Lei Zhu
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Zhengyan Du
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Hao Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Libo Hou
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chen Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xinyu Jiang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Zhang
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Pei
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Li Li
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Henan Province Engineering Research Center of Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Hosseini SS, Sudaagar M, Zakariaee H, Paknejad H, Baruah K, Norouzitalab P. Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish danio rerio. BMC Microbiol 2024; 24:331. [PMID: 39245724 PMCID: PMC11382455 DOI: 10.1186/s12866-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
- Department of Laboratory Sciences, Faculty of Para-medicine, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
| | - Mohammad Sudaagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Kartik Baruah
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| | - Parisa Norouzitalab
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| |
Collapse
|
4
|
Mozanzadeh MT, Mohammadian T, Ahangarzadeh M, Houshmand H, Najafabadi MZ, Oosooli R, Seyyedi S, Mehrjooyan S, Saghavi H, Sephdari A, Mirbakhsh M, Osroosh E. Feeding Strategies with Multi-Strain Probiotics Affect Growth, Health Condition, and Disease Resistance in Asian Seabass (Lates calcarifer). Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10207-x. [PMID: 38135810 DOI: 10.1007/s12602-023-10207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
A 16-week feeding trial was done to examine the impacts of continuous feeding (CF) or pulse-feeding (PF) of multi-strain probiotics on Asian seabass (Lates calcarifer, 30.0 ± 0.1 g) juveniles. In this study, three different multi-strain probiotic mixtures were added to a basal diet, including (I) a mixture of different strains of Lactobacillus plantarum, (II) a mixture of the first probiotic (I) + L. delbrueckii sub bulgaricus, L. rhamnosus and L. acidophilus, and (III) a mixture of the second probiotic (II) + two quorum quenching (QQ) bacteria (Bacillus thuringiensis QQ1 and B. cereus QQ2). CF (every day) or PF (every two weeks) strategies were applied for using the abovementioned probiotics to design seven experimental groups including C (control, without probiotics), CF-I (continuous feeding of fish with the probiotic mixture I), CF-II (continuous feeding of fish with the probiotic mixture II), CF-III (continuous feeding of fish with the probiotic mixture III), PF-I (pulse-feeding of fish with the probiotic mixture I), PF-II (pulse-feeding of fish with the probiotic mixture II), and PF-III (pulse-feeding of fish with the probiotic mixture III). Four hundred and twenty fish were stocked into 21 circular polyethylene tanks with 220 L volume (20 fish/tank). Each dietary treatment had three replicates. Tanks were supplied with seawater (temperature = 30.5 °C, salinity = 45 g L-1) in a flow-throw system. Fish in CF-I, CF-II, and CF-III had higher growth rate (ca. 113-145%) and better feed conversion ratio than fish fed C and PF-I (P < 0.05). Fish in the CF-III group had the highest protease activity. Continuous feeding strategy resulted in a higher amount of glutathione and catalase activities in both the liver and plasma as well as higher superoxide dismutase activity in the liver of fish. Pulse-feeding strategy resulted in lower plasma lactate dehydrogenase and aspartate aminotransferase levels than the CF strategy. Regardless of feeding strategy, different probiotic mixtures significantly enhanced blood hemoglobin and hematocrit levels compared to the control. Continuous feeding with the multi-strain probiotics resulted in a higher survival rate against Vibrio harveyi than the PF method. Continuous feeding induced higher mRNA transcription levels of granulocyte-macrophage colony-forming cells and interleukin 10 genes in the gut of fish than PF strategy. In conclusion, continuous feeding with multi-strain probiotics is better than pulse-feeding on growth, feed utilization, antioxidant capacity, and the gut's immune-related genes and led to higher resistance of L. calcarifer in challenge with V. harveyi.
Collapse
Affiliation(s)
- Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran.
| | - Takavar Mohammadian
- Department of livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mina Ahangarzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Hossein Houshmand
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Mojtaba Zabayeh Najafabadi
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Rahim Oosooli
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Sadra Seyyedi
- Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Shapour Mehrjooyan
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Hamid Saghavi
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Abolfazl Sephdari
- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Maryam Mirbakhsh
- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Elham Osroosh
- Department of livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Bagheri D, Moradi R, Zare M, Sotoudeh E, Hoseinifar SH, Oujifard A, Esmaeili N. Does Dietary Sodium Alginate with Low Molecular Weight Affect Growth, Antioxidant System, and Haemolymph Parameters and Alleviate Cadmium Stress in Whiteleg Shrimp ( Litopenaeus vannamei)? Animals (Basel) 2023; 13:1805. [PMID: 37889709 PMCID: PMC10252018 DOI: 10.3390/ani13111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 10/29/2023] Open
Abstract
Decreasing low molecular weight can improve the digestibility and availability of ingredients such as sodium alginate. This study aimed to test the four dosages of low molecular weight sodium alginate (LMWSA) (0%: Control, 0.05%: 0.5 LMWSA, 0.10%: 1.0 LMWSA, and 0.2%: 2.0 LMWSA) in whiteleg shrimp (Litopenaeus vannamei) (3.88 ± 0.25 g) for eight weeks. After finishing the trial, shrimp were exposed to cadmium (1 mg/L) for 48 h. While feed conversion ratio (FCR) improved in shrimp fed dietary 2.0 LMWSA (p < 0.05), there was no significant difference in growth among treatments. The results showed a linear relation between LMWSA level and FCR, and glutathione S-transferase (GST) before; and malondialdehyde (MDA), glutathione (GSH), GST, and alanine transaminase (ALT) after cadmium stress (p < 0.05). The GST, MDA, ALT, and aspartate transaminase (AST) contents were changed after stress but not the 2.0 LMWSA group. The survival rate after stress in 1.0 LMWSA (85.23%) and 2.0 LMWSA (80.20%) treatments was significantly higher than the Control (62.05%). The survival rate after stress negatively correlated with GST and ALT, introducing them as potential biomarkers for cadmium exposure in whiteleg shrimp. Accordingly, the 2.0 LMWSA treatment had the best performance in the abovementioned parameters. As the linear relation was observed, supplementing more levels of LMWSA to reach a plateau is recommended.
Collapse
Affiliation(s)
- Dara Bagheri
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Rohullah Moradi
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Mahyar Zare
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Ebrahim Sotoudeh
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Seyed Hossein Hoseinifar
- Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Amin Oujifard
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia;
| |
Collapse
|
6
|
Combined effects of Spirulina platensis and Pediococcus acidilactici on the growth performance, digestive enzyme activity, antioxidative status, and immune genes in zebrafish. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
The combined effects of Spirulina platensis (SP) and Pediococcus acidilactici (PA) on growth performance, digestive enzyme activity, antioxidative status, and immune genes in zebrafish were investigated in the present study. Four experimental diets were designed: control and three test diets mixed with SP at 2.5%, PA at 107 CFU/g, or a combination of 2.5% SP and 107 CFU/g PA. After 56 days, fish treated with PA and SP mixture had higher final weight, weight gain, SGR, and lower FCR than fish fed the control and SP diets (P<0.05). The results also illustrated that fish fed PA, SP, and their mixture had higher (P<0.05) protease and amylase activities than the control. The lipase activity was significantly higher in fish treated with PA or the mixture of PA and SP than in the control (P<0.05). The alternative complement pathway (ACH50) and lysozyme activity in the mucus samples of fish treated with PA or both PA and SP were significantly higher (P<0.05) than in fish treated with the control and SP diets. The total immunoglobulin level in the skin mucus was significantly higher (P<0.05) in fish fed PA than in control. In the body homogenates samples, the lysozyme activity and immunoglobulin levels were markedly higher (P<0.05) in fish treated with the mixture of PA and SP than in the control. The dietary PA and SP diet mixture improved the glutathione peroxidase, superoxide dismutase, and total antioxidative capacity. The expression of IL-1β and IL-8 genes in fish treated with PA or the mixture of PA and SP was significantly higher (P<0.05) than in fish treated with the control or SP diets. Fish treated with PA, SP, or both PA and SP had marked (P<0.05) upregulation of the lysozyme gene expression. In conclusion, the mixture of S. platensis and P. acidilactici is more effective than using each individually for improving the growth performance, digestive enzyme activity, and the immune and antioxidative capacity of zebrafish.
Collapse
|
7
|
Maniat M, Salati AP, Zanguee N, Mousavi SM, Hoseinifar SH. Effects of Dietary Pediococcus acidilactici and Isomaltooligosaccharide on Growth Performance, Immunity, and Antioxidant Defense in Juvenile Common Carp. AQUACULTURE NUTRITION 2023; 2023:1808640. [PMID: 36860979 PMCID: PMC9973223 DOI: 10.1155/2023/1808640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the synbiotic effects of Pediococcus acidilactici (PA) and isomaltooligosaccharide (IMO) on the performance of juvenile common carp (Cyprinus carpio). A total of 360 fish (17.22 ± 0.19 g) were randomly divided into six groups with three replicates of 20 fish each. The trial continued for 8 weeks. The control group was fed only basal diet; PA was fed basal diet supplemented with 1 g/kg (1010 CFU/kg) PA, IMO5 (5 g/kg IMO), IMO10 (10 g/kg IMO), PA-IMO5 (1 g/kg PA and 5 g/kg IMO), and PA-IMO10 (1 g/kg PA and 10 g/kg IMO). The results indicated that the diet containing 1 g/kg PA and 5 g/kg IMO significantly increased the fish growth performance and decreased the feed conversion ratio (p < 0.05). Overall, blood biochemical parameters, serum (lysozyme, complements C3 and C4) and mucosal (protein, total immunoglobulin, and lysozyme) immune responses, and antioxidant defense of fish also improved in the PA-IMO5 group (p < 0.05). Therefore, a combination of 1 g/kg (1010 CFU/kg) PA and 5 g/kg IMO can be recommended as a beneficial synbiotic additive and immunostimulant in juvenile common carp.
Collapse
Affiliation(s)
- Milad Maniat
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nasim Zanguee
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Seyed Mohammad Mousavi
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Natural Resources, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
8
|
Rouhani E, Safari R, Imanpour MR, Hoseinifar SH, Yazici M, El-Haroun E. Effect of Dietary Administration of Green Macroalgae ( Ulva intestinalis) on Mucosal and Systemic Immune Parameters, Antioxidant Defence, and Related Gene Expression in Zebrafish ( Danio rerio). AQUACULTURE NUTRITION 2022; 2022:7693468. [PMID: 36860428 PMCID: PMC9973132 DOI: 10.1155/2022/7693468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 05/31/2023]
Abstract
This study investigated the effects of adding green macroalgae gutweed (Ulva intestinalis) powder to zebrafish (Danio rerio) feed at different levels on innate immune responses, antioxidant defence, and gene expression. A total of 600 zebrafish (0.3 ± 0.08 g) were randomly allocated to 12 aquariums in four treatments with three replicates (50 fish per aquarium). Zebrafish were fed with different levels of U. intestinalis powder 0, 0.25, 0.5, and 1% for eight weeks. Whole-body extract (WBE) immune parameters including total protein level, globulin level, and lysozyme activity were evaluated and revealed statistically significant increased in all U. intestinalis supplemented groups compared to the control (P < 0.05). However, mucus immune parameters (total protein, globulin, and lysozyme) were statistically different in only 1% gutweed supplemented groups from other groups. While glutathione peroxidase (GPx) and superoxide dismutase (SOD) increased with the addition of gutweed (P < 0.05), catalase (CAT) did not change (P > 0.05). The study results showed that dietary gutweed remarkably upregulated immune-related genes such as lysozyme (Lyz) and Interleukin 1 beta (IL-1β). Antioxidant-related genes (SOD and CAT) and growth-related genes, including growth hormone (GH) and insulin-like growth factor-I (IGF-1), were remarkably upregulated with gutweed treatment (P < 0.05). In conclusion, dietary U. intestinalis showed beneficial effects on immunity, and same effects were observed in case of antioxidant and growth related genes expression in zebrafish.
Collapse
Affiliation(s)
- Elaheh Rouhani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roghieh Safari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Reza Imanpour
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Metin Yazici
- Iskenderun Technical University, Faculty of Marine Sciences and Technology, Iskenderun, Hatay, Turkey
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department Faculty of Agriculture Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Dietary Supplementation of a Commercial Prebiotic, Probiotic and Their Combination Affected Growth Performance and Transient Intestinal Microbiota of Red Drum ( Sciaenops ocellatus L.). Animals (Basel) 2022; 12:ani12192629. [PMID: 36230372 PMCID: PMC9559286 DOI: 10.3390/ani12192629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the present study, the potential synergism between beneficial lactic acid bacteria (Pediococcus acidilactici) contained in a probiotic and a mixture of fermentable complex carbohydrates and autolyzed brewer's yeast (or prebiotic) were explored in red drum. Four experimental diets were formulated from practical ingredients, and the basal diet was supplemented with either probiotic, prebiotic, or both supplements. Red drum juveniles (~5.5 g) were offered the four experimental diets for 56 days, and at the end of the feeding trial fish fed diets supplemented with probiotic had significantly better weight gain than those fed the non-supplemented diets, and higher protein content in their whole-body composition. Transient intestinal microbiome alpha and beta diversity were significantly affected by the dietary treatments. Interestingly, a higher relative abundance of the lactic acid genus Pediococcus was observed for fish fed diets supplemented with the prebiotic. A higher relative abundance was also observed for the predicted functions of the microbial metagenome, and many of these pathways involved the biosynthesis of essential amino acids, vitamins, and nucleotides. Even though no potential synergistic effect was observed, the individual inclusion of these prebiotic and probiotic supplements positively affected the intestinal health and growth performance of red drum, respectively.
Collapse
|
10
|
Knobloch S, Skírnisdóttir S, Dubois M, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. Impact of Putative Probiotics on Growth, Behavior, and the Gut Microbiome of Farmed Arctic Char (Salvelinus alpinus). Front Microbiol 2022; 13:912473. [PMID: 35928148 PMCID: PMC9343752 DOI: 10.3389/fmicb.2022.912473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Beneficial bacteria promise to promote the health and productivity of farmed fish species. However, the impact on host physiology is largely strain-dependent, and studies on Arctic char (Salvelinus alpinus), a commercially farmed salmonid species, are lacking. In this study, 10 candidate probiotic strains were subjected to in vitro assays, small-scale growth trials, and behavioral analysis with juvenile Arctic char to examine the impact of probiotic supplementation on fish growth, behavior and the gut microbiome. Most strains showed high tolerance to gastric juice and fish bile acid, as well as high auto-aggregation activity, which are important probiotic characteristics. However, they neither markedly altered the core gut microbiome, which was dominated by three bacterial species, nor detectably colonized the gut environment after the 4-week probiotic treatment. Despite a lack of long-term colonization, the presence of the bacterial strains showed either beneficial or detrimental effects on the host through growth rate enhancement or reduction, as well as changes in fish motility under confinement. This study offers insights into the effect of bacterial strains on a salmonid host and highlights three strains, Carnobacterium divergens V41, Pediococcus acidilactici ASG16, and Lactiplantibacillus plantarum ISCAR-07436, for future research into growth promotion of salmonid fish through probiotic supplementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Leeper
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Biosciences, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Viggó Þ. Marteinsson
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
- *Correspondence: Viggó Þ. Marteinsson,
| |
Collapse
|
11
|
Effects of dietary taurine amino acid on growth performance, mucosal and immune response, gene expression and antioxidant defence of asian seabass (Lates calcarifer). Mol Biol Rep 2022; 49:3503-3510. [DOI: 10.1007/s11033-022-07187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/20/2022] [Indexed: 10/18/2022]
|
12
|
Mohammadi G, Hafezieh M, Karimi AA, Azra MN, Van Doan H, Tapingkae W, Abdelrahman HA, Dawood MAO. The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a synbiotic additive on growth, antioxidant status, immune response, and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 120:304-313. [PMID: 34838702 DOI: 10.1016/j.fsi.2021.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the growth performance, immune responses, and disease resistance of Nile tilapia upon pistachio hulls derived polysaccharide (PHDP) and Pediococcus acidilactici (PA) separately or as synbiotic. Fish received four types of diets: T1, control; T2, PHDP (0.1%); T3, PA (0.2%); T4, PHDP (0.1%) +PA (0.2%) for 56 days. The results showed that final weight and weight gain were markedly higher in fish fed T4 diet than that given T1 and T2 diets (P ≤ 0.05). In addition, a significantly greater specific growth rate was obtained by the T4 diet compared to the control. Fish survival was significantly improved in all supplemented diets compared to the control. On the other hand, the activities of lipase, protease, and amylase showed significant increases in the T4 group compared with other feeding groups. The total leucocytes and lymphocytes proportion significantly elevated in T3 and T4 than remaining groups (P ≤ 0.05). Further, fish fed T3 diet presented significantly higher serum total protein, total immunoglobulin, lysozyme activity (LYZ), alternative complement activity (ACH50), and alkaline phosphatase activity compared to fish fed T1 and T2 diets, while the mentioned indices were found significantly highest in T4 group than others. Fish received T3 and T4 diets had higher skin mucus LYZ and ACH50 than those fed T1 and T2 diets (P ≤ 0.05). The malondialdehyde levels were significantly declined in T3 and T4 when compared to the control. Fish fed T3 and T4 diets demonstrated significantly enhanced superoxide dismutase, catalase, and glutathione peroxidase activities compared to the control. The intestinal propionic acid significantly increased by T2 and T4 diets, while the highest levels of acetic acid detected in fish given T4 diet. The expression levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 10 (IL-10) were significantly affected by T3 and T4 supplements. The efficacy of T4 diet against Aeromonas hydrophila infection was documented by a significantly lower mortality rate. In conclusion, the combination of PHDP and PA presented promising results as a synbiotic feed additive for Nile tilapia.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Ali Akbar Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohamad Nor Azra
- Institute for Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Wanaporn Tapingkae
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hisham A Abdelrahman
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835, Cairo, Egypt.
| |
Collapse
|
13
|
Hwang J, Yadav D, Lee PC, Jin JO. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother Res 2021; 36:761-777. [PMID: 34962325 DOI: 10.1002/ptr.7348] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
A significant rise in the occurrence and severity of adverse reactions to several synthetic drugs has fueled considerable interest in natural product-based therapeutics. In humans and animals, polysaccharides from marine microalgae and seaweeds have immunomodulatory effects. In addition, these polysaccharides may possess antiviral, anticancer, hypoglycemic, anticoagulant, and antioxidant properties. During inflammatory diseases, such as autoimmune diseases and sepsis, immunosuppressive molecules can serve as therapeutic agents. Similarly, molecules that participate in immune activation can induce immune responses against cancer and infectious diseases. We aim to discuss the chemical composition of the algal polysaccharides, namely alginate, fucoidan, ascophyllan, and porphyran. We also summarize their applications in the treatment of cancer, infectious disease, and inflammation. Recent applications of nanoparticles that are based on algal polysaccharides for the treatment of cancer and inflammatory diseases have also been addressed. In conclusion, these applications of marine algal polysaccharides could provide novel therapeutic alternatives for several diseases.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Peter Cw Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
14
|
Esmaeili M. Blood Performance: A New Formula for Fish Growth and Health. BIOLOGY 2021; 10:biology10121236. [PMID: 34943151 PMCID: PMC8698978 DOI: 10.3390/biology10121236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary The use of haematological and blood biochemistry parameters has proven to be effective and repeatable ways to monitor fish health. Testing these parameters is becoming more common in aquaculture studies. Further, it is widely accepted that fish with better health status are more likely to grow faster as less energy should be consumed for non-growth purposes. Here, a new formula (Blood Performance) is introduced, which contains five common haematological and blood biochemistry parameters: red blood cells, white blood cells, haemoglobin, haematocrit, and total protein. The idea behind this formula is that any single component of this formula cannot be reliable enough as a biomarker of fish health and growth. However, interestingly, Blood Performance can be much more reliable and accurate for monitoring fish health and growth. Abstract Monitoring fish health in a repeatable and accurate manner can contribute to the profitability and sustainability of aquaculture. Haematological and blood biochemistry parameters have been powerful tools and becoming increasingly common in aquaculture studies. Fish growth is closely related to its health status. A fish with a higher growth rate is more likely to be a healthy one. Any change in the physiological status of the fish, from pollution to nutritional stress, can cause changes in the blood parameters. Various aquaculture studies have measured the following components: red blood cells, white blood cells, haemoglobin, haematocrit, and total protein. However, because these parameters do not always follow the same trend across experimental fish, it is difficult to draw a firm conclusion about which parameter should be considered. Therefore, Blood Performance (BP) as a new formula is introduced, which is a more reliable indicator. This formula is simple and sums up the natural logarithm of the five above-mentioned parameters. More than 90 published peer-reviewed articles that measured these five parameters in the last six years confirmed the reliability and validity of this formula. Regardless of which supplements were added to the diets, the fish with a higher growth rate had higher BP as well. In addition, in 44 studies out of 53 articles, there was a significant positive correlation between specific growth rate and BP. Under different stressful situations, from pollution to thermal stress, the fish under stress had a lower BP than the control. Fish meal and fish oil replacement studies were further evidence for this formula and showed that adding excessive alternative proteins decreased growth along with BP. In conclusion, BP can be a reliable indicator of fish health and growth when it is compared between groups in the same experiment or farm. Although there was a positive correlation between specific growth rate and BP, comparing BP between experiments is not recommended. Standardising the haematological assays can improve the reliability and accuracy of BP across experiments.
Collapse
Affiliation(s)
- Moha Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, 15-21 Nubeena Cres, Taroona, TAS 7053, Australia
| |
Collapse
|
15
|
Zakariaee H, Sudagar M, Hosseini SS, Paknejad H, Baruah K. In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Front Microbiol 2021; 12:758758. [PMID: 34671338 PMCID: PMC8521104 DOI: 10.3389/fmicb.2021.758758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes and button mushrooms with two different Lactobacillus probiotics (Lactobacillus acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic formulation to improve the growth, survival, and reproductive performances of farmed fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic lactobacilli in the presence of the different doses of the plant-based prebiotics, with the aim of selecting interesting combination(s) for further verification under in vivo conditions using zebrafish as a model. Results from the in vitro screening assay in the broth showed that both the probiotic species showed a preference for 50% mushroom extract as a source of prebiotic. A synbiotic formulation, developed with the selected combination of L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence on the growth and reproductive performances of the zebrafish. Our findings also imply that the improvement in the reproductive indices was associated with the upregulation of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. bulgaricus, and mushroom extract can be considered as a potential synbiotic for the successful production of aquaculture species.
Collapse
Affiliation(s)
- Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Sudagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Seyede Sedighe Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Effects of Dietary Bovine Lactoferrin on Growth Performance and Immuno-physiological Responses of Asian Sea Bass (Lates calcarifer) Fingerlings. Probiotics Antimicrob Proteins 2021; 13:1790-1797. [PMID: 34033064 DOI: 10.1007/s12602-021-09805-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 01/24/2023]
Abstract
The aim of this study was to evaluate the effects of lactoferrin (Lf) on growth and feeding performance, biochemical and immune parameters in Asian sea bass (Lates calcarifer). A basal diet was supplemented with 0 (control), 400 (400 Lf), or 800 (800 Lf) mg Lf kg-1 diet. The results indicate a significant increase in innate immune parameters when the diet was supplemented with 800 mg Lf kg-1. The highest serum albumin value and the lowest serum glucose concentration were observed in 800 Lf group. The liver catalase activity in the 400 Lf and 800 Lf groups was lower than the control value. Moreover, malondialdehyde concentration in the liver of Asian sea bass was increased with increasing the dietary Lf supplementation. The results of the study suggest that supplementing diet with 800 mg Lf kg-1 stimulates non-specific immune response in Asian sea bass. Nonetheless, selecting an appropriate dose can be difficult, especially since both the higher and the lower dose tested may result in adverse effects.
Collapse
|
17
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
18
|
Snega Priya P, Ashwitha A, Thamizharasan K, Harishkumar M, Dinesh S, Nithya T, Kamaraj M. Synergistic effect of durian fruit rind polysaccharide gel encapsulated prebiotic and probiotic dietary supplements on growth performance, immune-related gene expression, and disease resistance in Zebrafish ( Danio rerio). Heliyon 2021; 7:e06669. [PMID: 33889779 PMCID: PMC8050004 DOI: 10.1016/j.heliyon.2021.e06669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the effect of polysaccharide gel (PG) extracted from the rind of durian fruit which is encapsulated with Bacillus subtilis as a feed and co-inoculation with Artemia nauplii in the induction of immune response in Danio rerio after Vibrio immersion challenge (5 days). The total RBC count, lysozyme activity test, weight, and length analysis revealed that the zebra fishes fed with the PG encapsulated probiotics had more immune induction activity, survival, and growth than the non-encapsulated groups. When the expression of the immune-related genes was measured, the studies revealed the significant upregulation (P < 0 .05) of interleukin 1 beta (Il1b), lysozyme (lyz), tumor necrosis factor-alpha (TNF-α), superoxide dismutase (SOD) genes in fish fed with PG encapsulated probiotics with A. nauplii showed an immense effect on the induction of immune response compared to other feeds.
Collapse
Affiliation(s)
- P. Snega Priya
- Department of Biotechnology, FSH, SRM Institute of Science and Technology, Kattankulathur, TamilNadu, 603203, India
| | - A. Ashwitha
- Department of Biotechnology, FSH, SRM Institute of Science and Technology, Kattankulathur, TamilNadu, 603203, India
| | - K. Thamizharasan
- Department of Biotechnology, FSH, SRM Institute of Science and Technology, Kattankulathur, TamilNadu, 603203, India
| | - M. Harishkumar
- Department of Biotechnology, FSH, SRM Institute of Science and Technology, Kattankulathur, TamilNadu, 603203, India
| | - S. Dinesh
- ICMR –Vector Control Research Centre, Puducherry, 605006, India
| | - T.G. Nithya
- Department of Biotechnology, FSH, SRM Institute of Science and Technology, Kattankulathur, TamilNadu, 603203, India
| | - M. Kamaraj
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia
| |
Collapse
|
19
|
Akbari H, Shekrabi SPH, Soltani M, Mehrgan MS. Effects of Potential Probiotic Enterococcus casseliflavus (EC-001) on Growth Performance, Immunity, and Resistance to Aeromonas hydrophila Infection in Common Carp (Cyprinus carpio). Probiotics Antimicrob Proteins 2021; 13:1316-1325. [PMID: 33721202 DOI: 10.1007/s12602-021-09771-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
The effects of different levels of dietary Enterococcus casseliflavus (EC-001), as a potential probiotic, were investigated on the growth performance, hemato-biochemical parameters, immune responses, and resistance to Aeromonas hydrophila infection in common carp (Cyprinus carpio) fingerlings. Accordingly, fish (N = 720; 12.0 ± 0.5 g) were distributed into four treatments receiving different dietary levels of E. casseliflavus, EC-001 (0 [control], 1 × 107, 108, and 109 CFU g-1 feed), for 8 weeks. The fish fed with a diet containing 109 CFU g-1 showed the highest weight gain and specific growth rate, along with the lowest feed conversion ratio, compared with the control group (P < 0.05). Red and white blood cells, hemoglobin, hematocrit, neutrophils, and monocytes significantly increased in the fish fed with 1 × 108 and 109 CFU g-1 (P < 0.05). Dietary inclusion of 1 × 108 and 109 CFU g-1 significantly increased serum total protein, albumin, and immunoglobulin content (P < 0.05). Feeding the fish with 1 × 109 CFU g-1 resulted in a significant increase in serum and skin mucus lysozyme activity compared with the other groups (P < 0.05). Complement component 3 and skin mucus protease activity were also significantly higher in all the fish treated with dietary E. casseliflavus (EC-001) compared with the control group (P < 0.05). The cumulative mortality in the treated fish was lower (ranging from 10 to 22%) than the control group (31%) after challenging the fish with A. hydrophila infection, while the fish fed with E. casseliflavus (EC-001) at 1 × 109 CFU g-1 exhibited the lowest mortality rate (P < 0.05). In conclusion, our results revealed the potential probiotic effects of E. casseliflavus (EC-001) for enhancing growth performance, immunity, and disease resistance of common carp.
Collapse
Affiliation(s)
- Hossein Akbari
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Freshwater Fish Group and Fish Health Unit, Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Perth, Australia
| | - Mehdi Shamsaie Mehrgan
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Arani MM, Salati AP, Keyvanshokooh S, Safari O. The effect of Pediococcus acidilactici on mucosal immune responses, growth, and reproductive performance in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:153-162. [PMID: 33242190 DOI: 10.1007/s10695-020-00903-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
A completely randomized experimental design carried out to investigate the effects of different levels of Pediococcus acidilactici (PA) including 0 (basal diet as a control diet), 1 × 106, 2 × 106, 4 × 106, and 8 × 106 colony-forming unit (CFU) per gram of the diet for 60 days on the mucosal immunity responses, growth, and reproductive performance, in zebrafish, Danio rerio (with mean weigh ± SE: 120 ± 10 mg). The obtained results revealed that the best growth and reproduction indices were related to the concentration of 4 × 106 CFU PA g-1 diet (P < 0.05). The maximum activities of mucosal immune responses including total protein, alternative complement system, IgM, and lysozyme were observed in the fish fed with 4 × 106 CFU PA g-1 diet (P < 0.05). Furthermore, the maximum alkaline phosphatase activity of skin mucus was recorded in the fish fed with 8 × 106 CFU PA g-1 diet (P < 0.05). Fish fed with 4 × 106 CFU PA g-1 diet had the highest villus length and width of the intestine (P < 0.05). Supplementing the diet with 4 × 106 CFU PA g-1 diet more significantly enhanced Cyp19a gene expression in comparison with this in other groups. Hence, PA with a concentration of 4 × 106 CFU g-1 diet can be considered as a proper level of probiotic for improving the health, growth, and reproductive performance of the D. rerio.
Collapse
Affiliation(s)
- Mojtaba Mohammadi Arani
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
- Agricultural Research, Educating and Extension Organization, Isfahan Agricultural and Natural Resources Research and Training Center, Isfahan, Iran
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Saeed Keyvanshokooh
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Hoseinifar SH, Jahazi MA, Mohseni R, Raeisi M, Bayani M, Mazandarani M, Yousefi M, Van Doan H, Torfi Mozanzadeh M. Effects of dietary fern (Adiantum capillus-veneris) leaves powder on serum and mucus antioxidant defence, immunological responses, antimicrobial activity and growth performance of common carp (Cyprinus carpio) juveniles. FISH & SHELLFISH IMMUNOLOGY 2020; 106:959-966. [PMID: 32890760 DOI: 10.1016/j.fsi.2020.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
A 56-day research was performed to examine the influence of graded levels (0 (control), 0.5, 1 and 2%) of Fern (Adiantum capillus-veneris) leaves powder (FLP) in diet on immune competence and growth of common carp (Cyprinus carpio, initial weight = 20 g). The serum total immunoglobulins content and lysozyme activity in the 1 and 2% FLP groups remarkably increased compared to the other groups (P < 0.05). The skin mucosal lysozyme activity enhanced with increasing dietary FLP level in a dose-response manner. Fish fed on the FLP-supplemented diets had higher skin-mucosal superoxide dismutase activity than the control (P < 0.05). However, serum antioxidant enzymes were not affected by dietary fern (P > 0.05). The serum bactericidal activity against human and fish pathogens increased with enhancing the FLP level in diet against Staphylococcus aureus, Escherichia coli (EHEC ATCC 43895), Escherichia coli (CI), Pseudomonas aeruginosa, Klebsiella pneumonia and Aeromonas hydrophila. The serum antibacterial activity against Yersinia ruckeri in the 2% FLP group was higher than the other treatments. Furthermore, the serum bactericidal activity against P. aeruginosa (ATCC 27853) only observed in fish fed on the 1 and 2% FLP-supplemented diets. The skin mucosal bactericidal activity and inhibitory effects increased with enhancing the FLP level in diet against E. coli, K. pneumonia, Y. ruckeri and A. hydrophila in a dose response manner. Moreover, the skin mucosal bactericidal activity against S. aureus only observed in fish fed on 1 and 2% FLP-supplemented diets. The weight gain values in the 1 and 2% FLP groups were higher than the other treatments (P < 0.05). Feed conversion ratio (FCR) improved with increasing FLP level in diet in a dose-response manner (P < 0.05). By considering serum and mucosal bactericidal activities against different pathogenic bacteria, the supplementation of 2% FLP in diet is recommended for C. carpio during grow-out phase.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mohammad Amin Jahazi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roghieh Mohseni
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mojtaba Raeisi
- Food, Drug and Natural products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsan Bayani
- Radin Makian Azma Mehr Ltd., Radinmehr Veterinary Laboratory, Gorgan, Iran
| | - Mohammad Mazandarani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mansour Torfi Mozanzadeh
- Agriculture Research, Education and Extension, South Iran Aquaculture Research Center, Iran Fisheries Science Research Institution (IFSRI), Ahwaz, Iran
| |
Collapse
|
22
|
Hoseinifar SH, Shakouri M, Yousefi S, Van Doan H, Shafiei S, Yousefi M, Mazandarani M, Torfi Mozanzadeh M, Tulino MG, Faggio C. Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. FISH & SHELLFISH IMMUNOLOGY 2020; 100:171-178. [PMID: 32135345 DOI: 10.1016/j.fsi.2020.02.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
A six-week feeding trial was carried out to evaluate the effects of inclusion of dietary olive waste cake (OWC, 0, 0.5, 2.5 and 5 g kg-1 diet) on performance, antioxidant condition and immune responses of rainbow trout (Oncorhynchus mykiss) (2.5 ± 0.1 g). Supplementing diet with 2.5 and 5 g OWC kg-1 diet significantly enhanced serum and mucosal lysozyme activity in fish. Regarding mucosal immunity, fish fed 2.5 and 5 g OWC kg-1 diets had higher skin mucus total Ig concentrations than other groups. In relation to antioxidant status, those in 2.5 g OWC kg-1 and the control groups exhibited the highest and the least liver superoxide dismutase and glutathione peroxidase activities, respectively. Furthermore, the activity of liver glutathione S transferase in fish fed 2.5 and 5 g OWC kg-1 diets was higher than the other treatments. In respect to gut cytokines gene expression, our findings demonstrated dietary OWC did not influence interlukines-1β and 10 genes expression, but relative expression of IL8 gene gradually up-regulated with increasing dietary OWC level. Moreover, fish fed 0.5 g OWC kg-1 and the control diets had the highest and the lowest gut tumor necrosis factor-α gene expression values, respectively. The relative expression of transforming growth factor-β significantly down-regulated in gut of fish fed 2.5 and 5 g OWC kg-1 diets compared to other groups. Supplementing diet with OWC pronouncedly improved growth and feed conversion ratio in fish compared to the control. Overall, the findings of this study suggested that inclusion of 2.5 g OWC kg-1 diet can improve growth rate, oxidative stress status, humoral and skin mucosal immune responses in O. mykiss fingerlings and it can be considered as a functional feed additive for this species.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Meysam Shakouri
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Samira Yousefi
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Shafigh Shafiei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Mohammad Mazandarani
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| | - Maria Grazia Tulino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, Messina, Italy
| | - Caterina Faggio
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| |
Collapse
|
23
|
Ringø E, Van Doan H, Lee SH, Soltani M, Hoseinifar SH, Harikrishnan R, Song SK. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. J Appl Microbiol 2020; 129:116-136. [PMID: 32141152 DOI: 10.1111/jam.14628] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host's health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.
Collapse
Affiliation(s)
- E Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - H Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - S H Lee
- School of Life Science, Handong University, Pohang, Republic of Korea
| | - M Soltani
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia.,Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - S H Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - R Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Tamil Nadu, Kanchipuram, India
| | - S K Song
- School of Life Science, Handong University, Pohang, Republic of Korea
| |
Collapse
|
24
|
Miao S, Han B, Zhao C, Hu J, Zhu J, Zhang X, Sun L. Effects of dietary Pediococcus acidilactici GY2 single or combined with Saccharomyces cerevisiae or/and β-glucan on the growth, innate immunity response and disease resistance of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2020; 98:68-76. [PMID: 31857226 DOI: 10.1016/j.fsi.2019.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
One Pediococcus acidilactici strain, named PA-GY2 was isolated from the gut of cultured Macrobrachium rosenbergii. In order to better examine the potential scope and applicability of this strain in M. rosenbergii culture, based on the control diet, four experimental diets containing single or combined immunostimulants were produced by supplementing with yeast (Saccharomyces cerevisiae, SC) or/and β-glucan (G), then fed to the prawns (6.70 g ± 0.74) in five groups, which were named as group C (control group), P (PA-GY2), PS (PA-GY2 + SC, 1:1), PG (PA-GY2 + G) and PGS (PA-GY2 + SC + G), respectively. After a 60-day feeding trial, growth performance, feed utilization, immune response and disease resistance of prawns were evaluated in the present study. Results indicated that (1) The growth performance of the prawns in group PS and PGS were significantly improved. The prawns in group PGS presented the lowest feed coefficiency (FC), while prawns in group C presented the highest FC. (2) The protease activity was significantly improved by dietary immunostimulants supplementation, meanwhile, prawns in the group PS presented the highest lipase activity. (3) The highest total hemocyte count and respiratory burst activity were found in the group P and PG, respectively. The phagocytic index of the prawns in the group C was significantly lower than those in group P and PGS. (4) Dietary PA-GY2 single or combined with SC or/and β-glucan increased the immune related genes expression, including some antibacterial and antioxidant enzymes, while decreased the tumor necrosis factor-α gene expression, which led to the decreased cumulative mortality rate of prawns during the Aeromonas hydrophila challenge test. Based on the results of growth performance, digestive enzymes activity and immune response of M. rosenbergii, PA-GY2 supplementation, single or combined with SC or/and β-glucan could be suggested as promising immunostimulants in prawns farming.
Collapse
Affiliation(s)
- Shuyan Miao
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China
| | - Bei Han
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China
| | - Chenze Zhao
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China
| | - Juntao Hu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China
| | - Jinyu Zhu
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China
| | - Xin Zhang
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China
| | - Longsheng Sun
- College of Animal Science and Technology, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, PR China.
| |
Collapse
|
25
|
Tarkhani R, Imani A, Hoseinifar SH, Ashayerizadeh O, Sarvi Moghanlou K, Manaffar R, Van Doan H, Reverter M. Comparative study of host-associated and commercial probiotic effects on serum and mucosal immune parameters, intestinal microbiota, digestive enzymes activity and growth performance of roach (Rutilus rutilus caspicus) fingerlings. FISH & SHELLFISH IMMUNOLOGY 2020; 98:661-669. [PMID: 31678185 DOI: 10.1016/j.fsi.2019.10.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The study aimed to isolate host-associated probiotic (HAP) lactic acid bacteria from intestine of adult Caspian roach and compare the efficacy of HAP with a commercially available probiotic strain (Pediococcus acidilactici) on the growth and feed utilisation, digestive enzymes and systemic and mucosal immune system of roach fingerling. The HAP strain isolated from roach intestine was Enterococcus faecium strain CGMCC1.2136. The experiment was a simple completely randomized design and lasted for eight weeks. Two hundred and seventy fish with an average weight of 12 g randomly distributed into nine tanks. The trial consisted of three treatments with three respective replications. During the experimental period, fish received basal diet without any bacterial supplementation (as the control group), basal diet enriched with 108 CFU g-1 HAP or 107 CFU g-1 CP. At the end of the experiment, serum immune parameters of those fish fed HAP including alkaline phosphatase activity, total protein content, total immunoglobulin level, lysozyme activity and complement activity (ACH50) were significantly higher that other experimental groups (P < 0.05). Similarly, dietary supplementation of HAP resulted in better mucosal immune parameters in comparison to control group and commercial probiotic administration (P < 0.05). Intestinal heterotrophic bacteria and autochthonous LAB counts of those fish fed HAP were significantly higher than other experimental groups at the end of the experiment as well as 15 days seizing probiotic administrations (P < 0.05). Fish fed with HAP containing diet presented significantly higher amylase, lipase and protease activity in comparison to the CP fed fish and the control group (P < 0.05). Growth indices of those fish fed HAP were significantly higher than other treatments (P < 0.05). The highest carcass protein and ash content along with the lowest body moisture content belonged to those fish received HAP (P < 0.05). In conclusion, the use host-HAP resulted in better immune competence and growth performance and it seems aquaculture sector should probably focus on the development of probiotics isolated from the cultured species instead of using terrestrial probiotics with greatly different requirements and environmental conditions.
Collapse
Affiliation(s)
- Reza Tarkhani
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, Iran
| | - Ahmad Imani
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
| | - Omid Ashayerizadeh
- Department of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, Iran
| | - Kourosh Sarvi Moghanlou
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, Iran
| | - Ramin Manaffar
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Miriam Reverter
- ISEM, IRD, CNRS, EPHE, Institute of Evolution of Montpellier, Université de Montpellier, 34090, Montpellier, France
| |
Collapse
|
26
|
Mişe Yonar S. Growth performance, haematological changes, immune response, antioxidant activity and disease resistance in rainbow trout (Oncorhynchus mykiss) fed diet supplemented with ellagic acid. FISH & SHELLFISH IMMUNOLOGY 2019; 95:391-398. [PMID: 31676428 DOI: 10.1016/j.fsi.2019.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The present study was performed to investigate the effects of various levels of dietary ellagic acid (EA) on growth performance, haematological values, immune response, protection against Yersinia ruckeri infection, and oxidant/antioxidant status in rainbow trout, Oncorhynchus mykiss. Fish were fed with the control diet and three different experimental diets containing three graded levels of EA (50, 100 and 200 mg kg-1 diet) for 8 weeks. At the end of the experiment, the growth performance [weight gain (WG), specific growth rate (SGR) and feed conversion ratio (FCR)], haematological values [the red blood cell (RBC) count, haemoglobin (Hb) concentration, haematocrit (Ht) level and erythrocyte indices: mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC)], immune response [white blood cell (WBC) count, oxidative radical production (nitroblue tetrazolium (NBT) assay), phagocytic activity (PA) and phagocytic index (PI), total protein (TP) and immunoglobulin M (IgM) levels, serum bactericidal activity (BA), lysozyme (LYZ) and myeloperoxidase (MPO) activities] and oxidant/antioxidant status [tissue malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities] were analysed. In addition, fish were challenged by Y. ruckeri and survival rate was recorded for 14 days. In the groups fed with EA the growth parameters such as WG, SGR, and FCR did not vary significantly. The RBC count, Hb concentration, and Ht level increased in the groups fed with EA when compared with the control group. However, there were no significant differences in the MCV, MCH and MCHC values among the groups. The results demonstrated enhancement in all the immunological parameters in the groups fed with EA compared to the control group. The results obtained from challenge with Y. ruckeri revealed reduction in the mortalities in the groups fed with EA. The dietary EA stimulated the SOD, CAT and GSH-Px activities in liver, head kidney and spleen as compared to the control group; however, a reverse trend was observed in the MDA levels of tissues. The present study suggest that EA can effectively enhance the haematological values, immune response, antioxidant capacity, and disease resistance in rainbow trout.
Collapse
Affiliation(s)
- Serpil Mişe Yonar
- Firat University, Fisheries Faculty, Department of Aquaculture, Elazig, Turkey.
| |
Collapse
|
27
|
Yonar ME, Mişe Yonar S, İspir Ü, Ural MŞ. Effects of curcumin on haematological values, immunity, antioxidant status and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas salmonicida subsp. achromogenes. FISH & SHELLFISH IMMUNOLOGY 2019; 89:83-90. [PMID: 30898618 DOI: 10.1016/j.fsi.2019.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 05/15/2023]
Abstract
The present study was conducted to evaluate the effects of various levels of dietary curcumin on growth performance, haematological values, immunity and protection against Aeromonas salmonicida subsp. achromogenes infection in rainbow trout, Oncorhynchus mykiss. Fish were fed with diets containing different levels of curcumin; 0% (C), %1 (E1), %2 (E2) and %4 (E3), as treatment groups. After 8 weeks of feeding, the growth performance [weight gain (WG), specific growth rate (SGR) and feed conversion ratio (FCR)], haematological values [the red blood cell (RBC) count, haemoglobin (Hb) concentration, haematocrit (Ht) level and erythrocyte indices: mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC)], various immune parameters [white blood cell (WBC) count, oxidative radical production (nitroblue tetrazolium (NBT) assay), phagocytic activity (PA) and phagocytic index (PI), total protein (TP) and immunoglobulin M (IgM) levels, serum bactericidal (BA), lysozyme (LYZ) and myeloperoxidase (MPO) activities] and antioxidant capacity [tissue malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities] were analysed. In addition, fish were challenged by Aeromonas salmonicida subsp. achromogenes and survival rate was recorded for 14 days. The results indicated that the growth performance was significantly influenced by the dietary curcumin levels, the maximal WG and SGR occurred at fish fed the diet containing 2% curcumin. Fish fed the diet containing curcumin had lower FCR than those fed the control diet. The RBC count, Hb concentration, and Ht level increased in the groups fed with curcumin when compared with the control group. However, there were no significant differences in the MCV, MCH and MCHC values among experimental groups. All the chosen immune parameters were enhanced in the groups fed diets containing curcumin. Also, the relative percentage survivals were higher in the groups fed with curcumin, especially in the E2 group, compared to the control. The dietary curcumin stimulated the SOD, CAT and GSH-Px activities in liver, head kidney and spleen as compared to the control group; however, a reverse trend was observed in the MDA levels of tissues. The highest values for haematological, immunological (except TP level of E3 group) and antioxidant parameters were found in the E2 group. These results collectively suggest that curcumin can be used in aquaculture to improve the growth, haematological values, immune responses, antioxidant capacity and disease resistance of rainbow trout, O. mykiss.
Collapse
Affiliation(s)
- M Enis Yonar
- Firat University, Fisheries Faculty, Department of Aquaculture, Elazig, Turkey
| | - Serpil Mişe Yonar
- Firat University, Fisheries Faculty, Department of Aquaculture, Elazig, Turkey.
| | - Ünal İspir
- Malatya Turgut Özal University, Fisheries Faculty, Department of Aquaculture, Malatya, Turkey
| | - Mevlüt Şener Ural
- Firat University, College of Keban, Fisheries Programme, 23700 Elazig, Turkey
| |
Collapse
|
28
|
Boosted Growth Performance, Mucosal and Serum Immunity, and Disease Resistance Nile Tilapia (Oreochromis niloticus) Fingerlings Using Corncob-Derived Xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics Antimicrob Proteins 2019; 12:400-411. [DOI: 10.1007/s12602-019-09554-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Alginate and Probiotics Synergistically Reversed Dextran Sulfate Sodium Salt (DSS)-Induced Gut Barrier Damage. Macromol Res 2019. [DOI: 10.1007/s13233-019-7122-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Hoseinifar SH, Hosseini M, Paknejad H, Safari R, Jafar A, Yousefi M, Van Doan H, Torfi Mozanzadeh M. Enhanced mucosal immune responses, immune related genes and growth performance in common carp (Cyprinus carpio) juveniles fed dietary Pediococcus acidilactici MA18/5M and raffinose. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:59-65. [PMID: 30668960 DOI: 10.1016/j.dci.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The present study was conducted to evaluate the effects of dietary Pediococcus acidilactici (PA) and raffinose (RF) alone or in combination on growth performance, mucosal immune factors and immune related genes expression in common carp (Cyprinus carpio) juveniles. Fish with initial weight of 10.0 ± 2.5 g were fed the following experimental diets for 60 days: control (without supplementation), prebiotic (2 g RF kg-1 diet), probiotic (6 × 108 CFU g-1PA) and synbiotic (2 g RF kg-1+ 6 × 108 CFU g-1PA). Carp fed synbiotic and probiotic diets had the highest (19.53 ± 0.16) and the lowest (18.05 ± 0.65) final body weight, respectively and the other experimental groups showed intermediate values. Singular administration of PA or in combination with 2 g RF kg-1 significantly increased skin mucus total immunoglobulin (Ig) and protein compared other groups, meanwhile, values of skin mucus protease activity enhanced by dietary immunostimulants administration in comparison with the control (P < 0.05). The expression of gene encoding lysozyme in skin pronouncedly increased by supplementing diets with singular or mixture of PA and RF; however, the expression of intestinal lysozyme gene as well as tumor necrosis factor-α genes expression in skin and intestine were not affected by administrating different immunostimulants (P > 0.05). The highest growth performance was noticed in fish fed synbiotic (P < 0.05). Overall, the combination of 2 g RF kg-1 with 6 × 108 CFU g-1PA is recommended for improving immunological responses of C. carpio juveniles.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Marjan Hosseini
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roghieh Safari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Jafar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| |
Collapse
|
31
|
Shakoori M, Hoseinifar SH, Paknejad H, Jafari V, Safari R, Van Doan H, Torfi Mozanzadeh M. Enrichment of rainbow trout (Oncorhynchus mykiss) fingerlings diet with microbial lysozyme: Effects on growth performance, serum and skin mucus immune parameters. FISH & SHELLFISH IMMUNOLOGY 2019; 86:480-485. [PMID: 30513385 DOI: 10.1016/j.fsi.2018.11.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
A two-month study was conducted to determine the influence of different levels of microbial lysozyme (LZ) contents (0, 0.5, 1.0, and 1.5 g kg-1 of diet) on growth performance, serum and skin mucus immune parameters as well as intestinal immune-related genes expression in rainbow trout Oncorhynchus mykiss fingerlings (5.5 ± 0.1 g). Growth performance and feed utilization were not affected significantly by dietary LZ. Fish fed LZ-supplemented diets had higher serum total immunoglobulins concentration than the control group. In addition, fish fed 1.5 g LZ kg-1 diet had the highest skin mucosal total protein and immunoglobulin contents compared to other experimental groups. Furthermore, skin mucosal lysozyme and alkaline phosphatase activities as well as intestinal tumor necrosis factor-α and interlukine-1β relative genes expression were higher in fish fed 1.0 and 1.5 g LZ kg-1 diets than the other groups. Overall, the present results clearly showed that LZ powder can be considered as a potential immunostimulant in O. mykiss fingerlings, but in the long term period it may result in negative effects on intestinal health as a consequence of inducing pro-inflammatory cytokines gene expression in the intestine.
Collapse
Affiliation(s)
- Meysam Shakoori
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hamed Paknejad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Valiollah Jafari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roghieh Safari
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Mansour Torfi Mozanzadeh
- South Iran Aquaculture Research Centre, Iranian Fisheries Science Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Ahwaz, Iran
| |
Collapse
|
32
|
Guo X, Li J, Ran C, Wang A, Xie M, Xie Y, Ding Q, Zhang Z, Yang Y, Duan M, Zhou Z. Dietary nucleotides can directly stimulate the immunity of zebrafish independent of the intestinal microbiota. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1064-1071. [PMID: 30590163 DOI: 10.1016/j.fsi.2018.12.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
In this study, we firstly tested the effects of dietary nucleotides on the disease resistance and innate immunity of zebrafish. Further, we investigated the role of intestinal microbiota in the nucleotides-induced immunostimulatory effect by using a germ-free zebrafish model and microbiota transfer technique. Fish were fed control or nucleotides (NT)-supplemented diets (at 0.05%,0.1%, 0.15% or 0.2%, m/m) for 4 weeks, followed by immersion challenge with Aeromonas hydrophila NJ-1. The results showed that 0.1% NT group enhanced the resistance of zebrafish against A. hydrophila infection. We further observed that the relative expressions of mucin, claudin16, occlusin1, hepcidin, defensin beta-like, myeloperoxidase (Mpo), and serum amyloid A (Saa) increased in the 0.1% NT group compared with control (P < 0.05), indicating that dietary nucleotides enhanced the physical barrier and mucosal immunity in the intestine of zebrafish. Moreover, ROS level in the head kidney was significantly increased in NT fed zebrafish versus control (P < 0.05), indicating enhanced systematic immunity. Furthermore, dietary NT significantly elevated the relative expressions of mpo, saa and the ROS activity in germ-free zebrafish, while germ-free zebrafish colonized with NT-altered microbiota had no significant difference in the relative expressions of mpo, saa and the ROS activity compared with the control microbiota-colonized fish, suggesting that the immunostimulatory effect of dietary NT is mediated by direct action of NT and does not involve the microbiota. Consistently, dietary NT can protect germ-free zebrafish from pathogenic infection, whereas germ-free zebrafish colonized with NT microbiota showed no difference in disease resistance compared with control microbiota colonized counterparts. Together, these results indicated that the immunostimulatory and disease protection effect of dietary nucleotides in zebrafish was mediated by direct action of the nucleotides, and does not involve the intestinal microbiota.
Collapse
Affiliation(s)
- Xiaoze Guo
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China; Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jie Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Anran Wang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
33
|
Naderi Farsani M, Bahrami Gorji S, Hoseinifar SH, Rashidian G, Van Doan H. Combined and Singular Effects of Dietary PrimaLac® and Potassium Diformate (KDF) on Growth Performance and Some Physiological Parameters of Rainbow Trout (Oncorhynchus mykiss). Probiotics Antimicrob Proteins 2019; 12:236-245. [DOI: 10.1007/s12602-019-9523-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|