1
|
Elrashidy RA, Zakaria EM, Hasan RA, Elmaghraby AM, Hassan DA, Abdelgalil RM, Abdelmohsen SR, Negm AM, Khalil AS, Eraque AMS, Ahmed RM, Sabbah WS, Ahmed AA, Ibrahim SE. Implication of endoplasmic reticulum stress and mitochondrial perturbations in remote liver injury after renal ischemia/reperfusion in rats: potential protective role of azilsartan. Redox Rep 2024; 29:2319963. [PMID: 38411133 PMCID: PMC10903753 DOI: 10.1080/13510002.2024.2319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Objectives: Distant liver injury is a complication of renal ischemia-reperfusion (I/R) injury, which imposes mortality and economic burden. This study aimed to elucidate the cross-talk of endoplasmic reticulum (ER) stress and mitochondrial perturbations in renal I/R-induced liver injury, and the potential hepatoprotective effect of azilsartan (AZL).Methods: Male albino Wister rats were pre-treated with AZL (3 mg/kg/day, PO) for 7 days then a bilateral renal I/R or sham procedure was performed. Activities of liver enzymes were assessed in plasma. The structure and ultra-structure of hepatocytes were assessed by light and electron microscopy. Markers of ER stress, mitochondrial biogenesis and apoptosis were analyzed in livers of rats.Results: Renal ischemic rats showed higher plasma levels of liver enzymes than sham-operated rats, coupled with histological and ultra-structural alterations in hepatocytes. Mechanistically, there was up-regulation of ER stress markers and suppression of mitochondrial biogenesis-related proteins and enhanced apoptosis in livers of renal ischemic rats. These abnormalities were almost abrogated by AZL pretreatment.Discussion: Our findings uncovered the involvement of mitochondrial perturbations, ER stress and apoptosis in liver injury following renal I/R, and suggested AZL as a preconditioning strategy to ameliorate remote liver injury in patients susceptible to renal I/R after adequate clinical testing.
Collapse
Affiliation(s)
- Rania A. Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Esraa M. Zakaria
- Pharmacology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rehab A. Hasan
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa M. Elmaghraby
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Dina A. Hassan
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ranya M. Abdelgalil
- Anatomy and Embryology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Shaimaa R. Abdelmohsen
- Anatomy and Embryology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira M. Negm
- Medical Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Azza S. Khalil
- Medical Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ayat M. S. Eraque
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Reem M. Ahmed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Walaa S. Sabbah
- Anatomy and Embryology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Ahmed
- Medical Student, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Samah E. Ibrahim
- Medical Physiology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, Liu J, Zhang Y, Fu Y. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): A comprehensive review. Food Chem 2024; 456:139980. [PMID: 38850607 DOI: 10.1016/j.foodchem.2024.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.
Collapse
Affiliation(s)
- Ruixuan Zou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Jing Liu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
3
|
Shi M, Pei H, Sun L, Chen W, Zong Y, Zhao Y, Du R, He Z. Optimization of the Flavonoid Extraction Process from the Stem and Leaves of Epimedium Brevicornum and Its Effects on Cyclophosphamide-Induced Renal Injury. Molecules 2023; 29:207. [PMID: 38202790 PMCID: PMC10780727 DOI: 10.3390/molecules29010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclophosphamide (CTX) is a broad-spectrum alkylated antitumor drug. It is clinically used in the treatment of a variety of cancers, and renal toxicity is one of the adverse reactions after long-term or repeated use, which not only limits the therapeutic effect of CTX, but also increases the probability of kidney lesions. The total flavonoids of Epimedium stem and leaf (EBF) and Icariin (ICA) are the main medicinal components of Epimedium, and ICA is one of the main active substances in EBF. Modern pharmacological studies have shown that EBF has a variety of biological activities such as improving osteoporosis, promoting cell proliferation, antioxidant and anti-inflammatory properties, etc. However, few studies have been conducted on the nephrotoxicity caused by optimized CTX extraction, and protein-ligand binding has not been involved. This research, through the response surface optimization extraction of EBF, obtained the best extraction conditions: ethanol concentration was 60%, solid-liquid ratio of 25:1, ultrasonic time was about 25 min. Combined with mass spectrometry (MS) analysis, EBF contained ICA, ichopidin A, ichopidin B, ichopidin C, and other components. In this study, we adopted a computational chemistry method called molecular docking, and the results show that Icariin was well bound to the antioxidant target proteins KEAP1 and NRF2, and the anti-inflammatory target proteins COX-2 and NF-κB, with free binding energies of -9.8 kcal/mol, -11.0 kcal/mol, -10.0 kcal/mol, and -8.1 kcal/mol, respectively. To study the protective effect of EBF on the nephrotoxicity of CTX, 40 male Kunming mice (weight 18 ± 22) were injected with CTX (80 mg/kg) for 7 days to establish the nephrotoxicity model and were treated with EBF (50 mg/kg, 100 mg/kg) for 8 days by gavage. After CTX administration, MDA, BUN, Cre, and IL-6 levels in serum increased, MDA increased in kidney, GPT/ALT and IL-6 increased in liver, and IL-6 increased in spleen and was significant ((p < 0.05 or (p < 0.01)). Histopathological observation showed that renal cortex glomerular atrophy necrosis, medullary inflammatory cell infiltration, and other lesions. After administration of EBF, CTX-induced increase in serum level of related indexes was reduced, and MDA in kidney, GPT/ALT and IL-6 in liver, and IL-6 in spleen were increased. At the same time, histopathological findings showed that the necrosis of medullary and corticorenal tubular epithelium was relieved at EBF (50 mg/kg) dose compared with the CTX group, and the glomerular tubular necrosis gradually became normal at EBF (100 mg/kg) dose. Western blot analysis of Keap1 and Nrf2 protein expression in kidney tissue showed that compared with model CTX group, the drug administration group could alleviate the high expression of Keap1 protein and low expression of Nrf2 protein in kidney tissue. Conclusion: After the optimal extraction of total flavonoids from the stems and leaves of Epimedium, the molecular docking technique combined with animal experiments suggested that the effective component of the total flavonoids of Epimedium might activate the Keap1-Nrf2 signaling pathway after treatment to reduce the inflammation and oxidative stress of kidney tissue, so as to reduce kidney damage and improve kidney function. Therefore, EBF may become a new natural protective agent for CTX chemotherapy in the future.
Collapse
Affiliation(s)
- Meiling Shi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Hongyan Pei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Li Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Weijia Chen
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Ying Zong
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.P.); (L.S.); (W.C.); (Y.Z.); (Y.Z.); (R.D.)
- Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
4
|
Kar F, Yıldız F, Hacioglu C, Kar E, Donmez DB, Senturk H, Kanbak G. LoxBlock-1 or Curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in Ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling. Tissue Cell 2023; 82:102114. [PMID: 37210761 DOI: 10.1016/j.tice.2023.102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In this study, the effects of the pretreatment of Curcumin and LoxBlock-1 on liver, pancreas, and cardiac dysfunction following Ischemia-Reperfusion-induced (IR) Acute Kidney Injury (AKI) were investigated through the mechanisms of oxidative stress and ferroptosis. Total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) parameters in the tissue were analyzed to investigate the oxidative stress occurring in the liver, pancreas, and heart, and Acyl-Coa synthetase long-chain family member (ACSL4). Glutathione peroxidase 4 (GPx4) enzyme levels were also analyzed by ELISA to investigate the effect on ferroptosis. In addition, hematoxylin-eosin staining was performed for histopathological examination of the tissues. As a result of biochemical analyzes, it was observed that oxidative stress parameters increased significantly in the IR group. In addition, while the ACSL4 enzyme level increased in the IR group in all tissues, the GPx4 enzyme level decreased. In the histopathological examination, it was observed that IR caused serious damage to the heart, liver, and pancreas tissues. The present study shows that Curcumin and LoxBlock-1 have a protective effect on the liver, pancreas, and cardiac ferroptosis following the effect on AKI. In addition, Curcumin was found to be more effective than LoxBlock-1 in I/R injury with its antioxidant property.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatma Yıldız
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey.
| | - Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
| | - Ezgi Kar
- Training and Research Center, Kütahya Health Science University, Kütahya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Senturk
- Department of Biology, Faculty of Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
5
|
Gheitasi I, Doustimotlagh AH, Kokhdan EP, Akbari G, Barmak MJ. Renoprotective effects of zinc sulfate against transient liver ischemia/reperfusion injury in rats. Heliyon 2023; 9:e15505. [PMID: 37153414 PMCID: PMC10160695 DOI: 10.1016/j.heliyon.2023.e15505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Objectives Liver ischemia/reperfusion damage frequently occurs in setting of hepatic resection and liver transplantation. It leads to disturbance in remote organs such as heart, lung and kidneys. This study explored the consequences of hepatic ischemia/reperfusion on the oxidative stress parameters, biochemical factors, and histopathological alterations in the kidney's rats, as well as evaluated the role of zinc sulfate on above-mentioned parameters. Materials and methods Twenty-eight male Wistar rats were accidently assigned into four groups (n = 7). They were Sham, ischemia/reperfusion, zinc sulfate pretreatment, and zinc sulfate pretreatment + ischemia/reperfusion groups. Sham group: obtained normal saline (2 ml/day, seven consecutive days), intraperitoneally, zinc sulfate pretreatment group: obtained zinc sulfate (5 mg/kg, seven consecutive days, intraperitoneally). Ischemia/reperfusion group: obtained normal saline as mentioned previous, then rats experienced the partial ischemia (%70) for 45 min followed by 60 min reperfusion. Zinc sulfate pretreatment group: obtained zinc sulfate as mentioned previous, then rats experience the partial ischemia/reperfusion as presented earlier. At the end of investigation, blood was withdrawn, liver and renal tissues were removed. Then, biochemical and oxidative stress parameters, and histological changes were evaluated in the mentioned tissues. Results The findings of this experiment indicated that zinc sulfate markedly reduced the serum levels of liver and kidney function tests in relative to ischemia/reperfusion group. Also, antioxidant enzymes activity, ferric reducing antioxidant power, and nitric oxide significantly increased, while malondialdehyde level declined in the renal tissue of zinc sulfate + ischemia/reperfusion group compared to ischemia/reperfusion rats. Furthermore, zinc sulfate alleviated the liver and kidneys histopathological alterations following ischemia/reperfusion. Conclusion Zinc sulfate ameliorated liver and kidney function, and improved oxidant-antioxidant balance in favor of antioxidants. It is suggested that zinc sulfate may be beneficial effects on hepato-renal injury after ischemia/reperfusion.
Collapse
Affiliation(s)
- Izadpanah Gheitasi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | | | - Ghaidafeh Akbari
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Corresponding author. Medical Physiology, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
6
|
The Effect of Thyme Essential Oil on Liver Injuries Caused by Renal Ischemia-Reperfusion in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2988334. [PMID: 36337844 PMCID: PMC9629959 DOI: 10.1155/2022/2988334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Liver damage occurs following renal ischemia-reperfusion (RIR) that can cause inflammation and inflammatory cytokines activated after kidney injury. In this study, thyme essential oil (TE) with antioxidant and anti-inflammatory properties was used to reduce liver damage induced by renal IR. 32 male rats were randomly divided into 4 equal groups: (1) control, (2) RIR, (3) RIR+TE, and (4) TE. Rats received TE as a pretreatment at a dose of 0.5 ml/kg for one week. Then, under anesthesia for 45 minutes for ischemia, the kidneys of the animals were closed with clamps, and reperfusion was performed for 24 hours. Animal serum was isolated to evaluate alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) parameters. The liver of rats was examined for the measurement of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), and expression of genes such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and caspase-3. ALP, AST, ALT, MDA, NO, IL-6, TNF-α, and caspase-3 increased significantly in the RIR group compared to the control group (p < 0.05). GSH, GPX, and CAT decreased significantly in the RIR group compared to the control group (p < 0.05). TE caused a decrease in ALP, AST, ALT, MDA, NO, IL-6, and TNF-α compared to the RIR group and caused an increase in the amount of GSH, GPX, and CAT in the RIR group (p < 0.05). This study showed that TE has antioxidant and anti-inflammatory properties that reduce liver damage induced by RIR.
Collapse
|
7
|
Potential of Cu-CNT(8, 0), V-C52, and Zn-SiNT(7, 0) catalysts for CO2 reduction to CH3OH. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Repression of inflammatory pathways with Boswellia for alleviation of liver injury after renal ischemia reperfusion. Life Sci 2022; 306:120799. [PMID: 35863426 DOI: 10.1016/j.lfs.2022.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
AIM Acute kidney injury (AKI) is a sudden incident that is linked with a high lethality rate commonly due to distant organ injury. This study aims to explore the role of standardized Boswellia serrata (containing 35 % boswellic acid) in attenuating kidney and liver damage in a model of rats with renal insult. MAIN METHODS Sprague-Dawley rats, exposed to renal injury via ischemia-reperfusion model, were administered a daily regimen of 1000 or 2000 mg/kg Boswellia for seven days then rats were sacrificed on day eight. Alanine aminotransferase, aspartate aminotransferase, serum creatinine and blood urea nitrogen, were assayed. TLR9, oxidative stress markers; namely MDA and GSH, inflammatory cytokines; namely, IL-6, IL-1β, and TNF-α, as well as NF-κB were also measured. KEY FINDINGS Renal ischemia-reperfusion injury (IRI) impaired renal and liver function significantly, but Boswellia attenuated this impairment in a dose-dependent fashion. Histopathological assessment of kidney and liver confirmed that Boswellia decreased damage severity. A marked increase in TLR9, NF-κB, IL-6, IL-1β, TNF-α, and MDA besides decreased GSH levels were observed in the kidney and liver after renal IRI. Boswellia attenuated increases in TLR9, NF-κB, IL-1β, TNF-α, and IL-6 and boosted antioxidant defences via decreasing MDA and increasing GSH in kidney and liver. Anti-inflammatory and antioxidant effects of Boswellia were mostly comparable to those of silymarin. SIGNIFICANCE We conclude that the anti-inflammatory and antioxidant effects of Boswellia could be beneficial in ameliorating kidney and liver damage after AKI and that TLR9 might be the connection that signals liver injury in response to renal damage.
Collapse
|
9
|
Awad AS, Elariny HA, Sallam AS. Colchicine attenuates renal ischemia-reperfusion-induced liver damage: implication of TLR4/NF-κB, TGF-β, and BAX and Bcl-2 gene expression. Can J Physiol Pharmacol 2022; 100:12-18. [PMID: 34411492 DOI: 10.1139/cjpp-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion injury (IRI) is typically associated with a vigorous inflammatory and oxidative stress response to hypoxia and reperfusion that disturbs the function of the organ. The remote effects of renal IRI on the liver, however, require further study. Renal damage associated with liver disease is a common clinical problem. Colchicine, a polymerization inhibitor of microtubules, has been used as an anti-inflammatory and anti-fibrotic drug for liver diseases. The goal of the current study was to investigate the possible protective mechanisms of colchicine on liver injury following renal IRI. Forty rats were divided randomly into four groups: sham group, colchicine-treated group, IRI group, and colchicine-treated + IRI group. Treatment with colchicine significantly reduced hepatic toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) transcription factor, myeloid differentiation factor 88 (MyD88), and tumor necrosis factor-alpha (TNF-α) contents; downregulated BCL2 associated X apoptosis regulator (BAX) gene expression, transforming growth factor-β (TGF-β) content, and upregulated hepatic B cell lymphoma 2 (Bcl-2) gene expression as compared with the IRI group. Finally, hepatic histopathological examinations have confirmed the biochemical results. Renal IRI-induced liver damage in rats was alleviated by colchicine through its anti-inflammatory, anti-apoptotic, and anti-fibrotic actions.
Collapse
Affiliation(s)
- Azza Sayed Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
10
|
Abdelhamid AM, Selim A, Zaafan MA. The Hepatoprotective Effect of Piperine Against Thioacetamide-Induced Liver Fibrosis in Mice: The Involvement of miR-17 and TGF-β/Smads Pathways. Front Mol Biosci 2021; 8:754098. [PMID: 34778375 PMCID: PMC8585739 DOI: 10.3389/fmolb.2021.754098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
Liver fibrosis is characterized by a series of events including activation of quiescent hepatic stellate cells (HSCs) into proinflammatory, contractile, and fibrogenic myofibroblasts, which is the primary trigger for the fibrogenesis process. HSC activation involves many signaling pathways such as the TGF-β/smads pathway. Specific microRNAs have been identified to play a crucial role in the activation of HSCs via various signaling pathways. Piperine has recently been studied as a promising anti-fibrotic agent against pancreatic fibrosis through altering the TGF-β1/Smad pathway. Hence, the current study evaluated the beneficial effects of piperine in thioacetamide-induced liver fibrosis in mice through the modulation of miRNA-17 and TGF-β/smads pathways. Mice were allocated into three groups randomly. Thioacetamide was used to induce liver fibrosis for 6 weeks. Starting from the fourth week of the experiment, mice were treated with piperine daily for 21 days. Piperine treatment resulted in a significant downregulation of miRNA-17 expression, leading to the restoration of smad-7 accompanied with marked inhibition of TGF-β/smads signaling with further suppression of the activated HSCs and collagen deposition in the hepatocytes. In conclusion, piperine has the potential to be a promising therapeutic drug for the treatment of liver fibrosis through inhibiting the TGF-β/smads pathway.
Collapse
Affiliation(s)
- Amr M Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Ayman Selim
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Mai A Zaafan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
11
|
Hou J, Tolbert E, Birkenbach M, Ghonem NS. Treprostinil alleviates hepatic mitochondrial injury during rat renal ischemia-reperfusion injury. Biomed Pharmacother 2021; 143:112172. [PMID: 34560548 PMCID: PMC8550798 DOI: 10.1016/j.biopha.2021.112172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) causes acute kidney injury as well as liver injury. Renal IRI depletes hepatic antioxidants, promotes hepatic inflammation and dysfunction through Tlr9 upregulation. There is no treatment available for liver injury during renal IRI. This study examines the hepatoprotective role of treprostinil, a prostacyclin analog, during renal IRI. METHODS Male Sprague-Dawley rats were divided into four groups: control, sham, IRI-placebo, or IRI-treprostinil and subjected to bilateral ischemia (45 min) followed by reperfusion (1-72 h). Placebo or treprostinil (100 ng/kg/min) was administered subcutaneously via an osmotic minipump. RESULTS Treprostinil significantly reduced peak serum creatinine, BUN, ALT and AST levels vs. IRI-placebo. Treprostinil also restored hepatic levels of superoxide dismutase, glutathione, catalase, and Gclc expression to baseline, while reducing lipid peroxidation vs. IRI-placebo. Additionally, treprostinil significantly reduced elevated hepatic Tlr9, Il-1β, Ccl2, Vcam1, and Serpine1 mRNA expression. Renal IRI increased hepatic apoptosis which was inhibited by treprostinil through reduced cytochrome c and cleaved caspase-3 protein expression. Treprostinil enhanced hepatic ATP concentrations and mitochondrial DNA copy number and improved mitochondrial dynamics by restoring Pgc-1α expression and significantly upregulating Mfn1, Mfn2, and Sirt3 levels, while reducing Drp-1 protein vs. IRI-placebo. Non-targeted semi-quantitative proteomics showed improved oxidative stress indices and ATP subunits in the IRI-treprostinil group. CONCLUSIONS Treprostinil improved hepatic function and antioxidant levels, while suppressing the inflammatory response and alleviating Tlr9-mediated apoptotic injury during renal IRI. Our study provides evidence of treprostinil's hepatoprotective effect, which supports the therapeutic potential of treprostinil in reducing hepatic injury during renal IRI.
Collapse
Affiliation(s)
- Joyce Hou
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Evelyn Tolbert
- Division of Renal Disease, Department of Medicine, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Mark Birkenbach
- Department of Pathology, Rhode Island Hospital, Warren Alpert School of Medicine Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Nisanne S Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA.
| |
Collapse
|
12
|
Mohamadi Yarijani Z, Najafi H. Kidney injury in COVID-19 patients, drug development and their renal complications: Review study. Biomed Pharmacother 2021; 142:111966. [PMID: 34333286 PMCID: PMC8313500 DOI: 10.1016/j.biopha.2021.111966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, the world was encountered a new disease called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although SARS-CoV-2 initially causes lung damage, it also affects many other organs, including the kidneys, and on average, 5–23% of people with COVID-19 develop the symptoms of acute kidney injury (AKI), including elevated blood creatinine and urea, hematuria, proteinuria, and histopathological damages. The exact mechanism is unknown, but the researchers believe that SARS-CoV-2 directly and indirectly affects the kidneys. The direct pathway is by binding the virus to ACE2 receptor in the kidney, damage to cells, the renin-angiotensin system disturbances, activating coagulation pathways, and damaging the renal vascular endothelium. The initial evidence from studying the kidney tissue in postmortem patients is more in favor of the direct pathway. The indirect pathway is created by increased cytokines and cytokine storm, sepsis, circulatory disturbances, hypoxemia, as well as using the nephrotoxic drugs. Using renal tissue biopsy and autopsy in the patients with COVID-19, recent studies found evidence for a predominant indirect pathway in AKI induction by SARS-CoV-2. Besides, some studies showed that the degree of acute tubular injury (ATI) in autopsies from COVID-19 victims is milder compared to AKI degree. We review the mechanism of AKI induction and the renal side effects of the most common drugs used to treat COVID-19 after the overview of the latest findings on SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant 2021; 37:1218-1228. [PMID: 33527986 DOI: 10.1093/ndt/gfaa297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Several theories regarding acute kidney injury (AKI)-related mortality have been entertained, although mounting evidence supports the paradigm that impaired kidney function directly and adversely affects the function of several remote organs. The kidneys and liver are fundamental to human metabolism and detoxification, and it is therefore hardly surprising that critical illness complicated by hepatorenal dysfunction portends a poor prognosis. Several diseases can simultaneously impact the proper functioning of the liver and kidneys, although this review will address the impact of AKI on liver function. While evidence for this relationship in humans remains sparse, we present supportive studies and then discuss the most likely mechanisms by which AKI can cause liver dysfunction. These include 'traditional' complications of AKI (uremia, volume overload and acute metabolic acidosis, among others) as well as systemic inflammation, hepatic leukocyte infiltration, cytokine-mediated liver injury and hepatic oxidative stress. We conclude by addressing the therapeutic implications of these findings to clinical medicine.
Collapse
Affiliation(s)
- Anthony Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas Stiles
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
14
|
Guo X, Hu S, Liu J, Huang L, Zhong P, Fan Z, Ye P, Chen M. Piperine protects against pyroptosis in myocardial ischaemia/reperfusion injury by regulating the miR-383/RP105/AKT signalling pathway. J Cell Mol Med 2021; 25:244-258. [PMID: 33219747 PMCID: PMC7810957 DOI: 10.1111/jcmm.15953] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
miRNA-mediated pyroptosis play crucial effects in the development of myocardial ischaemia/reperfusion (I/R) injury (MIRI). Piperine (PIP) possesses multiple pharmacological effects especially in I/R condition. This study focuses on whether PIP protects MIRI from pyroptosis via miR-383-dependent pathway. Rat MIRI model was established by 30 minutes of LAD ligation and 4 hours of reperfusion. Myocardial enzymes, histomorphology, structure and function were detected to evaluate MIRI. Recombinant adenoviral vectors for miR-383 overexpression or miR-383 silencing or RP105 knockdown were constructed, respectively. Luciferase reporter analysis was used to confirm RP105 as a target of miR-383. Pyroptosis-related markers were measured by Western blotting assay. The results showed that I/R provoked myocardial injury, as shown by the increases of LDH/CK releases, infarcted areas and apoptosis as well as worsened function and structure. Pyroptosis-related mediators including NLRP3, cleaved caspase-1, cleaved IL-1β and IL-18 were also reinforced after MIRI. However, PIP treatment greatly ameliorated MIRI in parallel with pyroptotic repression. In mechanistic studies, MIRI-caused elevation of miR-383 and decrease of RP105/PI3K/AKT pathway were reverted by PIP treatment. Luciferase reporter assay confirmed RP105 as a miR-383 target. miR-383 knockdown ameliorated but miR-383 overexpression facilitated pyroptosis and MIRI. Moreover, the anti-pyroptotic effect from miR-383 silencing was verified to be relied on the RP105/PI3K/AKT signalling pathway. Additionally, our present study further indicated the miR-383/RP105/AKT-dependent approach resulting from PIP administration against pyroptosis in MIRI. Therefore, PIP treatment attenuates MIRI and pyroptosis by regulating miR-383/RP105/AKT pathway, and it may provide a therapeutic manner for the treatment of MIRI.
Collapse
Affiliation(s)
- Xin Guo
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shan Hu
- Heart Function DepartmentThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ji‐Jun Liu
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling Huang
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peng Zhong
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi‐Xing Fan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ping Ye
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Man‐Hua Chen
- Department of CardiologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
15
|
Sharma N, Gaikwad AB. Ameliorative effect of AT2R and ACE2 activation on ischemic renal injury associated cardiac and hepatic dysfunction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103501. [PMID: 32979558 DOI: 10.1016/j.etap.2020.103501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
This study explored the role of the depressor arm of renin-angiotensin system (RAS) on ischemic renal injury (IRI)-associated cardio-hepatic sequalae under non-diabetic (ND) and diabetes mellitus (DM) conditions. Firstly, rats were injected with Streptozotocin (55 mg/kg i.p.) to develop DM. ND and DM rats underwent Bilateral IRI followed by 24 h of reperfusion. Further, ND and DM rats were subjected to AT2R agonist-Compound 21 (C21) (0.3 mg/kg/day, i.p.) or ACE2 activator- Diminazene Aceturate (Dize), (5 mg/kg/day, p.o.) per se or its combination therapy. As results, IRI caused cardio-hepatic injuries via altered oxidant/anti-oxidant levels, elevated inflammatory events, and altered protein expressions of ACE, ACE2, Ang II, Ang-(1-7) and urinary AGT. However, concomitant therapy of AT2R agonist and ACE2 activator exerts a protective effect in IRI-associated cardio-hepatic dysfunction as evidenced by inhibited oxidative stress, downregulated inflammation, and enhanced cardio-hepatic depressor arm of RAS under ND and DM conditions.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
16
|
Biswas S, Mukherjee PK, Kar A, Bannerjee S, Charoensub R, Duangyod T. Optimized piperine-phospholipid complex with enhanced bioavailability and hepatoprotective activity. Pharm Dev Technol 2020; 26:69-80. [PMID: 33059499 DOI: 10.1080/10837450.2020.1835956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Piper species is one of the most widely consumed spices for culinary purposes. Piperine (PIP) present in Piper species has a wide range of therapeutic activity including hepatoprotection. However, the major biological limitation of PIP is its low bioavailability after oral administration. Purpose of the study was to prepare an optimized and adequately characterized PIP-phospholipid complex (PPC) as a delivery system to overcome these limitations and to investigate the pharmacokinetics and hepato-protectivity of the formulation in the animal model. Response surface methodology was adopted to optimize the process parameters for PPC preparation. FT-IR, DTA, PXRD, SEM, molecular docking etc. were used for characterization. Solubility, log P, dissolution efficiency and in vivo pharmacokinetics were also investigated. PPC showed enhanced hepatoprotective potential as compared to pure PIP at the same dose level (25 and 50 mg/kg). PPC restored the levels of serum marker and antioxidant enzymes. PPC also increased the bioavailability of PIP in rat serum by 10.40-fold in comparison with pure PIP at the same dose level and enhanced the elimination half-life (t1/2 el) from 0.477 ± 1.76 to 9.80 ± 1.98 h. Results concluded that PPC enhanced the hepatoprotection of PIP which may be due to the improved bioavailability and pharmacokinetics of PIP in rats.
Collapse
Affiliation(s)
- Sayan Biswas
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pulok K Mukherjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.,Institute of Bioresources and Sustainable Development, An Autonomous Institute under Department of Biotechnology, Imphal, India
| | - Amit Kar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Subhadip Bannerjee
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Rawiwan Charoensub
- School of Health Science, Department of Applied Thai Traditional Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thidarat Duangyod
- School of Health Science, Department of Applied Thai Traditional Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
17
|
Awad AS, Elariny HA, Sallam AS. The possible protective effect of colchicine against liver damage induced by renal ischemia-reperfusion injury: role of Nrf2 and NLRP3 inflammasome. Can J Physiol Pharmacol 2020; 98:849-854. [PMID: 32640174 DOI: 10.1139/cjpp-2020-0230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ischemia-reperfusion injury (IRI) induces an inflammatory response and production of reactive oxygen species, which affects the organs remote to the sites of renal IR. However, remote effects of renal IRI on the liver need further investigations. Renal injury associated with liver disease is a common clinical problem. Colchicine is an established drug for microtubule stabilization that may reduce tissue injury and has antioxidant and antiinflammatory effects. The aim of the present study was (i) to assess the hepatic changes after induction of renal IRI, (ii) to explore the possible protective effect of colchicine on liver injury following renal IRI, and (iii) to investigate the possible mechanisms underlying the potential effect. Forty rats were randomly divided into four groups: sham operation group, colchicine-treated group, IR group, and colchicine-treated IR group. Colchicine treatment improved liver function (ALT/AST) after renal IRI, decreased hepatic oxidative stress and cell apoptosis by reducing hepatic MDA, upregulating hepatic total antioxidant capacity, Nrf2, and HO-1. Furthermore, colchicine inhibited inflammatory responses by downregulating hepatic NLRP3 inflammasome, IL-1β, and caspase-1. Colchicine attenuates renal IRI-induced liver injury in rats. This effect may be due to reducing inflammation and oxidative stress markers.
Collapse
Affiliation(s)
- Azza Sayed Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amany Said Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menofia, Egypt
| |
Collapse
|
18
|
Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. MEDICINES 2020; 7:medicines7040019. [PMID: 32276474 PMCID: PMC7235759 DOI: 10.3390/medicines7040019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial–mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-β1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-β1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-β1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.
Collapse
|