1
|
Lan Y, Li Y, Wang Y. Microbiome analysis reveals dynamic changes of gut microbiota in Guizhou horse and Dutch Warmblood horses. Front Microbiol 2025; 16:1562482. [PMID: 40143867 PMCID: PMC11936890 DOI: 10.3389/fmicb.2025.1562482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, the importance of gut microbiota in digestive absorption, metabolism, and immunity has garnered increasing attention. China possess abundant horse breed resources, particularly Guizhou horses, which play vital roles in local agriculture, tourism, and transportation. Despite this, there is a lack of comparative studies on the gut microbiota of native Guizhou horses (GZH) and imported Dutch Warmblood horses (WH). To address this gap, fecal samples were collected from both GZH and WH, and 16S rRNA high-throughput sequencing was utilized to analyze the differences in their gut microbiota. The results indicated that compared with GZH, the abundance of the gut bacterial community in WH was significantly higher, whereas the abundance of the gut fungal community was lower. Furthermore, PCoA-based scatter plot analysis demonstrated distinct differences in the structure of gut bacteria and fungi between the two breeds. While both types of horses share similar major bacterial and fungal phyla, significant differences were observed in numerous bacterial and fungal genera. Moreover, functional predictions of gut bacterial communities suggested that WH exhibit a more robust digestive system and enhanced glycan biosynthesis and metabolism capabilities. This is the first report on the comparative analysis of the gut microbiota in GZH and WH. The results emphasize the significant differences in gut microbiota among various horse breeds and offer valuable insights into the composition and structure of gut microbiota in different horse breeds.
Collapse
Affiliation(s)
| | - Yaonan Li
- School of Physical Education and National Equestrian Academy, Wuhan Business University, Wuhan, China
| | | |
Collapse
|
2
|
He R, Qi P, Shu L, Ding Y, Zeng P, Wen G, Xiong Y, Deng H. Dysbiosis and extraintestinal cancers. J Exp Clin Cancer Res 2025; 44:44. [PMID: 39915884 PMCID: PMC11804008 DOI: 10.1186/s13046-025-03313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
The gut microbiota plays a crucial role in safeguarding host health and driving the progression of intestinal diseases. Despite recent advances in the remarkable correlation between dysbiosis and extraintestinal cancers, the underlying mechanisms are yet to be fully elucidated. Pathogenic microbiota, along with their metabolites, can undermine the integrity of the gut barrier through inflammatory or metabolic pathways, leading to increased permeability and the translocation of pathogens. The dissemination of pathogens through the circulation may contribute to the establishment of an immune-suppressive environment that promotes carcinogenesis in extraintestinal organs either directly or indirectly. The oncogenic cascade always engages in the disruption of hormonal regulation and inflammatory responses, the induction of genomic instability and mutations, and the dysregulation of adult stem cell proliferation. This review aims to comprehensively summarize the existing evidence that points to the potential role of dysbiosis in the malignant transformation of extraintestinal organs such as the liver, breast, lung, and pancreas. Additionally, we delve into the limitations inherent in current methodologies, particularly the challenges associated with differentiating low loads gut-derived microbiome within tumors from potential sample contamination or symbiotic microorganisms. Although still controversial, an understanding of the contribution of translocated intestinal microbiota and their metabolites to the pathological continuum from chronic inflammation to tumors could offer a novel foundation for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Ruishan He
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Pingqian Qi
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Linzhen Shu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Yidan Ding
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Guosheng Wen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huan Deng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, No. 133 South Guangchang Road, Nanchang, Jiangxi Province, 330003, China.
- Tumor Immunology Institute, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Song Y, Tian S, Li Z, Miao J, Wu M, Xu T, Wu X, Qiao J, Zhang X, Zhao H, Kang L, Cao L, Zhu P, Miao M. Progress in the Study of Intratumoral Microorganisms in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2025; 12:59-76. [PMID: 39845367 PMCID: PMC11752873 DOI: 10.2147/jhc.s496964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025] Open
Abstract
The intratumoral microbiota, an integral part of liver tumors, has garnered significant attention from researchers due to its role in tumor development regulation and impact on cancer treatment. Intratumoral microorganism not only influences tumorigenesis and progression, but also serves as potential biomarkers and targets for tumor therapy. Targeted manipulation of these microorganisms holds great promise for personalized liver cancer treatment. However, there is a lack of systematic summaries and reports on the study of intratumoral microorganism in hepatocellular carcinoma. This comprehensive review aims to address this gap by summarizing research progress related to in the field of hepatocellular carcinoma intratumoral bacteria, including their sources, types, distribution characteristics within tumors, impact on tumor development, underlying mechanisms, and application prospects. Through the analysis, it is proposed that intratumor organisms can be used as markers for liver cancer diagnosis and treatment, drug carrier materials for targeting liver cancer tissues, and the research prospects of developing new combination therapies based on the in-depth understanding of the interactions between intratumor microorganisms and the tumor microenvironment, immune cells, liver cancer cells, etc. as well as exploring the prospects of developing new combination therapies based on these interactions. It is hoped that from the perspective of intratumoral microbiota, potential theoretical support can be provided for future research on targeted cancer therapy for liver cancer intratumoral microbiota, and new insights and ideas can be provided for targeting points and research methods in tumor research.
Collapse
Affiliation(s)
- Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Shuo Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Zhanzhan Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Mingming Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Tingli Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Xiangxiang Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Jingyi Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Xialei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Hui Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Le Kang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Pingsheng Zhu
- College of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| |
Collapse
|
4
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
5
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10431-z. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yao H, Ma S, Huang J, Si X, Yang M, Song W, Lv G, Wang G. Trojan-Horse Strategy Targeting the Gut-Liver Axis Modulates Gut Microbiome and Reshapes Microenvironment for Orthotopic Hepatocellular Carcinoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310002. [PMID: 39373804 PMCID: PMC11600211 DOI: 10.1002/advs.202310002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Indexed: 10/08/2024]
Abstract
Reversing the hepatic inflammatory and immunosuppressive microenvironment caused by gut microbiota-derived lipopolysaccharides (LPS), accumulating to the liver through the gut-liver axis, is crucial for suppressing hepatocellular carcinoma (HCC) and metastasis. However, synergistically manipulating LPS-induced inflammation and gut microbiota remains a daunting task. Herein, a Trojan-horse strategy is proposed using an oral dextran-carbenoxolone (DEX-CBX) conjugate, which combines prebiotic and glycyrrhetinic acid (GA) homologs, to targeted delivery GA to HCC through the gut-liver axis for simultaneous modulation of hepatic inflammation and gut microbiota. In the orthotopic HCC model, a 95-45% reduction in the relative abundances of LPS-associated microbiota is observed, especially Helicobacter, caused by DEX-CBX treatment over phosphate-buffered saline (PBS) treatment. Notably, a dramatic increase (37-fold over PBS) in the abundance of Akkermansia, which is known to strengthen systemic immune response, is detected. Furthermore, DEX-CBX significantly increased natural killer T cells (5.7-fold) and CD8+ T cells (3.9-fold) as well as decreased M2 macrophages (59% reduction) over PBS treatment, resulting in a tumor suppression rate of 85.4%. DEX-CBX is anticipated to offer a novel strategy to precisely modulate hepatic inflammation and the gut microbiota to address both the symptoms and root causes of LPS-induced immunosuppression in HCC.
Collapse
Affiliation(s)
- Haochen Yao
- Hepatobiliary and Pancreatic Surgery DepartmentGeneral Surgery CenterFirst Hospital of Jilin UniversityNo.1 Xinmin StreetChangchunJilin130021China
- Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic Medical SciencesJilin UniversityChangchunJilin130021China
| | - Sheng Ma
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin RoadChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun Institute of Applied Chemistry5625 Renmin RoadChangchun130022China
| | - Juanjuan Huang
- Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic Medical SciencesJilin UniversityChangchunJilin130021China
- Department of Computational MathematicsSchool of MathematicsJilin UniversityChangchun130012China
| | - Xinghui Si
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin RoadChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun Institute of Applied Chemistry5625 Renmin RoadChangchun130022China
| | - Ming Yang
- Department of Molecular BiologyCollege of Basic Medical SciencesJilin UniversityChangchun130021China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin RoadChangchun130022China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun Institute of Applied Chemistry5625 Renmin RoadChangchun130022China
| | - Guoyue Lv
- Hepatobiliary and Pancreatic Surgery DepartmentGeneral Surgery CenterFirst Hospital of Jilin UniversityNo.1 Xinmin StreetChangchunJilin130021China
| | - Guoqing Wang
- Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic Medical SciencesJilin UniversityChangchunJilin130021China
| |
Collapse
|
7
|
Kalligeros M, Henry L, Younossi ZM. Metabolic dysfunction-associated steatotic liver disease and its link to cancer. Metabolism 2024; 160:156004. [PMID: 39182603 DOI: 10.1016/j.metabol.2024.156004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Metabolic-dysfunction associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a growing global health concern with significant implications for oncogenesis. This review synthesizes current evidence on the association between MASLD and cancer risk, highlighting its role as a risk factor for both intrahepatic and extrahepatic malignancies. MASLD is increasingly recognized as a major cause of hepatocellular carcinoma (HCC), with its incidence rising in parallel with the prevalence of metabolic dysfunction. Furthermore, MASLD is associated with an elevated risk of various gastrointestinal cancers, including colorectal, esophageal, stomach, and pancreatic cancers. Beyond the digestive tract, evidence suggests that MASLD may also contribute to an increased risk of other cancers such as breast, prostate, thyroid, gynecological, renal and lung cancers. Understanding the mechanisms underlying these associations and the impact of MASLD on cancer risk is crucial for developing targeted screening and prevention strategies.
Collapse
Affiliation(s)
- Markos Kalligeros
- Division of Gastroenterology and Hepatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Linda Henry
- The Global NASH Council, Washington, DC, United States of America; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States of America; Center for Outcomes Research in Liver Diseases, Washington, DC, United States of America
| | - Zobair M Younossi
- The Global NASH Council, Washington, DC, United States of America; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States of America; Center for Outcomes Research in Liver Diseases, Washington, DC, United States of America.
| |
Collapse
|
8
|
Yan Z, Chen HQ. Anti-liver cancer effects and mechanisms and its application in nano DDS of polysaccharides: A review. Int J Biol Macromol 2024; 279:135181. [PMID: 39218183 DOI: 10.1016/j.ijbiomac.2024.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Liver cancer is the third leading cause of cancer death, with high incidence and poor treatment effect. In recent years, polysaccharides have attracted more and more attention in the research field of anti-liver cancer because of their high efficiency, low toxicity, good biocompatibility, wide sources and low cost. Polysaccharides have been proven to have good anti-liver cancer activity. In this paper, the pathways and molecular mechanisms of polysaccharides against liver cancer were reviewed in detail. Polysaccharides exert anti-liver cancer activity by blocking cell cycle, inducing apoptosis, regulating immunity, inhibiting cancer cell metastasis, inhibiting tumor angiogenesis and so on. The primary structure and chain conformation of polysaccharides have an important influence on their anti-liver cancer activity. Structural modification enhanced the anti-liver cancer activity of polysaccharides. Polysaccharides have good attenuated and synergistic effects on chemotherapy drugs. Polysaccharides can be used as functional carriers to construct intelligent nano drug delivery systems (DDS) targeting liver cancer. This review can provide theoretical support for the further development and application of polysaccharides in the field of anti-liver cancer, and provide theoretical reference and clues for relevant researchers in food, nutrition, medicine and other fields.
Collapse
Affiliation(s)
- Zheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
9
|
Fujii T, Kuzuya T, Kondo N, Funasaka K, Ohno E, Hirooka Y, Tochio T. Altered intestinal Streptococcus anginosus and 5α-reductase gene levels in patients with hepatocellular carcinoma and elevated Bacteroides stercoris in atezolizumab/bevacizumab non-responders. J Med Microbiol 2024; 73. [PMID: 39240069 DOI: 10.1099/jmm.0.001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Introduction. Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide.Gap statement. Monitoring of HCC and predicting its immunotherapy responses are challenging.Aim. This study explored the potential of the gut microbiome for HCC monitoring and predicting HCC immunotherapy responses.Methods. DNA samples were collected from the faeces of 22 patients with HCC treated with atezolizumab/bevacizumab (Atz/Bev) and 85 healthy controls. The gut microbiome was analysed using 16S rRNA next-generation sequencing and quantitative PCR (qPCR).Results. The microbiomes of patients with HCC demonstrated significant enrichment of Lactobacillus, particularly Lactobacillus fermentum, and Streptococcus, notably Streptococcus anginosus. Comparative analysis between Atz/Bev responders (R) and non-responders (NR) revealed a higher abundance of Bacteroides stercoris in the NR group and Bacteroides coprocola in the R group. Using qPCR analysis, we observed elevated levels of S. anginosus and reduced levels of 5α-reductase genes, essential for the synthesis of isoallolithocholic acid, in HCC patients compared to controls. Additionally, the analysis confirmed a significantly lower abundance of B. stercoris in the Atz/Bev R group relative to the NR group.Conclusions. The gut microbiome analysis and specific gene quantification via qPCR could provide a rapid, less invasive, and cost-effective approach for assessing the increased risk of HCC, monitoring patient status, and predicting immunotherapy responses.
Collapse
Affiliation(s)
- Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Aichi, Japan
- BIOSIS Lab. Co. Ltd., Aichi, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
| | | | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Aichi, Japan
- BIOSIS Lab. Co. Ltd., Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Aichi, Japan
- BIOSIS Lab. Co. Ltd., Aichi, Japan
| |
Collapse
|
10
|
Qiu J, Jiang Y, Ye N, Jin G, Shi H, Qian D. Leveraging the intratumoral microbiota to treat human cancer: are engineered exosomes an effective strategy? J Transl Med 2024; 22:728. [PMID: 39103887 DOI: 10.1186/s12967-024-05531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer remains a leading cause of global mortality. The tumor microbiota has increasingly been recognized as a key regulator of cancer onset and progression, in addition to shaping tumor responses to immunotherapy. Microbes, including viruses, bacteria, fungi, and other eukaryotic species can impact the internal homeostasis and health of humans. Research focused on the gut microflora and the intratumoral microbiome has revolutionized the current understanding of how tumors grow, progress, and resist therapeutic interventions. Even with this research, however, there remains relatively little that is known with respect to the abundance of microbes and their effects on tumors and the tumor microenvironment. Engineered exosomes are a class of artificial extracellular nanovesicles that can actively transport small molecule drugs and nucleic acids, which have the broad prospects of tumor cell therapy. The present review offers an overview of recent progress and challenges associated with the intratumoral microbiome and engineered exosomes in the context of cancer research. These discussions are used to inform the construction of a novel framework for engineered exosome-mediated targeted drug delivery, taking advantage of intratumoral microbiota diversity as a strategic asset and thereby providing new opportunities to more effectively treat and manage cancer in the clinic.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Gan Jin
- Department of Vascular Hernia Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Hao Shi
- Department of Radiotherapy, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, Jiangsu Province, 215500, China
- Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People ' s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| |
Collapse
|
11
|
Wang X, Deng K, Zhang P, Chen Q, Magnuson JT, Qiu W, Zhou Y. Microplastic-mediated new mechanism of liver damage: From the perspective of the gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170962. [PMID: 38360312 DOI: 10.1016/j.scitotenv.2024.170962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Microplastics (MPs) are environmental contaminants that are present in all environments and can enter the human body, accumulate in various organs, and cause harm through the ingestion of food, inhalation, and dermal contact. The connection between bowel and liver disease and the interplay between gut, liver, and flora has been conceptualized as the "gut-liver axis". Microplastics can alter the structure of microbial communities in the gut and the liver can also be a target for microplastic invasion. Numerous studies have found that when MPs impair human health, they not only promote dysbiosis of the gut microbiota and disruption of the gut barrier but also cause liver damage. For this reason, the gut-liver axis provides a new perspective in understanding this toxic response. The cross-talk between MPs and the gut-liver axis has attracted the attention of the scientific community, but knowledge about whether MPs cause gut-liver interactions through the gut-liver axis is still very limited, and the effect of MPs on liver injury is not well understood. MPs can directly induce microbiota disorders and gut barrier dysfunction. As a result, harmful bacteria and metabolites in the gut enter the blood through the weak intestinal barrier (portal vein channel along the gut-liver axis) and reach the liver, causing liver damage (inflammatory damage, metabolic disorders, oxidative stress, etc.). This review provides an integrated perspective of the gut-liver axis to help conceptualize the mechanisms by which MP exposure induces gut microbiota dysbiosis and hepatic injury and highlights the connection between MPs and the gut-liver axis. Therefore, from the perspective of the gut-liver axis, targeting intestinal flora is an important way to eliminate microplastic liver damage.
Collapse
Affiliation(s)
- Xiaomei Wang
- Health Science Center, Ningbo University, Ningbo 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Kaili Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Zhang
- Ningbo Hangzhou Bay Hospital, Ningbo 315336, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China; Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo 315020, China; Institute of Digestive Disease of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
12
|
Di Carlo P, Serra N, Fasciana TMA, Giammanco A, D’Arpa F, Rea T, Napolitano MS, Lucchesi A, Cascio A, Sergi CM. Microbial profile in bile from pancreatic and extra-pancreatic biliary tract cancer. PLoS One 2024; 19:e0294049. [PMID: 38381746 PMCID: PMC10880987 DOI: 10.1371/journal.pone.0294049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/11/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Dysbiotic biliary bacterial profile is reported in cancer patients and is associated with survival and comorbidities, raising the question of its effect on the influence of anticancer drugs and, recently, the suggestion of perichemotherapy antibiotics in pancreatic cancer patients colonized by the Escherichia coli and Klebsiella pneumoniae. OBJECTIVE In this study, we investigated the microbial communities that colonize tumours and which bacteria could aid in diagnosing pancreatic and biliary cancer and managing bile-colonized patients. METHODS A retrospective study on positive bile cultures of 145 Italian patients who underwent cholangiopancreatography with PC and EPC cancer hospitalized from January 2006 to December 2020 in a QA-certified academic surgical unit were investigated for aerobic/facultative-anaerobic bacteria and fungal organisms. RESULTS We found that among Gram-negative bacteria, Escherichia coli and Pseudomonas spp were the most frequent in the EPC group, while Escherichia coli, Klebsiella spp, and Pseudomonas spp were the most frequent in the PC group. Enterococcus spp was the most frequent Gram-positive bacteria in both groups. Comparing the EPC and PC, we found a significant presence of patients with greater age in the PC compared to the EPC group. Regarding Candida spp, we found no significant but greater rate in the PC group compared to the EPC group (11.7% vs 1.96%). We found that Alcaligenes faecalis was the most frequent bacteria in EPC than the PC group, among Gram-negative bacterial species. CONCLUSIONS Age differences in gut microbiota composition may affect biliary habitats in our cancer population, especially in patients with pancreatic cancer. Alcaligenes faecalis isolated in the culture of bile samples could represent potential microbial markers for a restricted follow-up to early diagnosis of extra-pancreatic cancer. Finally, the prevalence of Candida spp in pancreatic cancer seems to trigger new aspects about debate about the role of fungal microbiota into their relationship with pancreatic cancer.
Collapse
Affiliation(s)
- Paola Di Carlo
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Nicola Serra
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Teresa Maria Assunta Fasciana
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Anna Giammanco
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Francesco D’Arpa
- Department of General Surgery and Emergency, University of Palermo, Palermo, Italy
| | - Teresa Rea
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Maria Santa Napolitano
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dini Amadori”, Meldola, Forl-Cesena, Italy
| | - Antonio Cascio
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence "G. D’Alessandro”, Infectious Disease Unit, University of Palermo, Palermo, Italy
| | - Consolato Maria Sergi
- Lab. Med. and Pathology, Children’s Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
13
|
Deng Z, Ouyang Z, Mei S, Zhang X, Li Q, Meng F, Hu Y, Dai X, Zhou S, Mao K, Huang C, Dai J, Yi C, Tan N, Feng T, Long H, Tian X. Enhancing NKT cell-mediated immunity against hepatocellular carcinoma: Role of XYXD in promoting primary bile acid synthesis and improving gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116945. [PMID: 37490989 DOI: 10.1016/j.jep.2023.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Xiayuxue decoction' (XYXD) is a traditional Chinese medicine compound, composing of three natural medicines: Rheum officinale Baill., Prunus persica (L.) Batsch and Eupolyphaga sinensis Walker. It is derived from the famous traditional Chinese medical classics 'Jingui Yaolue' and has been used for thousands of years. In the Guidelines for the Diagnosis and Treatment of Primary liver Cancer issued by China's Health Commission, XYXD was applied in the treatment of primary liver cancer. AIM OF THE STUDY To clarify the pharmacodynamic material basis and mechanism of XYXD in the treatment of hepatocellular carcinoma (HCC). MATERIALS AND METHODS Firstly, the active components of XYXD and its distribution in vivo were identified by Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Then, the effective components and mechanism of XYXD against HCC were explored by network pharmacology combined with cell experiments in vitro. Furthermore, the anti-HCC effect of XYXD was determined by animal experiments in vivo. Metagenomic sequencing was used to detect its effect in gut microbiota, and targeted metabolism was used to detect the changes of bile acids in the liver. Finally, the related targets of NKT cell immune function activation were detected by RT-qPCR and Elisa. RESULTS A total of 113 active ingredients in XYXD were identified, and the distribution of active ingredients in blood, liver, tumor, cecum, intestinal contents and feces was clarified. The circulation process and active ingredient group of XYXD were preliminarily clarified. In addition, we found five anti-HCC active ingredients in XYXD through network pharmacology combined with cell experiments in vitro, among which aloe emodin had the most significant effect, and predicted the potential mechanism of XYXD against HCC through NKT cell pathway. Moreover, the inhibitory effect of XYXD on liver tumor growth was clarified by animal experiments in vivo. The mechanism was mainly to promote the production of bile salt hydrolase (BSH) by increasing the abundance of Bacteroides and Lactobacillus, BSH converts conjugated bile acids into primary bile acids, and reduces the conversion of primary bile acids to secondary bile acids by reducing the abundance of Eubacterium, thereby increasing the content of primary bile acids. Primary bile acids trigger NKT cells in the liver to produce interferon-γ to exert anti-HCC immune effects. CONCLUSION This study found that the traditional Chinese herbal formula XYXD can trigger the immune effect of NKT cells against HCC by regulating the interaction between gut microbiota and bile acids.
Collapse
Affiliation(s)
- Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Zhaoguang Ouyang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, Tianjin Province, China; Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong, Guangzhou, China
| | - Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xue Zhang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Qian Li
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Fanying Meng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Yuxing Hu
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xinjun Dai
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Siqian Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan Province, China
| | - Kexin Mao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan Province, China
| | - Caizhi Huang
- Laboratory Department of Hunan Children's Hospital, Changsha, 410007, Hunan province, China
| | - Jingjing Dai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Nianhua Tan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Ting Feng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, Hunan Province, China.
| | - Xuefei Tian
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China; Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention &Treatment, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
14
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
15
|
Pant K, Venugopal SK, Lorenzo Pisarello MJ, Gradilone SA. The Role of Gut Microbiome-Derived Short-Chain Fatty Acid Butyrate in Hepatobiliary Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1455-1467. [PMID: 37422149 PMCID: PMC10548274 DOI: 10.1016/j.ajpath.2023.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| | - Senthil K Venugopal
- Laboratory of Molecular Medicine and Hepatology, Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Maria J Lorenzo Pisarello
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA), National Council of Scientific and Technological Research, San Miguel de Tucuman, Argentina; Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
16
|
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, Wen Z, He Z, Xu L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res 2023; 196:106916. [PMID: 37690533 DOI: 10.1016/j.phrs.2023.106916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, Soochow Univeristy, Jiangsu 215000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
17
|
Pan X, Niu X, Li Y, Yao Y, Han L. Preventive Mechanism of Lycopene on Intestinal Toxicity Caused by Cyclophosphamide Chemotherapy in Mice by Regulating TLR4-MyD88/TRIF-TRAF6 Signaling Pathway and Gut-Liver Axis. Nutrients 2022; 14:4467. [PMID: 36364730 PMCID: PMC9655337 DOI: 10.3390/nu14214467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/24/2023] Open
Abstract
Cyclophosphamide (CYC) is the first-line chemotherapy drug for cancer in clinical practice, and its intestinal toxicity seriously affects the treatment effect and prognosis of patients. Lycopene (LP) is the main pigment of ripe tomatoes and has strong antioxidant activity. However, the mechanism by which LP prevents CYC-induced intestinal injury remains unclear. The aim of this study was to investigate the mechanism of LP in preventing intestinal toxicity caused by CYC chemotherapy in mice. The results showed that LP significantly prevented spleen and thymus atrophy induced by CYC. In terms of intestinal injury, LP significantly increased the levels of superoxide dismutase (SOD), secretory immunoglobulin A (sIgA), interleukin (IL)-4, IL-12, and interferon (IFN)-γ, decreased the content of lipid oxidation (MDA), upregulated the protein expressions of toll-like receptors 4 (TLR4), myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), toll/IL-1receptor domain containing adaptor protein inducing IFN-β (TRIF), p-P38 MAPK (P38), and p-nuclear factor kappa-B (NF-κB) p65, and improved the small intestine tissue injury induced by CYC. In terms of liver injury, LP significantly increased the content of glutathione (GSH), decreased the contents of MDA, nitric oxide (NO), IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and repaired the liver tissue injury induced by CYC. Importantly, 10 mg/kg LP significantly prevented intestinal microbiota dysregulation in CYC mice. These results suggested that LP significantly prevented intestinal injury induced by CYC in mice by regulating the TLR4-MyD88/TRIF-TRAF6 signaling pathway and gut-liver axis.
Collapse
Affiliation(s)
| | | | | | | | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| |
Collapse
|
18
|
Zhou X, Zhong F, Yan Y, Wu S, Wang H, Liu J, Li F, Cui D, Xu M. Pancreatic Cancer Cell-Derived Exosomes Promote Lymphangiogenesis by Downregulating ABHD11-AS1 Expression. Cancers (Basel) 2022; 14:cancers14194612. [PMID: 36230535 PMCID: PMC9562033 DOI: 10.3390/cancers14194612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Research on pancreatic cancer microbiomes has attracted attention in recent years. The current view is that enriched microbial communities in pancreatic cancer tissues may affect pancreatic cancer metastasis, including lymph node (LN) metastasis. Similar to carriers of genetic information between cells, such as DNA, mRNA, protein, and non-coding RNA, exosomes are of great importance in early LN metastasis in tumors, including pancreatic cancer. Our previous study showed that the long non-coding RNA ABHD11-AS1 was highly expressed in tissues of patients with pancreatic cancer, and was correlated with patient survival time. However, the role of ABHD11-AS1 in pancreatic cancer LN metastasis has rarely been studied. Hence, in this paper we confirmed that exosomes derived from pancreatic cancer cells could promote lymphangiogenesis in vitro and in vivo, and that the mechanism was related to the downregulation of ABHD11-AS1 expression in lymphatic endothelial cells, and to the enhancement of their ability to proliferate, migrate, and form tubes. These findings preliminarily show a new mechanism by which pancreatic cancer cells regulate peripheral lymphangiogenesis, providing a new therapeutic strategy for inhibiting LN metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Xulin Zhou
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fengyun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215025, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213000, China
| | - Sihui Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Dawei Cui
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
- Correspondence: (D.C.); (M.X.)
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Correspondence: (D.C.); (M.X.)
| |
Collapse
|
19
|
Wang H, Shi F, Zheng S, Zhao M, Pan Z, Xiong L, Zheng L. Feasibility of hepatocellular carcinoma treatment based on the tumor microenvironment. Front Oncol 2022; 12:896662. [PMID: 36176401 PMCID: PMC9513472 DOI: 10.3389/fonc.2022.896662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of liver cancer is extremely high worldwide and poses a serious threat to human life and health. But at present, apart from radiotherapy, chemotherapy, liver transplantation, and early resection, sorafenib was the main systemic therapy proven to have clinical efficacy for unresectable liver cancer (HCC) until 2017. Despite the emerging immunotherapy in the past decade with immune inhibitors such as PD - 1 being approved and applied to clinical treatment, there are still some patients with no response. This review aims to elucidate the mechanisms underlying the tumor microenvironment of hepatocellular carcinoma and thus analyze the effectiveness of targeting the tumor microenvironment to improve the therapeutic efficacy of hepatocellular carcinoma, including the effectiveness and feasibility of immunotherapy, tumor oncolytic viruses and anti-vascular proliferation therapy.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zimeng Pan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Li Xiong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Lihong Zheng,
| |
Collapse
|
20
|
Ullah N, Kakakhel MA, Khan I, Gul Hilal M, Lajia Z, Bai Y, Sajjad W, Yuxi L, Ullah H, M Almohaimeed H, Alshanwani AR, Assiri R, Aggad WS, Alharbi NA, Alshehri AM, Liu G, Sun H, Zhang C. Structural and compositional segregation of the gut microbiota in HCV and liver cirrhotic patients: A clinical pilot study. Microb Pathog 2022; 171:105739. [PMID: 36055570 DOI: 10.1016/j.micpath.2022.105739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/09/2022]
Abstract
Gut microbial dysbiosis during the development of Hepatitis C virus and liver-related diseases is not well studied. Nowadays, HCV and liver cirrhosis are the major concerns that cause gut bacterial alteration, which leads to dysbiosis. For this purpose, the present study was aimed at correlating the gut bacterial community of the control group in comparison to HCV and liver cirrhotic patients. A total of 23 stool samples were collected, including control (9), liver cirrhotic (8), and HCV (6). The collected samples were subjected to 16S rRNA Illumina gene sequencing. In comparison with control, a significant gut bacterial alteration was observed in the progression of HCV and liver cirrhosis. Overall, Firmicutes were significantly abundant in the whole study. No significant difference was observed in the alpha diversity of the control and patient studies. Additionally, the beta diversity based on non-metric multidimensional scaling (NMDS) has a significant difference (p = 0.005) (ANOSIM R2 = 0.14) in all groups. The discriminative results based on the LEfSe tool revealed that the HCV-infected patients had higher Enterobacteriaceae and Enterobacterial, as well as Lactobacillus and Bacilli in comparison than the liver-cirrhotic patients. These taxa were significantly different from the control group (p < 0.05). Regarding prospects, a detailed analysis of the function through metagenomics and transcriptomics is needed.
Collapse
Affiliation(s)
- Naeem Ullah
- School of Life Sciences, Lanzhou University, 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 73000, PR China
| | - Mian Adnan Kakakhel
- School of Life Sciences, Lanzhou University, 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, 730000, PR China; MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 73000, PR China
| | - Mian Gul Hilal
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Zha Lajia
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Li Yuxi
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Habib Ullah
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aliah R Alshanwani
- Physiology Department, College of Medicine, King Saud University, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O.Box 8304, Jeddah, 23234, Saudi Arabia
| | - Nada Abdullah Alharbi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | | | - Guanlan Liu
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Hui Sun
- School of Life Sciences, Lanzhou University, 730000, PR China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, 730000, PR China.
| |
Collapse
|
21
|
Geng W, Zhang Y, Yang J, Zhang J, Zhao J, Wang J, Jia L, Wang Y. Identification of a novel probiotic and its protective effects on NAFLD via modulating gut microbial community. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4620-4628. [PMID: 35174500 DOI: 10.1002/jsfa.11820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming the most common progressive liver diseases. Therapeutic strategy based on gut-liver axis and probiotics is a promising approach for the treatment of NAFLD. However, rare probiotics have been applied in NAFLD treatment, and the involved molecular mechanism is not entirely clear. RESULTS We initially identified a novel functional probiotic, Lactobacillus kefiranofaciens ZW3, on the lipid deposition by a simple and rapid zebrafish model. Supplementation with ZW3 to the methionine and choline deficient (MCD) diet induced NAFLD rats could improve the liver impairments and reduce inflammation through TLR4-MyD88 and JNK signaling pathways. Moreover, ZW3 modulated gut microbiota by promoting relative abundance of Firmicutes and Lactobacillus, decreasing the abundance of Escherichia-Shigella and Bacteroides. Functional prediction of microbiome showed ZW3 presented potential enhancement on carbohydrate and lipid metabolism, cell process control and signal transduction processes, and reduced several human diseases. CONCLUSION This present study identified a novel probiotic and its protective effects on NAFLD, and interpreted the interactions of ZW3 with the immune system and gut microbiota involved in gut-liver axis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weitao Geng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yang Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jingnan Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jing Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinju Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yanping Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
22
|
Discovering Biomarkers for Non-Alcoholic Steatohepatitis Patients with and without Hepatocellular Carcinoma Using Fecal Metaproteomics. Int J Mol Sci 2022; 23:ijms23168841. [PMID: 36012106 PMCID: PMC9408600 DOI: 10.3390/ijms23168841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
High-calorie diets lead to hepatic steatosis and to the development of non-alcoholic fatty liver disease (NAFLD), which can evolve over many years into the inflammatory form of non-alcoholic steatohepatitis (NASH), posing a risk for the development of hepatocellular carcinoma (HCC). Due to diet and liver alteration, the axis between liver and gut is disturbed, resulting in gut microbiome alterations. Consequently, detecting these gut microbiome alterations represents a promising strategy for early NASH and HCC detection. We analyzed medical parameters and the fecal metaproteome of 19 healthy controls, 32 NASH patients, and 29 HCC patients, targeting the discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased inflammation status and shifts within the composition of the gut microbiome. An increased abundance of kielin/chordin, E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers, indicating disease-related changes in the liver. Although a single biomarker failed to separate NASH and HCC, machine learning-based classification algorithms provided an 86% accuracy in distinguishing between controls, NASH, and HCC. Fecal metaproteomics enables early detection of NASH and HCC by providing single biomarkers and machine learning-based metaprotein panels.
Collapse
|
23
|
Wei X, Yang M, Pan B, Zhang X, Lin H, Li W, Shu W, Wang K, Khan AR, Zhang X, Cen B, Xu X. Proteomics-based identification of the role of osteosarcoma amplified-9 in hepatocellular carcinoma recurrence. Hepatol Commun 2022; 6:2182-2197. [PMID: 35429130 PMCID: PMC9315138 DOI: 10.1002/hep4.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies; its recurrence is associated with high mortality and poor recurrence-free survival and is affected by multisystem and multilevel pathological changes. To identify the key proteins associated with tumor recurrence and the underlying mechanisms, proteomic profiling of tumor specimens from early recurrence and nonrecurrence patients was performed in this study. Proteomics was applied to identify differentially expressed proteins during the early recurrence of HCC after surgery. Osteosarcoma amplified-9 (OS-9) was discovered, and the correlation between OS-9 expression and the clinicopathological characteristics of patients was analyzed. Invasion and migration were examined in SMMC-7721 cells with and without OS-9 overexpression. Proteomics was performed once again using SMMC-7721 cells with OS-9 overexpression to further analyze the proteins with altered expression. OS-9 was overexpressed in the early recurrence group, and OS-9 overexpression was associated with high serum alpha-fetoprotein levels and poor recurrence-free survival in 196 patients with HCC. The invasion and migration abilities of SMMC-7721 cells were enhanced in the OS-9 overexpression group. Bioinformatic functional enrichment methods, including Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis, revealed that the hypoxia-inducible factor 1 (HIF-1) and tumor necrosis factor (TNF) signaling pathways were activated in the OS-9 overexpression group. The migration and invasion capacities of OS-9 overexpressed HCC cell line were weakened while treated with HIF-1α or TNF-α inhibitors. Conclusion: Our results suggest that the overexpression of OS-9 is related to HCC recurrence, thereby contributing to the migration and invasion capacities of HCC cell line by regulating the HIF-1 and TNF pathways.
Collapse
Affiliation(s)
- Xuyong Wei
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina
| | - Mengfan Yang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina.,Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Binhua Pan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina.,Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaobing Zhang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina
| | - Hanchao Lin
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina
| | - Wangyao Li
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina
| | - Wenzhi Shu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina
| | - Kun Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Abdul Rehman Khan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina.,Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xuanyu Zhang
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina.,Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina.,Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina.,NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhouChina.,Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina.,Zhejiang University Cancer CenterHangzhouChina.,Institute of Organ TransplantationZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
25
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, Zhang N, Liu D, Gong Z. Systematic Characterization of the Disruption of Intestine during Liver Tumor Progression in the xmrk Oncogene Transgenic Zebrafish Model. Cells 2022; 11:cells11111810. [PMID: 35681505 PMCID: PMC9180660 DOI: 10.3390/cells11111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The crosstalk between tumors and their local microenvironment has been well studied, whereas the effect of tumors on distant tissues remains understudied. Studying how tumors affect other tissues is important for understanding the systemic effect of tumors and for improving the overall health of cancer patients. In this study, we focused on the changes in the intestine during liver tumor progression, using a previously established liver tumor model through inducible expression of the oncogene xmrk in zebrafish. Progressive disruption of intestinal structure was found in the tumor fish, displaying villus damage, thinning of bowel wall, increase in goblet cell number, decrease in goblet cell size and infiltration of eosinophils, most of which were observed phenotypes of an inflammatory intestine. Intestinal epithelial cell renewal was also disrupted, with decreased cell proliferation and increased cell death. Analysis of intestinal gene expression through RNA-seq suggested deregulation of genes related to intestinal function, epithelial barrier and homeostasis and activation of pathways in inflammation, epithelial mesenchymal transition, extracellular matrix organization, as well as hemostasis. Gene set enrichment analysis showed common gene signatures between the intestine of liver tumor fish and human inflammatory bowel disease, the association of which with cancer has been recently noticed. Overall, this study represented the first systematic characterization of the disruption of intestine under the liver tumor condition and suggested targeting intestinal inflammation as a potential approach for managing cancer cachexia.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Zhiyuan Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Na Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| |
Collapse
|
27
|
Wang K, Li B, Fu R, Jiang Z, Wen X, Ni Y. Bentong ginger oleoresin mitigates liver injury and modulates gut microbiota in mouse with nonalcoholic fatty liver disease induced by high-fat diet. J Food Sci 2022; 87:1268-1281. [PMID: 35152443 DOI: 10.1111/1750-3841.16076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2023]
Abstract
The present study aimed to examine the protective effect of Bentong ginger oleoresin (BGO) on the occurrence of nonalcoholic fatty liver disease (NAFLD) and its underlying mechanism. In the present study, 14-week BGO treatment reduced the high-fat diet (HFD)-induced obesity. The serum total cholesterol (TC) was reduced from 4.76 ± 0.30 to 3.542 ± 0.49 mmol/L and fatty liver score decreased to the normal level (1.6 ± 0.55). BGO had antihypercholesterolemia activity, alleviated abnormal lipid metabolism, and improved liver fat accumulation. In addition, liver inflammatory cytokine tests and Western blotting analysis indicated that BGO might play an anti-inflammatory role by mediating the NF-κB signaling pathway. Moreover, BGO regulated the gut microbiota in NAFLD mice and finally mediated their benefits for the host, which might be associated with reduced abundance of Lachnospiraceae_NK4A136_group and Fournierella. BGO showed effective liver protection and regulation of gut microbiota for the HFD-induced NAFLD in obese mice. As a result, BGO may serve as an effective dietary supplement for the improvement of NAFLD-related metabolic diseases. PRACTICAL APPLICATION: This study provides a new way to improve the added value of Bentong ginger. It also provides certain experimental data on BGO as a kind of the functional food ingredient. The current work also provides new ideas for the improvement and treatment of NAFLD.
Collapse
Affiliation(s)
- Kunli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China
| | - Bei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Rao Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Zefang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P. R. China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing, P. R. China
| |
Collapse
|
28
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
29
|
Li Y, Hou JJ, Wang X, Su S, Wang YM, Zhang J. New progress in research of intestinal microbiota in fatty liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1355-1361. [DOI: 10.11569/wcjd.v29.i23.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, intestinal microbiota has become one of hot issues in current research. Fatty liver disease refers to the pathology of excessive accumulation of fat in liver cells due to various reasons. Fatty liver disease can cause damage to the normal structure and physiological and biochemical functions of the liver, and lead to the appearance of clinical symptoms. And it generally includes two categories: Non-alcoholic fatty liver disease and alcoholic liver disease. Changes in intestinal flora and intestinal permeability can further affect the development of fatty liver disease through the gut-liver axis. Similarly, intestinal microbiota also changes to varying degrees during the occurrence and development of fatty liver disease. This paper mainly introduces the relationship between the gut-liver axis and fatty liver disease, changes of intestinal flora during the progression of fatty liver disease, and new advances in the application of probiotics in the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
30
|
Rao B, Ren T, Wang X, Wang H, Zou Y, Sun Y, Liu S, Ren Z, Yu Z. Dysbiosis in the Human Microbiome of Cholangiocarcinoma. Front Physiol 2021; 12:715536. [PMID: 34867436 PMCID: PMC8633309 DOI: 10.3389/fphys.2021.715536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignant tumor of the biliary system with a very poor prognosis. The human microbiome, which is the sum of the genetic information of human microorganisms, plays an important role in regulating the digestion, absorption, immune response, and metabolism of the host. Increasing evidence indicates a close relationship between CCA and the human microbiome. Specific alterations occur in the human microbiome of patients with CCA. Therefore, in this review, we aimed to summarize the recent evidence on dysbiosis in the human microbiome of CCA. Then, we generalized the effect of Helicobacter pylori on CCA. Additionally, the potential mechanism of human microbial dysbiosis promoted the progress of CCA, and its precancerous disease was also explored. Furthermore, the possibility of the human microbiome as a diagnostic and therapeutic target of CCA was discussed.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Ren
- Department of Breast Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshuo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer? Pharmacol Res 2021; 175:106022. [PMID: 34883213 DOI: 10.1016/j.phrs.2021.106022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Saccharomyces boulardii (S. boulardii) is a probiotic yeast that has been elucidated to be efficacious in fighting various gastrointestinal diseases in preclinical as well as clinical studies. Its general mechanisms of probiotic action in the treatment of gastrointestinal conditions cover multifaceted aspects, including immune regulation, production of antimicrobial substances, pathogen competitive elimination, gut barrier integrity maintenance, intestinal trophic effect and antioxidant potency. In this review, basic knowledge with regard to the gut-liver axis, available probiotics remedies and mechanistic insights of S. boulardii as probiotics will be elucidated. In addition, we summarize the therapeutic potential of S. boulardii in several liver diseases evident from both bench and bedside information, such as acute liver injury/failure, fibrosis, hepatic damages due to metabolic disturbance or infection and obstructive jaundice. Future prospects in relation to medicinal effects of S. boulardii are also exploited and discussed on the basis of novel and attractive therapeutic concept in the latest scientific literature.
Collapse
|
32
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
33
|
Huang H, Hu Y, Guo L, Wen Z. Integrated bioinformatics analyses of key genes involved in hepatocellular carcinoma immunosuppression. Oncol Lett 2021; 22:830. [PMID: 34691257 PMCID: PMC8527569 DOI: 10.3892/ol.2021.13091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer. Chronically unresolved inflammation may remodel the immunosuppressive tumor microenvironment, which is rich in innate immune cells. The mechanisms via which HCC progresses through the evasion of the innate immune surveillance remain unclear. The present study thus aimed to identify key genes involved in HCC immunosuppression and to establish an innate immune risk signature, with the ultimate goal of obtaining new insight into effective immunotherapies. HCC and normal liver tissue mRNA expression and clinicopathological data were obtained from the Cancer Genome Atlas database. The immunosuppressive innate immune-related genes (IIRGs) in HCC were screened using integrated bioinformatics analyses. Gene expression was then validated using the Gene Expression Omnibus database and the Human Protein Atlas database, and tissues were obtained from patients with HCC who underwent surgery. In total, 3,676 genes were identified as differentially expressed mRNAs after comparing the HCC tissues with the normal liver tissues in TCGA. Gene Set Enrichment Analyses revealed 21 highly expressed IIRGs in HCC tissues. A survival analysis and Cox regression model were used to construct an innate immune risk signature, including three IIRGs: Collectin-12 (COLEC12), matrix metalloproteinase-12 (MMP12) and mucin-12 (MUC12) genes. Univariate and multivariate Cox analyses revealed that the signature of the three IIRGs was a robust independent risk factor in relation to the overall survival (OS) of patients with HCC. The expression of the three aforementioned IIRGs was confirmed through external validation. Moreover, COLEC12 and MMP12 expression significantly correlated with that of immune checkpoint molecules or immunosuppressive cytokines. The tumor immune dysfunction and exclusion tool predicted that the increased expression of the three IIRGs in patients with HCC was significantly associated with the efficacy of relatively poor immune checkpoint blockade therapy. Conclusively, a novel innate immune-related risk signature for patients with HCC was constructed and validated. This signature may be involved in immunosuppression, and may be used to predict a poor prognosis, functioning as a potential immunotherapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Hongyan Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Youwen Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Thomas CE, Luu HN, Wang R, Xie G, Adams-Haduch J, Jin A, Koh WP, Jia W, Behari J, Yuan JM. Association between Pre-Diagnostic Serum Bile Acids and Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancers (Basel) 2021; 13:2648. [PMID: 34071196 PMCID: PMC8198655 DOI: 10.3390/cancers13112648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a commonly diagnosed malignancy with poor prognosis. Rising incidence of HCC may be due to rising prevalence of metabolic dysfunction-associated fatty liver disease, where altered bile acid metabolism may be implicated in HCC development. Thirty-five bile acids were quantified using ultra-performance liquid chromatography triple-quadrupole mass spectrometry assays in pre-diagnostic serum of 100 HCC cases and 100 matched controls from the Singapore Chinese Health Study. Conditional logistic regression was used to assess associations for bile acid levels with risk of HCC. Conjugated primary bile acids were significantly elevated whereas the ratios of secondary bile acids over primary bile acids were significantly lower in HCC cases than controls. The respective odds ratios and 95% confidence intervals of HCC were 6.09 (1.75-21.21) for highest vs. lowest tertile of cholic acid species and 30.11 (5.88-154.31) for chenodeoxycholic acid species. Doubling ratio of taurine-over glycine-conjugated chenodeoxycholic acid was associated significantly with 40% increased risk of HCC whereas doubling ratio of secondary over primary bile acid species was associated with 30-40% reduced risk of HCC. In conclusion, elevated primary bile acids and taurine over glycine-conjugated ratios were strongly associated with HCC risk whereas the ratios of secondary bile acids over primary bile acids were inversely associated with HCC risk.
Collapse
Affiliation(s)
- Claire E. Thomas
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.E.T.); (H.N.L.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (R.W.); (J.A.-H.); (J.B.)
| | - Hung N. Luu
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.E.T.); (H.N.L.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (R.W.); (J.A.-H.); (J.B.)
| | - Renwei Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (R.W.); (J.A.-H.); (J.B.)
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA; (G.X.); (W.J.)
| | - Jennifer Adams-Haduch
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (R.W.); (J.A.-H.); (J.B.)
| | - Aizhen Jin
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (A.J.); (W.-P.K.)
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; (A.J.); (W.-P.K.)
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA; (G.X.); (W.J.)
| | - Jaideep Behari
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (R.W.); (J.A.-H.); (J.B.)
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.E.T.); (H.N.L.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (R.W.); (J.A.-H.); (J.B.)
| |
Collapse
|
35
|
Abstract
The precipitous increase in nonalcoholic steatohepatitis (NASH) is accompanied by a dramatic increase in the incidence of NASH-related hepatocellular carcinoma (HCC). HCC in NASH has a higher propensity to arise without pre-existing cirrhosis compared with other chronic liver diseases.
Collapse
|
36
|
Yang L, Li Y, Wang S, Bian X, Jiang X, Wu J, Wang K, Wang Q, Xia J, Jiang S, Zhuge A, Yuan Y, Li S, Li L. Western Diet Aggravated Carbon Tetrachloride-Induced Chronic Liver Injury by Disturbing Gut Microbiota and Bile Acid Metabolism. Mol Nutr Food Res 2021; 65:e2000811. [PMID: 33458949 DOI: 10.1002/mnfr.202000811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/17/2020] [Indexed: 12/13/2022]
Abstract
SCOPE The high-fat, high-sucrose, and low-fiber Western diet (WD) is popular in many countries and affects the onset and progression of many diseases. This study is aimed to explore the influence of the WD on chronic liver disease (CLD) and its possible mechanism. METHODS AND RESULTS C57BL/6 mice are given a control diet (CD) or WD and CLD is induced by intraperitoneally injecting carbon tetrachloride (CCL4 ) twice a week for 8 weeks. The WD aggravated CCL4 -induced chronic liver injury, as evidenced by increased serum transaminase levels, worsened hepatic inflammatory response, and fibrosis. Gut microbiota is disturbed in mice treated with CCL4 +WD (WC group), manifested as the accumulation of Fusobacteria, Streptococcaceae, Streptococcus, Fusobacterium, and Prevotella and the depletion of Firmicutes, Lachnospiraceae, and Roseburia. Additionally, increased hepatic taurocholic acid in the WC group activated sphingosine-1-phosphate receptor 2, which is positively correlated with hepatic fibrosis and inflammation parameters. Mice in the WC group have higher fecal primary bile acid (BA) levels and lower fecal secondary/primary BA ratios. Serum FGF15 levels are also elevated in the WC group, which is positively correlated with hepatic inflammation. CONCLUSION WD accelerates the progression of CLD which is associated with changes in the gut microbiota and BA metabolism.
Collapse
Affiliation(s)
- Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Shenjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| |
Collapse
|
37
|
Zhang C, Cui X, Feng L, Han Z, Peng D, Fu W, Xing Y. The deficiency of FKBP-5 inhibited hepatocellular progression by increasing the infiltration of distinct immune cells and inhibiting obesity-associated gut microbial metabolite. J Gastrointest Oncol 2021; 12:711-721. [PMID: 34012660 DOI: 10.21037/jgo-21-71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Gut microbiota has a number of essential roles in nutrition metabolism and immune homeostasis, and is closely related to hepatocellular progression. In recent years, studies have also shown that FK506 binding protein 5 (FKBP-5) plays a crucial role in immune regulation. However, it is not yet clear whether FKBP-5 promotes the development of hepatocellular carcinoma (HCC) by affecting immune function and gut microbiota. Methods FKBP-5 expression was verified by immunochemistry and western blot and reverse transcription polymerase chain reaction (RT-qPCR) assays. After treatment in WT and FKBP-5-/- mice, the histological characteristic of mice liver tissue was assessed by H&E staining, and hepatic leukocytes and hepatic NKT cells were identified by flow cytometer. Meanwhile, primary bile acids (BAs), secondary BAs, serum total cholesterol, and the weight of abdomen adipose tissues were examined, and the gut microbiota was evaluated by 16S ribosomal ribonucleic acid (rRNA) sequencing. Results We discovered that FKBP-5 was highly expressed in HCC tissues. Meanwhile, FKBP-5 deletion inhibited tumor progression by increasing CD8+ T, CD4+ T, NKT and CD4+NKT cells in mice after diethylnitrosamine (DEN) injection. Besides, we proved that FKBP-5 deletion generated rapid and significant reductions in the intestinal BAs, the weight of abdomen adipose tissues and the serum total cholesterol. FKBP-5 deletion also led to a change in the composition of gut microbiota, suggesting that BAs are the main dietary factor regulating gut microbiota, which could be affected by FKBP-5 deletion. Further, we uncovered that anti-CD4 and anti-CD8 treatments facilitated hepatocellular progression by modulating gut microbiota composition in FKBP-5-/- mice. Conclusions Therefore, we demonstrated that FKBP-5 deletion inhibited hepatocellular progression by modulating immune response and gut microbiome-mediated BAs metabolism.
Collapse
Affiliation(s)
- Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Cui
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lian Feng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhiyi Han
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Deti Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenjun Fu
- South China Research Center for Acupuncture and Moxibustion, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
38
|
Beyaz Coşkun A, Sağdiçoğlu Celep AG. Therapeutic modulation methods of gut microbiota and gut-liver axis. Crit Rev Food Sci Nutr 2021; 62:6505-6515. [PMID: 33749411 DOI: 10.1080/10408398.2021.1902263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver diseases are considered global health problems that cause more than 1 million deaths each year. Due to the increase in the prevalence of liver diseases worldwide, studies on different treatment methods have increased. Some of these methods is diagnostic and therapeutic applications based on the examination of the intestinal and intestinal microbiota. In this study, research articles, systematic review and review in the literature were examined in order to determine gut-liver axis relationship and treatment methods for liver diseases with gut modulation methods. Studies related to the subject have been searched in Google Scholar and Pubmed databases. The keywords "liver disease" and "gut-liver axis" and "microbiota" and "gut modulation methods" or "probiotic" or "prebiotic" or "symbiotic" or "antibiotic" or "bile acid regulation" or "adsorbent" or "fecal microbiota transplantation" were used in the searches. Improvements have been achieved in biomarkers of liver diseases by providing intestinal modulation with probiotic, prebiotic, symbiotic, antibiotic and adsorbents applications, bile acid regulation and fecal microbiota transplantation. In the results of experimental and clinical studies, it was seen that the therapeutic potential of the treatments performed by applying probiotics, prebiotics and symbiotics was higher.
Collapse
Affiliation(s)
- Ayfer Beyaz Coşkun
- Department of Nutrition and Dietetics, Faculty of Health Science, Fırat University, Elazığ, Turkey
| | | |
Collapse
|
39
|
Wang S, Yang L, Hu H, Lv L, Ji Z, Zhao Y, Zhang H, Xu M, Fang R, Zheng L, Ding C, Yang M, Xu K, Li L. Characteristic gut microbiota and metabolic changes in patients with pulmonary tuberculosis. Microb Biotechnol 2021; 15:262-275. [PMID: 33599402 PMCID: PMC8719804 DOI: 10.1111/1751-7915.13761] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal flora provides an important contribution to the development of pulmonary tuberculosis (PTB). We performed a cross‐sectional study in 52 healthy controls (HCs) and 83 patients with untreated active PTB to assess the differences in their microbiomic and metabolic profiles in faeces via V3‐V4 16S rRNA gene sequencing and gas chromatography–mass spectrometry. Patients with PTB had considerable reductions in phylogenetic alpha diversity and the production of short‐chain fatty acids, dysbiosis of the intestinal flora and alterations in the faecal metabolomics composition compared with HCs. Significant alterations in faecal metabolites were associated with changes in the relative abundance of specific genera. Our study describes the imbalance of the gut microbiota and altered faecal metabolomics profiles in patients with PTB; the results indicate that the gut microbiota and faecal metabolomic profiles can be used as potential preventive and therapeutic targets for PTB.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haiyang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanming Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Rongfeng Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Meifan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
40
|
Wu J, Huang F, Ling Z, Liu S, Liu J, Fan J, Yu J, Wang W, Jin X, Meng Y, Cao H, Li L. Altered faecal microbiota on the expression of Th cells responses in the exacerbation of patients with hepatitis E infection. J Viral Hepat 2020; 27:1243-1252. [PMID: 32500937 DOI: 10.1111/jvh.13344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Fulminant hepatitis E may lead to acute liver failure (ALF). Perturbations of intestinal microbiota are related to severe liver disease. To study the correlations between faecal microbiota and the occurrence and exacerbation of hepatitis E virus (HEV) infection, we characterized 24 faecal samples from 12 patients with acute hepatitis E (AHE) and 12 patients with HEV-ALF using high-throughput sequencing. We found both the alpha and beta diversity indices showed no significant differences between the AHE and HEV-ALF groups. Several predominant taxa were significantly different between the AHE and HEV-ALF groups. Most notably, the HEV-ALF group had increased levels of Gammaproteobacteria, Proteobacteria, Xanthomonadceae and Stenotrophomonas, but reduced levels of Firmicutes, Streptococcus, Subdoligranulum and Lactobacillus, compared with the AHE group. The levels of Lactobacillaceae and Gammaproteobacteria could be used to distinguish patients with HEV-ALF from those with AHE. In addition, the level of Th lymphocytes was significantly lower in the HEV-ALF group than in the AHE group. The relative abundances of Lactobacillaceae and Gammaproteobacteria were positively correlated with Th lymphocytes, serum international normalized ratio (INR) and hepatic encephalopathy severity. Moreover, surviving patients had higher levels of Lactobacillus mucosae than deceased patients. Our study demonstrated that the presence of altered faecal microbiota is associated with exacerbation of HEV infection; this finding may be useful for exploring the interactions among faecal microbiota, immune responses, mechanisms of infection and progression in patients with HEV, as well as for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Fen Huang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zongxin Ling
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangchun Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, China
| | - Jun Fan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Xiuyuan Jin
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yiling Meng
- Department of Laboratory Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Yu Q, Wu L, Ji J, Feng J, Dai W, Li J, Wu J, Guo C. Gut Microbiota, Peroxisome Proliferator-Activated Receptors, and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:271-288. [PMID: 33150145 PMCID: PMC7605923 DOI: 10.2147/jhc.s277870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. HCC incidence rate is sixth and mortality is fourth worldwide. However, HCC pathogenesis and molecular mechanisms remain unclear. The incidence of HCC is associated with genetic, environmental, and metabolic factors. The role of gut microbiota in the pathogenesis of HCC has attracted researchers’ attention because of anatomical and functional interactions between liver and intestine. Studies have demonstrated the involvement of gut microbiota in the development of HCC and chronic liver diseases, such as alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and liver cirrhosis. Peroxisome proliferator-activated receptors (PPARs) are a group of receptors with diverse biological functions. Natural and synthetic PPAR agonists show potential for treatment of NAFLD, liver fibrosis, and HCC. Recent studies have demonstrated that PPARs take part in gut microbiota inhabitation and adaptation. This manuscript reviews the role of gut microbiota in the development of HCC and precancerous diseases, the role of PPARs in modulation of gut microbiota and HCC, and potential of gut microbiota for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China.,Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| |
Collapse
|
42
|
Zhang H, Liu M, Liu X, Zhong W, Li Y, Ran Y, Guo L, Chen X, Zhao J, Wang B, Zhou L. Bifidobacterium animalis ssp. Lactis 420 Mitigates Autoimmune Hepatitis Through Regulating Intestinal Barrier and Liver Immune Cells. Front Immunol 2020; 11:569104. [PMID: 33123141 PMCID: PMC7573389 DOI: 10.3389/fimmu.2020.569104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease of uncertain cause. Accumulating evidence shows that gut microbiota and intestinal barrier play significant roles in AIH thus the gut–liver axis has important clinical significance as a potential therapeutic target. In the present study, we found that Bifidobacterium animalis ssp. lactis 420 (B420) significantly alleviated S100-induced experimental autoimmune hepatitis (EAH) and modulated the gut microbiota composition. While the analysis of clinical specimens revealed that the fecal SCFA quantities were decreased in AIH patients, and B420 increased the cecal SCFA quantities in EAH mice. Remarkably, B420 application improved intestinal barrier function through upregulation of tight junction proteins in both vitro and vivo experiments. Moreover, B420 decreased the serum endotoxin level and suppressed the RIP3 signaling pathway of liver macrophages in EAH mice thus regulated the proliferation of Th17 cells. Nevertheless, the inhibition effect of B420 on RIP3 signaling pathway was blunted in vitro studies. Together, our results showed that early intervention with B420 contributed to improve the liver immune homeostasis and liver injury in EAH mice, which might be partly due to the protection of intestinal barrier. Our study suggested the potential efficacy of probiotics application against AIH and the promising therapeutic strategies targeting gut–liver axis for AIH.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yanni Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Liping Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.,Department of Gastroenterology and Hepatology, People's Hospital of Hetian District, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
43
|
Lu D, Huang Y, Kong Y, Tao T, Zhu X. Gut microecology: Why our microbes could be key to our health. Biomed Pharmacother 2020; 131:110784. [PMID: 33152942 DOI: 10.1016/j.biopha.2020.110784] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The human body contains a large number of microorganisms, and the gut microecology environment contains the largest number and types of microorganisms. The structure and function of gut microbiota are closely related to the health of the human body. In a cascade of studies, the diversity of gut microbiota and its metabolite often found changed in patients or mice model. What kind of gut microbiota that associated with the occurrence or treatment of diseases were also found in many studies. Gut microbiota and its products can affect the function of the human body. Short-chain fatty acids, bile acid, indoles and so on were found can regulate the inflammation, immune response to affect the process of diseases. Immune cells like natural killer T cells, CD3 + T cells were also found had a link to gut microbiota which associated with diseases. Changes in gut microbiota are associated with changes in the body's major systems, such as the digestive system, the endocrine system, the cardiovascular system, the endocrine and metabolic system, the urinary system diseases, the respiratory system and so on. It is of great significance to study gut microecology for the prevention and treatment of various human diseases.
Collapse
Affiliation(s)
- Dihuan Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yongmei Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, 430033, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, 255000, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjian, 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524023, China.
| |
Collapse
|
44
|
Blesl A, Jüngst C, Lammert F, Fauler G, Rainer F, Leber B, Feldbacher N, Stromberger S, Wildburger R, Spindelböck W, Fickert P, Horvath A, Stadlbauer V. Secondary Sclerosing Cholangitis in Critically Ill Patients Alters the Gut-Liver Axis: A Case Control Study. Nutrients 2020; 12:E2728. [PMID: 32906634 PMCID: PMC7551864 DOI: 10.3390/nu12092728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary sclerosing cholangitis in critically ill patients (SC-CIP) occurs after long-term intensive care treatment. This study aimed to assess the gut-liver axis in SC-CIP. Stool microbiome composition, gut permeability, bacterial translocation and serum bile acid profiles of 18 SC-CIP patients compared to 11 patients after critical illness without liver disease (CIP controls), 21 patients with cirrhosis and 21 healthy controls were studied. 16S rDNA was isolated from stool and sequenced using the Illumina technique. Diamine oxidase, zonulin, soluble CD14 (sCD14) and lipopolysaccharide binding protein were measured in serum and calprotectin in stool. Serum bile acids were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Reduced microbiome alpha diversity and altered beta diversity were seen in SC-CIP, CIP controls and cirrhosis compared to healthy controls. SC-CIP patients showed a shift towards pathogenic taxa and an oralization. SC-CIP, CIP controls and cirrhotic patients presented with impaired gut permeability, and biomarkers of bacterial translocation were increased in SC-CIP and cirrhosis. Total serum bile acids were elevated in SC-CIP and cirrhosis and the bile acid profile was altered in SC-CIP, CIP controls and cirrhosis. In conclusions, observed alterations of the gut-liver axis in SC-CIP cannot solely be attributed to liver disease, but may also be secondary to long-term intensive care treatment.
Collapse
Affiliation(s)
- Andreas Blesl
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Christoph Jüngst
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Zürich, 8032 Zürich, Switzerland;
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421 Homburg, Germany;
| | - Günter Fauler
- Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, 8036 Graz, Austria;
| | - Florian Rainer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Bettina Leber
- Department of Surgery, Division of Transplantation Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Nicole Feldbacher
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Silvia Stromberger
- AUVA Rehabilitation Clinic Tobelbad, 8144 Tobelbad, Austria; (S.S.); (R.W.)
| | - Renate Wildburger
- AUVA Rehabilitation Clinic Tobelbad, 8144 Tobelbad, Austria; (S.S.); (R.W.)
| | - Walter Spindelböck
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Peter Fickert
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (F.R.); (N.F.); (W.S.); (P.F.); (A.H.); (V.S.)
| |
Collapse
|
45
|
Hong J, Chen XZ, Peng YG, Zhang WK, Tang HB, Li YS. Nanoparticle-Encapsulated Liushenwan Could Treat Nanodiethylnitrosamine-Induced Liver Cancer in Mice by Interfering With Multiple Critical Factors for the Tumor Microenvironment. Front Pharmacol 2020; 11:1052. [PMID: 32754037 PMCID: PMC7365909 DOI: 10.3389/fphar.2020.01052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/29/2020] [Indexed: 11/23/2022] Open
Abstract
We previously isolated an ethanol fraction of LSW (Liushenwan pill, a traditional Chinese medicine) which has been shown to prevent and treat liver cancer induced by nanodiethylnitrosamine (nanoDEN) in mice. In the present study, we utilized a high-pressure microfluidics technique to generate LSW lipid nanoparticles (nano-LSW) to reduce its toxicity, and enhance its inhibitory effect on tumor growth, and further evaluate its therapeutic effect using a nanoDEN-induced mouse model of liver cancer. Our in vitro results indicated that nano-LSW-low could induce apoptosis in HepG2 cells, but exhibited low toxicity in L02 cells. Furthermore, the in vivo results indicated that nano-LSW-low exerted minimal or no damage to normal hepatocytes, kidney, and small intestine tissues. In addition, our results showed that at the 20th week, the inflammatory infiltration in the mice in the model group increased severely, and partial pimelosis and fibrosis occurred. In contrast, the liver tissues in the mice treated with nano-LSW exhibited only slight inflammatory infiltration, without pimelosis and fibrosis. At the 30th week, 4 out of 5 liver tissues in the model group showed hyperplastic nodules by hematoxylin and eosin (H&E) staining. However, the liver tissues in the nano-LSW treatment group did not showed hyperplastic nodules. Immunohistochemical staining showed that, in contrast to the model group, the levels of COX-2, PCNA, β-catenin, and HMGB1 protein expressions were significantly lower in the nano-LSW-low group at the 20th and 30th week. Compared to model group, the COX-2, TNF-α, Smad-2, and TGF-β1 mRNA levels obviously decreased in the liver tissue after the nano-LSW-low treatment. Taken together, nano-LSW-low may serve as a potent therapeutic agent for preventing liver cancer by interfering with multiple critical factors for the tumor microenvironment during oncogenesis.
Collapse
Affiliation(s)
- Jing Hong
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi-Zhen Chen
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - You-Gong Peng
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Wei Kevin Zhang
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - He-Bin Tang
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yu-Sang Li
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
46
|
Dietary Protein, Fiber and Coffee Are Associated with Small Intestine Microbiome Composition and Diversity in Patients with Liver Cirrhosis. Nutrients 2020; 12:nu12051395. [PMID: 32414035 PMCID: PMC7285216 DOI: 10.3390/nu12051395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is a key factor in chronic liver disease progression. In prior research, we found that the duodenal microbiome was associated with sex, ethnicity, and cirrhosis complications. Here, we examined the association between diet and the duodenal microbiome in patients with liver cirrhosis. This study included 51 participants who completed a detailed food frequency questionnaire and donated duodenal biopsies for microbiome characterization by 16S ribosomal RNA gene sequencing. Data were analyzed for alpha diversity, beta diversity, and association of taxa abundance with diet quality and components using QIIME 2 pipelines. Diet quality was assessed through calculation of the Healthy Eating Index 2010. Participants with higher adherence to protein recommendations exhibited increased microbial richness and evenness (p = 0.03) and a different microbial profile compared to those with lower adherence (p = 0.03). Prevotella-9 and Agathobacter were increased in association with increased protein adherence. Fiber consumption was also associated with the duodenal microbial profile (p = 0.01), with several taxa exhibiting significantly decreased or increased abundance in association with fiber intake. Coffee drinking was associated with microbial richness and evenness (p = 0.001), and there was a dose–response association between coffee drinking and relative abundance of Veillonella (p = 0.01). We conclude that protein, fiber, and coffee are associated with diversity and composition of the duodenal microbiome in liver cirrhosis.
Collapse
|
47
|
Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R, Rimassa L. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020; 39:3620-3637. [PMID: 32157213 PMCID: PMC7190571 DOI: 10.1038/s41388-020-1249-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related death. The immune-rich contexture of the HCC microenvironment makes this tumour an appealing target for immune-based therapies. Here, we discuss how the functional characteristics of the liver microenvironment can potentially be harnessed for the treatment of HCC. We will review the evidence supporting a therapeutic role for vaccines, cell-based therapies and immune-checkpoint inhibitors and discuss the potential for patient stratification in an attempt to overcome the series of failures that has characterised drug development in this disease area.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK.
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Petros Fessas
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Ravindhi Murphy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | | | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Sujit K Mukherjee
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Mark Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Ching Ngar Wong
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Lorenza Rimassa
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| |
Collapse
|
48
|
Rao BC, Lou JM, Wang WJ, Li A, Cui GY, Yu ZJ, Ren ZG. Human microbiome is a diagnostic biomarker in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2020; 19:109-115. [PMID: 32037278 DOI: 10.1016/j.hbpd.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Increasing evidence indicates a close relationship between HCC and the human microbiota. Herein, we reviewed the important potential of the human microbiota as a diagnostic biomarker of HCC. DATA SOURCES Several innovative studies have investigated the characteristics of the gut and oral microbiomes in patients with HCC and proposed that the human microbiome has the potential to be a diagnostic biomarker of HCC. Literature from February 1999 to February 2019 was searched in the PubMed database using the keywords "microbiota" or "microbiome" or "microbe" and "liver cancer" or "hepatocellular carcinoma", and the results of clinical and experimental studies were analyzed. RESULTS Specific changes occur in the human microbiome of patients with HCC. Moreover, the gut microbiome and oral microbiome can be used as non-invasive diagnostic biomarkers for HCC. Furthermore, they also have certain diagnostic potential for precancerous diseases of HCC. The diagnostic potential of the blood microbiota and ascites microbiota in HCC will be gradually discovered in the future. CONCLUSIONS The human microbiome is valuable to the diagnosis of HCC and provides a novel strategy for targeted therapy of HCC. The human microbiome may be widely used in the diagnosis, treatment and prognosis for multiple system diseases or cancers in the future.
Collapse
Affiliation(s)
- Ben-Chen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia-Min Lou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guang-Ying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
49
|
Samji NS, Heda R, Kovalic AJ, Satapathy SK. Similarities and Differences Between Nonalcoholic Steatohepatitis and Other Causes of Cirrhosis. Gastroenterol Clin North Am 2020; 49:151-164. [PMID: 32033761 DOI: 10.1016/j.gtc.2019.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Nonalcoholic fatty liver disease includes a spectrum of liver disorders that range from simple steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Risk factors such as obesity, hypertension, hyperlipidemia, chronic kidney disease, and smoking status increase risk of progression to cirrhosis among patients with NASH. Cirrhosis derived from non-NASH causes may share similar features with patients with NASH but embody distinct pathogenetic mechanisms, genetic associations, prognosis, and outcomes. This article discusses in detail the comparison of clinical, genetic, and outcome characteristics between patients with NASH cirrhosis as opposed to alternative causes of chronic liver disease.
Collapse
Affiliation(s)
- Naga Swetha Samji
- Tenova Cleveland Hospital, 2305 Chambliss Avenue Northwest, Cleveland, TN 37311, USA
| | - Rajiv Heda
- University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Alexander J Kovalic
- Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, USA
| | - Sanjaya K Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases & Transplantation, Donald and Barbara Zucker School of Medicine/Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
50
|
Li N, Wang B, Wu Y, Luo X, Chen Z, Sang C, Xiong T. Modification effects of SanWei GanJiang Powder on liver and intestinal damage through reversing bile acid homeostasis. Biomed Pharmacother 2019; 116:109044. [DOI: 10.1016/j.biopha.2019.109044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/11/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
|