1
|
Wang J, Cui C, Qi S, Wang Z, Song J, Ji G, Sun N, Liu X, Zhang H. The NAC transcription factor PagNAC17 enhances salt tolerance in poplar by alleviating photosynthetic inhibition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109645. [PMID: 39955821 DOI: 10.1016/j.plaphy.2025.109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The NAC transcription factor family is essential for plant growth, development, and stress responses. This study, based on RNA-Seq data from 84K poplar and weighted gene co-expression network analysis (WGCNA), identified PagNAC17 as a key factor in the salt stress response of poplar. A total of 202 PtrNAC TFs were identified and categorized into two major subfamilies, with their conserved motifs, gene structures, and cis-acting elements analyzed. Genes co-expressed with PagNAC17 are involved in energy metabolism, such as photosynthesis (e.g., light absorption and CO2 fixation), oxidative phosphorylation, signal transduction processes, and stress responses (e.g., the glutathione metabolism pathway), suggesting that PagNAC17 may regulate salt tolerance in poplar through these pathways. PagNAC17 is localized in the nucleus, primarily expressed in young leaves with the lowest expression in roots, and has transcriptional activation activity. The expression of PagNAC17 in yeast significantly enhances growth under salt conditions. Likewise, the overexpression of PagNAC17 in 84K poplar also significantly enhances salt tolerance, reducing yellowing, wilting, and oxidative damage. In summary, PagNAC17 is a key salt-tolerance regulator within the poplar NAC gene family. This study provides valuable insights for functional research on the NAC TFs family and offers a promising genetic resource for the salt-tolerance breeding of poplar.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyue Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zheyuan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xuemei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Li R, Wu MW, Liu J, Xu X, Bao Y, Liu CM. NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29. FRONTIERS IN PLANT SCIENCE 2025; 16:1563065. [PMID: 40171481 PMCID: PMC11958719 DOI: 10.3389/fpls.2025.1563065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 04/03/2025]
Abstract
Introduction Grain filling is a crucial stage of the rice endosperm development. During this process, the endosperm accumulates abundant storage products such as starch and proteins, which determine both the yield and quality of the grain. Methods Here, we analyzed the expression of NAC25 transcription factor via qRT-PCR and histochemical GUS assays, and obtained its mutants by CRISPR/Cas9-based gene editing in ZH11. Results and discussion The results showed that NAC25 was expressed specifically in developing rice endosperm, and knockout of NAC25 led to delayed degeneration of cytoplasmic membrane integrity, reduced starch accumulation and chalky starchy endosperm. We showed that NAC25 interacted with MADS29, a MADS family transcription factor whose mutant also showed defective grain filling. These results provide novel insight into the transcriptional regulation of rice grain filling.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xintong Xu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun-Ming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang C, Song S, Fu J, Wang K, Chen X, Bo B, Chen Z, Zhang L, Zhang L, Wang X, Tang N, Tian X, Chen L, Luan S, Yang Y, Mao D. The transcription factor OsNAC25 regulates potassium homeostasis in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:930-945. [PMID: 39693105 PMCID: PMC11869173 DOI: 10.1111/pbi.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Over-application of potassium (K) fertilizer in fields has a negative impact on the environment. Developing rice varieties with high KUE will reduce fertilizer for sustainable agriculture. However, the genetic basis of KUE in a more diverse and inclusive population remains largely unexplored. Here, we show that the transcription factor OsNAC25 enhances K+ uptake and confers high KUE under low K+ supply. Disruption of OsNAC25 by CRISPR/Cas9-mediated mutagenesis led to a considerable loss of K+ uptake capacity in rice roots, coupled with reduced K+ accumulation in rice and severe plant growth defects under low- K+ conditions. However, the overexpression of OsNAC25 enhanced K+ accumulation by regulating proper K+ uptake capacity in rice roots. Further analysis displayed that OsNAC25 can bind to the promoter of OsSLAH3 to repress its transcription in response to low- K+ stress. Nucleotide diversity analyses suggested that OsNAC25 may be selected during japonica populations' adaptation of low K+ tolerance. Natural variation of OsNAC25 might cause differential expression in different haplotype varieties, thus conferring low K+ tolerance in the Hap 1 and Hap 4 -carrying varieties, and the japonica allele OsNAC25 could enhance low K+ tolerance in indica variety, conferring great potential to improve indica low K+ tolerance and grain development. Taken together, we have identified a new NAC regulator involved in rice low K+ tolerance and grain development, and provide a potential target gene for improving low K+ tolerance and grain development in rice.
Collapse
Affiliation(s)
- Chen Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Shaowen Song
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Jun Fu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangshaChina
| | - Kai Wang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangshaChina
| | - Xuan Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Bin Bo
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaHunanChina
| | - Zhe Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaHunanChina
| | - Linan Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Lin Zhang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xiaohui Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Niwen Tang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Xiangrong Tian
- College of Biology and Environmental SciencesJishou UniversityJishouChina
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| | - Sheng Luan
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice BreedingYuan Longping High‐Tech Agriculture Co., LtdChangshaChina
| | - Dandan Mao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and ApplicationCollege of Life Sciences, Hunan Normal UniversityChangshaChina
| |
Collapse
|
4
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Yang X, Ji C, Wang S, Yang Q, Li J, He S, Pang Q, Zhang A. Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109562. [PMID: 39879829 DOI: 10.1016/j.plaphy.2025.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E. salsugineum, the sequence feature and phylogeny of EsbZIPs have been exhaustively described. Through the global detection on the transcriptional pattern of EsbZIPs under salt stress, it was found that EsbZIP51 is potentially involved in the positive regulation of salt response. The transgenic plants with heterologous expression of EsbZIP51 exhibited enhanced salt tolerance, as manifested by the healthier growth phenotype and increased capacity in maintaining ion and ROS homeostasis upon salt stress. DNA affinity purification sequencing revealed that a set of candidate genes targeted by EsbZIP51, and functional validation by dual-LUC assays showed EsbZIP51 can specifically bind to the promoter of EsNHX4 and regulates the gene expression, which is required for the modulation of ion balance under salt stress. Together, this study provides insight into the genomic information of EsbZIPs and uncovers a previously uncharacterized functional genes involved in plant salt tolerance.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chengcheng Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qinghua Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiawen Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shipeng He
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Gupta V, Kumari P, Sonowal K, Sathe A, Mehta K, Salvi P. Molecular intricacies of intrinsically disordered proteins and drought stress in plants. Int J Biol Macromol 2025; 292:139314. [PMID: 39740709 DOI: 10.1016/j.ijbiomac.2024.139314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Intrinsically Disordered Proteins (IDPs) and Intrinsically Disordered Regions (IDRs) are renowned for their dynamic structural characteristics and conformational adaptability, allowing them to assume diverse conformations in response to prevailing environmental conditions. This inherent flexibility facilitates their interactions with molecular targets, enabling them to engage in numerous cellular processes without any excessive energy consumption. This adaptability is instrumental in shaping cellular complexity and enhancing adaptability. Notably, most investigations into IDPs/IDRs have concentrated on non-plant organisms, while this comprehensive review explores their multifaceted functions with a perspective of plant resilience to drought stress. Furthermore, the impact of IDPs on plant stress is discussed, highlighting their involvement in diverse biological processes extending beyond mere stress adaptation. This review incorporates a broad spectrum of methodological approaches, ranging from computational tools to experimental techniques, employed for the systematic study of IDPs. We also discussed limitations, challenges, and future directions in this dynamic and evolving field, aiming to provide insights into the unexplored facets of IDPs/IDRs in the intricate landscape of plant responses to drought stress.
Collapse
Affiliation(s)
- Vaishali Gupta
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Priya Kumari
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kaberi Sonowal
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Atul Sathe
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kritika Mehta
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
| |
Collapse
|
7
|
Wang M, Ma Y, Qiu YX, Long SS, Dai WS. Genome-wide characterization and expression profiling of the TGA gene family in sweet orange ( Citrus sinensis) reveal CsTGA7 responses to multiple phytohormones and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2025; 16:1530242. [PMID: 40070708 PMCID: PMC11893830 DOI: 10.3389/fpls.2025.1530242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
Citrus is widely recognized as one of the most economically important fruit crops worldwide. However, citrus growth is frequently hindered by external environmental stresses, which severely limit its development and yield. The TGA (TGACG motif-binding factor) transcription factors (TFs) are members of the bZIP family and play essential roles in plant defense responses and organ development. Nevertheless, the systematic identification and functional analysis of the TGA family in citrus remains unreported. In this study, genome-wide analysis identified a total of seven CsTGA TFs in Citrus sinensis, which were classified into five subgroups. Phylogenetic and syntenic analysis revealed that the CsTGA genes are highly conserved, with no tandem or segmental duplication events among family members. Promoter sequence analysis identified numerous cis-acting elements associated with transcriptional regulation, phytohormone response, and environmental adaptation in the promoters of CsTGA genes. The expression patterns under five phytohormones and three abiotic stresses demonstrated significant responses of multiple CsTGA genes under various forms of adversity. Among all tested treatments, CsTGA7 showed the most robust response to multiple stresses. Tissue-specific expression pattern analysis revealed potential functional biases among CsTGA genes. In-depth analysis showed that CsTGA7 localized in the nucleus and possessed transcriptional activation activity, consistent with the typical characteristic of transcriptional regulators. In summary, our research systematically investigated the genomic signature of the TGA family in C. sinensis and unearthed CsTGA7 with potential functions in phytohormone signaling transduction and abiotic stress responses. Our study establishes a basis for further exploration of the function of CsTGA genes under abiotic stress.
Collapse
Affiliation(s)
- Min Wang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yue Ma
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yu-Xin Qiu
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Si-Si Long
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Wen-Shan Dai
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Wang B, Fang R, Zhang G, Liu N, Feng Z, Bu Y, Gong Y. Increased ABA synthesis by overexpression of Cd-NAC ameliorates cadmium toxicity in vegetable soybean. Int J Biol Macromol 2025; 305:141022. [PMID: 39954897 DOI: 10.1016/j.ijbiomac.2025.141022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Cadmium (Cd) stress is a significant threat to crop production. Abscisic acid (ABA) has been recognized for its ability to mitigate Cd toxicity. However, the underlying regulatory mechanisms governing ABA biosynthesis and its signaling pathway in response to Cd stress remain elusive. Here, we identified a Cd-induced NAC1 transcription factor (Cd-NAC) from vegetable soybean, which played a pivotal role in this process. Overexpression of Cd-NAC in transgenic vegetable soybean roots resulted in enhanced Cd tolerance, manifested by longer roots and higher biomass compared to Cd-NAC knockdown plants. Cd-NAC functions as a nuclear transcription factor that binds directly to the promoters of the 9-cis-epoxycarotenoid dioxygenase coding genes (GmNCED3.1 and GmNCED3.2), thereby activating their transcription and promoting the biosynthesis of ABA. Our findings uncover a crucial molecular mechanism of ABA conferring Cd tolerance in plants, which holds promise for sustainable agricultural production and effective management of this hazardous heavy metal, ultimately contributing to improved environmental management and ecosystem function.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310021, China
| | - Ruiqiu Fang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang, Zhejiang 322100, China
| | - Guwen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310021, China
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310021, China
| | - Zhijuan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310021, China
| | - Yuanpeng Bu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310021, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
9
|
Kumari A, Sopory SK, Joshi R. Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family. Biochim Biophys Acta Gen Subj 2025; 1869:130755. [PMID: 39740732 DOI: 10.1016/j.bbagen.2024.130755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses. However, research on bamboo TFs' regulatory role in providing abiotic stress tolerance is limited. Hence the present review offers innovative insights into unraveling the molecular regulation of known family of TFs in different species of bamboo which have been identified as regulators of transcript abundance in numerous genes responsive to various abiotic stresses. Additionally, this review highlights recent discoveries concerning bamboo TFs, encompassing their classification, promoter analysis and functional dynamics in response to different abiotic stresses. Attempt has also been made to delve into the molecular interplay and cross-talk among these TFs during abiotic stresses, thus proposing potential strategies for enhancing the intricate regulatory networks involved in the adaptive responses of bamboo species.
Collapse
Affiliation(s)
- Anita Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
10
|
Zhu F, Li K, Cao M, Zhang Q, Zhou Y, Chen H, AlKhazindar M, Ji Z. NbNAC1 enhances plant immunity against TMV by regulating isochorismate synthase 1 expression and the SA pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17242. [PMID: 39968571 DOI: 10.1111/tpj.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Salicylic acid (SA) plays important roles in plant local and systemic resistance. Isochorismate synthase 1 (ICS1) is a key enzyme in SA synthesis. Pathogens infection triggered the ICS1 expression and induced SA production. However, the molecular regulation mechanism of ICS1 against virus infection remains unclear. Here, we employed molecular genetics and physiobiochemical approaches to confirm a transcription factor NbNAC1 from Nicotiana benthamiana is a positive regulator of resistance against tobacco mosaic virus (TMV). The pathways NbNAC1 and NbICS1 can be triggered by TMV infection. Silencing NbNAC1 accelerated TMV-induced oxidative damage and increased reactive oxygen species (ROS) production. It also weakened both local and systemic resistance against TMV and decreased the expression of NbICS1, SA signaling gene NbNPR1, and SA defense-related genes. The effects of NbNAC1-silencing were restored by overexpression of NbICS1 or foliar SA applications. Overexpressing NbNAC1 prevented oxidative damage and reduced the production of ROS, enhanced plant resistance against viral pathogen, and activated NbICS1 expression, and SA downstream signaling and defense-related genes. NbNAC1 localized in nuclear and emerged the ability of transcriptional regulation. ChIP and EMSA results indicated that NbNAC1 directly binds to a fragment containing GAAATT motif of NbICS1 promoter. Luciferase reporter assays confirmed that NbNAC1 activates NbICS1 expression. Taken together, our results demonstrate that NbNAC1 plays a critical role in plant immunity through activation of SA production.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kainan Li
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Cao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiping Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yangkai Zhou
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
11
|
Zhao M, Liu Z, Xue P, Zhang X, Wan X. Genomic characterization of the NAC transcription factors in carnation and function analysis of DcNAC41 involved in thermotolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109390. [PMID: 39653006 DOI: 10.1016/j.plaphy.2024.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 02/05/2025]
Abstract
As pivotal regulators unique to plants, NAC family extensively orchestrate various life processes ranging from seed germination through growth and development to responses to environmental stresses. This study unraveled 71 NAC TFs in the carnation (Dianthus caryophyllus L.) genome, designated as DcNAC1 to DcNAC71, encoding amino acid sequences ranging from 80 to 718 residues. Subcellular localization predictions revealed a predominance of nuclear localization among these DcNACs. Phylogenetic analysis classified DcNACs into 14 distinct subgroups, each exhibiting similar gene structures and motifs. Promoter analysis highlighted the abundance of cis-regulatory elements (CREs) associated with plant growth and development regulation, hormone signaling, light response, and diverse stress responses, with stress-responsive CREs being the most prevalent, with at least one stress-responsive CRE detected in all DcNAC promoters. To assess their functional roles, 12 DcNACs, were randomly selected from different subgroups for expression profiling under heat, ABA, cold, and salt stress conditions, revealing distinct expression patterns for specific stress types. Notably, DcNAC41, which exhibited marked up-regulation under heat stress, was isolated and subsequently transformed into Arabidopsis. In heat-stressed conditions, transgenic Arabidopsis overexpressing DcNAC41 exhibited significant improvements in growth performance, survival rates, enhanced photosynthetic capacity, and strengthened ROS scavenging abilities. This study offers valuable insights into the comprehensive response of carnation DcNACs towards heat stress, particularly underscoring the potential of DcNAC41 as a promising candidate for enhancing thermotolerance in plants.
Collapse
Affiliation(s)
- Mei Zhao
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Ziyi Liu
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiaojing Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Meng X, Feng C, Chen Z, Shah FA, Zhao Y, Fei Y, Zhao H, Ren J. Genome-wide analyses of the NAC transcription factor gene family in Acer palmatum provide valuable insights into the natural process of leaf senescence. PeerJ 2025; 13:e18817. [PMID: 39822972 PMCID: PMC11737331 DOI: 10.7717/peerj.18817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
Acer palmatum is a deciduous shrub or small tree. It is a popular ornamental plant because of its beautiful leaves, which change colour in autumn. This study revealed 116 ApNAC genes within the genome of A. palmatum. These genes are unevenly distributed on the 13 chromosomes of A. palmatum. An analysis of the phylogenetic tree of Arabidopsis thaliana NAC family members revealed that ApNAC proteins could be divided into 16 subgroups. A comparison of ApNAC proteins with NAC genes from other species suggested their potential involvement in evolutionary processes. Studies suggest that tandem and segmental duplications may be key drivers of the expansion of the ApNAC gene family. Analysis of the transcriptomic data and qRT‒PCR results revealed significant upregulation of most ApNAC genes during autumn leaf senescence compared with their expression levels in summer leaves. Coexpression network analysis revealed that the expression profiles of 10 ApNAC genes were significantly correlated with those of 200 other genes, most of which are involved in plant senescence processes. In conclusion, this study contributes to elucidating the theoretical foundation of the ApNAC gene family and provides a valuable basis for future investigations into the role of NAC genes in regulating leaf senescence in woody ornamental plants.
Collapse
Affiliation(s)
- Xin Meng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Chun Feng
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yue Zhao
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuzhi Fei
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Hongfei Zhao
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|
13
|
Li J, Liu H, Qian H, Lu S, Wu Y, Hua J, Zou B. Chromatin accessibility mediated by CHROMATIN REMODELING 11 promotes chilling tolerance in rice. PLANT PHYSIOLOGY 2024; 197:kiaf018. [PMID: 39797915 DOI: 10.1093/plphys/kiaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.) CHROMATIN REMODELING 11 (OsCHR11) positively regulates chilling tolerance by enhancing chromatin accessibility and facilitating changes in gene expression. Loss-of-function mutants of OsCHR11 exhibited increased susceptibility to chilling stress compared to wild-type rice plants. Transcriptome analysis revealed that the chr11 mutant displays diminished transcriptomic responses to chilling. Additionally, assay for transposase-accessible chromatin indicated that chilling treatment increases chromatin accessibility in the promoter regions, and this process depended on OsCHR11 function. Chromatin immunoprecipitation sequencing showed that OsCHR11 is physically associated with the promoters of cold-responsive genes. Integrated multiomics analysis further demonstrated a correlation between OsCHR11 enrichment and chromatin accessibility, as well as a correlation between chromatin accessibility and gene expression. Furthermore, OsCHR11 is required for the full expression of key cold-response genes, including those involved in trehalose biosynthesis. The exogenous application of trehalose partially rescued the chilling-susceptible phenotype of the chr11 mutant, suggesting that trehalose biosynthesis contributes to the chilling tolerance promoted by OsCHR11. Collectively, these findings indicate that OsCHR11 enhances cold tolerance in plants, likely by increasing chromatin accessibility and elevating the expression levels of cold-response genes in response to chilling.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - He Liu
- School of Life Sciences/Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hanying Qian
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Lu
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Lu L, Fang J, Xia N, Zhang J, Diao Z, Wang X, Liu Y, Tang D, Li S. Phosphorylation of the transcription factor OsNAC29 by OsMAPK3 activates diterpenoid genes to promote rice immunity. THE PLANT CELL 2024; 37:koae320. [PMID: 39665688 DOI: 10.1093/plcell/koae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Well-conserved mitogen-activated protein kinase (MAPK) cascades are essential for orchestrating of a wide range of cellular processes in plants, including defense responses against pathogen attack. NAC transcription factors (TFs) play important roles in plant immunity, but their targets and how they are regulated remain largely unknown. Here, we identified the TF OsNAC29 as a key component of a MAPK signaling pathway involved in rice (Oryza sativa) disease resistance. OsNAC29 binds directly to CACGTG motifs in the promoters of OsTPS28 and OsCYP71Z2, which are crucial for the biosynthesis of the phytoalexin 5,10-diketo-casbene and consequently rice blast resistance. OsNAC29 positively regulates rice blast resistance by promoting the expression of of OsTPS28 and OsCYP71Z2, and the function of OsNAC29 is genetically dependent on OsCYP71Z2 and OsTPS28. Furthermore, OsNAC29 interacts with OsRACK1A and OsMAPK3/6 to form an immune complex; OsMAPK3 phosphorylates OsNAC29 at Thr304 to prevent its proteasome-mediated degradation and promote its function against rice blast fungus. Phosphorylation of OsNAC29 at Thr304 is induced upon Magnaporthe oryzae infection and chitin treatment. Our data demonstrate the positive role of the OsMAPK3-OsNAC29-OsTPS28/OsCYP71Z2 module in rice blast resistance, providing insights into the molecular regulatory network and fine-tuning of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Fang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Wu X, Hu X, Bao Q, Sun Q, Yu P, Qi J, Zhang Z, Luo C, Wang Y, Lu W, Wu X. Genome-Wide Identification and Expression Analysis of NAC Gene Family Members in Seashore Paspalum Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3595. [PMID: 39771292 PMCID: PMC11678376 DOI: 10.3390/plants13243595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The NAC gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Paspalum Vaginatum, a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the NAC gene family in seashore paspalum remains poorly understood. In this study, genome-wide screening and identification were conducted based on the NAC (NAM) domain hidden Markov model in seashore paspalum, resulting in the identification of 168 PvNAC genes. A phylogenetic tree was constructed, and the genes were classified into 18 groups according to their topological structure. The physicochemical properties of the PvNAC gene family proteins, their conserved motifs and structural domains, cis-acting elements, intraspecific collinearity analysis, GO annotation analysis, and protein-protein interaction networks were analyzed. The results indicated that the majority of PvNAC proteins are hydrophilic and predominantly localized in the nucleus. The promoter regions of PvNACs are primarily enriched with light-responsive elements, ABRE motifs, MYB motifs, and others. Intraspecific collinearity analysis suggests that PvNACs may have experienced a large-scale gene duplication event. GO annotation indicated that PvNAC genes were essential for transcriptional regulation, organ development, and responses to environmental stimuli. Furthermore, the protein interaction network predicted that PvNAC73 interacts with proteins such as BZIP8 and DREB2A to form a major regulatory hub. The transcriptomic analysis investigates the expression patterns of NAC genes in both leaves and roots under varying durations of salt stress. The expression levels of 8 PvNACs in roots and leaves under salt stress were examined and increased to varying degrees under salt stress. The qRT-PCR results demonstrated that the expression levels of the selected genes were consistent with the FPKM value trends observed in the RNA-seq data. This study established a theoretical basis for understanding the molecular functions and regulatory mechanisms of the NAC gene family in seashore paspalum under salt stress.
Collapse
Affiliation(s)
- Xuanyang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xiaochen Hu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Qinyan Bao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730050, China
| | - Qi Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Pan Yu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Junxiang Qi
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Zixuan Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Chunrong Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Yuzhu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Wenjie Lu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xueli Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
Zhang W, Munyaneza V, Kant S, Wang S, Wang X, Cai H, Wang C, Shi L, Wang S, Xu F, Ding G. Transcription factor AtNAC002 positively regulates Cu toxicity tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136186. [PMID: 39442300 DOI: 10.1016/j.jhazmat.2024.136186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Copper (Cu) is an essential micronutrient for plant growth and development, but environmental Cu pollution has become increasingly severe, adversely affecting both ecosystems and crop productivity. In this study, we identified the AtNAC002 gene as a positive regulator of Cu toxicity in Arabidopsis thaliana. We found that AtNAC002 expression was induced by Cu excess, and the atnac002 mutant was Cu-sensitive, accumulating more Cu than the wild-type. Additionally, atnac002 mutants exhibit reduced activities of antioxidant enzymes (SOD, POD, and CAT), leading to increased levels of reactive oxygen species and malondialdehyde, which decrease Cu resistance. AtNAC002 might play a role in vacuolar and mitochondrial Cu compartmentalization by regulating genes involved in Cu detoxification, specifically COX11 and HCC1. Furthermore, AtNAC002 was implicated in flavone and flavanol biosynthesis, with the atnac002 mutant showing reduced flavonoid content. Our findings suggest that AtNAC002 is integral to the regulation of Cu toxicity tolerance in A. thaliana. This knowledge is critical for advancing our understanding and offers potential molecular breeding targets to enhance plant performance under Cu excess, which is significant for improving global food security and forest restoration.
Collapse
Affiliation(s)
- Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Surya Kant
- School of Agriculture, Biomedicine & Environment, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Sidan Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products/Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, 510640 Guangzhou, China.
| | - Hongmei Cai
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Chuang Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Lei Shi
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Sheliang Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
17
|
Li Y, Miao Y, Yuan H, Huang F, Sun M, He L, Liu X, Luo J. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. MOLECULAR PLANT 2024; 17:1866-1882. [PMID: 39533713 DOI: 10.1016/j.molp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Aromatic rice is globally favored for its distinctive scent, which not only increases its nutritional value but also enhances its economic importance. However, apart from 2-acetyl-1-pyrroline (2-AP), the metabolic basis of aroma remains to be clarified, and the genetic basis of the accumulation of fragrance metabolites is largely unknown. In this study, we revealed 2-AP and fatty acid-derived volatiles (FAVs) as key contributors to rice aroma by combining aroma rating with molecular docking. Using a volatilome-based genome-wide association study, we identified two regulatory genes that determine the natural variation of these fragrance metabolites. Genetic and molecular analyses showed that OsWRKY19 not only enhances fragrance by negatively regulating OsBADH2 but also improves agricultural traits in rice. Furthermore, we revealed that OsNAC021 negatively regulates FAV contents via the lipoxygenase pathway, and its knockout resulted in over-accumulation of grain FAVs without a yield penalty. Collectively, our study not only identifies two key regulators of rice aroma but also provides a compelling example about how to deciphering the genetic regulatory mechanisms that underlie rice fragrance, thereby paving the way for the creation of aromatic rice varieties.
Collapse
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuanyuan Miao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Honglun Yuan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Fengkun Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Mingqi Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
18
|
Abdoulaye AH, Yuhua C, Xiaoyan Z, Yiwei Y, Wang H, Yinhua C. Computational analysis and expression profiling of NAC transcription factor family involved in biotic stress response in Manihot esculenta. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1247-1259. [PMID: 39265049 DOI: 10.1111/plb.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
The Nascent polypeptide-Associated Complex (NAC) family is among the largest plant-specific TF families and plays an important role in plant growth, development, and stress responses. NAC TFs have been extensively studied in plants such as rice and Arabidopsis; however, their characterization, functions, evolution, and expression patterns in Manihot esculenta (cassava) under environmental stress remain largely unexplored. Here, we used bioinformatic analyses and biotic stress responses to investigate the physicochemical properties, chromosome location, phylogeny, gene structure, expression patterns, and cis-elements in promoter regions of the NAC TFs in cassava. We identified 119 M. esculenta NAC (MeNAC) gene families, unevenly distributed on 16 chromosomes. We investigated expression patterns of all identified MeNAC TFs under Xanthomonas axonopodis pv. manihotis (Xam) infection, strain CHN11, at different time points. Only 20 MeNAC TFs showed expression of significant bacterial resistance. Six MeNACs (MeNAC7, 26, 63, 65, 77, and 113) were selected for functional analysis. qRT-PCR assays revealed that MeNAC7, 26, 63, 65, 77, and 113 were induced in response to XamCHN11 infection and may participate in the molecular interaction of cassava and bacterial blight. Interestingly, MeNAC26, MeNAC63, MeNAC65, and MeNAC113 responded to XamCHN11 infection at 3 h post-inoculation. Furthermore, we identified 13 stress-related cis-elements in promoter regions of the MeNAC genes that are involved in diverse environmental stress responses. Phylogenetic analysis revealed that MeNAC genes with similar structures and motif distributions were grouped. This study provides valuable insights into the evolution, diversity, and characterization of MeNAC TFs. It lays the groundwork for a better understanding of their biological roles and molecular mechanisms in cassava.
Collapse
Affiliation(s)
- A H Abdoulaye
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - C Yuhua
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Z Xiaoyan
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Y Yiwei
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - H Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - C Yinhua
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| |
Collapse
|
19
|
Sun S, Liu D, Luo W, Li Z, Feng J, Guo Y, Chong K, Xu Y. Domestication-selected COG4-OsbZIP23 module regulates chilling tolerance in rice. Cell Rep 2024; 43:114965. [PMID: 39527475 DOI: 10.1016/j.celrep.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Identifying excellent natural variations is the foundation for breeding. Several major genes of quantitative trait loci for chilling tolerance at the seedling stage (qCTS) have been identified. However, less is known about the dual elite modules for the tolerance. Here, we report the major gene of qCTS1-2, Chilling-tolerance in Geng/japonica rice 4 (COG4), encoding the transcription factor ENAC1, coupled with OsbZIP23 to positively regulate chilling tolerance. The haplotype analysis and geographical distribution show that most of the chilling-tolerant japonica varieties carry Var9(CT) at -317 in COG4 (COG4jap). The COG4jap promoter is preferentially bound by cold-induced OsbZIP23 to cause a higher expression of COG4jap compared to COG4ind, which promotes multiple pathways for the tolerance. Both COG4jap and OsbZIP23jap are artificially selected and retained in japonica varieties during domestication. These results not only reveal the regulatory mechanism of OsbZIP23jap-COG4jap module but also provide valuable variations for molecular design breeding.
Collapse
Affiliation(s)
- Shenli Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinglei Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| |
Collapse
|
20
|
Kim T, Alvarez JC, Rana D, Preciado J, Liu T, Begcy K. Evolution of NAC transcription factors from early land plants to domesticated crops. PLANT & CELL PHYSIOLOGY 2024:pcae133. [PMID: 39720999 DOI: 10.1093/pcp/pcae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024]
Abstract
NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants. Many of the NAC clades arose later during evolution since we found eudicot- and monocot-specific clades. Cis-elements analysis in NAC promoters showed the presence of abiotic and biotic stress as well as hormonal response elements, which indicate the ancestral function of NAC transcription factor genes in response to environmental stimuli and in plant development. At the transcriptional level, the expression of NAC transcription factors was low or absent in male reproduction, particularly mature pollen, across the plant kingdom. We also identified NAC genes with conserved expression patterns in response to heat stress in Marchantia polymorpha and Oryza sativa. Our study provides further evidence that transcriptional mechanisms associated with stress responses and development emerged early during plant land adaptation and are still conserved in flowering plants and domesticated crops.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Javier C Alvarez
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- School of Applied Sciences and Engineering, EAFIT University, PO Box 98873, Medellin 050022, Colombia
| | - Divya Rana
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Jesus Preciado
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Tie Liu
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| |
Collapse
|
21
|
Ao CW, Xiang GJ, Wu YF, Wen Y, Zhu ZL, Sheng F, Du X. OsNAC15 regulates drought and salt tolerance in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1909-1919. [PMID: 39687697 PMCID: PMC11646237 DOI: 10.1007/s12298-024-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) play important roles in rice abiotic stress tolerance. OsNAC15 has been reported to regulate zinc deficiency and cadmium tolerance. However, the roles of OsNAC15 in rice drought and salt tolerance are largely unknown. In this study, we characterized a nuclear-localized NAC TF in rice, OsNAC15, that positively regulates drought and salt tolerance and directly participates in the biosynthesis of abscisic acid (ABA). Drought and salt treatment significantly induce the expression of OsNAC15. Loss of OsNAC15 could made plants more sensitive to drought and salt stress and led to the accumulation of more H2O2 and malondialdehyde (MDA) in vivo after drought and salt stress, while overexpression of OsNAC15 in plants showed stronger tolerance to drought and salt stress. Results of yeast one-hybrid assay and dual-luciferase (LUC) assay revealed that OsNAC15 interacted with the promoters of nine-cis-epoxycarotenoid dehydrogenases (NCEDs) genes (OsNCED1, OsNCED2 and OsNCED5), which are essential genes for ABA biosynthesis in rice, and promoted the expression of these target genes. In summary, our study reveals that OsNAC15, a NAC TF, may enhance drought and salt tolerance in rice by activating the promoters of key ABA biosynthesis genes (OsNCED1, OsNCED2 and OsNCED5). These results can contribute to further study on the regulatory mechanisms of drought and salt tolerance in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01529-3.
Collapse
Affiliation(s)
- Chuan-Wei Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Gan-ju Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, 100083 China
- Hubei Key Laboratory of Rare Resource Plants in Three Gorgres Reservoir Area, Yichang, 443100 China
| | - Yan-Fei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yue Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Zhong-Lin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
22
|
Zheng S, Chen J, He Y, Lu J, Chen H, Liang Z, Zhang J, Liu Z, Li J, Zhuang C. The OsAGO2-OsNAC300-OsNAP module regulates leaf senescence in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2395-2411. [PMID: 39171847 PMCID: PMC11583845 DOI: 10.1111/jipb.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Leaves play a crucial role in the growth and development of rice (Oryza sativa) as sites for the production of photosynthesis. Early leaf senescence leads to substantial drops in rice yields. Whether and how DNA methylation regulates gene expression and affects leaf senescence remains elusive. Here, we demonstrate that mutations in rice ARGONAUTE 2 (OsAGO2) lead to premature leaf senescence, with chloroplasts in Osago2 having lower chlorophyll content and an abnormal thylakoid structure compared with those from wild-type plants. We show that OsAGO2 associates with a 24-nt microRNA and binds to the promoter region of OsNAC300, which causes DNA methylation and suppressed expression of OsNAC300. Overexpressing OsNAC300 causes the similar premature leaf senescence as Osago2 mutants and knocking out OsNAC300 in the Osago2 mutant background suppresses the early senescence of Osago2 mutants. Based on yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays, we propose that OsNAC300 directly regulates transcription of the key rice aging gene NAC-like, activated by APETALA3/PISTILLATA (OsNAP) to control leaf senescence. Our results unravel a previously unknown epigenetic regulatory mechanism underlying leaf senescence in which OsAGO2-OsNAC300-OsNAP acts as a key regulatory module of leaf senescence to maintain leaf function.
Collapse
Affiliation(s)
- Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Junyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Ying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Hong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zipeng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Junqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
23
|
Cao L, Wang J, Ren S, Jia Y, Liu Y, Yang S, Yu J, Guo X, Hou X, Xu J, Li S, Xing G. Genome-wide identification of the NAC family in Hemerocallis citrina and functional analysis of HcNAC35 in response to abiotic stress in watermelon. FRONTIERS IN PLANT SCIENCE 2024; 15:1474589. [PMID: 39469056 PMCID: PMC11513300 DOI: 10.3389/fpls.2024.1474589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Introduction NAC (NAM, ATAF, and CUC) transcription factor family, one of the important switches of transcription networks in plants, functions in plant growth, development, and stress resistance. Night lily (Hemerocallis citrina) is an important horticultural perennial monocot plant that has edible, medicinal, and ornamental values. However, the NAC gene family of night lily has not yet been analyzed systematically to date. Methods Therefore, we conducted a genome-wide study of the HcNAC gene family and identified a total of 113 HcNAC members from the Hemerocallis citrina genome. Results We found that 113 HcNAC genes were unevenly distributed on 11 chromosomes. Phylogenetic analysis showed that they could be categorized into 16 instinct subgroups. Proteins clustering together exhibited similar conserved motifs and intron-exon structures. Collinearity analysis indicated that segmental and tandem duplication might contribute to the great expansion of the NAC gene family in night lily, whose relationship was closer with rice than Arabidopsis. Additionally, tissue-specific pattern analysis indicated that most HcNAC genes had relatively higher expression abundances in roots. RNA-Seq along with RT-qPCR results jointly showed HcNAC genes expressed differently under drought and salinity stresses. Interestingly, HcNAC35 was overexpressed in watermelon, and the stress resilience of transgenic lines was much higher than that of wild-type watermelon, which revealed its wide participation in abiotic stress response. Conclusion In conclusion, our findings provide a new prospect for investigating the biological roles of NAC genes in night lily.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sen Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable
and Flower, College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Guoming Xing
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable
and Flower, College of Horticulture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
24
|
Han S, Wang Y, Li Y, Zhu R, Gu Y, Li J, Guo H, Ye W, Nabi HG, Yang T, Wang Y, Liu P, Duan J, Sun X, Zhang Z, Zhang H, Li Z, Li J. The OsNAC41-RoLe1-OsAGAP module promotes root development and drought resistance in upland rice. MOLECULAR PLANT 2024; 17:1573-1593. [PMID: 39228126 DOI: 10.1016/j.molp.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/25/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024]
Abstract
Drought is a major environmental stress limiting crop yields worldwide. Upland rice (Oryza sativa) has evolved complex genetic mechanisms for adaptative growth under drought stress. However, few genetic variants that mediate drought resistance in upland rice have been identified, and little is known about the evolution of this trait during rice domestication. In this study, using a genome-wide association study we identified ROOT LENGTH 1 (RoLe1) that controls rice root length and drought resistance. We found that a G-to-T polymorphism in the RoLe1 promoter causes increased binding of the transcription factor OsNAC41 and thereby enhanced expression of RoLe1. We further showed that RoLe1 interacts with OsAGAP, an ARF-GTPase activating protein involved in auxin-dependent root development, and interferes with its function to modulate root development. Interestingly, RoLe1 could enhance crop yield by increasing the seed-setting rate under moderate drought conditions. Genomic evolutionary analysis revealed that a newly arisen favorable allelic variant, proRoLe1-526T, originated from the midwest Asia and was retained in upland rice during domestication. Collectively, our study identifies an OsNAC41-RoLe1-OsAGAP module that promotes upland rice root development and drought resistance, providing promising genetic targets for molecular breeding of drought-resistant rice varieties.
Collapse
Affiliation(s)
- Shichen Han
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yulong Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yingxiu Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rui Zhu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yunsong Gu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jin Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haifeng Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wei Ye
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hafiz Ghualm Nabi
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanming Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pengli Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Junzhi Duan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xingming Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhanying Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinjie Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Hou X, Liu H, Li Y, Zhang Z, Wang T, Liang C, Wang C, Li C, Liao W. SlNAP1 promotes tomato fruit ripening by regulating carbohydrate metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109079. [PMID: 39213944 DOI: 10.1016/j.plaphy.2024.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Many studies showed NAC transcription factors play an important role in fruit ripening. Moreover, sucrose and starch metabolism is also closely related to fruit ripening. However, there are a few studies focus on whether NAC regulates sucrose and starch metabolism to influence fruit ripening. In this study, virus-induced gene silencing (VIGS) of SlNAP1 suppressed fruit ripening and delayed color transformation. The chlorophyll (including Chla, Chlb, and Chla + b) degradation and carotenoid synthesis in SlNAP1-silenced fruits were dramatically suppressed. Silencing SlNAP1 decreased soluble sugar and reducing sugar accumulation in fruits, and increased starch content. The activity of starch degrading enzymes, including α amylase (AMY) and β amylase (BAM) was significantly lower in SlNAP1-silenced fruits than in the control fruits, whereas denosine diphosphoglucose pyrophosphorylase (AGP) activity was significantly higher. In addition, the expression of starch degradation-related genes (SlAMY1, SlAMY2, SlBAM1, SlBAM7, SlGWD, SlPWD) in SlNAP1-silenced fruits was significantly suppressed, while starch synthesis-related genes (SlAGPase1, SlAGPase2) was significantly increased. Compared with the control fruits, SlNAP1-silenced fruits showed significantly lower sucrose and glucose content. The expression level of sucrose and glucose metabolism-related genes such as Slsus1, Slsus3, SlSPS, SlHxk1, SlHxk2, SlPK1, and SlPK2 was significantly lower in SlNAP1-silenced fruits than in the control fruits. Overall, this study revealed that SlNAP1 gene might positively regulate fruit ripening by influencing carbohydrate metabolism.
Collapse
Affiliation(s)
- Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhuohui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Tong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Chen Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
26
|
Jia G, Thinn KSZ, Kim SH, Min J, Oh SK. Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses. THE PLANT PATHOLOGY JOURNAL 2024; 40:512-524. [PMID: 39397305 PMCID: PMC11471929 DOI: 10.5423/ppj.oa.07.2024.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.
Collapse
Affiliation(s)
| | | | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
27
|
Chen Y, Jin G, Liu M, Wang L, Lou Y, Baldwin I, Li R. Multiomic analyses reveal key sectors of jasmonate-mediated defense responses in rice. THE PLANT CELL 2024; 36:3362-3377. [PMID: 38801741 PMCID: PMC11371138 DOI: 10.1093/plcell/koae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The phytohormone jasmonate (JA) plays a central role in plant defenses against biotic stressors. However, our knowledge of the JA signaling pathway in rice (Oryza sativa) remains incomplete. Here, we integrated multiomic data from three tissues to characterize the functional modules involved in organizing JA-responsive genes. In the core regulatory sector, MYC2 transcription factor transcriptional cascades are conserved in different species but with distinct regulators (e.g. bHLH6 in rice), in which genes are early expressed across all tissues. In the feedback sector, MYC2 also regulates the expression of JA repressor and catabolic genes, providing negative feedback that truncates the duration of JA responses. For example, the MYC2-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factor genes NAC1, NAC3, and NAC4 encode proteins that repress JA signaling and herbivore resistance. In the tissue-specific sector, many late-expressed genes are associated with the biosynthesis of specialized metabolites that mediate particular defensive functions. For example, the terpene synthase gene TPS35 is specifically induced in the leaf sheath and TPS35 functions in defense against oviposition by brown planthoppers and the attraction of this herbivore's natural enemies. Thus, by characterizing core, tissue-specific, and feedback sectors of JA-elicited defense responses, this work provides a valuable resource for future discoveries of key JA components in this important crop.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gaochen Jin
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengyu Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lanlan Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Virology and Biotechnology, 310021 Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ian Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Gholizadeh F, Prerostová S, Pál M, Benczúr K, Hamow KÁ, Majláth I, Kun J, Gyenesei A, Urbán P, Szalai G, Vanková R, Janda T. Elucidating light and temperature-dependent signalling pathways from shoot to root in rice plants: Implications for stress responses. PHYSIOLOGIA PLANTARUM 2024; 176:e14541. [PMID: 39293994 DOI: 10.1111/ppl.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
The main aim of this work was to better understand how the low temperature signal from the leaves may affect the stress responses in the roots, and how the light conditions modify certain stress acclimation processes in rice plants. Rice plants grown at 27°C were exposed to low temperatures (12°C) with different light intensities, and in the case of some groups of plants, only the leaves received the cold, while the roots remained at control temperature. RNA sequencing focusing on the roots of plants grown under normal growth light conditions found 525 differentially expressed genes in different comparisons. Exposure to low temperature led to more down-regulated than up-regulated genes. Comparison between roots of the leaf-stressed plants and whole cold-treated or control plants revealed that nitrogen metabolism and nitric oxide-related signalling, as well as the phenylpropanoid-related processes, were specifically affected. Real-time PCR results focusing on the COLD1 and polyamine oxidase genes, as well as metabolomics targeting hormonal changes and phenolic compounds also showed that not only cold exposure of the leaves, either alone or together with the roots, but also the light conditions may influence certain stress responses in the roots of rice plants.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Sylva Prerostová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Magda Pál
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Kinga Benczúr
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Kamirán Á Hamow
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Imre Majláth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - József Kun
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Attila Gyenesei
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gabriella Szalai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| | - Radomíra Vanková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Tibor Janda
- HUN-REN Centre for Agricultural Research, Agricultural Institute, Department of Plant Physiology and Metabolomics, Martonvásár
| |
Collapse
|
29
|
Li Q, Zhang H, Yang Y, Tang K, Yang Y, Ouyang W, Du G. Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. Int J Mol Sci 2024; 25:9466. [PMID: 39273412 PMCID: PMC11394811 DOI: 10.3390/ijms25179466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in Cannabis sativa are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to Cannabis sativa and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two Cannabis sativa cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the CsNAC18, CsNAC24, and CsNAC61 genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in Cannabis sativa and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in Cannabis sativa.
Collapse
Affiliation(s)
- Qi Li
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Hanxue Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yulei Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Wenjing Ouyang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
30
|
Wang Q, Zhou L, Yuan M, Peng F, Zhu X, Wang Y. Genome-Wide Identification of NAC Gene Family Members of Tree Peony ( Paeonia suffruticosa Andrews) and Their Expression under Heat and Waterlogging Stress. Int J Mol Sci 2024; 25:9312. [PMID: 39273263 PMCID: PMC11395581 DOI: 10.3390/ijms25179312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
An important family of transcription factors (TFs) in plants known as NAC (NAM, ATAF1/2, and CUC2) is crucial for the responses of plants to environmental stressors. In this study, we mined the NAC TF family members of tree peony (Paeonia suffruticosa Andrews) from genome-wide data and analyzed their response to heat and waterlogging stresses in conjunction with transcriptome data. Based on tree peony's genomic information, a total of 48 PsNAC genes were discovered. Based on how similar their protein sequences were, these PsNAC genes were divided into 14 branches. While the gene structures and conserved protein motifs of the PsNAC genes within each branch were largely the same, the cis-acting elements in the promoter region varied significantly. Transcriptome data revealed the presence of five PsNAC genes (PsNAC06, PsNAC23, PsNAC38, PsNAC41, PsNAC47) and one PsNAC gene (PsNAC37) in response to heat and waterlogging stresses, respectively. qRT-PCR analysis reconfirmed the response of these five PsNAC genes to heat stress and one PsNAC gene to waterlogging stress. This study lays a foundation for the study of the functions and regulatory mechanisms of NAC TFs in tree peony. Meanwhile, the NAC TFs of tree peony in response to heat and waterlogging stress were excavated, which is of great significance for the selection and breeding of new tree peony varieties with strong heat and waterlogging tolerance.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Yuan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
31
|
Fu X, Zhu L, Yu X, Yang Q, Yuan F, Jin H. Identification of NAC Transcription Factors in Suaeda glauca and Their Responses to Salt Stress. Curr Issues Mol Biol 2024; 46:8741-8751. [PMID: 39194733 DOI: 10.3390/cimb46080516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
NAC (NAM/ATAF1/2/CUC2) transcription factors regulate plant growth and development and stress responses. Because NAC transcription factors are known to play important roles in the regulation of salt tolerance in many plants, we aimed to explore their roles in the halophyte Suaeda glauca. Based on transcriptome sequencing data, we identified 25 NAC transcription factor gene family members. In a phylogenetic tree analysis with Arabidopsis thaliana NAC transcription factors, the SgNACs were divided into 10 groups. The physicochemical properties and conserved domains of the putative proteins, as well as the transcript profiles of their encoding genes, were determined for the 25 SgNAC genes using bioinformatic methods. Most of the S. glauca NAC genes were upregulated to some extent after 24 h of salt stress, suggesting that they play an important role in regulating the salt tolerance of S. glauca. These findings lay the foundation for further research on the functions and mechanisms of the NAC gene family in S. glauca.
Collapse
Affiliation(s)
- Xujun Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Longmin Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaomin Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghua Yang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fengjie Yuan
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangxia Jin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
32
|
Cao L, Wang J, Wang L, Liu H, Wu W, Hou F, Liu Y, Gao Y, Cheng X, Li S, Xing G. Genome-wide analysis of the SWEET gene family in Hemerocallis citrina and functional characterization of HcSWEET4a in response to salt stress. BMC PLANT BIOLOGY 2024; 24:661. [PMID: 38987684 PMCID: PMC11238388 DOI: 10.1186/s12870-024-05376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Sugars will be eventually effluxed transporters (SWEETs) have been confirmed to play diverse physiological roles in plant growth, development and stress response. However, the characteristics and functions of the SWEET genes in Hemerocallis citrina remain unclear and poorly elucidated. In this study, the whole genome of Hemerocallis citrina was utilized to conduct bioinformatics analysis and a total of 19 HcSWEET genes were successfully identified. Analysis of the physicochemical properties indicated dominant differences among these HcSWEETs. A phylogenetic analysis revealed that HcSWEET proteins can be divided into 4 clades ranging from Clade I to IV, where proteins within the same clade exhibited shared conserved motifs and gene structures. Five to six exons were contained in the majority of HcSWEET genes, which were unevenly distributed across 11 chromosomes. The gene duplication analysis showed the presence of 4 gene pairs. Comparative syntenic maps revealed that the HcSWEET gene family might present more closed homology in monocotyledons than dicotyledons. Cis-acting element analysis of HcSWEET genes indicated key responsiveness to various hormones, light, and stresses. Additionally, transcriptome sequencing analysis suggested that most HcSWEET genes had a relatively higher expression in roots, and HcSWEET4a was significantly up-regulated under salt stress. Overexpression further verified the possibility that HcSWEET4a was involved in response to salt stress, which provides novel insights and facilitates in-depth studies of the functional analysis of HcSWEETs in resistance to abiotic stress.
Collapse
Affiliation(s)
- Lihong Cao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Jinyao Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Lixuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Huili Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Wenjing Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Feifan Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yuting Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Yang Gao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Xiaojing Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Jinzhong, China.
- Datong Daylily Industrial Development Research Institute, Datong, 037000, China.
| |
Collapse
|
33
|
Anjum N, Maiti MK. OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant. PLANT MOLECULAR BIOLOGY 2024; 114:82. [PMID: 38954114 DOI: 10.1007/s11103-024-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.
Collapse
Affiliation(s)
- Nazma Anjum
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
34
|
Chang W, Zhao H, Chen H, Jiao G, Yu J, Wang B, Xia H, Meng B, Li X, Yu M, Li S, Qian M, Fan Y, Zhang K, Lei B, Lu K. Transcription factor NtNAC56 regulates jasmonic acid-induced leaf senescence in tobacco. PLANT PHYSIOLOGY 2024; 195:1925-1940. [PMID: 38427921 DOI: 10.1093/plphys/kiae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.
Collapse
Affiliation(s)
- Wei Chang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Huina Zhao
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Hongqiao Chen
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Guixiang Jiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bing Wang
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Haiqian Xia
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Boyu Meng
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Mengna Yu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Shengting Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Mingchao Qian
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
35
|
Yang H, Zhang Y, Lyu S, Liu Y, Jian S, Deng S. MpNAC1, a transcription factor from the mangrove associate Millettia pinnata, confers salt and drought stress tolerance in transgenic Arabidopsis and rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108721. [PMID: 38739961 DOI: 10.1016/j.plaphy.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Pongamia (Millettia pinnata Syn. Pongamia pinnata), a mangrove associate plant, exhibits good stress tolerance, making it a treasure of genetic resources for crop improvement. NAC proteins are plant-specific transcription factors, which have been elucidated to participate in the regulation and tolerance of abiotic stresses (such as salt and drought). Here, we identified a salt-induced gene from Pongamia, MpNAC1, which encodes an NAC factor sharing five highly conserved domains with other NACs and exhibits close homology to AtNAC19/AtNAC55/AtNAC72 in Arabidopsis. MpNAC1 showed nuclear localization and transcriptional activator activity. MpNAC1-overexpressing Arabidopsis exhibited significantly stronger salt and drought tolerance compared with wild-type plants. The expression levels of stress-responsive genes were activated in transgenic Arabidopsis. Furthermore, the heterologous expression of MpNAC1 also enhanced the salt and drought tolerance of transgenic rice. The major agronomic traits, such as plant height and tiller number, panicle length, grain size, and yield, were similar between the transgenic lines and wild type under normal field growth conditions. RNA-Seq analysis revealed that MpNAC1 significantly up-regulated stress-responsive genes and activated the biosynthesis of secondary metabolites such as flavonoids, resulting in increased stress tolerance. Taken together, the MpNAC1 increased salt and drought stress tolerance in transgenic plants and did not retard the plant growth and development under normal growth conditions, suggesting the potential of MpNAC1 in breeding stress-resilient crops.
Collapse
Affiliation(s)
- Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shanwu Lyu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yujuan Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany, and Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
36
|
Guo L, Liao Y, Deng S, Li J, Bu X, Zhu C, Zhang W, Cong X, Cheng S, Chen Q, Xu F. Genome-wide analysis of NAC transcription factors and exploration of candidate genes regulating selenium metabolism in Broussonetia papyrifera. PLANTA 2024; 260:1. [PMID: 38753175 DOI: 10.1007/s00425-024-04438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Genome-wide identification revealed 79 BpNAC genes belonging to 16 subfamilies, and their gene structures and evolutionary relationships were characterized. Expression analysis highlighted their importance in plant selenium stress responses. Paper mulberry (Broussonetia papyrifera), a deciduous arboreal plant of the Moraceae family, is distinguished by its leaves, which are abundant in proteins, polysaccharides, and flavonoids, positioning it as a novel feedstock. NAC transcription factors, exclusive to plant species, are crucial in regulating growth, development, and response to biotic and abiotic stress. However, extensive characterization of the NAC family within paper mulberry is lacking. In this study, 79 BpNAC genes were identified from the paper mulberry genome, with an uneven distribution across 13 chromosomes. A comprehensive, genome-wide analysis of BpNACs was performed, including investigating gene structures, promoter regions, and chromosomal locations. Phylogenetic tree analysis, alongside comparisons with Arabidopsis thaliana NACs, allowed for categorizing these genes into 16 subfamilies in alignment with gene structure and motif conservation. Collinearity analysis suggested a significant homologous relationship between the NAC genes of paper mulberry and those in Morus notabilis, Ficus hispida, Antiaris toxicaria, and Cannabis sativa. Integrating transcriptome data and Se content revealed that 12 BpNAC genes were associated with selenium biosynthesis. Subsequent RT-qPCR analysis corroborated the correlation between BpNAC59, BpNAC62 with sodium selenate, and BpNAC55 with sodium selenite. Subcellular localization experiments revealed the nuclear functions of BpNAC59 and BpNAC62. This study highlights the potential BpNAC transcription factors involved in selenium metabolism, providing a foundation for strategically breeding selenium-fortified paper mulberry.
Collapse
Affiliation(s)
- Longfei Guo
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shiming Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jitao Li
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xianchen Bu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Changye Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 445000, Hubei, China.
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
37
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
38
|
Lu Y, Liu D, Kong X, Song Y, Jing L. Pangenome characterization and analysis of the NAC gene family reveals genes for Sclerotinia sclerotiorum resistance in sunflower (Helianthus annuus). BMC Genom Data 2024; 25:39. [PMID: 38693490 PMCID: PMC11064331 DOI: 10.1186/s12863-024-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Sunflower (Helianthus annuus) is one of the most important economic crops in oilseed production worldwide. The different cultivars exhibit variability in their resistance genes. The NAC transcription factor (TF) family plays diverse roles in plant development and stress responses. With the completion of the H. annuus genome sequence, the entire complement of genes coding for NACs has been identified. However, the reference genome of a single individual cannot cover all the genetic information of the species. RESULTS Considering only a single reference genome to study gene families will miss many meaningful genes. A pangenome-wide survey and characterization of the NAC genes in sunflower species were conducted. In total, 139 HaNAC genes are identified, of which 114 are core and 25 are variable. Phylogenetic analysis of sunflower NAC proteins categorizes these proteins into 16 subgroups. 138 HaNACs are randomly distributed on 17 chromosomes. SNP-based haplotype analysis shows haplotype diversity of the HaNAC genes in wild accessions is richer than in landraces and modern cultivars. Ten HaNAC genes in the basal stalk rot (BSR) resistance quantitative trait loci (QTL) are found. A total of 26 HaNAC genes are differentially expressed in response to Sclerotinia head rot (SHR). A total of 137 HaNAC genes are annotated in Gene Ontology (GO) and are classified into 24 functional groups. GO functional enrichment analysis reveals that HaNAC genes are involved in various functions of the biological process. CONCLUSIONS We identified NAC genes in H. annuus (HaNAC) on a pangenome-wide scale and analyzed S. sclerotiorum resistance-related NACs. This study provided a theoretical basis for further genomic improvement targeting resistance-related NAC genes in sunflowers.
Collapse
Affiliation(s)
- Yan Lu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongqi Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiangjiu Kong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yang Song
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Lan Jing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
39
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
40
|
Yan M, Jiao G, Shao G, Chen Y, Zhu M, Yang L, Xie L, Hu P, Tang S. Chalkiness and premature controlled by energy homeostasis in OsNAC02 Ko-mutant during vegetative endosperm development. BMC PLANT BIOLOGY 2024; 24:196. [PMID: 38494545 PMCID: PMC10946104 DOI: 10.1186/s12870-024-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.
Collapse
Affiliation(s)
- Mei Yan
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Maodi Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
41
|
Bo C, Liu D, Yang J, Ji M, Li Z, Zhu Y, Duan Y, Xue J, Xue T. Comprehensive in silico characterization of NAC transcription factor family of Pinellia ternata and functional analysis of PtNAC66 under high-temperature tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108539. [PMID: 38513515 DOI: 10.1016/j.plaphy.2024.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Pinellia ternata, a valuable Chinese herb, suffers yield reduction due to "sprout tumble" under high temperatures. However, the mechanisms underlying its high-temperature stress remain poorly understood. NAM, ATAF1/2, and CUC2 (NAC) transcription factors regulate plant tissue growth and abiotic stress. Hence, there has been no comprehensive research conducted on NAC transcription factors in P. ternata. We identified 98 PtNAC genes unevenly distributed across 13 chromosomes, grouped into 15 families via phylogenetic analysis. Gene expression analysis revealed diverse expression patterns of PtNAC genes in different tissue types. Further studies revealed that PtNAC5/7/17/35/43/47/57/66/86 genes were highly expressed in various tissues of P. ternata and induced by heat stress, among which PtNAC66 was up-regulated at the highest folds induced by heat temperature. PtNAC66 is a nuclear protein that can selectively bind to the cis-responsive region NACRS but lacks the ability to activate transcription in yeast. For further research, PtNAC66 was cloned and transgenic Arabidopsis was obtained. PtNAC66 overexpression increased high-temperature tolerance compared to wild-type plants. Transcriptome profiling demonstrated that overexpression of PtNAC66 led to significant modification of genes responsible for regulating binding, catalytic activity, transcription regulator activity and transporter activity response genes. Additionally, PtNAC66 was found to bind the promoters of CYP707A3, MYB102 and NAC055, respectively, and inhibited their expression, affecting the high-temperature stress response in Arabidopsis. Our research established the foundation for functional studies of PtNAC genes in response to high-temperature forcing by characterizing the P. ternata NAC gene family and examining the biological role of PtNAC66 in plant high-temperature tolerance.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Dan Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jinrong Yang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Mingfang Ji
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Zhen Li
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
42
|
Ahmed M, Tóth Z, Decsi K. The Impact of Salinity on Crop Yields and the Confrontational Behavior of Transcriptional Regulators, Nanoparticles, and Antioxidant Defensive Mechanisms under Stressful Conditions: A Review. Int J Mol Sci 2024; 25:2654. [PMID: 38473901 DOI: 10.3390/ijms25052654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the most significant environmental challenges to crop growth and yield worldwide is soil salinization. Salinity lowers soil solution water potential, causes ionic disequilibrium and specific ion effects, and increases reactive oxygen species (ROS) buildup, causing several physiological and biochemical issues in plants. Plants have developed biological and molecular methods to combat salt stress. Salt-signaling mechanisms regulated by phytohormones may provide additional defense in salty conditions. That discovery helped identify the molecular pathways that underlie zinc-oxide nanoparticle (ZnO-NP)-based salt tolerance in certain plants. It emphasized the need to study processes like transcriptional regulation that govern plants' many physiological responses to such harsh conditions. ZnO-NPs have shown the capability to reduce salinity stress by working with transcription factors (TFs) like AP2/EREBP, WRKYs, NACs, and bZIPs that are released or triggered to stimulate plant cell osmotic pressure-regulating hormones and chemicals. In addition, ZnO-NPs have been shown to reduce the expression of stress markers such as malondialdehyde (MDA) and hydrogen peroxide (H2O2) while also affecting transcriptional factors. Those systems helped maintain protein integrity, selective permeability, photosynthesis, and other physiological processes in salt-stressed plants. This review examined how salt stress affects crop yield and suggested that ZnO-NPs could reduce plant salinity stress instead of osmolytes and plant hormones.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary
| |
Collapse
|
43
|
Sun L, Xu H, Song J, Yang X, Wang X, Liu H, Pang M, Hu Y, Yang Q, Ning X, Liang S, Zhang S, Luan W. OsNAC103, a NAC Transcription Factor, Positively Regulates Leaf Senescence and Plant Architecture in Rice. RICE (NEW YORK, N.Y.) 2024; 17:15. [PMID: 38358523 PMCID: PMC10869678 DOI: 10.1186/s12284-024-00690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Leaf senescence, the last stage of leaf development, is essential for crop yield by promoting nutrition relocation from senescence leaves to new leaves and seeds. NAC (NAM/ATAF1/ATAF2/CUC2) proteins, one of the plant-specific transcription factors, widely distribute in plants and play important roles in plant growth and development. Here, we identified a new NAC member OsNAC103 and found that it plays critical roles in leaf senescence and plant architecture in rice. OsNAC103 mRNA levels were dramatically induced by leaf senescence as well as different phytohormones such as ABA, MeJA and ACC and abiotic stresses including dark, drought and high salinity. OsNAC103 acts as a transcription factor with nuclear localization signals at the N terminal and a transcriptional activation signal at the C terminal. Overexpression of OsNAC103 promoted leaf senescence while osnac103 mutants delayed leaf senescence under natural condition and dark-induced condition, meanwhile, senescence-associated genes (SAGs) were up-regulated in OsNAC103 overexpression (OsNAC103-OE) lines, indicating that OsNAC103 positively regulates leaf senescence in rice. Moreover, OsNAC103-OE lines exhibited loose plant architecture with larger tiller angles while tiller angles of osnac103 mutants decreased during the vegetative and reproductive growth stages due to the response of shoot gravitropism, suggesting that OsNAC103 can regulate the plant architecture in rice. Taken together, our results reveal that OsNAC103 plays crucial roles in the regulation of leaf senescence and plant architecture in rice.
Collapse
Affiliation(s)
- Lina Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Hanqin Xu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Juan Song
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoying Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - XinYi Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Haiyan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Mengzhen Pang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Qi Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaotong Ning
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
44
|
Jin X, Chai Q, Liu C, Niu X, Li W, Shang X, Gu A, Zhang D, Guo W. Cotton GhNAC4 promotes drought tolerance by regulating secondary cell wall biosynthesis and ribosomal protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1052-1068. [PMID: 37934782 DOI: 10.1111/tpj.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Drought has a severe impact on the quality and yield of cotton. Deciphering the key genes related to drought tolerance is important for understanding the regulation mechanism of drought stress and breeding drought-tolerant cotton cultivars. Several studies have demonstrated that NAC transcription factors are crucial in the regulation of drought stress, however, the related functional mechanisms are still largely unexplored. Here, we identified that NAC transcription factor GhNAC4 positively regulated drought stress tolerance in cotton. The expression of GhNAC4 was significantly induced by abiotic stress and plant hormones. Silencing of GhNAC4 distinctly impaired the resistance to drought stress and overexpressing GhNAC4 in cotton significantly enhanced the stress tolerance. RNA-seq analysis revealed that overexpression of GhNAC4 enriched the expression of genes associated with the biosynthesis of secondary cell walls and ribosomal proteins. We confirmed that GhNAC4 positively activated the expressions of GhNST1, a master regulator reported previously in secondary cell wall formation, and two ribosomal protein-encoding genes GhRPL12 and GhRPL18p, by directly binding to their promoter regions. Overexpression of GhNAC4 promoted the expression of downstream genes associated with the secondary wall biosynthesis, resulting in enhancing secondary wall deposition in the roots, and silencing of GhRPL12 and GhRPL18p significantly impaired the resistance to drought stress. Taken together, our study reveals a novel pathway mediated by GhNAC4 that promotes secondary cell wall biosynthesis to strengthen secondary wall development and regulates the expression of ribosomal protein-encoding genes to maintain translation stability, which ultimately enhances drought tolerance in cotton.
Collapse
Affiliation(s)
- Xuanxiang Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qichao Chai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aixing Gu
- Engineering Research Center of Ministry of Education for Cotton, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
45
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
46
|
Zhou Y, Li Z, Xu C, Pan J, Li H, Zhou Y, Zou Y. Genome-wide analysis of bZIP gene family members in Pleurotus ostreatus, and potential roles of PobZIP3 in development and the heat stress response. Microb Biotechnol 2024; 17:e14413. [PMID: 38376071 PMCID: PMC10877997 DOI: 10.1111/1751-7915.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) is widespread among eukaryotes and serves different roles in fungal processes including nutrient utilization, growth, stress responses and development. The oyster mushroom (Pleurotus ostreatus) is an important and widely cultivated edible mushroom worldwide; nevertheless, reports are lacking on the identification or function of bZIP gene family members in P. ostreatus. Herein, 11 bZIPs on 6 P. ostreatus chromosomes were systematically identified, which were classified into 3 types according to their protein sequences. Phylogenetic analysis of PobZIPs with other fungal bZIPs indicated that PobZIPs may have differentiated late. Cis-regulatory element analysis revealed that at least one type of stress-response-related element was present on each bZIP promoter. RNA-seq and RT-qPCR analyses revealed that bZIP expression patterns were altered under heat stress and different developmental stages. We combined results from GST-Pull-down, EMSA and yeast two-hybrid assays to screen a key heat stress-responsive candidate gene PobZIP3. PobZIP3 overexpression in P. ostreatus enhanced tolerance to high temperature and cultivation assays revealed that PobZIP3 positively regulates the development of P. ostreatus. RNA-seq analysis showed that PobZIP3 plays a role in glucose metabolism pathways, antioxidant enzyme activity and sexual reproduction. These results may support future functional studies of oyster mushroom bZIP TFs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Zihao Li
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Congtao Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Jinlong Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Haikang Li
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yi Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yajie Zou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
47
|
Wan Y, Xiao Q, Xiao X, Huang Y, Liu S, Feng W, Liu T, Ren Z, Ren W, Luo X, Luo S. Response of tomatoes to inactivated endophyte LSE01 under combined stress of high-temperature and drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108321. [PMID: 38181639 DOI: 10.1016/j.plaphy.2023.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Endophytes can assist crops in adapting to high temperatures and drought conditions, thereby reducing agricultural losses. However, the mechanism through which endophytes regulate crop resistance to high temperatures and drought stress remains unclear, and concerns regarding safety and stability exist with active endophytes. Thus, heat-treated endophytic bacteria LSE01 (HTB) were employed as a novel microbial fertilizer to investigate their effects on plant adaptation to high temperatures and drought conditions. The results indicated that the diameter and weight of tomatoes treated with HTB under stress conditions increased by 23.04% and 71.15%, respectively, compared to the control. Tomato yield did not significantly decrease compared to non-stress conditions. Additionally, the contents of vitamin C, soluble sugars, and proteins treated with HTB increased by 18.81%, 11.54%, and 99.75%, respectively. Mechanistic research revealed that HTB treatment enhances tomato's stress resistance by elevating photosynthetic pigment and proline contents, enhancing antioxidant enzyme activities, and reducing the accumulation of MDA. Molecular biology research demonstrates that HTB treatment upregulates the expression of drought-resistant genes (GA2ox7, USP1, SlNAC3, SlNAC4), leading to modifications in stomatal conductance, plant morphology, photosynthetic intensity, and antioxidant enzyme synthesis to facilitate adaptation to dry conditions. Furthermore, the upregulation of the heat-resistant gene (SlCathB2-2) can increases the thickness of tomato cell walls, rendering them less vulnerable to heat stress. In summary, HTB endows tomatoes with the ability to adapt to high temperatures and drought conditions, providing new opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Qicheng Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Shiqi Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Weiran Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhong Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, PR China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| |
Collapse
|
48
|
Wang Z, Chen Z, Wu Y, Mu M, Jiang J, Nie W, Zhao S, Cui G, Yin X. Genome-wide identification and characterization of NAC transcription factor family members in Trifolium pratense and expression analysis under lead stress. BMC Genomics 2024; 25:128. [PMID: 38297198 PMCID: PMC10829316 DOI: 10.1186/s12864-023-09944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zirui Chen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuchen Wu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Meiqi Mu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jingwen Jiang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Wanting Nie
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Siwen Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiujie Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
49
|
Zhang H, Huang Y. Genome-wide identification and characterization of greenbug-inducible NAC transcription factors in sorghum. Mol Biol Rep 2024; 51:207. [PMID: 38270755 DOI: 10.1007/s11033-023-09158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Sorghum (Sorghum bicolor) is an important cereal crop grown worldwide because of its multipurpose uses such as food, forage, and bioenergy feedstock and its wide range of adaption even in marginal environments. Greenbug can cause severe damage to sorghum plants and yield loss. Plant NAC transcription factors (TFs) have been reported to have diverse functions in plant development and plant defense but has not been studied in sorghum yet. METHODS AND RESULTS In this study, a comprehensive analysis of the sorghum NAC (SbNAC) gene family was conducted through genome-wide analysis. A total of 112 NAC genes has been identified in the sorghum genome. These SbNAC genes are phylogenetically clustered into 15 distinct subfamilies and unevenly distribute in clusters at the telomeric ends of each chromosome. Twelve pairs of SbNAC genes are possibly involved in the segmental duplication among nine chromosomes except chromosome 10. Structure analysis showed the diverse structures with a highly variable number of exons in the SbNAC genes. Furthermore, most of the SbNAC genes showed specific temporal and spatial expression patterns according to the results of RNA-seq analysis, suggesting their diverse functions during sorghum growth and development. We have also identified nine greenbug-inducible SbNAC genes by comparing the expression profiles between two sorghum genotypes (susceptible BTx623 and resistant PI607900) in response to greenbug infestation. CONCLUSIONS Our systematic analysis of the NAC gene expression profiles provides both a preliminary survey into their roles in plant defense against insect pests and a useful reference for in-depth characterization of the SbNAC genes and the regulatory network that contributes genetic resistance to aphids.
Collapse
Affiliation(s)
- Hengyou Zhang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, 1301 N. Western Road, Stillwater, OK, 74075, USA.
| |
Collapse
|
50
|
Cao F, Guo C, Wang X, Wang X, Yu L, Zhang H, Zhang J. Genome-wide identification, evolution, and expression analysis of the NAC gene family in chestnut ( Castanea mollissima). Front Genet 2024; 15:1337578. [PMID: 38333622 PMCID: PMC10850246 DOI: 10.3389/fgene.2024.1337578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development.
Collapse
Affiliation(s)
- Fei Cao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Chunlei Guo
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xiangyu Wang
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xuan Wang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Liyang Yu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| |
Collapse
|