1
|
Caillard P, Bennis Y, Boudot C, Chatelain D, Rybarczyk P, Boullier A, Poirot S, Titeca-Beauport D, Bodeau S, Choukroun G, Kamel S, Six I, Maizel J. Acute kidney disease in mice is associated with early cardiovascular dysfunction. Ren Fail 2024; 46:2415510. [PMID: 39422224 PMCID: PMC11492403 DOI: 10.1080/0886022x.2024.2415510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are major health concerns due to their increasing incidence and high mortality. They are interconnected syndromes; AKI without recovery evolves into acute kidney disease (AKD), which can indicate an AKI-to-CKD transition. Both AKI and CKD are associated with a risk of long-term cardiovascular complications, but whether vascular and cardiac dysfunctions can occur as early as the AKD period has not been studied extensively. In a mouse model of kidney injury (KI) with non-recovery, we performed vasoreactivity and echocardiography analyses on days 15 (D15) and 45 (D45) after KI. We determined the concentrations of two major gut-derived protein-bound uremic toxins known to induce cardiovascular toxicity-indoxyl sulfate (IS) and para-cresyl sulfate (PCS)-and the levels of inflammation and contraction markers on D7, D15, and D45. Mice with KI showed acute tubular and interstitial kidney lesions on D7 and D15 and chronic glomerulosclerosis on D45. They showed significant impairment of aorta relaxation and systolic-diastolic heart function, both on D15 and D45. Such dysfunction was associated with downregulation of the expression of two contractile proteins, αSMA and SERCA2a, with a more pronounced effect on D15 than on D45. KI was also followed by a rapid increase in IS and PCS serum concentrations and the expression induction of pro-inflammatory cytokines and endothelial adhesion molecules in serum and cardiovascular tissues. Therefore, these results highlight that AKD leads to early cardiac and vascular dysfunctions. How these dysfunctions could be managed to prevent cardiovascular events deserves further study.
Collapse
Affiliation(s)
- Pauline Caillard
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, Amiens, France
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
| | - Youssef Bennis
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
- Department of Clinical Pharmacology, Amiens Medical Center, Amiens, France
| | - Cédric Boudot
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
| | - Denis Chatelain
- Department of Anatomopathology, Amiens Medical Center, Amiens, France
| | - Pierre Rybarczyk
- Hauts-de-France Anatomopathology Institute (i-PatH), Amiens, France
| | - Agnès Boullier
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
- Department of Clinical Biochemistry, Amiens Medical Center, Amiens, France
| | - Sabrina Poirot
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
| | - Dimitri Titeca-Beauport
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, Amiens, France
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
| | - Sandra Bodeau
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
- Department of Clinical Pharmacology, Amiens Medical Center, Amiens, France
| | - Gabriel Choukroun
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, Amiens, France
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
| | - Saïd Kamel
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
- Department of Clinical Biochemistry, Amiens Medical Center, Amiens, France
| | - Isabelle Six
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
| | - Julien Maizel
- MP3CV laboratory, UR UPJV 7517, University of Picardy Jules Verne, Amiens, France
- Department of Intensive Care Medicine, Amiens Medical Center, Amiens, France
| |
Collapse
|
2
|
Chen D, Lin Y, Ko P, Lin J, Huang C, Wang G, Chang KC. Effect of targeted temperature management on systemic inflammatory responses after out-of-hospital cardiac arrest: A prospective cohort study. Medicine (Baltimore) 2024; 103:e39780. [PMID: 39312301 PMCID: PMC11419506 DOI: 10.1097/md.0000000000039780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Interleukin (IL)-6 is a major inflammatory cytokine that predicts mortality after out-of-hospital cardiac arrest (OHCA). Targeted temperature management (TTM) is associated with improved all-cause mortality in patients with OHCA. However, the effect of TTM on IL-6 production remains unclear. This study investigated whether TTM has additional anti-inflammatory effects after OHCA. METHODS This prospective cohort study included a total of 141 hospitalized patients with OHCA who were treated between January 2015 and June 2023. The study was conducted in the intensive care unit of China Medical University Hospital, Taichung. Postcardiac arrest care included TTM or the control approach (no TTM). The primary outcomes included the 90-day mortality rate and neurologic outcomes after OHCA. Differences between the TTM and control groups were examined using Student t test, chi-square test, and Kaplan-Meier survival curve analysis. Multivariate analysis of variance model was used to examine interaction effects. RESULTS Plasma IL-6 and IL-6/soluble IL-6 receptor complex levels were measured at 6 and 24 hours after resuscitation. IL-6 and IL-6/soluble IL-6 receptor complex production was lower in the TTM group than in the control group (-50.0% vs +136.7%, P < .001; +26.3% vs +102.40%, P < .001, respectively). In addition, the 90-day mortality rate and poor neurologic outcomes were lower in the TTM group than in the control group (36.8% vs 63.0%, relative risk 0.39, 95% confidence interval 0.24-0.64, P < .001; 65.5% vs 81.5%, relative risk 0.80, 95% confidence interval 0.66-0.98, P = .04). CONCLUSION TTM improves both the mortality rate and neurologic outcomes in patients resuscitated from OHCA, possibly by reducing IL-6-induced proinflammatory responses.
Collapse
Affiliation(s)
- Dalong Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yukai Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Poyen Ko
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jenjyh Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chihyang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Gueijane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Pharmacy Department, Wizcare Medical Corporation Aggregate, Taichung, Taiwan
- School of Medicine, Weifang University of Science and Technology, Weifang, Shandong, China
| | - Kuan-Cheng Chang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
4
|
Guevara A, Smith CER, Caldwell JL, Ngo L, Mott LR, Lee IJ, Tapa S, Wang Z, Wang L, Woodward WR, Ng GA, Habecker BA, Ripplinger CM. Chronic nicotine exposure is associated with electrophysiological and sympathetic remodeling in the intact rabbit heart. Am J Physiol Heart Circ Physiol 2024; 326:H1337-H1349. [PMID: 38551482 PMCID: PMC11381014 DOI: 10.1152/ajpheart.00749.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Nicotine is the primary addictive component of tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. To assess the underlying mechanisms, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days before performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the first to third thoracic vertebrae, and β-adrenergic responsiveness was additionally evaluated following norepinephrine (NE) perfusion. Baseline ex vivo heart rate (HR) and SNS stimulation threshold were higher in NIC versus CT (P = 0.004 and P = 0.003, respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC versus CT at baseline (P = 0.002) and during SNS (P = 0.0003), with similar results obtained for Ca2+ transient alternans. SNS shortened the PCL at which alternans emerged in CT but not in NIC hearts. NIC-exposed hearts tended to have slower and reduced HR responses to NE perfusion, but ventricular responses to NE were comparable between groups. Although fibrosis was unaltered, NIC hearts had lower sympathetic nerve density (P = 0.03) but no difference in NE content versus CT. These results suggest both sympathetic hypoinnervation of the myocardium and regional differences in β-adrenergic responsiveness with NIC. This autonomic remodeling may contribute to the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with long-term use.NEW & NOTEWORTHY Here, we show that chronic nicotine exposure was associated with increased heart rate, increased susceptibility to alternans, and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to sympathetic hypoinnervation of the myocardium and diminished β-adrenergic responsiveness of the sinoatrial node following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this proarrhythmic remodeling.
Collapse
Affiliation(s)
- Amanda Guevara
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Charlotte E R Smith
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Jessica L Caldwell
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Lena Ngo
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Lilian R Mott
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - I-Ju Lee
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Srinivas Tapa
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - Zhen Wang
- Department of Pharmacology, University of California Davis, Davis, California, United States
- Shantou University Medical College, Shantou, People's Republic of China
| | - Lianguo Wang
- Department of Pharmacology, University of California Davis, Davis, California, United States
| | - William R Woodward
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
| | - G Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health and Care Research, Leicester Biomedical Research Centre, Leicester, United Kingdom
- Glenfield Hospital, Leicester, United Kingdom
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, United States
| |
Collapse
|
5
|
Zhou Y, Huang J, Mai W, Kuang W, Li X, Shi D, Yang Y, Wu J, Wu Z, Liao Y, Zhou Z, Qiu Z. The novel vaccines targeting interleukin-1 receptor type I. Int Immunopharmacol 2024; 132:111941. [PMID: 38554439 DOI: 10.1016/j.intimp.2024.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVE There is mounting evidence indicating that atherosclerosis represents a persistent inflammatory process, characterized by the presence of inflammation at various stages of the disease. Interleukin-1 (IL-1) precisely triggers inflammatory signaling pathways by binding to interleukin-1 receptor type I (IL-1R1). Inhibition of this signaling pathway contributes to the prevention of atherosclerosis and myocardial infarction. The objective of this research is to develop therapeutic vaccines targeting IL-1R1 as a preventive measure against atherosclerosis and myocardial infarction. METHODS ILRQβ-007 and ILRQβ-008 vaccines were screened, prepared and then used to immunize high-fat-diet fed ApoE-/- mice and C57BL/6J mice following myocardial infarction. Progression of atherosclerosis in ApoE-/- mice was assessed primarily by oil-red staining of the entire aorta and aortic root, as well as by detecting the extent of macrophage infiltration. The post-infarction cardiac function in C57BL/6J mice were evaluated using cardiac ultrasound and histological staining. RESULTS ILRQβ-007 and ILRQβ-008 vaccines stimulated animals to produce high titers of antibodies that effectively inhibited the binding of interleukin-1β and interleukin-1α to IL-1R1. Both vaccines effectively reduced atherosclerotic plaque area, promoted plaque stabilization, decreased macrophage infiltration in plaques and influenced macrophage polarization, as well as decreasing levels of inflammatory factors in the aorta, serum, and ependymal fat in ApoE-/- mice. Furthermore, these vaccines dramatically improved cardiac function and macrophage infiltration in C57BL/6J mice following myocardial infarction. Notably, no significant immune-mediated damage was observed in immunized animals. CONCLUSION The vaccines targeting the IL-1R1 would be a novel and promising treatment for the atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Yanzhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wuqian Mai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenlong Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dingyang Shi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhijie Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Ye T, Yang J, Liu Z, Yu Y, Zhang C, Guo Y, Yu F, Zhou Y, Song Z, Shi J, Wang L, Yang B, Wang X. Inhibition of the P2X7 receptor prevents atrial proarrhythmic remodeling in experimental post-operative atrial fibrillation. Int Immunopharmacol 2024; 129:111536. [PMID: 38320354 DOI: 10.1016/j.intimp.2024.111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Post-operative atrial fibrillation (POAF) is a common complication in patients undergoing cardiac surgery. The purinergic receptor P2X7 (P2X7R) is involved in some cardiovascular diseases, whereas its effects on atrial fibrillation (AF) are unclear. OBJECTIVE This study was to assess the effect of P2X7R on atrial arrhythmogenic remodeling in the rat model of sterile pericarditis (SP). METHODS Male Sprague-Dawley (SD) rats were used to induce the SP model. Electrocardiogram, atrial electrophysiological protocol, histology, mRNA sequencing, real-time quantitative PCR, western blot, and Elisa assay were performed. RESULTS SP significantly up-regulated P2X7R expression; increased AF susceptibility; reduced the protein expression of ion channels including Nav1.5, Cav1.2, Kv4.2, Kv4.3, and Kv1.5; caused atrial fibrosis; increased norepinephrine (NE) level in plasma; promoted the production of inflammatory cytokines such as TNF-α, IL-1β, and IL-6; increased the accumulation of immune cells (CD68- and MPO- positive cells); and activated NLRP3 inflammasome signaling pathway. P2X7R antagonist Brilliant Blue G (BBG) mitigated SP-induced alterations. The mRNA sequencing demonstrated that BBG prevented POAF mainly by regulating the immune system. In addition, another selective P2X7R antagonist A740003, and IL-1R antagonist anakinra also reduced AF inducibility in the SP model. CONCLUSIONS P2X7R inhibition prevents SP-induced atrial proarrhythmic remodeling, which is closely associated with the improvement of inflammatory changes, ion channel expression, atrial fibrosis, and sympathetic activation. The findings point to P2X7R inhibition as a promising target for AF (particularly POAF) and perhaps other conditions.
Collapse
Affiliation(s)
- Tianxin Ye
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinxiu Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhangchi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yan Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fangcong Yu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yunping Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhuonan Song
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiaran Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Longbo Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Xingxiang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Abdalla AME, Miao Y, Ahmed AIM, Meng N, Ouyang C. CAR-T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochem Funct 2024; 42:e3955. [PMID: 38379220 DOI: 10.1002/cbf.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Heart diseases remain the primary cause of human mortality in the world. Although conventional therapeutic opportunities fail to halt or recover cardiac fibrosis, the promising clinical results and therapeutic efficacy of engineered chimeric antigen receptor (CAR) T cell therapy show several advancements. However, the current models of CAR-T cells need further improvement since the T cells are associated with the triggering of excessive inflammatory cytokines that directly affect cardiac functions. Thus, the current study highlights the critical function of heart immune cells in tissue fibrosis and repair. The study also confirms CAR-T cell as an emerging therapeutic for treating cardiac fibrosis, explores the current roadblocks to CAR-T cell therapy, and considers future outlooks for research development.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ahmed I M Ahmed
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Ning Meng
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Hegemann N, Barth L, Döring Y, Voigt N, Grune J. Implications for neutrophils in cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2024; 326:H441-H458. [PMID: 38099844 PMCID: PMC11219058 DOI: 10.1152/ajpheart.00590.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Cardiac arrhythmias commonly occur as a result of aberrant electrical impulse formation or conduction in the myocardium. Frequently discussed triggers include underlying heart diseases such as myocardial ischemia, electrolyte imbalances, or genetic anomalies of ion channels involved in the tightly regulated cardiac action potential. Recently, the role of innate immune cells in the onset of arrhythmic events has been highlighted in numerous studies, correlating leukocyte expansion in the myocardium to increased arrhythmic burden. Here, we aim to call attention to the role of neutrophils in the pathogenesis of cardiac arrhythmias and their expansion during myocardial ischemia and infectious disease manifestation. In addition, we will elucidate molecular mechanisms associated with neutrophil activation and discuss their involvement as direct mediators of arrhythmogenicity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lukas Barth
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
10
|
Del Buono MG, Bonaventura A, Vecchié A, Moroni F, Golino M, Bressi E, De Ponti R, Dentali F, Montone RA, Kron J, Lazzerini PE, Crea F, Abbate A. Pathogenic pathways and therapeutic targets of inflammation in heart diseases: A focus on Interleukin-1. Eur J Clin Invest 2024; 54:e14110. [PMID: 37837616 DOI: 10.1111/eci.14110] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND An exuberant and dysregulated inflammatory response contributes to the development and progression of cardiovascular diseases (CVDs). METHODS This narrative review includes original articles and reviews published over the past 20 years and found through PubMed. The following search terms (or combination of terms) were considered: "acute pericarditis," "recurrent pericarditis," "myocarditis," "cardiac sarcoidosis," "atherosclerosis," "acute myocardial infarction," "inflammation," "NLRP3 inflammasome," "Interleukin-1" and "treatment." RESULTS Recent evidence supports the role of inflammation across a wide spectrum of CVDs including myocarditis, pericarditis, inflammatory cardiomyopathies (i.e. cardiac sarcoidosis) as well as atherosclerotic CVD and heart failure. Interleukins (ILs) are the signalling mediators of the inflammatory response. The NACHT, leucine-rich repeat and pyrin-domain containing protein 3 (NLRP3) inflammasome play a key role in producing IL-1β, the prototypical pro-inflammatory cytokine involved in CVDs. Other pro-inflammatory cytokines (e.g. tumour necrosis factor) have been implicated in cardiac sarcoidosis. As a proof of this, IL-1 blockade has been proven efficacious in pericarditis and chronic coronary syndrome. CONCLUSION Tailored strategies aiming at quenching the inflammatory response have emerged as promising to treat CVDs. In this review article, we summarize recent evidence regarding the role of inflammation across a broad spectrum of CVDs. We also review novel evidence regarding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Aldo Bonaventura
- Department of Internal Medicine, Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Alessandra Vecchié
- Department of Internal Medicine, Medical Center, S.C. Medicina Generale 1, Ospedale di Circolo and Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Francesco Moroni
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Michele Golino
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Bressi
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Roberto De Ponti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesco Dentali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Jordana Kron
- VCU Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Han Y, Chen S, Yang Q, Xie M, Liang Y, Li J, Zhang LZ. Non-peptide orphanin receptor antagonist activity in rat myocardial ischemia-induced cardiac arrhythmias. Biochem Biophys Res Commun 2023; 685:149160. [PMID: 37922788 DOI: 10.1016/j.bbrc.2023.149160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
One of the causes of sudden cardiac death is arrhythmia after acute myocardial ischemia. After ischemia, endogenous orphanin (N/OFQ) plays a role in the development of arrhythmias. It is discussed in this paper how nonpeptide orphanin receptor (ORL1) antagonists such as J-113397, SB-612111 and compound-24 (C-24) affect arrhythmia in rats following acute myocardial ischemia and what the optimal concentrations for these antagonists are. The electrocardiogram of the rat was recorded as part of the experiment. The concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the myocardium were measured following euthanasia. Following the use of three antagonists, we found the lowest inflammatory factor concentrations and the smallest number of ischemic arrhythmia episodes. All of them had a small impact on cardiac function. LF/HF values were significantly reduced in all three antagonist groups, suggesting that they are involved in the regulation of sympathetic nerves. In conclusion, pretreatment with the three antagonist groups can effectively reduce the concentration of TNF-α and IL-1β, and the occurrence of arrhythmias after ischemia can also be significantly reduced. Inflammation and sympathetic activity may be related to the mechanism of action of antagonists.
Collapse
Affiliation(s)
- Yi Han
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, 030000, China; College of Anesthesiology, Shanxi Medical University, Taiyuan, 030000, China.
| | - Sikun Chen
- Department of Anesthesiology, Linfen People's Hospital, Linfen, 041000, China
| | - Qixing Yang
- Department of Anesthesiology, Linfen People's Hospital, Linfen, 041000, China
| | - Mengli Xie
- Department of Anesthesiology, Xi 'an Honghui Hospital, Xian, 710000, China
| | - Yuzhang Liang
- School of Physics, Dalian University of Technology, Dalian, 116024, China
| | - Jing Li
- Department of Endocrine, Central Hospital of China Railway 12th Bureau Group, 182 Yingze Road, Taiyuan, 030001, Shanxi, China
| | - Lin-Zhong Zhang
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, 030000, China; College of Anesthesiology, Shanxi Medical University, Taiyuan, 030000, China
| |
Collapse
|
12
|
Guevara A, Smith CER, Caldwell JL, Ngo L, Mott LR, Lee IJ, Tapa I, Wang Z, Wang L, Woodward WR, Ng GA, Habecker BA, Ripplinger CM. Chronic nicotine exposure is associated with electrophysiological and sympathetic remodeling in the intact rabbit heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.567754. [PMID: 38045290 PMCID: PMC10690259 DOI: 10.1101/2023.11.23.567754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nicotine is the primary addictive component in tobacco products. Through its actions on the heart and autonomic nervous system, nicotine exposure is associated with electrophysiological changes and increased arrhythmia susceptibility. However, the underlying mechanisms are unclear. To address this, we treated rabbits with transdermal nicotine (NIC, 21 mg/day) or control (CT) patches for 28 days prior to performing dual optical mapping of transmembrane potential (RH237) and intracellular Ca 2+ (Rhod-2 AM) in isolated hearts with intact sympathetic innervation. Sympathetic nerve stimulation (SNS) was performed at the 1 st - 3 rd thoracic vertebrae, and β-adrenergic responsiveness was additionally evaluated as changes in heart rate (HR) following norepinephrine (NE) perfusion. Baseline ex vivo HR and SNS stimulation threshold were increased in NIC vs. CT ( P = 0.004 and P = 0.003 respectively). Action potential duration alternans emerged at longer pacing cycle lengths (PCL) in NIC vs. CT at baseline ( P = 0.002) and during SNS ( P = 0.0003), with similar results obtained for Ca 2+ transient alternans. SNS reduced the PCL at which alternans emerged in CT but not NIC hearts. NIC exposed hearts also tended to have slower and reduced HR responses to NE perfusion. While fibrosis was unaltered, NIC hearts had lower sympathetic nerve density ( P = 0.03) but no difference in NE content vs. CT. These results suggest both sympathetic hypo-innervation of the myocardium and diminished β-adrenergic responsiveness with NIC. This autonomic remodeling may underlie the increased risk of arrhythmias associated with nicotine exposure, which may be further exacerbated with continued long-term usage. NEW & NOTEWORTHY Here we show that chronic nicotine exposure was associated with increased heart rate, lower threshold for alternans and reduced sympathetic electrophysiological responses in the intact rabbit heart. We suggest that this was due to the sympathetic hypo-innervation of the myocardium and diminished β- adrenergic responsiveness observed following nicotine treatment. Though these differences did not result in increased arrhythmia propensity in our study, we hypothesize that prolonged nicotine exposure may exacerbate this pro-arrhythmic remodeling.
Collapse
|
13
|
Schunke KJ, Rodriguez J, Dyavanapalli J, Schloen J, Wang X, Escobar J, Kowalik G, Cheung EC, Ribeiro C, Russo R, Alber BR, Dergacheva O, Chen SW, Murillo-Berlioz AE, Lee KB, Trachiotis G, Entcheva E, Brantner CA, Mendelowitz D, Kay MW. Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction. Basic Res Cardiol 2023; 118:43. [PMID: 37801130 PMCID: PMC10558415 DOI: 10.1007/s00395-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.
Collapse
Affiliation(s)
- Kathryn J Schunke
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
- Department of Anatomy, Biochemistry and Physiology, University of Hawaii, 651 Ilalo St, Honolulu, HI, BSB 211 96813, USA.
| | - Jeannette Rodriguez
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - John Schloen
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Emily C Cheung
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Rebekah Russo
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Sheena W Chen
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Alejandro E Murillo-Berlioz
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Kyongjune B Lee
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Gregory Trachiotis
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Christine A Brantner
- The GWU Nanofabrication and Imaging Center, 800 22nd Street NW, Washington, DC, 20052, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA.
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
| |
Collapse
|
14
|
Narasimhan B, Gandhi K, Moras E, Wu L, Da Wariboko A, Aronow W. Experimental drugs for supraventricular tachycardia: an analysis of early phase clinical trials. Expert Opin Investig Drugs 2023; 32:825-838. [PMID: 37728554 DOI: 10.1080/13543784.2023.2259309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Supraventricular tachycardias (SVT) are a diverse group of commonly encountered arrhythmias arising at or above the atrioventricular (AV) node. Conventional anti-arrhythmic medications are restricted by extensive side-effect profiles and limited efficacy. Catheter ablation has emerged as a first-line therapy for many arrhythmias but is not a suitable option for all patients. This has prompted the exploration of novel pharmacological approaches targeting specific molecular mechanisms of SVT. AREAS COVERED This review article aims to summarize recent advancements in pharmacological therapeutics for SVT and their clinical implications. The understanding of molecular mechanisms underlying these arrhythmias, particularly atrial fibrillation, has opened up new possibilities for targeted interventions. Beyond the manipulation of ion channels and membrane potentials, pharmacotherapy now focuses on upstream targets such as inflammation, oxidative stress, and structural remodeling. This review strives to provide a comprehensive overview of recent advancements in pharmacological therapeutics directed at the management of SVT. We begin by providing a brief summary of the mechanisms and management of commonly encountered SVT before delving into individual agents, which in turn are stratified based on their molecular treatment targets. EXPERT OPINION The evolving landscape of pharmacologic therapy offers hope for more personalized and tailored interventions in the management of SVT.
Collapse
Affiliation(s)
- Bharat Narasimhan
- DeBakey Cardiovascular Institute, Houston Methodist, Houston, TX, USA
| | - Kruti Gandhi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Errol Moras
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Lingling Wu
- Department of Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Akanibo Da Wariboko
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Wilbert Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
15
|
Fir(e)ing the Rhythm. JACC Basic Transl Sci 2023. [DOI: 10.1016/j.jacbts.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
Liu M, Lin W, Song T, Zhao H, Ma J, Zhao Y, Yu P, Yan Z. Influenza vaccination is associated with a decreased risk of atrial fibrillation: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:970533. [PMID: 36337907 PMCID: PMC9630361 DOI: 10.3389/fcvm.2022.970533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background Evidence from longitudinal studies has shown that influenza infection is linked to an increased risk of arrhythmia. Therefore, we aimed to assess the role of influenza vaccination in arrhythmia prevention. Materials and methods The PubMed, Embase, and Cochrane Library databases were searched to identify studies that investigated the potential effects of the influenza vaccine on arrhythmia risk published until October 25th, 2021. The study was registered with PROSPERO (CRD42022300815). Results One RCT with 2,532 patients and six observational studies with 3,167,445 patients were included. One RCT demonstrated a non-significant benefit of the influenza vaccine against arrhythmias [odds ratio (OR) = 0.43, 95% confidence interval (CI): 0.11–1.64; P = 0.20] in patients after myocardial infarction or those with high-risk stable coronary heart disease. A meta-analysis based on observational studies showed that vaccination was associated with a significantly lower risk of arrhythmia (OR: 0.82, 95% CI: 0.70–0.97; P = 0.02; I2 = 76%). Additionally, subgroup analysis showed a decreased risk of atrial fibrillation (AF) (OR: 0.94, 95% CI: 0.90–0.98; P = 0.006; I2 = 0%) and a non-significant but positive trend concerning ventricular arrhythmias (VAs) (OR: 0.68, 95% CI: 0.42–1.11; P = 0.12; I2 = 85%) after influenza vaccination. Conclusion Based on the current evidence, influenza vaccination may be associated with a reduced risk of arrhythmia, especially AF. Influenza vaccination may be an effective tool for the prevention of arrhythmias. The effect of influenza vaccination on the risk of VAs and arrhythmias in patients at low risk for cardiovascular diseases should be further studied. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022300815].
Collapse
Affiliation(s)
- Menglu Liu
- Department of Cardiology, Seventh People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Weichun Lin
- Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiangang Song
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huilei Zhao
- Department of Anesthesiology, The Third Hospital of Nanchang, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Yujie Zhao
- Department of Cardiology, Seventh People’s Hospital of Zhengzhou, Zhengzhou, China
- *Correspondence: Yujie Zhao,
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Peng Yu,
| | - Zhiwei Yan
- Department of Sports Rehabilitation, College of Human Kinesiology, Shenyang Sport University, Shenyang, China
- Zhiwei Yan,
| |
Collapse
|
17
|
Su XL, Wang SH, Komal S, Cui LG, Ni RC, Zhang LR, Han SN. The caspase-1 inhibitor VX765 upregulates connexin 43 expression and improves cell-cell communication after myocardial infarction via suppressing the IL-1β/p38 MAPK pathway. Acta Pharmacol Sin 2022; 43:2289-2301. [PMID: 35132192 PMCID: PMC9433445 DOI: 10.1038/s41401-021-00845-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1β reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1β affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1β expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 μM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1β/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xue-Ling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui-Cong Ni
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Xia R, Tomsits P, Loy S, Zhang Z, Pauly V, Schüttler D, Clauss S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 2022; 13:900094. [PMID: 35812333 PMCID: PMC9257039 DOI: 10.3389/fphys.2022.900094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.
Collapse
Affiliation(s)
- Ruibing Xia
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Simone Loy
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Zhihao Zhang
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Valerie Pauly
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Yang HT, Li LL, Li SN, Wu JT, Chen K, Song WF, Zhang GB, Ma JF, Fu HX, Cao S, Gao CY, Hu J. MicroRNA-155 inhibition attenuates myocardial infarction-induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation. Cardiovasc Diagn Ther 2022; 12:325-339. [PMID: 35800355 PMCID: PMC9253173 DOI: 10.21037/cdt-21-743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND Degradation of pro-inflammatory macrophage-mediated connexin 43 (Cx43) plays an important role in post-myocardial infarction (MI) arrhythmogenesis, microRNA (miR)-155 produced by macrophages has been shown to mediate post-MI effects. We hypothesized that miR-155 inhibition attenuated MI-induced Cx43 degradation by reducing pro-inflammatory macrophage activation. METHODS MI was induced by permanent ligation of the left anterior descending coronary artery in male C57BL/6 mice. Lipopolysaccharide (LPS)-stimulated mice bone marrow-derived macrophages (BMDMs) and hypoxia-induced neonatal rat cardiomyocytes (NRCMs) were used in vitro models. qRT-PCR, Western-blot and immunofluorescence were used to analyze relevant indicators. RESULTS The expression levels of miR-155, interleukin-1 beta (IL-1β), and matrix metalloproteinase (MMP)7 were higher in MI mice and LPS-treated BMDMs than in the sham/control groups, treatment with a miR-155 antagomir reversed these effects. Moreover, miR-155 inhibition reduced ventricular arrhythmias incidence and improved cardiac function in MI mice. Cx43 expression was decreased in MI mice and hypoxia-exposed NRCMs, and hypoxia-induced Cx43 degradation in NRCMs was reduced by application of conditioned medium from LPS-induced BMDMs treated with the miR-155 antagomir, but increased by conditioned medium from BMDMs treated with a miR-155 agomir. Importantly, NRCMs cultured in conditioned medium from LPS-induced BMDMs transfected with small interfering RNA against IL-1β and MMP7 showed decreased hypoxia-mediated Cx43 degradation, and this effect also was diminished by BMDM treatment with the miR-155 agomir. Additionally, siRNA-mediated suppressor of cytokine signaling 1 (SOCS1) knockdown in LPS-induced BMDMs promoted Cx43 degradation in hypoxia-exposed NRCMs, and the effect was reduced by the miR-155 inhibition. CONCLUSIONS MiR-155 inhibition attenuated post-MI Cx43 degradation by reducing macrophage-mediated IL-1β and MMP7 expression through the SOCS1/nuclear factor-κB pathway.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Li Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Nan Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jin-Tao Wu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Feng Song
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Bao Zhang
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Fang Ma
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Hai-Xia Fu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Cao
- Department of Ultrasound, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan-Yu Gao
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Hu
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Cabaro S, Conte M, Moschetta D, Petraglia L, Valerio V, Romano S, Di Tolla MF, Campana P, Comentale G, Pilato E, D’Esposito V, Di Mauro A, Cantile M, Poggio P, Parisi V, Leosco D, Formisano P. Epicardial Adipose Tissue-Derived IL-1β Triggers Postoperative Atrial Fibrillation. Front Cell Dev Biol 2022; 10:893729. [PMID: 35721500 PMCID: PMC9198900 DOI: 10.3389/fcell.2022.893729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims: Post-operative atrial fibrillation (POAF), defined as new-onset AF in the immediate period after surgery, is associated with poor adverse cardiovascular events and a higher risk of permanent AF. Mechanisms leading to POAF are not completely understood and epicardial adipose tissue (EAT) inflammation could be a potent trigger. Here, we aim at exploring the link between EAT-secreted interleukin (IL)-1β, atrial remodeling, and POAF in a population of coronary artery disease (CAD) patients. Methods: We collected EAT and atrial biopsies from 40 CAD patients undergoing cardiac surgery. Serum samples and EAT-conditioned media were screened for IL-1β and IL-1ra. Atrial fibrosis was evaluated at histology. The potential role of NLRP3 inflammasome activation in promoting fibrosis was explored in vitro by exposing human atrial fibroblasts to IL-1β and IL-18. Results: 40% of patients developed POAF. Patients with and without POAF were homogeneous for clinical and echocardiographic parameters, including left atrial volume and EAT thickness. POAF was not associated with atrial fibrosis at histology. No significant difference was observed in serum IL-1β and IL-1ra levels between POAF and no-POAF patients. EAT-mediated IL-1β secretion and expression were significantly higher in the POAF group compared to the no-POAF group. The in vitro study showed that both IL-1β and IL-18 increase fibroblasts’ proliferation and collagen production. Moreover, the stimulated cells perpetuated inflammation and fibrosis by producing IL-1β and transforming growth factor (TGF)-β. Conclusion: EAT could exert a relevant role both in POAF occurrence and in atrial fibrotic remodeling.
Collapse
Affiliation(s)
- Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Casa di Cura San Michele, Maddaloni, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Serena Romano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Francesco Di Tolla
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Comentale
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emanuele Pilato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Vittoria D’Esposito
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Annabella Di Mauro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Pathology Unit, INT-IRCCS Fondazione Pascale, Naples, Italy
| | - Monica Cantile
- Pathology Unit, INT-IRCCS Fondazione Pascale, Naples, Italy
| | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- *Correspondence: Paolo Poggio, ; Valentina Parisi, ,
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Paolo Poggio, ; Valentina Parisi, ,
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
21
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
22
|
Armbruster AL, Campbell KB, Kahanda MG, Cuculich PS. The role of inflammation in the pathogenesis and treatment of arrhythmias. Pharmacotherapy 2022; 42:250-262. [PMID: 35098555 DOI: 10.1002/phar.2663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
The pathogenesis of arrhythmias is complex and multifactorial. The role of inflammation in the pathogenesis of both atrial and ventricular arrhythmias (VA) has been explored. However, developing successful pharmacotherapy regimens based on those pathways has proven more of a challenge. This narrative review provides an overview of five common arrhythmias impacted by inflammation, including atrial fibrillation (AF), myocardial infarction, arrhythmogenic cardiomyopathy, cardiac sarcoidosis, and QT prolongation, and the potential role for anti-inflammatory therapy in their management. We identified arrhythmias and arrhythmogenic disease states with the most evidence linking pathogenesis to inflammation and conducted comprehensive searches of United States National Library of Medicine MEDLINE® and PubMed databases. Although a variety of agents have been studied for the management of AF, primarily in an effort to reduce postoperative AF following cardiac surgery, no standard anti-inflammatory agents are used in clinical practice at this time. Although inflammation following myocardial infarction may contribute to the development of VA, there is no clear benefit with the use of anti-inflammatory agents at this time. Similarly, although inflammation is clearly linked to the development of arrhythmias in arrhythmogenic cardiomyopathy, data demonstrating a benefit with anti-inflammatory agents are limited. Cardiac sarcoidosis, an infiltrative disease eliciting an immune response, is primarily treated by immunosuppressive therapy and steroids, despite a lack of primary literature to support such regimens. In this case, anti-inflammatory agents are frequently used in clinical practice. The pathophysiology of arrhythmias is complex, and inflammation likely plays a role in both onset and duration, however, for most arrhythmias the role of pharmacotherapy targeting inflammation remains unclear.
Collapse
Affiliation(s)
- Anastasia L Armbruster
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, Missouri, USA
| | | | - Milan G Kahanda
- Cardiovascular Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Phillip S Cuculich
- Cardiovascular Division, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Liao J, Zhang S, Yang S, Lu Y, Lu K, Wu Y, Wu Q, Zhao N, Dong Q, Chen L, Du Y. Interleukin-6-Mediated-Ca 2+ Handling Abnormalities Contributes to Atrial Fibrillation in Sterile Pericarditis Rats. Front Immunol 2022; 12:758157. [PMID: 34975847 PMCID: PMC8716408 DOI: 10.3389/fimmu.2021.758157] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Pre-existing Ca2+ handling abnormalities constitute the arrhythmogenic substrate in patients developing postoperative atrial fibrillation (POAF), a common complication after cardiac surgery. Postoperative interleukin (IL)-6 levels are associated with atrial fibrosis in several animal models of POAF, contributing to atrial arrhythmias. Here, we hypothesize that IL-6-mediated-Ca2+ handling abnormalities contribute to atrial fibrillation (AF) in sterile pericarditis (SP) rats, an animal model of POAF. SP was induced in rats by dusting atria with sterile talcum powder. Anti-rat-IL-6 antibody (16.7 μg/kg) was administered intraperitoneally at 30 min after the recovery of anesthesia. In vivo electrophysiology, ex vivo optical mapping, western blots, and immunohistochemistry were performed to elucidate mechanisms of AF susceptibility. IL-6 neutralization ameliorated atrial inflammation and fibrosis, as well as AF susceptibility in vivo and the frequency of atrial ectopy and AF with a reentrant pattern in SP rats ex vivo. IL-6 neutralization reversed the prolongation and regional heterogeneity of Ca2+ transient duration, relieved alternans, reduced the incidence of discordant alternans, and prevented the reduction and regional heterogeneity of the recovery ratio of Ca2+ transient. In agreement, western blots showed that IL-6 neutralization reversed the reduction in the expression of ryanodine receptor 2 (RyR2) and phosphorylated phospholamban. Acute IL-6 administration to isolated rat hearts recapitulated partial Ca2+ handling phenotype in SP rats. In addition, intraperitoneal IL-6 administration to rats increased AF susceptibility, independent of fibrosis. Our results reveal that IL-6-mediated-Ca2+ handling abnormalities in SP rats, especially RyR2-dysfunction, independent of IL-6-induced-fibrosis, early contribute to the development of POAF by increasing propensity for arrhythmogenic alternans.
Collapse
Affiliation(s)
- Jie Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoshao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaitao Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongfeng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center of Ion Channelopathy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Zhou M, Li D, Xie K, Xu L, Kong B, Wang X, Tang Y, Liu Y, Huang H. The short-chain fatty acid propionate improved ventricular electrical remodeling in a rat model with myocardial infarction. Food Funct 2021; 12:12580-12593. [PMID: 34813637 DOI: 10.1039/d1fo02040d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The short-chain fatty acid (SCFA) propionate (C3), a microorganism metabolite produced by gut microbial fermentation, has parasympathetic-activation effects. The cardiac autonomic rebalancing strategy is considered as an important therapeutic approach to myocardial infarction (MI)-produced ventricular arrhythmias (VAs). Thus, our research was designed to clarify the potential functions of the SCFA propionate in VAs and cardiac electrophysiology in MI rats. A hundred adult Sprague-Dawley rats were allocated to four groups: the sham group (200 mM sodium chloride), the sham + C3 group (200 mM propionate), the MI group (200 mM sodium chloride) and the MI + C3 group (200 mM propionate). In comparison with the sham group, propionate significantly increased the parasympathetic components heart rate variability (HRV) and acetylcholine levels, prolonged cardiac repolarization, induced STAT3 phosphorylation and up-regulated the c-fos expression in nodose ganglia and solitary nucleus. Propionate intake reduced the susceptibility to VAs. MI induced by coronary ligation caused a significant increase in the sympathetic components HRV, abnormal repolarization, global repolarization dispersion, norepinephrine and inflammatory cytokines, reduction and redistribution of Connexin 43 in the infarcted border zone, and activation of NFκB, which were attenuated in the MI + C3 group. Oral propionate supplementation, as a nutritional intervention, protected the heart against MI-induced VAs and cardiac electrophysiology instability partly by parasympathetic activation based on the gut-brain axis.
Collapse
Affiliation(s)
- Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Diwen Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
25
|
Remodeling of Cardiac Gap Junctional Cell-Cell Coupling. Cells 2021; 10:cells10092422. [PMID: 34572071 PMCID: PMC8465208 DOI: 10.3390/cells10092422] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.
Collapse
|
26
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
27
|
Zhou J, Zhou Z, Liu X, Yin HY, Tang Y, Cao X. P2X7 Receptor-Mediated Inflammation in Cardiovascular Disease. Front Pharmacol 2021; 12:654425. [PMID: 33995071 PMCID: PMC8117356 DOI: 10.3389/fphar.2021.654425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Purinergic P2X7 receptor, a nonselective cation channel, is highly expressed in immune cells as well as cardiac smooth muscle cells and endothelial cells. Its activation exhibits to mediate nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation, resulting in the release of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), and pyroptosis, thus triggering inflammatory response. These pathological mechanisms lead to the deterioration of various cardiovascular diseases, including atherosclerosis, arrhythmia, myocardial infarction, pulmonary vascular remodeling, and cardiac fibrosis. All these worsening cardiac phenotypes are proven to be attenuated after the P2X7 receptor inhibition in experimental studies. The present review aimed to summarize key aspects of P2X7 receptor-mediated inflammation and pyroptosis in cardiovascular diseases. The main focus is on the evidence addressing the involvement of the P2X7 receptor in the inflammatory responses to the occurrence and development of cardiovascular disease and therapeutic interventions.
Collapse
Affiliation(s)
- Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Cao
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
28
|
Lee CC, Chen WT, Chen SY, Lee TM. Taurine Alleviates Sympathetic Innervation by Inhibiting NLRP3 Inflammasome in Postinfarcted Rats. J Cardiovasc Pharmacol 2021; 77:745-755. [PMID: 34057159 PMCID: PMC8274585 DOI: 10.1097/fjc.0000000000001005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/14/2021] [Indexed: 01/02/2023]
Abstract
ABSTRACT The NLRP3 inflammasome is activated by myocardial infarction and then induces the activation of inflammatory caspase-1 activation and maturation of IL-1β, a regulator of synthesis of the nerve growth factor (NGF). Here, we studied whether taurine, 2-aminoethanesulphonic acid, can attenuate cardiac sympathetic reinnervation by modulating NLRP3 inflammasome-mediated NGF in a rat model of myocardial infarction. Male Wistar rats were subjected to coronary ligation and then randomized to either saline or taurine for 3 days or 4 weeks. Postinfarction was associated with activation of NF-κB (p65) and NLRP3 inflammasome component and increased the protein and expression of IL-1β. Macrophages at the border zone were shown to be positive for IL-1β 3 days postinfarction. Compared with vehicle, infarcted rats treated with taurine significantly attenuated myocardial messenger RNA and protein levels of NF-κB, NLRP3 inflammasome, mature caspase-1, and IL-1β. Immunofluorescent analysis, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting of NGF showed that sympathetic hyperinnervation was blunted after administering taurine. Arrhythmia vulnerability in the taurine-treated infarcted rats was significantly improved than those in vehicle. Ex vivo studies showed that taurine infusion reduced myocardial IL-1β level at the extent similar to either pyrrolidine dithiocarbamate or CP-456,773, inhibitors of NF-κB and NLRP3 inflammasome, implying the key axis of NF-κB/NLRP3 inflammasome in mediating taurine-related anti-inflammation. Furthermore, administration of anti-IL-1β antibody reduced NGF levels. Taurine attenuated sympathetic innervation mainly by NLRP3 inflammasome/IL-1β-dependent pathway, which downregulated expression of NGF in infarcted rats. These findings may provide a new insight into the anti-inflammation effect of taurine.
Collapse
Affiliation(s)
| | - Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; and
| | - Syue-yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; and
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; and
- Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
29
|
Bello F, Marchi A, Prisco D, Olivotto I, Emmi G. Antiarrhythmic efficacy of anakinra in a young patient with autoimmune lymphocytic myocarditis. Rheumatology (Oxford) 2021; 59:e88-e90. [PMID: 32533180 DOI: 10.1093/rheumatology/keaa207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Federica Bello
- Department of Clinical and Experimental Medicine, University of Florence
| | - Alberto Marchi
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Domenico Prisco
- Department of Clinical and Experimental Medicine, University of Florence
| | - Iacopo Olivotto
- Department of Clinical and Experimental Medicine, University of Florence.,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Giacomo Emmi
- Department of Clinical and Experimental Medicine, University of Florence
| |
Collapse
|
30
|
Gatti M, Raschi E, Poluzzi E, Martignani C, Salvagni S, Ardizzoni A, Diemberger I. The Complex Management of Atrial Fibrillation and Cancer in the COVID-19 Era: Drug Interactions, Thromboembolic Risk, and Proarrhythmia. Curr Heart Fail Rep 2020; 17:365-383. [PMID: 33025463 PMCID: PMC7537958 DOI: 10.1007/s11897-020-00485-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Cardiotoxicity by anticancer agents has emerged as a multifaceted issue and is expected to affect both mortality and morbidity. This review summarizes clinical challenges in the management of oncological patients requiring anticoagulants for atrial fibrillation (AF) also considering the current outbreak of the COVID-19 (coronavirus disease 2019) pandemic, since this infection can add challenges to the management of both conditions. Specifically, the aims are manyfold: (1) describe the evolving use of direct oral anticoagulants (DOACs) in AF patients with cancer; (2) critically appraise the risk of clinically important drug-drug interactions (DDIs) between DOACs and oral targeted anticancer agents; (3) address expected DDIs between DOACs and candidate anti-COVID drugs, with implications on management of the underlying thrombotic risk; and (4) characterize the proarrhythmic liability in cardio-oncology in the setting of COVID-19, focusing on QT prolongation. RECENT FINDINGS AF in cardio-oncology poses diagnostic and management challenges, also due to the number of anticancer drugs recently associated with AF onset/worsening. Oral targeted drugs can potentially interact with DOACs, with increased bleeding risk mainly due to pharmacokinetic DDIs. Moreover, the vast majority of oral anticancer agents cause QT prolongation with direct and indirect mechanisms, potentially resulting in the occurrence of torsade de pointes, especially in susceptible patients with COVID-19 receiving additional drugs with QT liability. Oncologists and cardiologists must be aware of the increased bleeding risk and arrhythmic susceptibility of patients with AF and cancer due to DDIs. High-risk individuals with COVID-19 should be prioritized to target preventive strategies, including optimal antithrombotic management, medication review, and stringent monitoring.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Emanuel Raschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Cristian Martignani
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | | | - Andrea Ardizzoni
- Medical Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Policlinico S. Orsola-Malpighi, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Igor Diemberger
- Cardiology Unit, Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
31
|
Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, Tu RH. Role of HSP90 in suppressing TLR4-mediated inflammation in ischemic postconditioning. Clin Hemorheol Microcirc 2020; 76:51-62. [PMID: 32651307 DOI: 10.3233/ch-200840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Myocardial inflammation mediated by toll-like receptor 4 (TLR4) plays an active role in myocardial ischemia/reperfusion (I/R) injury. Studies show that heat shock protein 90 (HSP90) is involved in ischemic postconditioning (IPostC) cardioprotection. This study investigates the roles of TLR4 and HSP90 in IPostC. METHODS Rats were subjected to 30 min ischemia, then 2 h reperfusion. IPostC was applied by three cycles of 30 s reperfusion, then 30 s reocclusion at reperfusion onset. Sixty rats were randomly divided into four groups: sham, I/R, IPostC, and geldanamycin (GA, HSP90 inhibitor, 1 mg/kg) plus IPostC (IPostC + GA). RESULTS IPostC significantly reduced I/R-induced infarct size (40.2±2.1% versus 28.4±2.4%; P < 0.05); the release of cardiac Troponin T, creatine kinase-MB, and lactate dehydrogenase (191.5±3.1 versus 140.6±3.3 pg/ml, 3394.6±132.7 versus 2880.7±125.5 pg/ml, 2686.2±98.6 versus 1848.8±90.1 pg/ml, respectively; P < 0.05); and cardiomyocyte apoptosis (40.3±2.2% versus 27.0±1.6%; P < 0.05). Further, local and circulating IL-1β, IL-6, TNF-α, and ICAM-1 levels decreased; TLR4 expression and nuclear factor-KB (NF-κB) signaling decreased; and cardiac HSP90 expression increased. Blocking HSP90 function with GA inhibited IPostC protection and anti-inflammation, suggesting that IPostC has a HSP90-dependent anti-inflammatory effect. CONCLUSION HSP90 may play a role in IPostC-mediated cardioprotection by inhibiting TLR4 activation, local and systemic inflammation, and NF-kB signaling.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Zheng Huang
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Qing-Jie Li
- Department of Cardiology, Second Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China.,Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China
| | - Jian-Jun Meng
- Geriatric Healthcare Center, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Rong-Hui Tu
- Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.,Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| |
Collapse
|
32
|
Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol 2020; 11:570681. [PMID: 33193350 PMCID: PMC7642610 DOI: 10.3389/fimmu.2020.570681] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza virus infection causes 3-5 million cases of severe illness and 250,000-500,000 deaths worldwide annually. Although pneumonia is the most common complication associated with influenza, there are several reports demonstrating increased risk for cardiovascular diseases. Several clinical case reports, as well as both prospective and retrospective studies, have shown that influenza can trigger cardiovascular events including myocardial infarction (MI), myocarditis, ventricular arrhythmia, and heart failure. A recent study has demonstrated that influenza-infected patients are at highest risk of having MI during the first seven days of diagnosis. Influenza virus infection induces a variety of pro-inflammatory cytokines and chemokines and recruitment of immune cells as part of the host immune response. Understanding the cellular and molecular mechanisms involved in influenza-associated cardiovascular diseases will help to improve treatment plans. This review discusses the direct and indirect effects of influenza virus infection on triggering cardiovascular events. Further, we discussed the similarities and differences in epidemiological and pathogenic mechanisms involved in cardiovascular events associated with coronavirus disease 2019 (COVID-19) compared to influenza infection.
Collapse
Affiliation(s)
- Radha Gopal
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
33
|
Chen M, Li X, Wang S, Yu L, Tang J, Zhou S. The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias. Front Physiol 2020; 11:1113. [PMID: 33071805 PMCID: PMC7540080 DOI: 10.3389/fphys.2020.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In the heart, cardiac macrophages have widespread biological functions, including roles in antigen presentation, phagocytosis, and immunoregulation, through the formation of diverse cytokines and growth factors; thus, these cells play an active role in tissue repair after heart injury. Recent clinical studies have indicated that macrophages or elevated inflammatory cytokines secreted by macrophages are closely related to ventricular arrhythmias (VAs). This review describes the role of macrophages and macrophage-secreted inflammatory cytokines in ventricular arrhythmogenesis.
Collapse
Affiliation(s)
- Mingxian Chen
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuping Li
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianjun Tang
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Sciaccaluga C, Cameli M, Menci D, Mandoli GE, Sisti N, Cameli P, Franchi F, Mondillo S, Valente S. COVID-19 and the burning issue of drug interaction: never forget the ECG. Postgrad Med J 2020; 97:180-184. [PMID: 32820084 DOI: 10.1136/postgradmedj-2020-138093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), has been rapidly escalating, becoming a relevant threat to global health. Being a recent virus outbreak, there are still no available therapeutic regimens that have been approved in large randomised trials and so patients are currently being treated with multiple drugs. This raises concerns regarding drug interaction and their implication in arrhythmic burden. In fact, two of the actually used drugs against SARS-CoV2, such as chloroquine and the combination lopinavir/ritonavir, might determine a QT (the time from the start of the Q wave to the end of the T wave) interval prolongation and they show several interactions with antiarrhythmic drugs and antipsychotic medications, making them prone to an increased risk of developing arrhythmias. This brief review focuses the attention on the most relevant drug interactions involving the currently used COVID-19 medications and their possible association with cardiac rhythm disorders, taking into account also pre-existing condition and precipitating factors that might additionally increase this risk. Furthermore, based on the available evidence and based on the knowledge of drug interaction, we propose a quick and simple algorithm that might help both cardiologists and non-cardiologists in the management of the arrhythmic risk before and during the treatment with the specific drugs used against SARS-CoV2.
Collapse
Affiliation(s)
- Carlotta Sciaccaluga
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - Matteo Cameli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - Daniele Menci
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - Nicolò Sisti
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medicine, Surgery and Neurosciences, Siena University Hospital, Siena, Italy
| | - Federico Franchi
- Department of Medicine, Surgery and Neuroscience, Anesthesia and Intensive Care Unit, University of Siena, Siena, Italy
| | - Sergio Mondillo
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - Serafina Valente
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| |
Collapse
|
35
|
Viscido A, Capannolo A, Petroni R, Stefanelli G, Zerboni G, De Martinis M, Necozione S, Penco M, Frieri G, Latella G, Romano S. Association between Corrected QT Interval and C-Reactive Protein in Patients with Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2020; 56:medicina56080382. [PMID: 32751480 PMCID: PMC7466199 DOI: 10.3390/medicina56080382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022]
Abstract
Background and objectives: Electrocardiograph abnormalities (i.e., QT interval prolongation) have been described in inflammatory bowel diseases (IBD). We aimed to measure the QT interval in a cohort of patients with IBD and to analyze its relationship with clinical and inflammatory activity. Materials and Methods: We performed a cross-sectional study that included 38 IBD outpatients and 38 “age- and sex-matched” healthy controls. Nine patients had active IBD, and 29 were in clinical remission. Among the latter, 10 patients had sustained (lasting >1 year) and 19 had short-term remission (≤1 year). Corrected QT (QTc) interval was measured on standard 12-lead electrocardiograph. A systematic review of the literature on studies investigating the QT interval in patients with IBD was also performed. Results: QTc interval values were similar between IBD patients and healthy controls (417.58 ± 22.05 ms vs. 409.13 ± 19.61 ms, respectively; p: 0.479). Patients with active IBD had significantly higher QTc values (435.11 ± 27.31 ms) than both controls (409.13 ± 19.61 ms) and patients in remission (412.14 ± 17.33 ms) (p: 0.031). Post hoc analysis showed that the difference in QTc values between active IBD and remission was attributable to the group of patients with sustained remission (p < 0.05). Lastly, a significant correlation between QTc interval and C-reactive protein (CRP) values was observed (Spearman test: r = 0.563; p: 0.0005). Conclusions: Our study demonstrates an association between QTc duration and both clinical and inflammatory activity in patients with IBD. The higher the CRP value, the longer is the QTc duration. For practical purposes, all patients with active IBD should undergo a standard ECG. Prescription of drugs able to modify the QT interval should be avoided in patients with active IBD. The systematic review of the literature indicated that this is the first published study demonstrating an association between the QTc duration and CRP values in patients with IBD.
Collapse
Affiliation(s)
- Angelo Viscido
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (G.S.); (G.F.); (G.L.)
- Correspondence: ; Tel.: +39-086-243-4746
| | - Annalisa Capannolo
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (G.S.); (G.F.); (G.L.)
| | - Renata Petroni
- Cardiology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (R.P.); (M.P.); (S.R.)
- Di Lorenzo Clinic, Avezzano, 67100 L’Aquila, Italy
| | - Gianpiero Stefanelli
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (G.S.); (G.F.); (G.L.)
| | | | - Massimo De Martinis
- Clinical Immunology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Stefano Necozione
- Statistics Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Maria Penco
- Cardiology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (R.P.); (M.P.); (S.R.)
| | - Giuseppe Frieri
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (G.S.); (G.F.); (G.L.)
| | - Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (G.S.); (G.F.); (G.L.)
| | - Silvio Romano
- Cardiology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (R.P.); (M.P.); (S.R.)
| |
Collapse
|
36
|
Sattayaprasert P, Vasireddi SK, Bektik E, Jeon O, Hajjiri M, Mackall JA, Moravec CS, Alsberg E, Fu J, Laurita KR. Human Cardiac Mesenchymal Stem Cells Remodel in Disease and Can Regulate Arrhythmia Substrates. Circ Arrhythm Electrophysiol 2020; 13:e008740. [PMID: 32755466 PMCID: PMC7578059 DOI: 10.1161/circep.120.008740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1β (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1β or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.
Collapse
Affiliation(s)
- Prasongchai Sattayaprasert
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Sunil K Vasireddi
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Emre Bektik
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (E.B.)
| | - Oju Jeon
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago
| | - Mohammad Hajjiri
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Judith A Mackall
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center (J.A.M.)
| | - Christine S Moravec
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland (C.S.M.)
| | - Eben Alsberg
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago.,Orthopaedics (E.A.), University of Illinois at Chicago.,Pharmacology (E.A.), University of Illinois at Chicago.,Mechanical & Industrial Engineering (E.A.), University of Illinois at Chicago
| | - Jidong Fu
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus (J.F.)
| | - Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| |
Collapse
|
37
|
Shahrbaf MA, Akbarzadeh MA, Tabary M, Khaheshi I. Air Pollution and Cardiac Arrhythmias: A Comprehensive Review. Curr Probl Cardiol 2020; 46:100649. [PMID: 32839041 DOI: 10.1016/j.cpcardiol.2020.100649] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/26/2022]
Abstract
Air pollution is the mixture of some chemical and environmental agents including dust, fumes, gases, particulate matters, and biological materials which can be harmful for the environment and the human body. The increasing trend of the air pollution, especially in developing countries, may exert its detrimental effects on human health. The potentially harmful effects of air pollution on the human health have been recognized and many epidemiological studies have clearly suggested the strong association between air pollution exposure and increased morbidities and mortalities. Air pollutants are classified into gaseous pollutants including carbon mono oxide, nitrogen oxides, ozone and sulfur dioxide, and particulate matters (PMs). All air pollutants have destructive effects on the health systems including cardiovascular system. Many studies have demonstrated the effect of air pollutant on the occurrence of ST elevation myocardial infarction, sudden cardiac death, cardiac arrythmias, and peripheral arterial disease. Recently, some studies suggested that air pollution may be associated with cardiac arrhythmias. In this study, we aimed to comprehensively review the last evidences related to the association of air pollutant and cardiac arrythmias. We found that particulate matters (PM10, PM2.5, and UFP) and gaseous air pollutants can exert undesirable effects on cardiac rhythms. Short-term and long-term exposure to the air pollutants can interact with the cardiac rhythms through oxidative stress, autonomic dysfunction, coagulation dysfunction, and inflammation. It seems that particulate matters, especially PM2.5 have stronger association with cardiac arrhythmias among all air pollutants. However, future studies are needed to confirm these results.
Collapse
|
38
|
Liu C, Jiang H, Yu L, S Po S. Vagal Stimulation and Arrhythmias. J Atr Fibrillation 2020; 13:2398. [PMID: 33024499 DOI: 10.4022/jafib.2398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
I mbalance of the sympathetic and parasympathetic nervous systems is probably the most prevalent autonomic mechanism underlying many a rrhythmias . Recently, vagus nerve stimulation ( VNS has emerged as a novel therapeutic modality to treat arrhythmias through its anti adrenergic and anti inflammatory actions . C linical trials applying VNS to the cervical vagus nerve in heart failure pati en ts yielded conflicting results, possibly due to limited understanding of the optimal stimulation parameters for the targeted cardiovascular diseases. Transcutaneous VNS by stimulating the auricular branch of the vagus nerve, has attracted great attention d ue to its noninvasiveness. In this r eview, we summarize current knowledge about the complex relationship between VNS and cardiac arrhythmias and discuss recent advances in using VNS , particularly transcutaneous VNS , to treat arrhythmias.
Collapse
Affiliation(s)
- Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiac Autonomic Nervous System Research Center of Wuhan Univer s ity, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Sunny S Po
- Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, O K USA
| |
Collapse
|
39
|
Zhang XY, Huang Z, Li QJ, Zhong GQ, Meng JJ, Wang DX, Tu RH. Ischemic postconditioning attenuates the inflammatory response in ischemia/reperfusion myocardium by upregulating miR‑499 and inhibiting TLR2 activation. Mol Med Rep 2020; 22:209-218. [PMID: 32377693 PMCID: PMC7248531 DOI: 10.3892/mmr.2020.11104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptor 2 (TLR2)-mediated myocardial inflammation serves an important role in promoting myocardial ischemic/reperfusion (I/R) injury. Previous studies have shown that miR-499 is critical for cardioprotection after ischemic postconditioning (IPostC). Therefore, the present study evaluated the protective effect of IPostC on the myocardium by inhibiting TLR2, and also assessed the involvement of microRNA (miR)-499. Rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The IPostC was 3 cycles of 30 sec of reperfusion and 30 sec of re-occlusion prior to reperfusion. In total, 90 rats were randomly divided into six groups (n=15 per group): Sham; I/R; IPostC; miR-499 negative control adeno-associated virus (AAV) vectors + IPostC; miR-499 inhibitor AAV vectors + IPostC; and miR-499 mimic AAV vectors + IPostC. It was identified that IPostC significantly decreased the I/R-induced cardiomyocyte apoptotic index (29.4±2.03% in IPostC vs. 42.64±2.27% in I/R; P<0.05) and myocardial infarct size (48.53±2.49% in IPostC vs. 66.52±3.1% in I/R; P<0.05). Moreover, these beneficial effects were accompanied by increased miR-499 expression levels (as demonstrated by reverse transcription-quantitative PCR) in the myocardial tissue and decreased TLR2, protein kinase C (PKC), interleukin (IL)-1β and IL-6 expression levels (as demonstrated by western blotting and ELISA) in the myocardium and serum. The results indicated that IPostC + miR-499 mimics significantly inhibited inflammation and the PKC signaling pathway and enhanced the anti-inflammatory and anti-apoptotic effects of IPostC. However, IPostC + miR-499 inhibitors had the opposite effect. Therefore, it was speculated that IPostC may have a miR-499-dependent cardioprotective effect. The present results suggested that miR-499 may be involved in IPostC-mediated ischemic cardioprotection, which may occur via local and systemic TLR2 inhibition, subsequent inhibition of the PKC signaling pathway and a decrease in inflammatory cytokine release, including IL-1β and IL-6. Moreover, these effects will ultimately lead to a decrease in the myocardial apoptotic index and myocardial infarct size via the induction of the anti-apoptotic protein Bcl-2, and inhibition of the pro-apoptotic protein Bax in myocardium.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zheng Huang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing-Jie Li
- Department of Cardiology, Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian-Jun Meng
- Department of Geriatric Health Care Center, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Hui Tu
- Guangxi Key Laboratory of Precision Medicine in Cardio‑Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
40
|
Mourouzis K, Oikonomou E, Siasos G, Tsalamadris S, Vogiatzi G, Antonopoulos A, Fountoulakis P, Goliopoulou A, Papaioannou S, Tousoulis D. Pro-inflammatory Cytokines in Acute Coronary Syndromes. Curr Pharm Des 2020; 26:4624-4647. [PMID: 32282296 DOI: 10.2174/1381612826666200413082353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over the last decades, the role of inflammation and immune system activation in the initiation and progression of coronary artery disease (CAD) has been established. OBJECTIVES The study aimed to present the interplay between cytokines and their actions preceding and shortly after ACS. METHODS We searched in a systemic manner the most relevant articles to the topic of inflammation, cytokines, vulnerable plaque and myocardial infarction in MEDLINE, COCHRANE and EMBASE databases. RESULTS Different classes of cytokines (intereleukin [IL]-1 family, Tumor necrosis factor-alpha (TNF-α) family, chemokines, adipokines, interferons) are implicated in the entire process leading to destabilization of the atherosclerotic plaque, and consequently, to the incidence of myocardial infarction. Especially IL-1 and TNF-α family are involved in inflammatory cell accumulation, vulnerable plaque formation, platelet aggregation, cardiomyocyte apoptosis and adverse remodeling following the myocardial infarction. Several cytokines such as IL-6, adiponectin, interferon-γ, appear with significant prognostic value in ACS patients. Thus, research interest focuses on the modulation of inflammation in ACS to improve clinical outcomes. CONCLUSION Understanding the unique characteristics that accompany each cytokine-cytokine receptor interaction could illuminate the signaling pathways involved in plaque destabilization and indicate future treatment strategies to improve cardiovascular prognosis in ACS patients.
Collapse
Affiliation(s)
- Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Athina Goliopoulou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Spyridon Papaioannou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
41
|
Zickri MB, Sadek EM, Fares AE, Heteba NG, Reda AM. Effect of Stem Cells, Ascorbic Acid and SERCA1a Gene Transfected Stem Cells in Experimentally Induced Type I Diabetic Myopathy. Int J Stem Cells 2020; 13:163-175. [PMID: 32114738 PMCID: PMC7119208 DOI: 10.15283/ijsc18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibition was proved in streptozotocin (STZ)-diabetic rats. The present study aimed at investigating and comparing the therapeutic effect of bone marrow mesenchymal stem cells (BMMSCs), BMMSCs combined with ascorbic acid (AA) and SERCA1a gene transfected BMMSCs in induced type I diabetic myopathy of male albino rat. Methods and Results 54 rats were divided into donor group of 6 rats for isolation, propagation and characterization of BMMSCs and SERCA1a transfected BMMSCs, groups I∼V 48 rats. Group I of 8 control rats, group II (Diabetic) of 10 rats given STZ 50 mg/kg intraperitoneal, group III (BMMSCs) of 10 rats given STZ and BMMSCs intravenous (IV), group IV (BMMSCs and AA) of 10 rats given STZ, BMMSCs IV and AA 500 mg/kg and group V (SERCA 1a transfected BMMSCs) of 10 rats given STZ and SERCA1a transfected BMMSCs IV. The rats were sacrificed after 8 weeks. Gastrocnemius specimens were subjected to biochemical, histological, morphometric and statistical studies. Diabetic rats revealed inflammatory and degenerative muscle changes, a significant increase in blood glucose level, mean DNA fragmentation and mean MDA values and a significant decrease in mean GSH and catalase values, area of pale nuclei, area% of CD105 and CD34 +ve cells, SERCA1a protein and gene values. The morphological changes regressed by therapy. In group III significant decrease in DNA fragmentation and MDA, significant increase in GSH and catalase, significant increase in the mean area of pale nuclei, area % of CD105 and CD34 +ve cells versus diabetic group. In group IV, same findings as group III versus diabetic and BMMSCs groups. In group V, same findings as group IV versus diabetic and treated groups. Western blot and PCR proved a mean value of SERCA1a protein and gene comparable to the control group. Mean calcium concentration values revealed a significant increase in the diabetic group, in BMMSCs and AA group versus control and SERCA1a group. Conclusions SERCA1a transfected BMMSCs proved a definite therapeutic effect, more remarkable than BMMSCs combined with AA. This effect was evidenced histologically and confirmed by significant changes in the biochemical tests indicating oxidative stress, muscle calcium concentration, morphometric parameters and PCR values of SERCA1a.
Collapse
Affiliation(s)
- Maha B Zickri
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo City, Egypt
| | - Eman M Sadek
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Amal E Fares
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed M Reda
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt.,Faculty of Pharmacy, Near East University, North Cyprus, Cyprus
| |
Collapse
|
42
|
Lindsey ML, Jung M, Yabluchanskiy A, Cannon PL, Iyer RP, Flynn ER, DeLeon-Pennell KY, Valerio FM, Harrison CL, Ripplinger CM, Hall ME, Ma Y. Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality. Cardiovasc Res 2020; 115:395-408. [PMID: 30169632 DOI: 10.1093/cvr/cvy211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Aims Macrophage phagocytosis of dead cells is a prerequisite for inflammation resolution. Because CXCL4 induces macrophage phagocytosis in vitro, we examined the impact of exogenous CXCL4 infusion on cardiac wound healing and macrophage phagocytosis following myocardial infarction (MI). Methods and results CXCL4 expression significantly increased in the infarct region beginning at Day 3 post-MI, and macrophages were the predominant source. Adult male C57BL/6J mice were subjected to coronary artery occlusion, and MI mice were randomly infused with recombinant mouse CXCL4 or saline beginning at 24 h post-MI by mini-pump infusion. Compared with saline controls, CXCL4 infusion dramatically reduced 7 day post-MI survival [10% (3/30) for CXCL4 vs. 47% (7/15) for saline, P < 0.05] as a result of acute congestive heart failure. By echocardiography, CXCL4 significantly increased left ventricular (LV) volumes and dimensions at Day 5 post-MI (all P < 0.05), despite similar infarct areas compared with saline controls. While macrophage numbers were similar at Day 5 post-MI, CXCL4 infusion increased Ccr4 and Itgb4 and decreased Adamts8 gene levels in the infarct region, all of which linked to CXCL4-mediated cardiac dilation. Isolated Day 5 post-MI macrophages exhibited comparable levels of M1 and M4 markers between saline and CXCL4 groups. Interestingly, by both ex vivo and in vitro phagocytosis assays, CXCL4 reduced macrophage phagocytic capacity, which was connected to decreased levels of the phagocytosis receptor CD36. In vitro, a CD36 neutralizing antibody (CD36Ab) significantly inhibited macrophage phagocytic capacity. The combination of CXCL4 and CD36Ab did not have an additive effect, indicating that CXCL4 regulated phagocytosis through CD36 signalling. CXCL4 infusion significantly elevated infarct matrix metalloproteinase (MMP)-9 levels at Day 5 post-MI, and MMP-9 can cleave CD36 as a down-regulation mechanism. Conclusion CXCL4 infusion impaired macrophage phagocytic capacity by reducing CD36 levels through MMP-9 dependent and independent signalling, leading to higher mortality and LV dilation.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Mira Jung
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine, Translational Geroscience Laboratory, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Presley L Cannon
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Rugmani Padmanabhan Iyer
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Kristine Y DeLeon-Pennell
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Fritz M Valerio
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Courtney L Harrison
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA.,Department of Medicine, Division of Cardiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yonggang Ma
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, USA
| |
Collapse
|
43
|
Wu SJ, Lin ZH, Lin YZ, Rao ZH, Lin JF, Wu LP, Li L. Dexmedetomidine Exerted Anti-arrhythmic Effects in Rat With Ischemic Cardiomyopathy via Upregulation of Connexin 43 and Reduction of Fibrosis and Inflammation. Front Physiol 2020; 11:33. [PMID: 32116751 PMCID: PMC7020758 DOI: 10.3389/fphys.2020.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Persistent myocardial ischemia post-myocardial infarction can lead to fatal ventricular arrhythmias such as ventricular tachycardia and fibrillation, both of which carry high mortality rates. Dexmedetomidine (Dex) is a highly selective α2-agonist used in surgery for congenital cardiac disease because of its antiarrhythmic properties. Dex has previously been reported to prevent or terminate various arrhythmias. The purpose of the present study was to determine the anti-arrhythmic properties of Dex in the context of ischemic cardiomyopathy (ICM) after myocardial infarction. Methods and Results We randomly allocated 48 rats with ICM, created by persistent ligation of the left anterior descending artery for 4 weeks, into six groups: Sham (n = 8), Sham + BML (n = 8), ICM (n = 8), ICM + BML (n = 8), ICM + Dex (n = 8), and ICM + Dex + BML (n = 8). Treatments started after ICM was confirmed (the day after echocardiographic measurement) and continued for 4 weeks (inject intraperitoneally, daily). Dex inhibited the generation of collagens, cytokines, and other inflammatory mediators in rats with ICM via the suppression of NF-κB activation and increased the distribution of connexin 43 (Cx43) via phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK). Dex reduced the occurrence of spontaneous ventricular arrhythmias (ventricular premature beat or ventricular tachycardia), decreased the inducibility quotient of ventricular arrhythmias induced by PES, and partly improved cardiac contraction. The AMPK antagonist BML-275 dihydrochloride (BML) partly weakened the cardioprotective effect of Dex. Conclusion Dex conferred anti-arrhythmic effects in the context of ICM via upregulation of Cx43 and suppression of inflammation and fibrosis. The anti-arrhythmic and anti-inflammatory properties of Dex may be mediated by phosphorylation of AMPK and subsequent suppression of NF-κB activation.
Collapse
Affiliation(s)
- Shu-Jie Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Hao Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan-Zheng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Heng Rao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Feng Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lian-Pin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Jiang X, Huang X, Tong Y, Gao H. Butyrate improves cardiac function and sympathetic neural remodeling following myocardial infarction in rats. Can J Physiol Pharmacol 2020; 98:391-399. [PMID: 31999473 DOI: 10.1139/cjpp-2019-0531] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased inflammation is found in cardiac sympathetic neural remodeling with malignant ventricular arrhythmia (VA) following myocardial infarction (MI). Butyrate, as a microbiota-derived short-chain fatty acid, can inhibit inflammation and myocardial hypertrophy. However, the role of butyrate in sympathetic neural remodeling after MI is unknown. This study aimed to investigate whether butyrate could improve cardiac dysfunction and VA following MI by regulating inflammation and sympathetic neural remodeling. MI rats were randomized to administrate the butyrate or vehicle through intraperitoneal injection to undergo the study. Our data demonstrated that butyrate treatment preserved the partial cardiac function at 7 days post-MI. Butyrate downregulated the expression of essential for inflammatory response in the infarct border zone at 3 days post-MI. Particularly, butyrate promoted expression of M2 macrophage markers. Increased expressions of nerve growth factor and norephinephrine at 7 days after MI were inhibited in butyrate-treated rats. Furthermore, butyrate significantly decreased the density of nerve fibers for growth-associated protein-43 and tyrosine hydroxylase and resulted in fewer episodes of inducible VA. In conclusion, butyrate administration ameliorated cardiac function and VA after MI possibly through promoting M2 macrophage polarization to suppress inflammatory responses and inhibit sympathetic neural remodeling and may present an effective pharmacological strategy for the prevention of MI-related remodeling.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| | - Xin Huang
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| | - Yifan Tong
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| | - Hong Gao
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| |
Collapse
|
45
|
Liberale L, Carbone F, Camici GG, Montecucco F. IL-1β and Statin Treatment in Patients with Myocardial Infarction and Diabetic Cardiomyopathy. J Clin Med 2019; 8:E1764. [PMID: 31652822 PMCID: PMC6912287 DOI: 10.3390/jcm8111764] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
Statins are effective lipid-lowering drugs with a good safety profile that have become, over the years, the first-line therapy for patients with dyslipidemia and a real cornerstone of cardiovascular (CV) preventive therapy. Thanks to both cholesterol-related and "pleiotropic" effects, statins have a beneficial impact against CV diseases. In particular, by reducing lipids and inflammation statins, they can influence the pathogenesis of both myocardial infarction and diabetic cardiomyopathy. Among inflammatory mediators involved in these diseases, interleukin (IL)-1β is a pro-inflammatory cytokine that recently been shown to be an effective target in secondary prevention of CV events. Statins are largely prescribed to patients with myocardial infarction and diabetes, but their effects on IL-1β synthesis and release remain to be fully characterized. Of interest, preliminary studies even report IL-1β secretion to rise after treatment with statins, with a potential impact on the inflammatory microenvironment and glycemic control. Here, we will summarize evidence of the role of statins in the prevention and treatment of myocardial infarction and diabetic cardiomyopathy. In accordance with the dual lipid-lowering and anti-inflammatory effect of these drugs and in light of the important results achieved by IL-1β inhibition through canakinumab in CV secondary prevention, we will dissect the current evidence linking statins with IL-1β and outline the possible benefits of a potential double treatment with statins and canakinumab.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Schlieren, 8092, Switzerland.
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy.
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy.
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, 8092, Switzerland.
- University Heart Center, Department of Cardiology, University Hospital Zurich, 8001 Zurich, Switzerland.
- Department of Research and Education, University Hospital Zurich, 8001 Zurich, Switzerland.
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 16132 Genoa, Italy.
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
46
|
Zhao Z, Du S, Shen S, Wang L. microRNA‐132 inhibits cardiomyocyte apoptosis and myocardial remodeling in myocardial infarction by targeting IL‐1β. J Cell Physiol 2019; 235:2710-2721. [PMID: 31621911 DOI: 10.1002/jcp.29175] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zonglei Zhao
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| | - Song Du
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| | - Shuxin Shen
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| | - Lixia Wang
- Department of Cardiology Henan Provincial People's Hospital (Zhengzhou University People's Hospital) Zhengzhou China
| |
Collapse
|
47
|
Zheng Z, Zeng X, Nie X, Cheng Y, Liu J, Lin X, Yao H, Ji C, Chen X, Jun F, Wu S. Interleukin-1 blockade treatment decreasing cardiovascular risk. Clin Cardiol 2019; 42:942-951. [PMID: 31415103 PMCID: PMC6788469 DOI: 10.1002/clc.23246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Interleukin-1 (IL-1) played a role in the occurrence and development of atherosclerosis and cardiovascular events. However, the association between IL-1 blockage treatment and reducing of cardiovascular risk remains poorly defined. HYPOTHESIS IL-1 blockage treatment reduce the risk and incidence rate of overall major adverse cardiovascular events (MACE), all-cause death, acute myocardial infarction(MI), unstable angina and heart failure. METHODS We performed a search of published reports by using MEDLINE database (January 1, 2005 to April 1, 2018). The randomized controlled trials (RCTs) that reported sample size and occurrence numbers in test group and placebo group for the associations of interest were included. RESULTS Eight RCT studies involving 15 647 participants were identified. Compared with those who took no IL-1 blockage, patients taking IL-1 blockage experienced a decreased risk of overall MACE (RR 0.88, 95% CI 0.82-0.94), unstable angina (RR 0.80, 95% CI 0.66-0.98), and breakthrough or recurrence of heart failure (RR 0.44, 95% CI 0.22-0.87). No association was found between IL-1 blockage treatment and death from all cause (RR 0.91, 95% CI 0.83-1.00) as well as acute MI (RR 0.85, 95% CI 0.71-1.01). The RRs associated with overall MACE, death from all cause, acute MI, and unstable angina for anakinra were 1.05, 1.16, 2.97, and 0.56, respectively, and for canakinumab were 1.05, 0.91, 0.80, and 0.80, respectively. CONCLUSIONS Administration of IL-1 blockage was associated with decrease risks of overall MACE, unstable angina, and breakthrough or recurrence of heart failure, but not with death from all cause as well as acute MI.
Collapse
Affiliation(s)
- Zi‐Heng Zheng
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Xun Zeng
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
- Outpatient DepartmentThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiao‐Ying Nie
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
- Outpatient DepartmentThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yun‐Jiu Cheng
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Jun Liu
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Xiao‐Xiong Lin
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Hao Yao
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Cheng‐Cheng Ji
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Xu‐Miao Chen
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Fan Jun
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| | - Su‐Hua Wu
- Department of CardiologyThe First Affiliated Hospital, Sun Yat‐Sen University and Key Laboratory on Assisted Circulation, NHCGuangzhouChina
| |
Collapse
|
48
|
Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol 2019; 18:733-744. [PMID: 30228378 DOI: 10.1038/s41577-018-0065-8] [Citation(s) in RCA: 477] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past few decades have generated growing recognition that the immune system makes an important contribution to cardiac development, composition and function. Immune cells infiltrate the heart at gestation and remain in the myocardium, where they participate in essential housekeeping functions throughout life. After myocardial infarction or in response to infection, large numbers of immune cells are recruited to the heart to remove dying tissue, scavenge pathogens and promote healing. Under some circumstances, immune cells can cause irreversible damage, contributing to heart failure. This Review focuses on the role of the immune system in the heart under both homeostatic and perturbed conditions.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
50
|
Zhou Y, Zhao S, Chen K, Hua W, Zhang S. Predictive value of gamma-glutamyltransferase for ventricular arrhythmias and cardiovascular mortality in implantable cardioverter-defibrillator patients. BMC Cardiovasc Disord 2019; 19:129. [PMID: 31146684 PMCID: PMC6542048 DOI: 10.1186/s12872-019-1114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Gamma-glutamyltransferase (GGT) is a new predictor of cardiovascular diseases. In this study, we aimed to determine its association with ventricular arrhythmias (VAs) in implantable cardioverter-defibrillator (ICD) patients. Methods One hundred and forty patients implanted with ICD or cardiac resynchronization therapy defibrillator with home monitoring were studied retrospectively. The primary endpoint was appropriate ICD treatment of VAs, secondary endpoint was cardiac death. Results During a mean follow-up period of 44 ± 17 months, 78 patients (55.7%) experienced VAs, 50 patients (35.7%) were treated with appropriate ICD shocks and 16 patients (11.4%) died due to cardiovascular diseases. GGT was positively correlated with high sensitivity C reactive protein (r = 0.482, P < 0.001), left ventricular end-diastolic dimension (r = 0.175, P = 0.039), New York Heart Association class (r = 0.199, P = 0.018), fasting blood glucose (r = 0.233, P = 0.006) and negatively with left ventricular ejection fraction (r = − 0.181, P = 0.032) and high-density lipoprotein (r = − 0.313, P < 0.001). Based on receiver operating characteristics curve, the cut-off value of GGT = 56 U/L was identified to predict VAs. In Kaplan-Meier survival analysis, GGT ≥56 U/L was associated with increased VAs (P<0.001), ICD shock events (P = 0.006) and cardiovascular mortality (P = 0.003). In multivariate COX regression models, GGT ≥56 U/L was an independent risk factor for VAs (HR 2.253, 95%CI:1.383–3.671, P = 0.001), ICD shocks (HR 2.256, 95%CI:1.219–4.176, P = 0.010) and cardiac death (HR 3.555, 95%CI:1.215–10.404, P = 0.021). Conclusions In this ICD population, GGT ≥56 U/L was independently associated with VAs and cardiac death.
Collapse
Affiliation(s)
- You Zhou
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Shi Road, Xicheng District, Beijing, 100037, China
| | - Shuang Zhao
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Shi Road, Xicheng District, Beijing, 100037, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Shi Road, Xicheng District, Beijing, 100037, China
| | - Wei Hua
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Shi Road, Xicheng District, Beijing, 100037, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Bei Li Shi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|