1
|
Naude A, Brown L, Kanji A. Cavernous Hemangioma With Right Vestibulopathy: A Case Report Illustrating Multidisciplinary Clinical Decision-Making in Vestibular Diagnostics. J Clin Med Res 2024; 16:564-570. [PMID: 39635333 PMCID: PMC11614406 DOI: 10.14740/jocmr6089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
This paper describes a case study of a 56-year-old male patient with a small cavernous hemangioma and concurrent peripheral vestibular symptoms, initially thought to warrant neurosurgical intervention. A structured, multidisciplinary approach involving audiology, ear, nose and throat, and physiotherapy revealed that peripheral vestibular dysfunction, rather than the central lesion, was the primary cause of symptoms. The report illustrates the diagnostic utility of video head impulse testing (vHIT), caloric testing, and vestibular evoked myogenic potentials (VEMPs) in differentiating central and peripheral vestibular dysfunction, leading to a nonsurgical treatment plan. The case underscores the importance of multidisciplinary collaboration in preventing unnecessary interventions and highlights an effective clinical decision-making framework for similar cases.
Collapse
Affiliation(s)
- Alida Naude
- Centre for Augmentative and Alternative Communication, Faculty of Humanities, University of Pretoria, Pretoria, South Africa
- Cintocare Multidisciplinary Dizziness, Vertigo and Imbalance Clinic, Pretoria, South Africa
| | - Lisa Brown
- Cintocare Multidisciplinary Dizziness, Vertigo and Imbalance Clinic, Pretoria, South Africa
| | - Amisha Kanji
- Department of Audiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Huang WQ, Sheng H, Wang H, Qi Y, Wang F, Hua Y. Volume electron microscopy reveals age-related ultrastructural differences of globular bush cell axons in mouse central auditory system. Neurobiol Aging 2024; 136:111-124. [PMID: 38342072 DOI: 10.1016/j.neurobiolaging.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
In mammals, thick axonal calibers wrapped with heavy myelin sheaths are prevalent in the auditory nervous system. These features are crucial for fast traveling of nerve impulses with minimal attenuation required for sound signal transmission. In particular, the long-range projections from the cochlear nucleus - the axons of globular bush cells (GBCs) - to the medial nucleus of the trapezoid body (MNTB) are tonotopically organized. However, it remains controversial in gerbils and mice whether structural and functional adaptations are present among the GBC axons targeting different MNTB frequency regions. By means of high-throughput volume electron microscopy, we compared the GBC axons in full-tonotopy-ranged MNTB slices from the C57BL/6 mice at different ages. Our quantification reveals distinct caliber diameter and myelin profile of the GBC axons with endings at lateral and medial MNTB, arguing for modulation of functionally heterogeneous axon subgroups. In addition, we reported axon-specific differences in axon caliber, node of Ranvier, and myelin sheath among juvenile, adult, and old mice, indicating the age-related changes of GBC axon morphology over time. These findings provide structural insight into the maturation and degeneration of GBC axons with frequency tuning across the lifespan of mice.
Collapse
Affiliation(s)
- Wen-Qing Huang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haibin Sheng
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumeng Qi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yunfeng Hua
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Hsiao CJ, Galazyuk AV. Depolarization shift in the resting membrane potential of inferior colliculus neurons explains their hyperactivity induced by an acoustic trauma. Front Neurosci 2023; 17:1258349. [PMID: 37732309 PMCID: PMC10508343 DOI: 10.3389/fnins.2023.1258349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Neuronal hyperactivity has been associated with many brain diseases. In the auditory system, hyperactivity has been linked to hyperacusis and tinnitus. Previous research demonstrated the development of hyperactivity in inferior colliculus (IC) neurons after sound overexposure, but the underlying mechanism of this hyperactivity remains unclear. The main goal of this study was to determine the mechanism of this hyperactivity. Methods Experiments were performed on CBA/CaJ mice in a restrained, unanesthetized condition using intracellular recordings with sharp microelectrodes. Recordings were obtained from control (unexposed) and unilaterally sound overexposed groups of mice. Results Our data suggest that sound exposure-induced hyperactivity was due to a depolarizing shift of the resting membrane potential (RMP) in the hyperactive neurons. The half width of action potentials in these neurons was also decreased after sound exposure. Surprisingly, we also found an RMP gradient in which neurons have more hyperpolarized RMPs with increasing depth in the IC. This gradient was altered in the overexposed animals.
Collapse
Affiliation(s)
| | - Alexander V. Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
4
|
Ni K, Liu H, Lai K, Shen L, Li X, Wang J, Shi H. Upregulation of A-type potassium channels suppresses neuronal excitability in hypoxic neonatal mice. FEBS J 2023; 290:4092-4106. [PMID: 37059697 DOI: 10.1111/febs.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
Neuronal excitability is a critical feature of central nervous system development, playing a fundamental role in the functional maturation of brain regions, including the hippocampus, cerebellum, auditory and visual systems. The present study aimed to determine the mechanism by which hypoxia causes brain dysfunction through perturbation of neuronal excitability in a hypoxic neonatal mouse model. Functional brain development was assessed in humans using the Gesell Development Diagnosis Scale. In mice, gene transcription was evaluated via mRNA sequencing and quantitative PCR; furthermore, patch clamp recordings assessed potassium currents. Clinical observations revealed disrupted functional brain development in 6- and 18-month-old hypoxic neonates, and those born with normal hearing screening unexpectedly exhibited impaired central auditory function at 3 months. In model mice, CA1 pyramidal neurons exhibited reduced spontaneous activity, largely induced by excitatory synaptic input suppression, despite the elevated membrane excitability of hypoxic neurons compared to that of control neurons. In hypoxic neurons, Kcnd3 gene transcription was upregulated, confirming upregulated hippocampal Kv 4.3 expression. A-type potassium currents were enhanced, and Kv 4.3 participated in blocking excitatory presynaptic inputs. Elevated Kv 4.3 activity in pyramidal neurons under hypoxic conditions inhibited excitatory presynaptic inputs and further decreased neuronal excitability, disrupting functional brain development in hypoxic neonates.
Collapse
Affiliation(s)
- Kun Ni
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanwei Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Lai
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiping Wang
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
6
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
7
|
Zhang H, Li H, Lu M, Wang S, Ma X, Wang F, Liu J, Li X, Yang H, Zhang F, Shen H, Buckley NJ, Gamper N, Yamoah EN, Lv P. Repressor element 1-silencing transcription factor deficiency yields profound hearing loss through K v7.4 channel upsurge in auditory neurons and hair cells. eLife 2022; 11:76754. [PMID: 36125121 PMCID: PMC9525063 DOI: 10.7554/elife.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest (cKO), mainly restricted to murine hair cells (HCs) and auditory neurons (aka spiral ganglion neurons [SGNs]). Null inactivation of full-length REST did not affect the development of normal HCs and SGNs but manifested as progressive hearing loss in adult mice. We found that the inactivation of REST resulted in an increased abundance of Kv7.4 channels at the transcript, protein, and functional levels. Specifically, we found that SGNs and HCs from Rest cKO mice displayed increased Kv7.4 expression and augmented Kv7 currents; SGN’s excitability was also significantly reduced. Administration of a compound with Kv7.4 channel activator activity, fasudil, recapitulated progressive hearing loss in mice. In contrast, inhibition of the Kv7 channels by XE991 rescued the auditory phenotype of Rest cKO mice. Previous studies identified some loss-of-function mutations within the Kv7.4-coding gene, Kcnq4, as a causative factor for progressive hearing loss in mice and humans. Thus, the findings reveal that a critical homeostatic Kv7.4 channel level is required for proper auditory functions.
Collapse
Affiliation(s)
- Haiwei Zhang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Mingshun Lu
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Xueya Ma
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Fei Wang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Jiaxi Liu
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Xinyu Li
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Haichao Yang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Fan Zhang
- Department of Pharmacology, Hebei Medical University, Hebei, China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Hebei, China
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nikita Gamper
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, Reno, United States
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Hebei, China
| |
Collapse
|
8
|
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, Adameyko I, Hadjab S, Lallemend F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun 2022; 13:3878. [PMID: 35790771 PMCID: PMC9256748 DOI: 10.1038/s41467-022-31580-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Phoebe Uhl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iva Filova
- Institute of Biotechnology CAS, 25250, Vestec, Czech Republic
| | | | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Müller NIC, Paulußen I, Hofmann LN, Fisch JO, Singh A, Friauf E. Development of synaptic fidelity and action potential robustness at an inhibitory sound localization circuit: effects of otoferlin-related deafness. J Physiol 2022; 600:2461-2497. [PMID: 35439328 DOI: 10.1113/jp280403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibitory glycinergic inputs from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) are involved in sound localization. This brainstem circuit performs reliably throughout life. How such reliability develops is unknown. Here we investigated the role of acoustic experience on the functional maturation of MNTB-LSO inputs at juvenile (postnatal day P11) and young-adult ages (P38) employing deaf mice lacking otoferlin (KO). We analyzed neurotransmission at single MNTB-LSO fibers in acute brainstem slices employing prolonged high-frequency stimulation (1-200 Hz|60 s). At P11, KO inputs still performed normally, as manifested by normal synaptic attenuation, fidelity, replenishment rate, temporal precision, and action potential robustness. Between P11-P38, several synaptic parameters increased substantially in WTs, collectively resulting in high-fidelity and temporally precise neurotransmission. In contrast, maturation of synaptic fidelity was largely absent in KOs after P11. Collectively, reliable neurotransmission at inhibitory MNTB-LSO inputs develops under the guidance of acoustic experience. ABSTRACT Sound localization involves information analysis in the lateral superior olive (LSO), a conspicuous nucleus in the mammalian auditory brainstem. LSO neurons weigh interaural level differences (ILDs) through precise integration of glutamatergic excitation from the cochlear nucleus (CN) and glycinergic inhibition from the medial nucleus of the trapezoid body (MNTB). Sound sources can be localized even during sustained perception, an accomplishment that requires robust neurotransmission. Virtually nothing is known about the sustained performance and the temporal precision of MNTB-LSO inputs after postnatal day (P)12 (time of hearing onset) and whether acoustic experience guides development. Here we performed whole-cell patch-clamp recordings to investigate neurotransmission of single MNTB-LSO fibers upon sustained electrical stimulation (1-200 Hz|60 s) at P11 and P38 in wild-type (WT) and deaf otoferlin (Otof) knock-out (KO) mice. At P11, WT and KO inputs performed remarkably similarly. In WTs, the performance increased drastically between P11-P38, e.g. manifested by an 8 to 11-fold higher replenishment rate (RR) of synaptic vesicles (SVs) and action potential robustness. Together, these changes resulted in reliable and highly precise neurotransmission at frequencies ≤ 100 Hz. In contrast, KO inputs performed similarly at both ages, implying impaired synaptic maturation. Computational modeling confirmed the empirical observations and established a reduced RR per release site for P38 KOs. In conclusion, acoustic experience appears to contribute massively to the development of reliable neurotransmission, thereby forming the basis for effective ILD detection. Collectively, our results provide novel insights into experience-dependent maturation of inhibitory neurotransmission and auditory circuits at the synaptic level. Abstract figure legend MNTB-LSO inputs are a major component of the mammalian auditory brainstem. Reliable neurotransmission at these inputs requires both failure-free conduction of action potentials and robust synaptic transmission. The development of reliable neurotransmission depends crucially on functional hearing, as demonstrated in a time series and by the fact that deafness - upon loss of the protein otoferlin - results in severely impaired synaptic release and replenishment machineries. These findings from animal research may have some implications towards optimizing cochlear implant strategies on newborn humans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Isabelle Paulußen
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Lina N Hofmann
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Jonas O Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| | - Abhyudai Singh
- 3Electrical & Computer Engineering, University of Delaware, Newark, DE, USA
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, D-67663, Germany
| |
Collapse
|
10
|
Zhang C, Wang M, Lin S, Xie R. Calretinin-Expressing Synapses Show Improved Synaptic Efficacy with Reduced Asynchronous Release during High-Rate Activity. J Neurosci 2022; 42:2729-2742. [PMID: 35165172 PMCID: PMC8973423 DOI: 10.1523/jneurosci.1773-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Calretinin (CR) is a major calcium binding protein widely expressed in the CNS. However, its synaptic function remains largely elusive. At the auditory synapse of the endbulb of Held, CR is selectively expressed in different subtypes. Combining electrophysiology with immunohistochemistry, we investigated the synaptic transmission at the endbulb of Held synapses with and without endogenous CR expression in mature CBA/CAJ mice of either sex. Two synapse subtypes showed similar basal synaptic transmission, except a larger quantal size in CR-expressing synapses. During high-rate stimulus trains, CR-expressing synapses showed improved synaptic efficacy with significantly less depression and lower asynchronous release, suggesting more efficient exocytosis than non-CR-expressing synapses. Conversely, CR-expressing synapses had a smaller readily releasable pool size, which was countered by higher release probability and faster synaptic recovery to support sustained release during high-rate activity. EGTA-AM treatment did not change the synaptic transmission of CR-expressing synapses, but reduced synaptic depression and decreased asynchronous release at non-CR-expressing synapses, suggesting that CR helps to minimize calcium accumulation during high-rate activity. Both synapses express parvalbumin, another calcium-binding protein with slower kinetics and higher affinity than CR, but not calbindin. Furthermore, CR-expressing synapses only express the fast isoform of vesicular glutamate transporter 1 (VGluT1), while most non-CR-expressing synapses express both VGluT1 and the slower VGluT2, which may underlie their lagged synaptic recovery. The findings suggest that, paired with associated synaptic machinery, differential CR expression regulates synaptic efficacy among different subtypes of auditory nerve synapses to accomplish distinctive physiological functions in transmitting auditory information at high rates.SIGNIFICANCE STATEMENT CR is a major calcium-binding protein in the brain. It remains unclear how endogenous CR impacts synaptic transmission. We investigated the question at the large endbulb of Held synapses with selective CR expression and found that CR-expressing and non-CR-expressing synapses had similar release properties under basal synaptic transmission. During high-rate activity, however, CR-expressing synapses showed improved synaptic efficacy with less depression, lower asynchronous release, and faster recovery. Furthermore, CR-expressing synapses use exclusive VGluT1 to refill synaptic vesicles, while non-CR-expressing synapses use both VGluT1 and the slower isoform of VGluT2. Our findings suggest that CR may play significant roles in promoting synaptic efficacy during high-rate activity, and selective CR expression can differentially impact signal processing among different synapses.
Collapse
Affiliation(s)
- Chuangeng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
| | - Meijian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
| | - Shengyin Lin
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
| | - Ruili Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
11
|
Mei H, Mei D, Sun S, Zhang Y, Li H. Bioinformatic Identification of Key Genes Leading to Increased Mitochondrial Mass in Cochlear Hair Cells. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Honglin Mei
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, NHC Key Laboratory of Hearing Medicine, Fudan University
| | - Dongmei Mei
- Department of Oral Implantology, the Affiliated Hospital of Qingdao University
| | - Shan Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, NHC Key Laboratory of Hearing Medicine, Fudan University
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, NHC Key Laboratory of Hearing Medicine, Fudan University
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, NHC Key Laboratory of Hearing Medicine, Fudan University
| |
Collapse
|
12
|
Chokr SM, Milinkeviciute G, Cramer KS. Synapse Maturation and Developmental Impairment in the Medial Nucleus of the Trapezoid Body. Front Integr Neurosci 2022; 16:804221. [PMID: 35221938 PMCID: PMC8863736 DOI: 10.3389/fnint.2022.804221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Sound localization requires rapid interpretation of signal speed, intensity, and frequency. Precise neurotransmission of auditory signals relies on specialized auditory brainstem synapses including the calyx of Held, the large encapsulating input to principal neurons in the medial nucleus of the trapezoid body (MNTB). During development, synapses in the MNTB are established, eliminated, and strengthened, thereby forming an excitatory/inhibitory (E/I) synapse profile. However, in neurodevelopmental disorders such as autism spectrum disorder (ASD), E/I neurotransmission is altered, and auditory phenotypes emerge anatomically, molecularly, and functionally. Here we review factors required for normal synapse development in this auditory brainstem pathway and discuss how it is affected by mutations in ASD-linked genes.
Collapse
|
13
|
Lee J, Kawai K, Holt JR, Géléoc GSG. Sensory transduction is required for normal development and maturation of cochlear inner hair cell synapses. eLife 2021; 10:e69433. [PMID: 34734805 PMCID: PMC8598158 DOI: 10.7554/elife.69433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Acoustic overexposure and aging can damage auditory synapses in the inner ear by a process known as synaptopathy. These insults may also damage hair bundles and the sensory transduction apparatus in auditory hair cells. However, a connection between sensory transduction and synaptopathy has not been established. To evaluate potential contributions of sensory transduction to synapse formation and development, we assessed inner hair cell synapses in several genetic models of dysfunctional sensory transduction, including mice lacking transmembrane channel-like (Tmc) 1, Tmc2, or both, in Beethoven mice which carry a dominant Tmc1 mutation and in Spinner mice which carry a recessive mutation in transmembrane inner ear (Tmie). Our analyses reveal loss of synapses in the absence of sensory transduction and preservation of synapses in Tmc1-null mice following restoration of sensory transduction via Tmc1 gene therapy. These results provide insight into the requirement of sensory transduction for hair cell synapse development and maturation.
Collapse
Affiliation(s)
- John Lee
- Speech and Hearing Bioscience & Technology Program, Division of Medical Sciences, Harvard UniversityBostonUnited States
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Kosuke Kawai
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Jeffrey R Holt
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Neurology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Gwenaëlle SG Géléoc
- Department of Otolaryngology, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
14
|
Chen T, Rohacek AM, Caporizzo M, Nankali A, Smits JJ, Oostrik J, Lanting CP, Kücük E, Gilissen C, van de Kamp JM, Pennings RJE, Rakowiecki SM, Kaestner KH, Ohlemiller KK, Oghalai JS, Kremer H, Prosser BL, Epstein DJ. Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Dev Cell 2021; 56:1526-1540.e7. [PMID: 33964205 PMCID: PMC8137675 DOI: 10.1016/j.devcel.2021.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
In mammals, sound is detected by mechanosensory hair cells that are activated in response to vibrations at frequency-dependent positions along the cochlear duct. We demonstrate that inner ear supporting cells provide a structural framework for transmitting sound energy through the cochlear partition. Humans and mice with mutations in GAS2, encoding a cytoskeletal regulatory protein, exhibit hearing loss due to disorganization and destabilization of microtubule bundles in pillar and Deiters' cells, two types of inner ear supporting cells with unique cytoskeletal specializations. Failure to maintain microtubule bundle integrity reduced supporting cell stiffness, which in turn altered cochlear micromechanics in Gas2 mutants. Vibratory responses to sound were measured in cochleae from live mice, revealing defects in the propagation and amplification of the traveling wave in Gas2 mutants. We propose that the microtubule bundling activity of GAS2 imparts supporting cells with mechanical properties for transmitting sound energy through the cochlea.
Collapse
Affiliation(s)
- Tingfang Chen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amir Nankali
- The Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Jeroen J Smits
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erdi Kücük
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jiddeke M van de Kamp
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin K Ohlemiller
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John S Oghalai
- The Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, USA
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Krohs C, Bordeynik-Cohen M, Messika-Gold N, Elkon R, Avraham KB, Nothwang HG. Expression pattern of cochlear microRNAs in the mammalian auditory hindbrain. Cell Tissue Res 2021; 383:655-666. [PMID: 33156384 PMCID: PMC7904729 DOI: 10.1007/s00441-020-03290-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022]
Abstract
The auditory system comprises the auditory periphery, engaged in sound transduction and the central auditory system, implicated in auditory information processing and perception. Recently, evidence mounted that the mammalian peripheral and central auditory systems share a number of genes critical for proper development and function. This bears implication for auditory rehabilitation and evolution of the auditory system. To analyze to which extent microRNAs (miRNAs) belong to genes shared between both systems, we characterize the expression pattern of 12 cochlea-abundant miRNAs in the central auditory system. Quantitative real-time PCR (qRT-PCR) demonstrated expression of all 12 genes in the cochlea, the auditory hindbrain and the non-auditory prefrontal cortex (PFC) at embryonic stage (E)16 and postnatal stages (P)0 and P30. Eleven of them showed differences in expression between tissues and nine between the developmental time points. Hierarchical cluster analysis revealed that the temporal expression pattern in the auditory hindbrain was more similar to the PFC than to the cochlea. Spatiotemporal expression analysis by RNA in situ hybridization demonstrated widespread expression throughout the cochlear nucleus complex (CNC) and the superior olivary complex (SOC) during postnatal development. Altogether, our data indicate that miRNAs represent a relevant class of genetic factors functioning across the auditory system. Given the importance of gene regulatory network (GRN) components for development, physiology and evolution, the 12 miRNAs provide promising entry points to gain insights into their molecular underpinnings in the auditory system.
Collapse
Affiliation(s)
- Constanze Krohs
- Neurogenetics Group and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - Mor Bordeynik-Cohen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Naama Messika-Gold
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Hans Gerd Nothwang
- Neurogenetics Group and Cluster of Excellence Hearing4All, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Science, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
- Department of Neuroscience, Center of Excellence Hearing4All, Carl Von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
16
|
Wang M, Zhang C, Lin S, Wang Y, Seicol BJ, Ariss RW, Xie R. Biased auditory nerve central synaptopathy is associated with age-related hearing loss. J Physiol 2021; 599:1833-1854. [PMID: 33450070 DOI: 10.1113/jp281014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sound information is transmitted by different subtypes of spiral ganglion neurons (SGN) from the ear to the brain. Selective damage of SGN peripheral synapses (cochlear synaptopathy) is widely recognized as one of the primary mechanisms of hearing loss, whereas the mechanisms at the SGN central synapses remain unclear. We report that different subtypes of SGN central synapses converge at different ratios onto individual target cochlear nucleus neurons with distinct physiological properties, and show biased morphological and physiological changes during age-related hearing loss (ARHL). The results reveal a new dimension in cochlear nucleus neural circuitry that systematically reassembles and processes auditory information from different SGN subtypes, which is altered during ageing and probably contributes to the development of ARHL. In addition to known cochlear synaptopathy, the present study shows that SGN central synapses are also pathologically changed during ageing, which collectively helps us better understand the structure and function of SGNs during ARHL. ABSTRACT Sound information is transmitted from the cochlea to the brain by different subtypes of spiral ganglion neurons (SGN), which show varying degrees of vulnerability under pathological conditions. Selective cochlear synaptopathy, the preferential damage of certain subtypes of SGN peripheral synapses, has been recognized as one of the main mechanisms of hearing loss. The organization and function of the auditory nerve (AN) central synapses from different subtypes of SGNs remain unclear, including how different AN synapses reassemble onto individual neurons in the cochlear nucleus, as well as how they differentially change during hearing loss. Combining immunohistochemistry with electrophysiology, we investigated the convergence pattern and subtype-specific synaptopathy of AN synapses at the endbulb of Held, as well as the response properties of their postsynaptic bushy neurons in CBA/CaJ mice of either sex under normal hearing and age-related hearing loss (ARHL). We found that calretinin-expressing (type Ia ) and non-calretinin-expressing (type Ib /Ic ) endbulbs converged along a continuum of different ratios onto individual bushy neurons with varying physiological properties. Endbulbs degenerated during ageing in parallel with ARHL. Furthermore, the degeneration was more severe in non-calretinin-expressing synapses, which correlated with a gradual decrease in bushy neuron subpopulation predominantly innervated by these inputs. These synaptic and cellular changes were profound in middle-aged mice when their hearing thresholds were still relatively normal and prior to severe ARHL. Our findings suggest that biased AN central synaptopathy and the correlated shift in cochlear nucleus neuronal composition play significant roles in weakened auditory input and altered central auditory processing during ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Chuangeng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Shengyin Lin
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Yong Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Benjamin J Seicol
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Robert W Ariss
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ruili Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Barker AJ, Koch U, Lewin GR, Pyott SJ. Hearing and Vocalizations in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:157-195. [PMID: 34424516 DOI: 10.1007/978-3-030-65943-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since their discovery, naked mole-rats have been speaking to us. Early field studies noted their extensive vocalizations, and scientists who are fortunate enough to spend time with these creatures in the laboratory setting cannot help but notice their constant peeping, chirruping and grunting (Hill et al., Proc Zool Soc Lond 128:455-514, 1957). Yet, few dwell on the function of these chirps and peeps, being instead drawn to the many other extraordinary aspects of naked mole-rat physiology detailed throughout this book. Still, no biology is complete without a description of how an organism communicates. While the field of naked mole-rat bioacoustics and acoustic communication has been largely silent for many years, we highlight recent progress in understanding how and what Heterocephalus glaber hears and which vocalizations it uses. These efforts are essential for a complete understanding of naked mole-rat cooperation, society and even culture.
Collapse
Affiliation(s)
- Alison J Barker
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, Frankfurt am Main, Germany
| | - Ursula Koch
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Voorn RA, Vogl C. Molecular Assembly and Structural Plasticity of Sensory Ribbon Synapses-A Presynaptic Perspective. Int J Mol Sci 2020; 21:E8758. [PMID: 33228215 PMCID: PMC7699581 DOI: 10.3390/ijms21228758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, specialized ribbon-type synapses between sensory inner hair cells (IHCs) and postsynaptic spiral ganglion neurons ensure the temporal precision and indefatigability of synaptic sound encoding. These high-through-put synapses are presynaptically characterized by an electron-dense projection-the synaptic ribbon-which provides structural scaffolding and tethers a large pool of synaptic vesicles. While advances have been made in recent years in deciphering the molecular anatomy and function of these specialized active zones, the developmental assembly of this presynaptic interaction hub remains largely elusive. In this review, we discuss the dynamic nature of IHC (pre-) synaptogenesis and highlight molecular key players as well as the transport pathways underlying this process. Since developmental assembly appears to be a highly dynamic process, we further ask if this structural plasticity might be maintained into adulthood, how this may influence the functional properties of a given IHC synapse and how such plasticity could be regulated on the molecular level. To do so, we take a closer look at other ribbon-bearing systems, such as retinal photoreceptors and pinealocytes and aim to infer conserved mechanisms that may mediate these phenomena.
Collapse
MESH Headings
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Co-Repressor Proteins/genetics
- Co-Repressor Proteins/metabolism
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/ultrastructure
- Mechanotransduction, Cellular
- Mice
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuronal Plasticity/genetics
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Rats
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission/genetics
- Synaptic Vesicles/metabolism
- Synaptic Vesicles/ultrastructure
Collapse
Affiliation(s)
- Roos Anouk Voorn
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany
| |
Collapse
|
19
|
Abstract
During development and adulthood, the normal activity of the auditory nerve plays a critical role in the maintenance of both fundamental structural, molecular, and functional parameters of auditory nerve synapses, and the postsynaptic excitatory or inhibitory neurons within the cochlear nucleus (CN). In addition, normal activity within the synaptic circuits of the CN is key to developing and maintaining appropriate synapse connectivity as well as the initiation of binaural sound processing in the superior olivary complex (SOC). Development plays a critical role in the proper neuronal connectivity and establishes a topographic map along the entire auditory pathway. Furthermore, evidence shows that neurons and synaptic circuits in the auditory brainstem are not hard-wired, but instead are plastic in response to hearing deficits. Whether this plasticity in response to hearing loss is compensatory or pathological is still unknown.
Collapse
Affiliation(s)
- María Eulalia Rubio
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh, School of Medicine, BST3 Building, room #10016, 3501 Fifth Venue, Pittsburgh, PA, 15261
| |
Collapse
|
20
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
21
|
Scheffel JL, Mohammed SS, Borcean CK, Parng AJ, Yoon HJ, Gutierrez DA, Yu WM. Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea. Neuroscience 2020; 446:43-58. [PMID: 32866604 DOI: 10.1016/j.neuroscience.2020.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Cochlear neurons innervate the brainstem cochlear nucleus in a tonotopic fashion according to their sensitivity to different sound frequencies (known as the neuron's characteristic frequency). It is unclear whether these neurons with distinct characteristic frequencies use different strategies to innervate the cochlear nucleus. Here, we use genetic approaches to differentially label spiral ganglion neurons (SGNs) and their auditory nerve fibers (ANFs) that relay different characteristic frequencies in mice. We found that SGN populations that supply distinct regions of the cochlea employ different cellular strategies to target and innervate neurons in the cochlear nucleus during tonotopic map formation. ANFs that will exhibit high-characteristic frequencies initially overshoot and sample a large area of targets before refining their connections to correct targets, while fibers that will exhibit low-characteristic frequencies are more accurate in initial targeting and undergo minimal target sampling. Moreover, similar to their peripheral projections, the central projections of ANFs show a gradient of development along the tonotopic axis, with outgrowth and branching of prospective high-frequency ANFs initiated about two days earlier than those of prospective low-frequency ANFs. The processes of synaptogenesis are similar between high- and low-frequency ANFs, but a higher proportion of low-frequency ANFs form smaller endbulb synaptic endings. These observations reveal the diversity of cellular mechanisms that auditory neurons that will become functionally distinct use to innervate their targets during tonotopic map formation.
Collapse
Affiliation(s)
- Jennifer L Scheffel
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Samiha S Mohammed
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Chloe K Borcean
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Annie J Parng
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Hyun Ju Yoon
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Darwin A Gutierrez
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States.
| |
Collapse
|
22
|
Tawfik B, Wang L. Synaptic competition: ‘to be or not to be’ the calyx of Held? J Physiol 2020; 598:4425-4426. [DOI: 10.1113/jp280560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bassam Tawfik
- Program in Neurosciences and Mental Health SickKids Research Institute Toronto Ontario M5G 1X8 Canada
- Department of Physiology University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Lu‐Yang Wang
- Program in Neurosciences and Mental Health SickKids Research Institute Toronto Ontario M5G 1X8 Canada
- Department of Physiology University of Toronto Toronto Ontario M5S 1A8 Canada
| |
Collapse
|
23
|
The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement during Development. eNeuro 2020; 7:ENEURO.0179-20.2020. [PMID: 32675174 PMCID: PMC7418533 DOI: 10.1523/eneuro.0179-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
The mammalian cochlea undergoes a highly dynamic process of growth and innervation during development. This process includes spiral ganglion neuron (SGN) branch refinement, a process whereby Type I SGNs undergo a phase of “debranching” before forming unramified synaptic contacts with inner hair cells. Using Sox2CreERT2 and R26RtdTomato as a strategy to genetically label individual SGNs in mice of both sexes, we report on both a time course of SGN branch refinement and a role for P2rx3 in this process. P2rx3 is an ionotropic ATP receptor that was recently implicated in outer hair cell spontaneous activity and Type II SGN synapse development (Ceriani et al., 2019), but its function in Type I SGN development is unknown. Here, we demonstrate that P2rx3 is expressed by Type I SGNs and hair cells during developmental periods that coincide with SGN branching refinement. P2rx3 null mice show SGNs with more complex branching patterns on their peripheral synaptic terminals and near their cell bodies around the time of birth. Loss of P2rx3 does not appear to confer general changes in axon outgrowth or hair cell formation, and alterations in branching complexity appear to mostly recover by postnatal day (P)6. However, when we examined the distribution of Type I SGN subtypes using antibodies that bind Calb2, Calb1, and Pou4f1, we found that P2rx3 null mice showed an increased proportion of SGNs that express Calb2. These data suggest P2rx3 may be necessary for normal Type I SGN differentiation in addition to serving a role in branch refinement.
Collapse
|
24
|
Sierksma MC, Slotman JA, Houtsmuller AB, Borst JGG. Structure-function relation of the developing calyx of Held synapse in vivo. J Physiol 2020; 598:4603-4619. [PMID: 33439501 PMCID: PMC7689866 DOI: 10.1113/jp279976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS During development the giant, auditory calyx of Held forms a one-to-one connection with a principal neuron of the medial nucleus of the trapezoid body. While anatomical studies described that most of the target cells are temporarily contacted by multiple calyces, multi-calyceal innervation was only sporadically observed in in vivo recordings, suggesting a structure-function discrepancy. We correlated synaptic strength of inputs, identified in in vivo recordings, with post hoc labelling of the recorded neuron and synaptic terminals containing vesicular glutamate transporters (VGluT). During development only one input increased to the level of the calyx of Held synapse, and its strength correlated with the large VGluT cluster contacting the postsynaptic soma. As neither competing strong inputs nor multiple large VGluT clusters on a single cell were observed, our findings did not indicate a structure-function discrepancy. ABSTRACT In adult rodents, a principal neuron in the medial nucleus of the trapezoid (MNTB) is generally contacted by a single, giant axosomatic terminal called the calyx of Held. How this one-on-one relation is established is still unknown, but anatomical evidence suggests that during development principal neurons are innervated by multiple calyces, which may indicate calyceal competition. However, in vivo electrophysiological recordings from principal neurons indicated that only a single strong synaptic connection forms per cell. To test whether a mismatch exists between synaptic strength and terminal size, we compared the strength of synaptic inputs with the morphology of the synaptic terminals. In vivo whole-cell recordings of the MNTB neurons from newborn Wistar rats of either sex were made while stimulating their afferent axons, allowing us to identify multiple inputs. The strength of the strongest input increased to calyceal levels in a few days across cells, while the strength of the second strongest input was stable. The recorded cells were subsequently immunolabelled for vesicular glutamate transporters (VGluT) to reveal axosomatic terminals with structured-illumination microscopy. Synaptic strength of the strongest input was correlated with the contact area of the largest VGluT cluster at the soma (r = 0.8), and no indication of a mismatch between structure and strength was observed. Together, our data agree with a developmental scheme in which one input strengthens and becomes the calyx of Held, but not with multi-calyceal competition.
Collapse
Affiliation(s)
- Martijn C Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands.,Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, F-75012, France
| | - Johan A Slotman
- Department of Pathology-Optical Imaging Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology-Optical Imaging Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| |
Collapse
|
25
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
26
|
Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019; 39:9852-9863. [PMID: 31666356 PMCID: PMC6891051 DOI: 10.1523/jneurosci.0886-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knock-out (KO) mouse. Therefore, the AGS may be considered a mouse model of sensory hypersensitivity. Hyperactive circuits are hypothesized to underlie dysfunction in a number of brain regions in patients with FXS and Fmr1 KO mice, and the AGS may be a result of this. But the specific cell types and brain regions underlying AGSs in the Fmr1 KO are unknown. We used conditional deletion or expression of Fmr1 in different cell populations to determine whether Fmr1 deletion in those cells was sufficient or necessary, respectively, for the AGS phenotype in males. Our data indicate that Fmr1 deletion in glutamatergic neurons that express vesicular glutamate transporter 2 (VGlut2) and are located in subcortical brain regions is sufficient and necessary to cause AGSs. Furthermore, the deletion of Fmr1 in glutamatergic neurons of the inferior colliculus is necessary for AGSs. When we demonstrate necessity, we show that Fmr1 expression in either the larger population of VGlut2-expressing glutamatergic neurons or the smaller population of inferior collicular glutamatergic neurons-in an otherwise Fmr1 KO mouse-eliminates AGSs. Therefore, targeting these neuronal populations in FXS and autism may be part of a therapeutic strategy to alleviate sensory hypersensitivity.SIGNIFICANCE STATEMENT Sensory hypersensitivity in fragile X syndrome (FXS) and autism patients significantly interferes with quality of life. Audiogenic seizures (AGSs) are arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knockout-and may be considered a model of sensory hypersensitivity in FXS. We provide the clearest and most precise genetic evidence to date for the cell types and brain regions involved in causing AGSs in the Fmr1 knockout and, more broadly, for any mouse mutant. The expression of Fmr1 in these same cell types in an otherwise Fmr1 knockout eliminates AGSs indicating possible cellular targets for alleviating sensory hypersensitivity in FXS and other forms of autism.
Collapse
Affiliation(s)
| | | | - Seth Hays
- Department of Neuroscience, Dallas, and
| | | | | | | | - Karen Pawlowski
- Department of Otolaryngology and Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9035
| | | | | |
Collapse
|
27
|
Manchanda A, Chatterjee P, Bonventre JA, Haggard DE, Kindt KS, Tanguay RL, Johnson CP. Otoferlin Depletion Results in Abnormal Synaptic Ribbons and Altered Intracellular Calcium Levels in Zebrafish. Sci Rep 2019; 9:14273. [PMID: 31582816 PMCID: PMC6776657 DOI: 10.1038/s41598-019-50710-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/13/2019] [Indexed: 01/10/2023] Open
Abstract
The protein otoferlin plays an essential role at the sensory hair cell synapse. Mutations in otoferlin result in deafness and depending on the species, mild to strong vestibular deficits. While studies in mouse models suggest a role for otoferlin in synaptic vesicle exocytosis and endocytosis, it is unclear whether these functions are conserved across species. To address this question, we characterized the impact of otoferlin depletion in zebrafish larvae and found defects in synaptic vesicle recycling, abnormal synaptic ribbons, and higher resting calcium concentrations in hair cells. We also observed abnormal expression of the calcium binding hair cell genes s100s and parvalbumin, as well as the nogo related proteins rtn4rl2a and rtn4rl2b. Exogenous otoferlin partially restored expression of genes affected by endogenous otoferlin depletion. Our results suggest that in addition to vesicle recycling, depletion of otoferlin disrupts resting calcium levels, alters synaptic ribbon architecture, and perturbs transcription of hair cells specific genes during zebrafish development.
Collapse
Affiliation(s)
- Aayushi Manchanda
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Paroma Chatterjee
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Katie S Kindt
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Maryland, USA
| | - Robert L Tanguay
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Colin P Johnson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA.
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
28
|
Muthu V, Rohacek AM, Yao Y, Rakowiecki SM, Brown AS, Zhao YT, Meyers J, Won KJ, Ramdas S, Brown CD, Peterson KA, Epstein DJ. Genomic architecture of Shh-dependent cochlear morphogenesis. Development 2019; 146:dev.181339. [PMID: 31488567 DOI: 10.1242/dev.181339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
The mammalian cochlea develops from a ventral outgrowth of the otic vesicle in response to Shh signaling. Mouse embryos lacking Shh or its essential signal transduction components display cochlear agenesis; however, a detailed understanding of the transcriptional network mediating this process is unclear. Here, we describe an integrated genomic approach to identify Shh-dependent genes and associated regulatory sequences that promote cochlear duct morphogenesis. A comparative transcriptome analysis of otic vesicles from mouse mutants exhibiting loss (Smoecko ) and gain (Shh-P1) of Shh signaling reveal a set of Shh-responsive genes partitioned into four expression categories in the ventral half of the otic vesicle. This target gene classification scheme provides novel insight into several unanticipated roles for Shh, including priming the cochlear epithelium for subsequent sensory development. We also mapped regions of open chromatin in the inner ear by ATAC-seq that, in combination with Gli2 ChIP-seq, identified inner ear enhancers in the vicinity of Shh-responsive genes. These datasets are useful entry points for deciphering Shh-dependent regulatory mechanisms involved in cochlear duct morphogenesis and establishment of its constituent cell types.
Collapse
Affiliation(s)
- Victor Muthu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying-Tao Zhao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Meyers
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Presynaptic Mitochondria Volume and Abundance Increase during Development of a High-Fidelity Synapse. J Neurosci 2019; 39:7994-8012. [PMID: 31455662 DOI: 10.1523/jneurosci.0363-19.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
The calyx of Held, a large glutamatergic presynaptic terminal in the auditory brainstem undergoes developmental changes to support the high action-potential firing rates required for auditory information encoding. In addition, calyx terminals are morphologically diverse, which impacts vesicle release properties and synaptic plasticity. Mitochondria influence synaptic plasticity through calcium buffering and are crucial for providing the energy required for synaptic transmission. Therefore, it has been postulated that mitochondrial levels increase during development and contribute to the morphological-functional diversity in the mature calyx. However, the developmental profile of mitochondrial volumes and subsynaptic distribution at the calyx of Held remains unclear. To provide insight on this, we developed a helper-dependent adenoviral vector that expresses the genetically encoded peroxidase marker for mitochondria, mito-APEX2, at the mouse calyx of Held. We developed protocols to detect labeled mitochondria for use with serial block face scanning electron microscopy to carry out semiautomated segmentation of mitochondria, high-throughput whole-terminal reconstruction, and presynaptic ultrastructure in mice of either sex. Subsequently, we measured mitochondrial volumes and subsynaptic distributions at the immature postnatal day (P)7 and the mature (P21) calyx. We found an increase of mitochondria volumes in terminals and axons from P7 to P21 but did not observe differences between stalk and swelling subcompartments in the mature calyx. Based on these findings, we propose that mitochondrial volumes and synaptic localization developmentally increase to support high firing rates required in the initial stages of auditory information processing.SIGNIFICANCE STATEMENT Elucidating the developmental processes of auditory brainstem presynaptic terminals is critical to understanding auditory information encoding. Additionally, morphological-functional diversity at these terminals is proposed to enhance coding capacity. Mitochondria provide energy for synaptic transmission and can buffer calcium, impacting synaptic plasticity; however, their developmental profile to ultimately support the energetic demands of synapses following the onset of hearing remains unknown. Therefore, we created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase mito-APEX2 and expressed it at the mouse calyx of Held. Volumetric reconstructions of serial block face electron microscopy data of immature and mature labeled calyces reveal that mitochondrial volumes are increased to support high firing rates upon maturity.
Collapse
|
30
|
Jung JS, Zhang KD, Wang Z, McMurray M, Tkaczuk A, Ogawa Y, Hertzano R, Coate TM. Semaphorin-5B Controls Spiral Ganglion Neuron Branch Refinement during Development. J Neurosci 2019; 39:6425-6438. [PMID: 31209173 PMCID: PMC6697390 DOI: 10.1523/jneurosci.0113-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/03/2019] [Accepted: 06/10/2019] [Indexed: 01/30/2023] Open
Abstract
During nervous system development, axons often undergo elaborate changes in branching patterns before circuits have achieved their mature patterns of innervation. In the auditory system, type I spiral ganglion neurons (SGNs) project their peripheral axons into the cochlear epithelium and then undergo a process of branch refinement before forming synapses with sensory hair cells. Here, we report that Semaphorin-5B (Sema5B) acts as an important mediator of this process. During cochlear development in mouse, immature hair cells express Sema5B, whereas the SGNs express both PlexinA1 and PlexinA3, which are known Sema5B receptors. In these studies, genetic sparse labeling and three-dimensional reconstruction techniques were leveraged to determine the morphologies of individual type I SGNs after manipulations of Sema5B signaling. Treating cultured mouse cochleae with Sema5B-Fc (to activate Plexin-As) led to type I SGNs with less numerous, but longer terminal branches. Conversely, cochleae from Sema5b knock-out mice showed type I SGNs with more numerous, but shorter terminal branches. In addition, conditional loss of Plxna1 in SGNs (using Bhlhb5Cre) led to increased type I SGN branching, suggesting that PlexinA1 normally responds to Sema5B in this process. In these studies, mice of either sex were used. The data presented here suggest that Sema5B-PlexinA1 signaling limits SGN terminal branch numbers without causing axonal repulsion, which is a role that distinguishes Sema5B from other Semaphorins in cochlear development.SIGNIFICANCE STATEMENT The sensorineural components of the cochlea include hair cells, which respond mechanically to sound waves, and afferent spiral ganglion neurons (SGNs), which respond to glutamate released by hair cells and transmit auditory information into the CNS. An important component of synapse formation in the cochlea is a process of SGN "debranching" whereby SGNs lose extraneous branches before developing unramified bouton endings that contact the hair cells. In this work, we have found that the transmembrane ligand Semaphorin-5B and its receptor PlexinA1 regulate the debranching process. The results in this report provide new knowledge regarding the molecular control of cochlear afferent innervation.
Collapse
Affiliation(s)
- Johnny S Jung
- Department of Biology, Georgetown University, Washington, DC 20007, and
| | - Kaidi D Zhang
- Department of Biology, Georgetown University, Washington, DC 20007, and
| | - Zhirong Wang
- Department of Biology, Georgetown University, Washington, DC 20007, and
| | - Mark McMurray
- Departments of Otorhinolaryngology Head and Neck Surgery
| | - Andrew Tkaczuk
- Departments of Otorhinolaryngology Head and Neck Surgery
| | - Yoko Ogawa
- Departments of Otorhinolaryngology Head and Neck Surgery
| | - Ronna Hertzano
- Departments of Otorhinolaryngology Head and Neck Surgery
- Anatomy and Neurobiology, and
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington, DC 20007, and
| |
Collapse
|
31
|
Coate TM, Scott MK, Gurjar MC. Current concepts in cochlear ribbon synapse formation. Synapse 2019; 73:e22087. [PMID: 30592086 PMCID: PMC6573016 DOI: 10.1002/syn.22087] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and spiral ganglion neurons (SGNs) in the cochlea together are sophisticated "sensorineural" structures that transduce auditory information from the outside world into the brain. Hair cells and SGNs are joined by glutamatergic ribbon-type synapses composed of a molecular machinery rivaling in complexity the mechanoelectric transduction components found at the apical side of the hair cell. The cochlear hair cell ribbon synapse has received much attention lately because of recent and important findings related to its damage (sometimes termed "synaptopathy") as a result of noise overexposure. During development, ribbon synapses between type I SGNs and inner hair cells form in the time window between birth and hearing onset and is a process coordinated with type I SGN myelination, spontaneous activity, synaptic pruning, and innervation by efferents. In this review, we highlight new findings regarding the diversity of type I SGNs and inner hair cell synapses, and the molecular mechanisms of selective hair cell targeting. Also discussed are cell adhesion molecules and protein constituents of the ribbon synapse, and how these factors participate in ribbon synapse formation. We also note interesting new insights into the morphological development of type II SGNs, and the potential for cochlear macrophages as important players in protecting SGNs. We also address recent studies demonstrating that the structural and physiological profiles of the type I SGNs do not reach full maturity until weeks after hearing onset, suggesting a protracted development that is likely modulated by activity.
Collapse
Affiliation(s)
- Thomas M. Coate
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| | - M. Katie Scott
- Department of Biological Sciences and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907. USA
| | - Mansa C. Gurjar
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| |
Collapse
|
32
|
Barone CM, Douma S, Reijntjes DOJ, Browe BM, Köppl C, Klump G, Park TJ, Pyott SJ. Altered cochlear innervation in developing and mature naked and Damaraland mole rats. J Comp Neurol 2019; 527:2302-2316. [PMID: 30861124 PMCID: PMC6767702 DOI: 10.1002/cne.24682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/04/2023]
Abstract
Compared to many other rodent species, naked mole rats (Heterocephalus glaber) have elevated auditory thresholds, poor frequency selectivity, and limited ability to localize sound. Because the cochlea is responsible for encoding and relaying auditory signals to the brain, we used immunofluorescence and quantitative image analysis to examine cochlear innervation in mature and developing naked mole rats compared to mice (Mus musculus), gerbils (Meriones unguiculatus), and Damaraland mole rats (Fukomys damarensis), another subterranean rodent. In comparison to mice and gerbils, we observed alterations in afferent and efferent innervation as well as their patterns of developmental refinement in naked and Damaraland mole rats. These alterations were, however, not always shared similarly between naked and Damaraland mole rats. Most conspicuously, in both naked and Damaraland mole rats, inner hair cell (IHC) afferent ribbon density was reduced, whereas outer hair cell afferent ribbon density was increased. Naked and Damaraland mole rats also showed reduced lateral and medial efferent terminal density. Developmentally, naked mole rats showed reduced and prolonged postnatal reorganization of afferent and efferent innervation. Damaraland mole rats showed no evidence of postnatal reorganization. Differences in cochlear innervation specifically between the two subterranean rodents and more broadly among rodents provides insight into the cochlear mechanisms that enhance frequency sensitivity and sound localization, maturation of the auditory system, and the evolutionary adaptations occurring in response to subterranean environments.
Collapse
Affiliation(s)
- Catherine M Barone
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Sytse Douma
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniël O J Reijntjes
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brigitte M Browe
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Georg Klump
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas J Park
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Timing constraints of action potential evoked Ca 2+ current and transmitter release at a central nerve terminal. Sci Rep 2019; 9:4448. [PMID: 30872753 PMCID: PMC6418091 DOI: 10.1038/s41598-019-41120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The waveform of presynaptic action potentials (APs) regulates the magnitude of Ca2+ currents (ICa) and neurotransmitter release. However, how APs control the timing of synaptic transmission remains unclear. Using the calyx of Held synapse, we find that Na+ and K+ channels affect the timing by changing the AP waveform. Specifically, the onset of ICa depends on the repolarization but not depolarization rate of APs, being near the end of repolarization phase for narrow APs and advancing to the early repolarization phase for wide APs. Increasing AP amplitude has little effect on the activation but delays the peak time of ICa. Raising extracellular Ca2+ concentration increases the amplitude of ICa yet does not alter their onset timing. Developmental shortening of APs ensures ICa as a tail current and faithful synaptic delay, which is particularly important at the physiological temperature (35 °C) as ICa evoked by broad pseudo-APs can occur in the depolarization phase. The early onset of ICa is more prominent at 35 °C than at 22 °C, likely resulting from a temperature-dependent shift in the activation threshold and accelerated gating kinetics of Ca2+ channels. These results suggest that the timing of Ca2+ influx depends on the AP waveform dictated by voltage-gated channels and temperature.
Collapse
|
34
|
Lujan B, von Gersdorff H. Tuning auditory synapses for resilience, reliability and precision. J Physiol 2018; 595:621-622. [PMID: 28145017 DOI: 10.1113/jp273496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Brendan Lujan
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon, 97239, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon, 97239, USA
| |
Collapse
|
35
|
Shepard AR, Scheffel JL, Yu WM. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol 2018; 527:999-1011. [PMID: 30414323 DOI: 10.1002/cne.24575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Tonotopy is a key anatomical feature of the vertebrate auditory system, but little is known about the mechanisms underlying its development. Since date of birth of a neuron correlates with tonotopic position in the cochlea, we investigated if it also correlates with tonotopic position in the cochlear nucleus (CN). In the cochlea, spiral ganglion neurons are organized in a basal to apical progression along the length of the cochlea based on birthdates, with neurons in the base (responding to high-frequency sounds) born early around mouse embryonic day (E) 9.5-10.5, and those in the apex (responding to low-frequency sounds) born late around E12.5-13.5. Using a low-dose thymidine analog incorporation assay, we examine whether CN neurons are arranged in a spatial gradient according to their birthdates. Most CN neurons are born between E10.5 ānd E13.5, with a peak at E12.5. A second wave of neuron birth was observed in the dorsal cochlear nucleus (DCN) beginning on E14.5 and lasts until E18.5. Large excitatory neurons were born in the first wave, and small local circuit neurons were born in the second. No spatial gradient of cell birth was observed in the DCN. In contrast, neurons in the anteroventral cochlear nucleus (AVCN) were found to be arranged in a dorsal to ventral progression according to their birthdates, which are aligned with the tonotopic axis. Most of these AVCN neurons are endbulb-innervated bushy cells. The correlation between birthdate and tonotopic position suggests testable mechanisms for specification of tonotopic position.
Collapse
Affiliation(s)
- Austin R Shepard
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Hirano T. Visualization of Exo- and Endocytosis of AMPA Receptors During Hippocampal Synaptic Plasticity Around Postsynaptic-Like Membrane Formed on Glass Surface. Front Cell Neurosci 2018; 12:442. [PMID: 30519162 PMCID: PMC6258823 DOI: 10.3389/fncel.2018.00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Regulation of exo- and endocytosis of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor (AMPAR) plays a critical role in the expression of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD) at excitatory central synapses. Enhanced AMPAR exocytosis or endocytosis has been suggested to contribute to LTP or LTD, respectively. However, several unsettled fundamental questions have remained about AMPAR exo- and endocytosis in the basal condition and during synaptic plasticity: (1) Does the size of each exo- or endocytosis event, and/or do the frequencies of these events change during LTP or LTD? If they change, what are the time courses of the respective changes? (2) Where does the exo- or endocytosis preferentially occur in each condition: inside or in the vicinity of postsynaptic membrane, or in the extrasynaptic membrane? (3) Do different types of AMPAR, such as GluA1 homo-tetramer, GluA1/2 hetero-tetramer and GluA2/3 hetero-tetramer, show distinct exo- and endocytosis changes? To address these questions, we developed new methods to observe individual events of AMPAR exo- or endocytosis with a high signal to noise (SN) ratio in a culture preparation using total internal reflection fluorescence microscopy (TIRFM). In these studies, hippocampal neurons were cultured on a neurexin (NRX)-coated glass coverslip, which induced formation of postsynaptic-like membrane (PSLM) directly on the glass surface. Then, a super-ecliptic pHluorin (SEP)-tagged AMPAR subunit such as GluA1 (GluA1-SEP) was expressed in neurons and its fluorescence changes during LTP induced by high frequency electrical field stimulation were observed with TIRFM, which showed different time courses of exocytosis changes of GluA1-, GluA2-, or GluA3-SEP in and around PSLM. In addition, a new method to detect individual endocytosis events of AMPAR was developed by combining TIFRM observation of GluA-SEP around PSLM with a rapid extracellular pH exchange method using a U-tube. Recent results on exo- and endocytosis changes of GluA-SEP during N-methyl-D-aspartate (NMDA)-induced LTD suggested that suppression of AMPAR exocytosis rather than enhancement of AMPAR endocytosis primarily contributes to LTD expression, although the NMDA application transiently enhances clathrin-dependent endocytosis of GluA1-containing AMPAR.
Collapse
Affiliation(s)
- Tomoo Hirano
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Altered Auditory Processing, Filtering, and Reactivity in the Cntnap2 Knock-Out Rat Model for Neurodevelopmental Disorders. J Neurosci 2018; 38:8588-8604. [PMID: 30126973 DOI: 10.1523/jneurosci.0759-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Sensory processing, and auditory processing in particular, is altered in individuals with neurodevelopmental disorders such as autism spectrum disorders (ASDs). The typical maturation of the auditory system is perturbed in these individuals during early development, which may underlie altered auditory reactivity that persists in later life. Of the many genes that regulate the auditory system development, loss-of-function mutations in the CNTNAP2 gene are strongly associated with language processing deficits and ASD. Therefore, using a novel Cntnap2 knock-out rat model, we tested the impact of Cntnap2 loss on auditory processing, filtering, and reactivity throughout development and young adulthood in male and female animals. Although hearing thresholds were not altered in Cntnap2 knock-out animals, we found a reduction in response amplitudes and a delay in response latency of the auditory brainstem response (ABR) in juvenile Cntnap2 knock-out rats compared with age-matched controls. Amplitudes and latency of the ABR largely normalized by adulthood, indicating a delayed maturation of auditory processing pathways in Cntnap2 knock-out rats. Despite the reduced ABR amplitudes, adolescent Cntnap2 knock-out animals displayed increased startle reactivity accompanied by disruptions in sensory filtering and sensorimotor gating across various conditions, most of which persisted in adulthood. All of these observations show striking parallels to disruptions reported in ASD. Our results also imply that developmental disruptions of sensory signal processing are associated with persistent changes in neural circuitries responsible for implicit auditory evoked behavior, emphasizing the need for interventions that target sensory processing disruptions early during development in ASD.SIGNIFICANCE STATEMENT This is the first study of brainstem auditory processing in a novel knock-out rat model with very high construct and face validity for autism spectrum disorders. Electrophysiological and behavioral measures of implicit auditory-evoked responses were systematically taken across developmental stages. Auditory processing, filtering, and reactivity disruptions show striking similarities to observations in autism. We also show for the first time that, whereas auditory brainstem responses normalize by adulthood, disruptions in brainstem-mediated auditory-evoked behavior persist. This indicates that early developmental perturbations in sensory processing can cause permanent maladaptive changes in circuitries responsible for auditory reactivity, underlining the importance for interventions early during development aiming at normalizing sensory processing.
Collapse
|
38
|
Li T, Bellen HJ, Groves AK. Using Drosophila to study mechanisms of hereditary hearing loss. Dis Model Mech 2018; 11:11/6/dmm031492. [PMID: 29853544 PMCID: PMC6031363 DOI: 10.1242/dmm.031492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Johnston's organ - the hearing organ of Drosophila - has a very different structure and morphology to that of the hearing organs of vertebrates. Nevertheless, it is becoming clear that vertebrate and invertebrate auditory organs share many physiological, molecular and genetic similarities. Here, we compare the molecular and cellular features of hearing organs in Drosophila with those of vertebrates, and discuss recent evidence concerning the functional conservation of Usher proteins between flies and mammals. Mutations in Usher genes cause Usher syndrome, the leading cause of human deafness and blindness. In Drosophila, some Usher syndrome proteins appear to physically interact in protein complexes that are similar to those described in mammals. This functional conservation highlights a rational role for Drosophila as a model for studying hearing, and for investigating the evolution of auditory organs, with the aim of advancing our understanding of the genes that regulate human hearing and the pathogenic mechanisms that lead to deafness.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
39
|
Yin XL, Jie HQ, Liang M, Gong LN, Liu HW, Pan HL, Xing YZ, Shi HB, Li CY, Wang LY, Yin SK. Accelerated Development of the First-Order Central Auditory Neurons With Spontaneous Activity. Front Mol Neurosci 2018; 11:183. [PMID: 29904342 PMCID: PMC5990604 DOI: 10.3389/fnmol.2018.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
In developing sensory systems, elaborate morphological connectivity between peripheral cells and first-order central neurons emerges via genetic programming before the onset of sensory activities. However, how the first-order central neurons acquire the capacity to interface with peripheral cells remains elusive. By making patch-clamp recordings from mouse brainstem slices, we found that a subset of neurons in the cochlear nuclei, the first central station to receive peripheral acoustic impulses, exhibits spontaneous firings (SFs) as early as at birth, and the fraction of such neurons increases during the prehearing period. SFs are reduced but not eliminated by a cocktail of blockers for excitatory and inhibitory synaptic inputs, implicating the involvement of intrinsic pacemaker channels. Furthermore, we demonstrate that these intrinsic firings (IFs) are largely driven by hyperpolarization- and cyclic nucleotide-gated channel (HCN) mediated currents (Ih), as evidenced by their attenuation in the presence of HCN blockers or in neurons from HCN1 knockout mice. Interestingly, genetic deletion of HCN1 cannot be fully compensated by other pacemaker conductances and precludes age-dependent up regulation in the fraction of spontaneous active neurons and their firing rate. Surprisingly, neurons with SFs show accelerated development in excitability, spike waveform and firing pattern as well as synaptic pruning towards mature phenotypes compared to those without SFs. Our results imply that SFs of the first-order central neurons may reciprocally promote their wiring and firing with peripheral inputs, potentially enabling the correlated activity and crosstalk between the developing brain and external environment.
Collapse
Affiliation(s)
- Xin-Lu Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Qun Jie
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liang
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Na Gong
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Lai Pan
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Zhi Xing
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Yan Li
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, Department of Physiology, Sick Kids Research Institute, Toronto, ON, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Zhang B, Gokce O, Hale WD, Brose N, Südhof TC. Autism-associated neuroligin-4 mutation selectively impairs glycinergic synaptic transmission in mouse brainstem synapses. J Exp Med 2018; 215:1543-1553. [PMID: 29724786 PMCID: PMC5987923 DOI: 10.1084/jem.20172162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/25/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Loss-of-function mutations of the human postsynaptic cell-adhesion protein neuroligin-4 have been repeatedly associated with autism, but the precise synaptic function of neuroligin-4 that may account for its role in autism remains unclear. Here, we show in murine brainstem synapses that neuroligin-4 is selectively required for glycinergic synaptic transmission in mice. In human patients, loss-of-function mutations of the postsynaptic cell-adhesion molecule neuroligin-4 were repeatedly identified as monogenetic causes of autism. In mice, neuroligin-4 deletions caused autism-related behavioral impairments and subtle changes in synaptic transmission, and neuroligin-4 was found, at least in part, at glycinergic synapses. However, low expression levels precluded a comprehensive analysis of neuroligin-4 localization, and overexpression of neuroligin-4 puzzlingly impaired excitatory but not inhibitory synaptic function. As a result, the function of neuroligin-4 remains unclear, as does its relation to other neuroligins. To clarify these issues, we systematically examined the function of neuroligin-4, focusing on excitatory and inhibitory inputs to defined projection neurons of the mouse brainstem as central model synapses. We show that loss of neuroligin-4 causes a profound impairment of glycinergic but not glutamatergic synaptic transmission and a decrease in glycinergic synapse numbers. Thus, neuroligin-4 is essential for the organization and/or maintenance of glycinergic synapses.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Ozgun Gokce
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - W Dylan Hale
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
41
|
Yang L, Chen D, Qu T, Ding T, Yan A, Gong P, Liu Y, Zhang J, Gong S, Yang S, Peng H, Liu K. Maximal number of pre-synaptic ribbons are formed in cochlear region corresponding to middle frequency in mice. Acta Otolaryngol 2018; 138:25-30. [PMID: 28949268 DOI: 10.1080/00016489.2017.1367417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate whether there are more quantitative pre-synaptic ribbons formed in the cochlear region corresponding to middle-frequency in cochlea of mice. METHODS Counts of pre-synaptic ribbons were performed using immunostaining and laser confocal microscopy. Hearing thresholds and function of ribbon synapses were estimated by auditory brain response (ABR) and compound action potential (CAP). Cochlear mapping has been achieved to match the frequencies and corresponding regions along the cochlear spiral. RESULTS The number of pre-synaptic ribbons in per inner hair cell (IHC) has been found to increase gradually from the base turn, the maximal quantity appeared at the region of 50-70% from the apex. Next, ABR thresholds showed that there was the lowest ABR threshold in the frequency around 8-16 kHz, corresponding to the region of 50-70% from the apex according to the cochlear mapping. Further, CAP amplitudes were estimated, and the maximal value identified at the same frequency (8-16 kHz). CONCLUSIONS Maximal number of pre-synaptic ribbons is formed in the cochlear region of middle frequency in mice, coupling with the lowest ABR threshold and highest CAP amplitudes. Our study shows that the middle frequency (8-16 kHz) could be the most sensitive region to sound stimuli in mice.
Collapse
Affiliation(s)
- Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - DaiShi Chen
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - TengFei Qu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - TongHui Ding
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - AiHui Yan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Pinggui Gong
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yunyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Junjun Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - ShuSheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - ShiMing Yang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Hox2 Genes Are Required for Tonotopic Map Precision and Sound Discrimination in the Mouse Auditory Brainstem. Cell Rep 2017; 18:185-197. [PMID: 28052248 DOI: 10.1016/j.celrep.2016.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
Tonotopy is a hallmark of auditory pathways and provides the basis for sound discrimination. Little is known about the involvement of transcription factors in brainstem cochlear neurons orchestrating the tonotopic precision of pre-synaptic input. We found that in the absence of Hoxa2 and Hoxb2 function in Atoh1-derived glutamatergic bushy cells of the anterior ventral cochlear nucleus, broad input topography and sound transmission were largely preserved. However, fine-scale synaptic refinement and sharpening of isofrequency bands of cochlear neuron activation upon pure tone stimulation were impaired in Hox2 mutants, resulting in defective sound-frequency discrimination in behavioral tests. These results establish a role for Hox factors in tonotopic refinement of connectivity and in ensuring the precision of sound transmission in the mammalian auditory circuit.
Collapse
|
43
|
Rohacek AM, Bebee TW, Tilton RK, Radens CM, McDermott-Roe C, Peart N, Kaur M, Zaykaner M, Cieply B, Musunuru K, Barash Y, Germiller JA, Krantz ID, Carstens RP, Epstein DJ. ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev Cell 2017; 43:318-331.e5. [PMID: 29107558 PMCID: PMC5687886 DOI: 10.1016/j.devcel.2017.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
Abstract
Alternative splicing contributes to gene expression dynamics in many tissues, yet its role in auditory development remains unclear. We performed whole-exome sequencing in individuals with sensorineural hearing loss (SNHL) and identified pathogenic mutations in Epithelial Splicing-Regulatory Protein 1 (ESRP1). Patient-derived induced pluripotent stem cells showed alternative splicing defects that were restored upon repair of an ESRP1 mutant allele. To determine how ESRP1 mutations cause hearing loss, we evaluated Esrp1-/- mouse embryos and uncovered alterations in cochlear morphogenesis, auditory hair cell differentiation, and cell fate specification. Transcriptome analysis revealed impaired expression and splicing of genes with essential roles in cochlea development and auditory function. Aberrant splicing of Fgfr2 blocked stria vascularis formation due to erroneous ligand usage, which was corrected by reducing Fgf9 gene dosage. These findings implicate mutations in ESRP1 as a cause of SNHL and demonstrate the complex interplay between alternative splicing, inner ear development, and auditory function.
Collapse
Affiliation(s)
- Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Thomas W Bebee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard K Tilton
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caleb M Radens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Chris McDermott-Roe
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natoya Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maninder Kaur
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael Zaykaner
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Cieply
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - John A Germiller
- Division of Pediatric Otolaryngology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian D Krantz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Butola T, Wichmann C, Moser T. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Front Synaptic Neurosci 2017; 9:14. [PMID: 29118709 PMCID: PMC5660988 DOI: 10.3389/fnsyn.2017.00014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ) proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs), but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus—the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo (“Piccolino”) present at the upstream ribbon synapses of cochlear inner hair cells (IHC), is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC), while eEPSC kinetics as well as miniature EPSCs (mEPSCs) remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP) of synaptic vesicles (SV), as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability, while the synapses still exhibited the reduced RRP, and the impairment in SV replenishment was exacerbated. We propose additive roles of Piccolo and Bassoon in SV replenishment which in turn influences the organization and size of the RRP, and an additional role of Bassoon in regulation of release probability.
Collapse
Affiliation(s)
- Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany
| | - Carolin Wichmann
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Zhang B, Seigneur E, Wei P, Gokce O, Morgan J, Südhof TC. Developmental plasticity shapes synaptic phenotypes of autism-associated neuroligin-3 mutations in the calyx of Held. Mol Psychiatry 2017; 22:1483-1491. [PMID: 27725662 PMCID: PMC5687809 DOI: 10.1038/mp.2016.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 01/21/2023]
Abstract
Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Mutations in neuroligin-3 predispose to autism, but how such mutations affect synaptic function remains incompletely understood. Here we systematically examined the effect of three autism-associated mutations, the neuroligin-3 knockout, the R451C knockin, and the R704C knockin, on synaptic transmission in the calyx of Held, a central synapse ideally suited for high-resolution analyses of synaptic transmission. Surprisingly, germline knockout of neuroligin-3 did not alter synaptic transmission, whereas the neuroligin-3 R451C and R704C knockins decreased and increased, respectively, synaptic transmission. These puzzling results prompted us to ask whether neuroligin-3 mutant phenotypes may be reshaped by developmental plasticity. Indeed, conditional knockout of neuroligin-3 during late development produced a marked synaptic phenotype, whereas conditional knockout of neuroligin-3 during early development caused no detectable effect, mimicking the germline knockout. In canvassing potentially redundant candidate genes, we identified developmentally early expression of another synaptic neurexin ligand, cerebellin-1. Strikingly, developmentally early conditional knockout of cerebellin-1 only modestly impaired synaptic transmission, whereas in contrast to the individual single knockouts, developmentally early conditional double knockout of both cerebellin-1 and neuroligin-3 severely decreased synaptic transmission. Our data suggest an unanticipated mechanism of developmental compensation whereby cerebellin-1 and neuroligin-3 functionally occlude each other during development of calyx synapses. Thus, although acute manipulations more likely reveal basic gene functions, developmental plasticity can be a major factor in shaping the overall phenotypes of genetic neuropsychiatric disorders.
Collapse
Affiliation(s)
- B Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - E Seigneur
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - P Wei
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - O Gokce
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - J Morgan
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - TC Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo. J Neurosci 2017; 36:6097-115. [PMID: 27251629 DOI: 10.1523/jneurosci.3804-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mammalian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additive conditional knock-out of dynamin 2. The developmental defect of CH in cDKO first became evident on postnatal day 3 (P3), a time point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons. This study provides compelling genetic evidence that CH formation requires dynamin 1- and 3-mediated endocytosis in vivo, indicating a critical role of dynamin in synaptic development, maturation, and subsequent maintenance in the mammalian brain. SIGNIFICANCE STATEMENT Synaptic development has been increasingly implicated in numerous brain disorders. Dynamin plays a crucial role in clathrin-mediated endocytosis and synaptic transmission at nerve terminals, but its potential role in synaptic development in the native brain circuitry is unclear. Using the calyx of Held, a giant nerve terminal in the mouse brainstem, we evaluated the role of dynamin in this process by using tissue-specific knock-out (KO) of three different dynamin isoforms (dynamin 1, 2, and 3) individually and in combination. Our data demonstrated that dynamin is required for the formation, functional maturation, and subsequent survival of the calyx of Held. This study highlights the important role of dynamin-mediated endocytosis in the development of central synapses in the mammalian brain.
Collapse
|
47
|
Mammano F, Bortolozzi M. Ca 2+ signaling, apoptosis and autophagy in the developing cochlea: Milestones to hearing acquisition. Cell Calcium 2017; 70:117-126. [PMID: 28578918 DOI: 10.1016/j.ceca.2017.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
In mammals, the sense of hearing arises through a complex sequence of morphogenetic events that drive the sculpting of the auditory sensory epithelium into its terminally functional three-dimensional shape. While the majority of the underlying mechanisms remain unknown, it has become increasingly clear that Ca2+ signaling is at center stage and plays numerous fundamental roles both in the sensory hair cells and in the matrix of non-sensory, epithelial and supporting cells, which embed them and are tightly interconnected by a dense network of gap junctions formed by connexin 26 (Cx26) and connexin 30 (Cx30) protein subunits. In this review, we discuss the intricate interplay between Ca2+ signaling, connexin expression and function, apoptosis and autophagy in the crucial steps that lead to hearing acquisition.
Collapse
Affiliation(s)
- Fabio Mammano
- Department of Physics and Astronomy "G. Galilei", University of Padua, 35131 Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Foundation for Advanced Biomedical Research, 35129 Padua, Italy; Department of Biomedical Sciences, Institute of Cell Biology and Neurobiology, Italian National Research Council, 00015 Monterotondo, (RM), Italy.
| | - Mario Bortolozzi
- Department of Physics and Astronomy "G. Galilei", University of Padua, 35131 Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Foundation for Advanced Biomedical Research, 35129 Padua, Italy; Department of Biomedical Sciences, Institute of Protein Biochemistry, Italian National Research Council, 80131 Naples (NA), Italy
| |
Collapse
|
48
|
An organotypic slice culture to study the formation of calyx of Held synapses in-vitro. PLoS One 2017; 12:e0175964. [PMID: 28419135 PMCID: PMC5395213 DOI: 10.1371/journal.pone.0175964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/03/2017] [Indexed: 12/29/2022] Open
Abstract
The calyx of Held, a large axo-somatic relay synapse containing hundreds of presynaptic active zones, is possibly the largest nerve terminal in the mammalian CNS. Studying its initial growth in-vitro might provide insights into the specification of synaptic connection size in the developing brain. However, attempts to maintain calyces of Held in organotypic cultures have not been fruitful in past studies. Here, we describe an organotypic slice culture method in which calyces of Held form in-vitro. We made coronal brainstem slices with an optimized slice angle using newborn mice in which calyces have not yet formed; the presynaptic bushy cells were genetically labeled using the Math5 promoter. After six to nine days of culturing, we readily observed large Math5—positive nerve terminals in the medial nucleus of the trapezoid body (MNTB), but not in the neighboring lateral superior olive nucleus (LSO). These calyx—like synapses expressed the Ca2+- sensor Synaptotagmin-2 (Syt-2) and the Ca2+ binding protein Parvalbumin (PV), two markers of developing calyces of Held in vivo. Application of the BMP inhibitor LDN-193189 significantly inhibited the growth of calyx synapses, demonstrating the feasibility of long-term pharmacological manipulation using this organotypic culture method. These experiments provide a method for organotypic culturing of calyces of Held, and show that the formation of calyx—like synapses onto MNTB neurons can be preserved in-vitro. Furthermore, our study adds pharmacological evidence for a role of BMP-signaling in the formation of large calyx of Held synapses.
Collapse
|
49
|
Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 2016; 65:80-87. [PMID: 27760385 DOI: 10.1016/j.semcdb.2016.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/12/2016] [Accepted: 09/25/2016] [Indexed: 01/17/2023]
Abstract
In hearing, mechanically sensitive hair cells (HCs) in the cochlea release glutamate onto spiral ganglion neurons (SGNs) to relay auditory information to the central nervous system (CNS). There are two main SGN subtypes, which differ in morphology, number, synaptic targets, innervation patterns and firing properties. About 90-95% of SGNs are the type I SGNs, which make a single bouton connection with inner hair cells (IHCs) and have been well described in the canonical auditory pathway for sound detection. However, less attention has been given to the type II SGNs, which exclusively innervate outer hair cells (OHCs). In this review, we emphasize recent advances in the molecular mechanisms that control how type II SGNs develop and form connections with OHCs, and exciting new insights into the function of type II SGNs.
Collapse
Affiliation(s)
- Kaidi D Zhang
- Department of Biology, Georgetown University, Washington, DC, USA.
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
50
|
Evolutionary trends in directional hearing. Curr Opin Neurobiol 2016; 40:111-117. [PMID: 27448850 DOI: 10.1016/j.conb.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history.
Collapse
|