1
|
Sparks R, Rachmaninoff N, Lau WW, Hirsch DC, Bansal N, Martins AJ, Chen J, Liu CC, Cheung F, Failla LE, Biancotto A, Fantoni G, Sellers BA, Chawla DG, Howe KN, Mostaghimi D, Farmer R, Kotliarov Y, Calvo KR, Palmer C, Daub J, Foruraghi L, Kreuzburg S, Treat JD, Urban AK, Jones A, Romeo T, Deuitch NT, Moura NS, Weinstein B, Moir S, Ferrucci L, Barron KS, Aksentijevich I, Kleinstein SH, Townsley DM, Young NS, Frischmeyer-Guerrerio PA, Uzel G, Pinto-Patarroyo GP, Cudrici CD, Hoffmann P, Stone DL, Ombrello AK, Freeman AF, Zerbe CS, Kastner DL, Holland SM, Tsang JS. A unified metric of human immune health. Nat Med 2024; 30:2461-2472. [PMID: 38961223 DOI: 10.1038/s41591-024-03092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
Immunological health has been challenging to characterize but could be defined as the absence of immune pathology. While shared features of some immune diseases and the concept of immunologic resilience based on age-independent adaptation to antigenic stimulation have been developed, general metrics of immune health and its utility for assessing clinically healthy individuals remain ill defined. Here we integrated transcriptomics, serum protein, peripheral immune cell frequency and clinical data from 228 patients with 22 monogenic conditions impacting key immunological pathways together with 42 age- and sex-matched healthy controls. Despite the high penetrance of monogenic lesions, differences between individuals in diverse immune parameters tended to dominate over those attributable to disease conditions or medication use. Unsupervised or supervised machine learning independently identified a score that distinguished healthy participants from patients with monogenic diseases, thus suggesting a quantitative immune health metric (IHM). In ten independent datasets, the IHM discriminated healthy from polygenic autoimmune and inflammatory disease states, marked aging in clinically healthy individuals, tracked disease activities and treatment responses in both immunological and nonimmunological diseases, and predicted age-dependent antibody responses to immunizations with different vaccines. This discriminatory power goes beyond that of the classical inflammatory biomarkers C-reactive protein and interleukin-6. Thus, deviations from health in diverse conditions, including aging, have shared systemic immune consequences, and we provide a web platform for calculating the IHM for other datasets, which could empower precision medicine.
Collapse
Affiliation(s)
- Rachel Sparks
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Nicholas Rachmaninoff
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
- Graduate Program in Biological Sciences, University of Maryland, College Park, MD, USA
| | - William W Lau
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Dylan C Hirsch
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Neha Bansal
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Candace C Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Laura E Failla
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Angelique Biancotto
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Giovanna Fantoni
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Brian A Sellers
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Daniel G Chawla
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Katherine N Howe
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Darius Mostaghimi
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Rohit Farmer
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Cindy Palmer
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Janine Daub
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Ladan Foruraghi
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Samantha Kreuzburg
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Jennifer D Treat
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Amanda K Urban
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anne Jones
- Inflammatory Disease Section, NHGRI, NIH, Bethesda, MD, USA
| | - Tina Romeo
- Inflammatory Disease Section, NHGRI, NIH, Bethesda, MD, USA
| | | | | | | | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, NIA, Baltimore, MD, USA
| | - Karyl S Barron
- Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | | | - Steven H Kleinstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | - Neal S Young
- Hematology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | | | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA.
- NIH Center for Human Immunology, Inflammation, and Autoimmunity, NIAID, NIH, Bethesda, MD, USA.
- Center for Systems and Engineering Immunology, Departments of Immunobiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Oprițescu S, Nițescu GV, Cîrnațu D, Trifunschi S, Munteanu M, Golumbeanu M, Boghițoiu D, Dărăban AM, Ilie EI, Moroșan E. Elevated Immunoglobulin E Serum Levels: Possible Underlying Factors That Can Cause an Inborn Error of Immunity in the Pediatric Population with Recurrent Infections. Antibodies (Basel) 2024; 13:47. [PMID: 38920971 PMCID: PMC11201012 DOI: 10.3390/antib13020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Elevated immunoglobulin E (IgE) levels are commonly associated with allergies. However, high IgE levels are also found in several other infectious and non-infectious disorders. Elevated IgE levels typically suggest allergies, eczema, or recurrent skin infections. Hyperimmunoglobulin E (hyper-IgE) levels typically reflect a monogenic atopic condition or inborn immune defects with an atopic phenotype. The aim of our research is to investigate and observe the clinical characteristics of children with increased IgE levels who have previously manifested infectious diseases. Furthermore, the retrospective study considers other factors, such as demographic characteristics (sex, area/environment, and age), and their effect on IgE serum levels. To answer this question, we conducted a one-year hospital-based retrospective study that included 200 hospitalized children who had at least two viral or bacterial infections in the six months preceding hospitalization. Measurements of IgE and allergen panels (respiratory and digestive) using blood samples revealed that individuals who tested positive for the body's synthesis of hyper-IgE were not observably allergic to any potential allergens despite having higher total serum IgE. According to the results, there was a strong correlation between elevated IgE serum levels and a history of infectious diseases among the patients.
Collapse
Affiliation(s)
- Sînziana Oprițescu
- Discipline of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.O.)
| | - Gabriela Viorela Nițescu
- Discipline of Pediatrics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Daniela Cîrnațu
- Faculty of Pharmacy, “Vasile Goldiș” Western University Arad, 310025 Arad, Romania
| | - Svetlana Trifunschi
- Faculty of Pharmacy, “Vasile Goldiș” Western University Arad, 310025 Arad, Romania
| | - Melania Munteanu
- Faculty of Pharmacy, “Vasile Goldiș” Western University Arad, 310025 Arad, Romania
| | - Mihaela Golumbeanu
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Dora Boghițoiu
- Discipline of Pediatrics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Adriana Maria Dărăban
- Pharmaceutical Science Department Dermatocosmetology and Cosmetics, “Vasile Goldiș” Western University of Arad, 310025 Arad, Romania
| | - Elena Iuliana Ilie
- Discipline of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Elena Moroșan
- Discipline of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.O.)
| |
Collapse
|
3
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
4
|
Mahdaviani SA, Ghadimi S, Fallahi M, Hashemi-Moghaddam SA, Chavoshzadeh Z, Puel A, Rezaei N, Rekabi M, Daneshmandi Z, Sheikhy K, Kakhki AD, Saghebi SR, Pejhan S, Jamee M. Interventional pulmonary procedures and their outcomes in patients with STAT3 hyper IgE syndrome. BMC Surg 2023; 23:289. [PMID: 37741967 PMCID: PMC10517538 DOI: 10.1186/s12893-023-02193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND STAT3 hyperimmunoglobulin E syndrome (STAT3-HIES) also referred to as autosomal dominant HIES (AD-HIES) is an inborn error of immunity characterized by the classic triad of eczema, frequent opportunistic infections, and elevated serum IgE levels. As a consequence of lung sequels due to repeated infections and impaired tissue healing, patients may require interventional pulmonary procedures. METHOD Four patients with dominant-negative STAT3 mutations who had received interventional pulmonary procedures were enrolled. The demographic, clinical, and molecular characteristics were gathered through a medical record search. All reported STAT3-HIES patients in the literature requiring pulmonary procedures as part of their treatment were reviewed. RESULT Recurrent episodes of pneumonia and lung abscess were the most prevalent symptoms. The most common non-immunological features were scoliosis, failure to thrive, and dental problems such as primary teeth retention and disseminated decays. Bronchiectasis, lung abscess, pneumatocele, and cavitary lesion were the most prevalent finding on high-resolution computed tomography at the earliest recording. All patients underwent pulmonary surgery and two of them experienced complications. CONCLUSION Patients with STAT3-HIES have marked pulmonary infection susceptibility which may necessitate thoracic surgeries. Since surgical procedures involve a high risk of complication, surgical options are recommended to be utilized only in cases of drug resistance or emergencies.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soodeh Ghadimi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mazdak Fallahi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Atefeh Hashemi-Moghaddam
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rekabi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Daneshmandi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kambiz Sheikhy
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolghasem Daneshvar Kakhki
- Lung Transplantation Research Center (LTRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Saghebi
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saviz Pejhan
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
5
|
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, Fong J, Massaad MJ, Sefer AP, Kara A, Babayeva R, Eltan SB, Yucelten AD, Bozkurtlar E, Cinel L, Karakoc-Aydiner E, Zheng Y, Wu H, Ozen A, Schmitz-Abe K, Chatila TA. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol 2023; 152:182-194.e7. [PMID: 36758835 PMCID: PMC10330134 DOI: 10.1016/j.jaci.2023.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Inborn errors of immunity have been implicated in causing immune dysregulation, including allergic diseases. STAT6 is a key regulator of allergic responses. OBJECTIVES This study sought to characterize a novel gain-of-function STAT6 mutation identified in a child with severe allergic manifestations. METHODS Whole-exome and targeted gene sequencing, lymphocyte characterization, and molecular and functional analyses of mutated STAT6 were performed. RESULTS This study reports a child with a missense mutation in the DNA binding domain of STAT6 (c.1114G>A, p.E372K) who presented with severe atopic dermatitis, eosinophilia, and elevated IgE. Naive lymphocytes from the affected patient displayed increased TH2- and suppressed TH1- and TH17-cell responses. The mutation augmented both basal and cytokine-induced STAT6 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reversed STAT6 hyperresponsiveness to IL-4, normalized TH1 and TH17 cells, suppressed the eosinophilia, and improved the patient's atopic dermatitis. CONCLUSIONS This study identified a novel inborn error of immunity due to a STAT6 gain-of-function mutation that gave rise to severe allergic dysregulation. Janus kinase inhibitor therapy could represent an effective targeted treatment for this disorder.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
6
|
Sharma M, Leung D, Momenilandi M, Jones LC, Pacillo L, James AE, Murrell JR, Delafontaine S, Maimaris J, Vaseghi-Shanjani M, Del Bel KL, Lu HY, Chua GT, Di Cesare S, Fornes O, Liu Z, Di Matteo G, Fu MP, Amodio D, Tam IYS, Chan GSW, Sharma AA, Dalmann J, van der Lee R, Blanchard-Rohner G, Lin S, Philippot Q, Richmond PA, Lee JJ, Matthews A, Seear M, Turvey AK, Philips RL, Brown-Whitehorn TF, Gray CJ, Izumi K, Treat JR, Wood KH, Lack J, Khleborodova A, Niemela JE, Yang X, Liang R, Kui L, Wong CSM, Poon GWK, Hoischen A, van der Made CI, Yang J, Chan KW, Rosa Duque JSD, Lee PPW, Ho MHK, Chung BHY, Le HTM, Yang W, Rohani P, Fouladvand A, Rokni-Zadeh H, Changi-Ashtiani M, Miryounesi M, Puel A, Shahrooei M, Finocchi A, Rossi P, Rivalta B, Cifaldi C, Novelli A, Passarelli C, Arasi S, Bullens D, Sauer K, Claeys T, Biggs CM, Morris EC, Rosenzweig SD, O’Shea JJ, Wasserman WW, Bedford HM, van Karnebeek CD, Palma P, Burns SO, Meyts I, Casanova JL, Lyons JJ, Parvaneh N, Nguyen ATV, Cancrini C, Heimall J, Ahmed H, McKinnon ML, Lau YL, Béziat V, Turvey SE. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. J Exp Med 2023; 220:e20221755. [PMID: 36884218 PMCID: PMC10037107 DOI: 10.1084/jem.20221755] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.
Collapse
Affiliation(s)
- Mehul Sharma
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Daniel Leung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Lauren C.W. Jones
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Lucia Pacillo
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alyssa E. James
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jill R. Murrell
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Selket Delafontaine
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jesmeen Maimaris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Maryam Vaseghi-Shanjani
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kate L. Del Bel
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Dept. of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Gilbert T. Chua
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Allergy Centre, Union Hospital, Hong Kong, China
| | - Silvia Di Cesare
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zhongyi Liu
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gigliola Di Matteo
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Maggie P. Fu
- Dept. of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Donato Amodio
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Issan Yee San Tam
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | - Joshua Dalmann
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Géraldine Blanchard-Rohner
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Unit of Immunology and Vaccinology, Division of General Pediatrics, Dept. of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Susan Lin
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Phillip A. Richmond
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica J. Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Allison Matthews
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
| | - Michael Seear
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Alexandra K. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Rachael L. Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Terri F. Brown-Whitehorn
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher J. Gray
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James R. Treat
- Pediatrics, Division of Pediatric Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen H. Wood
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | - Asya Khleborodova
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | | | - Xingtian Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Rui Liang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Kui
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christina Sze Man Wong
- Dept. of Medicine, Divison of Dermatology, The University of Hong Kong, Hong Kong, China
| | - Grace Wing Kit Poon
- Dept. of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, China
| | - Alexander Hoischen
- Dept. of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jing Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon Wing Chan
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaime Sou Da Rosa Duque
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela Pui Wah Lee
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Marco Hok Kung Ho
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Virtus Medical, Hong Kong, China
| | - Brian Hon Yin Chung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Huong Thi Minh Le
- Pediatric Center, Vinmec Times City International General Hospital, Hanoi, Vietnam
| | - Wanling Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pejman Rohani
- Pediatrics, Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, University of Medical Sciences, Tehran, Iran
| | - Ali Fouladvand
- Pediatrics, Allergy and Clinical Immunology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hassan Rokni-Zadeh
- Dept. of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mohammad Miryounesi
- Dept. of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mohammad Shahrooei
- Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Andrea Finocchi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Paolo Rossi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- DPUO, Research Unit of Infectivology and Pediatrics Drugs Development, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Beatrice Rivalta
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Stefania Arasi
- Allergy Unit, Area of Translational Research in Pediatric Specialities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Dominique Bullens
- Dept. of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Allergy Division, University Hospitals Leuven, Leuven, Belgium
| | - Kate Sauer
- Dept. of Pediatrics, Pediatric Pulmonology Division, AZ Sint-Jan Brugge, Brugge, Belgium
- Dept. of Pediatrics, Pediatric Pulmonology Division, University Hospitals Leuven, Leuven, Belgium
| | - Tania Claeys
- Dept. of Pediatrics, Pediatric Gastroenterology Division, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Catherine M. Biggs
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Emma C. Morris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | | | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - H. Melanie Bedford
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
- Genetics Program, North York General Hospital, Toronto, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Depts. of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paolo Palma
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Isabelle Meyts
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jonathan J. Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nima Parvaneh
- Department of Pediatrics, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anh Thi Van Nguyen
- Dept. of Immunology, Allergy and Rheumatology, Division of Primary Immunodeficiency, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Caterina Cancrini
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Jennifer Heimall
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hanan Ahmed
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Yu Lung Lau
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart E. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Peirolo A, Verolet C, Ranza E, Rohr M, Laurent M, Ruchonnet-Metrailler I, Worth AJJ, Blanchard-Rohner G. Hyper-IgE syndrome presenting with early life craniosynostosis in monozygotic twin sisters. Pediatr Allergy Immunol 2023; 34:e13944. [PMID: 37102391 DOI: 10.1111/pai.13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Anna Peirolo
- Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Charlotte Verolet
- Division of General Paediatrics, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Marie Rohr
- Unit of Infectious Diseases, Division of General Paediatrics, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Meryle Laurent
- Unit of Paediatric Radiology, Department of Radiology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Isabelle Ruchonnet-Metrailler
- Unit of Paediatric Pneumology, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Austen J J Worth
- Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Geraldine Blanchard-Rohner
- Unit of Immunology and Vaccinology, Division of General Paediatrics, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. J Fungi (Basel) 2023; 9:jof9020149. [PMID: 36836264 PMCID: PMC9964687 DOI: 10.3390/jof9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Inborn errors of immunity are a heterogeneous group of genetically determined disorders that compromise the immune system, predisposing patients to infections, autoinflammatory/autoimmunity syndromes, atopy/allergies, lymphoproliferative disorders, and/or malignancies. An emerging manifestation is susceptibility to fungal disease, caused by yeasts or moulds, in a superficial or invasive fashion. In this review, we describe recent advances in the field of inborn errors of immunity associated with increased susceptibility to fungal disease.
Collapse
|
9
|
Yin J, Li X, Jiang L, Zhang Y, Li F, Li C. Autoimmune myositis and autoimmune hemolytic anemia in two sisters with DOCK8-deficient hyper-IgE syndrome. Immunol Res 2023; 71:497-504. [PMID: 36633785 DOI: 10.1007/s12026-023-09359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Affiliation(s)
- Jing Yin
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, 238, Longyan Road, Beichen District, Tianjin, China
| | - Xiaojie Li
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, 238, Longyan Road, Beichen District, Tianjin, China
| | - Lihua Jiang
- Department of Hematology & Oncology, Tianjin Children's Hospital, Tianjin University, Tianjin, China
| | - Yuci Zhang
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, 238, Longyan Road, Beichen District, Tianjin, China
| | - Fangfang Li
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, 238, Longyan Road, Beichen District, Tianjin, China
| | - Chongwei Li
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, 238, Longyan Road, Beichen District, Tianjin, China.
| |
Collapse
|
10
|
Yaakoubi R, Mekki N, Ben-Mustapha I, Ben-Khemis L, Bouaziz A, Ben Fraj I, Ammar J, Hamzaoui A, Turki H, Boussofara L, Denguezli M, Haddad S, Ouederni M, Bejaoui M, Chan KW, Lau YL, Mellouli F, Barbouche MR, Ben-Ali M. Diagnostic challenge in a series of eleven patients with hyper IgE syndromes. Front Immunol 2023; 13:1057679. [PMID: 36703986 PMCID: PMC9871884 DOI: 10.3389/fimmu.2022.1057679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Hyper IgE syndromes (HIES) is a heterogeneous group of Inborn Errors of Immunity characterized by eczema, recurrent skin and lung infections associated with eosinophilia and elevated IgE levels. Autosomal dominant HIES caused by loss of function mutations in Signal transducer and activator of transcription 3 (STAT3) gene is the prototype of these disorders. Over the past two decades, advent in genetic testing allowed the identification of ten other etiologies of HIES. Although Dedicator of Cytokinesis 8 (DOCK8) deficiency is no more classified among HIES etiologies but as a combined immunodeficiency, this disease, characterized by severe viral infections, food allergies, autoimmunity, and increased risk of malignancies, shares some clinical features with STAT3 deficiency. The present study highlights the diagnostic challenge in eleven patients with the clinical phenotype of HIES in a resource-limited region. Candidate gene strategy supported by clinical features, laboratory findings and functional investigations allowed the identification of two heterozygous STAT3 mutations in five patients, and a bi-allelic DOCK8 mutation in one patient. Whole Exome Sequencing allowed to unmask atypical presentations of DOCK8 deficiency in two patients presenting with clinical features reminiscent of STAT3 deficiency. Our study underlies the importance of the differential diagnosis between STAT3 and DOCK8 deficiencies in order to improve diagnostic criteria and to propose appropriate therapeutic approaches. In addition, our findings emphasize the role of NGS in detecting mutations that induce overlapping phenotypes.
Collapse
Affiliation(s)
- Roukaya Yaakoubi
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Faculty of Medicine, Tunis El Manar University, Tunis, Tunisia
| | - Leila Ben-Khemis
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Asma Bouaziz
- Department of Pediatrics, Ben Arous Hospital of Tunis, Tunis, Tunisia
| | - Ilhem Ben Fraj
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Jamel Ammar
- Pulmonology B Department, AbderrahmenMami Hospital, Ariana, Tunisia
| | - Agnès Hamzaoui
- Pulmonology B Department, AbderrahmenMami Hospital, Ariana, Tunisia
| | - Hamida Turki
- Department of Dermatology, HédiChaker Hospital of SFAX, Sfax, Tunisia
| | - Lobna Boussofara
- Department of Dermatology, Farhat Hached Hospital, Sousse, Tunisia
| | | | - Samir Haddad
- Department of Pediatrics, Children Hospital of Tunis, Tunis, Tunisia
| | - Monia Ouederni
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed Bejaoui
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Koon Wing Chan
- Department of Pediatrics and Adolescent Medicine, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fethi Mellouli
- Department of Pediatrics, National Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia,*Correspondence: Meriem Ben-Ali,
| |
Collapse
|
11
|
Wu PC, Dai YX, Li CL, Chen CC, Chang YT, Ma SH. Dupilumab in the treatment of genodermatosis: A systematic review. J Dtsch Dermatol Ges 2023; 21:7-17. [PMID: 36657040 DOI: 10.1111/ddg.14924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023]
Abstract
Dupilumab interferes with the signaling pathways of IL-4 and IL-13 and is effective in treating atopic dermatitis. Specific genodermatoses, including Netherton syndrome, epidermolysis bullosa pruriginosa, and hyper-IgE syndrome, are Th2 skewed diseases with activation of type 2 inflammation. We performed this systematic review to investigate the therapeutic role of dupilumab in the treatment of genodermatosis. A systematic search was conducted of the PubMed, Embase, Web of Science, and Cochrane databases from inception to December 13, 2021. The review included studies with relevant terms including "dupilumab," "genodermatosis", "Netherton syndrome", "ichthyosis", "epidermolysis bullosa" and "hyper-IgE syndrome". The initial search yielded 2,888 results, of which 28 studies and 37 patients with genodermatosis were enrolled. The assessed genodermatoses included Netherton syndrome, epidermolysis bullosa pruriginosa, hyper-IgE syndrome, Hailey-Hailey disease, and severe eczema associated with genetic disorders. Most of the reported cases showed significant clinical improvement after the initiation of dupilumab treatment without major adverse events. Decreased immunoglobulin E levels and cytokine normalization have also been documented. In conclusion, Dupilumab may have a potential therapeutic role in certain genodermatoses skewed towards T helper 2 (Th2) immunity, including Netherton syndrome, epidermolysis bullosa pruriginosa, hyper-IgE syndrome, Hailey-Hailey disease, and severe eczema associated with some genetic disorders.
Collapse
Affiliation(s)
- Po-Chien Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ying-Xiu Dai
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Wu PC, Dai YX, Li CL, Chen CC, Chang YT, Ma SH. Dupilumab zur Behandlung von Genodermatosen: Eine systematische Übersicht. J Dtsch Dermatol Ges 2023; 21:7-18. [PMID: 36721935 DOI: 10.1111/ddg.14924_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Po-Chien Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ying-Xiu Dai
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chiang Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Gutierrez MJ, Nino G, Sun D, Restrepo-Gualteros S, Sadreameli SC, Fiorino EK, Wu E, Vece T, Hagood JS, Maglione PJ, Kurland G, Koumbourlis A, Sullivan KE. The lung in inborn errors of immunity: From clinical disease patterns to molecular pathogenesis. J Allergy Clin Immunol 2022; 150:1314-1324. [PMID: 36244852 PMCID: PMC9826631 DOI: 10.1016/j.jaci.2022.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
In addition to being a vital organ for gas exchange, the lung is a crucial immune organ continuously exposed to the external environment. Genetic defects that impair immune function, called inborn errors of immunity (IEI), often have lung disease as the initial and/or primary manifestation. Common types of lung disease seen in IEI include infectious complications and a diverse group of diffuse interstitial lung diseases. Although lung damage in IEI has been historically ascribed to recurrent infections, contributions from potentially targetable autoimmune and inflammatory pathways are now increasingly recognized. This article provides a practical guide to identifying the diverse pulmonary disease patterns in IEI based on lung imaging and respiratory manifestations, and integrates this clinical information with molecular mechanisms of disease and diagnostic assessments in IEI. We cover the entire IEI spectrum, including immunodeficiencies and immune dysregulation with monogenic autoimmunity and autoinflammation, as well as recently described IEI with pulmonary manifestations. Although the pulmonary manifestations of IEI are highly relevant for all age groups, special emphasis is placed on the pediatric population, because initial presentations often occur during childhood. We also highlight the pivotal role of genetic testing in the diagnosis of IEI involving the lungs and the critical need to develop multidisciplinary teams for the challenging evaluation of these rare but potentially life-threatening disorders.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Johns Hopkins University, Baltimore, Md.
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Di Sun
- Division of Pediatric Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Sonia Restrepo-Gualteros
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Division of Pediatric Pulmonology, Fundacion Hospital La Misericordia, Bogotá, Colombia
| | - Sarah C Sadreameli
- Division of Pediatric Pulmonology and Sleep Medicine, Johns Hopkins University, Baltimore, Md
| | - Elizabeth K Fiorino
- Departments of Science Education and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Eveline Wu
- Division of Pediatric Allergy, Immunology and Rheumatology, University of North Carolina, Chapel Hill, NC
| | - Timothy Vece
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - James S Hagood
- Division of Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC
| | - Paul J Maglione
- Division of Allergy and Immunology, Boston University, Boston, Mass
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Anastassios Koumbourlis
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Kathleen E Sullivan
- Division of Pediatric Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
14
|
Skin Manifestations in Patients with Selective Immunoglobulin E Deficiency. J Clin Med 2022; 11:jcm11226795. [PMID: 36431272 PMCID: PMC9694019 DOI: 10.3390/jcm11226795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Selective immunoglobulin E deficiency (SIgED) is still an unrecognised primary immunodeficiency despite several observations supporting its existence. This study aimed to describe the skin manifestations associated with SIgED. We retrospectively assessed medical records of patients with SIgED, the diagnosis being based on serum IgE levels ≤2 Uk/L associated with normal serum levels of immunoglobulins G, M, and A. A total of 25 patients (24 female) with SIgED were included in the study. Eleven patients (44%) presented chronic spontaneous urticaria (CSU), five (20%) angioedema always associated with CSU, five erythema (20%), and six eczema (24%). Other, less frequent manifestations were lichen planus, anaphylactoid purpura, thrombocytopenic purpura, bullous pemphigoid, bullous pyoderma gangrenosum, and atypical skin lymphoproliferative infiltrate associated with reactive lymphadenopathy, chronic cholestasis, arthritis, and fibrosing mediastinitis. Fifteen patients (60%) had different types of associated autoimmune diseases, Hashimoto's thyroiditis being the most frequent (n = 5, 20%), followed by arthritis (n = 4, 16%), autoimmune hepatitis, neutropenia, vitiligo, and Sjögren's syndrome (n = 2, 8% each). Five malignancies were diagnosed in four patients (16%). An ultralow IgE serum level may be the only biomarker that reveals the presence of a dysregulated immune system in patients with a broad spectrum of skin manifestations.
Collapse
|
15
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
16
|
Khan YW, Williams KW. Inborn Errors of Immunity Associated with Elevated IgE. Ann Allergy Asthma Immunol 2022; 129:552-561. [PMID: 35872242 DOI: 10.1016/j.anai.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To review the characteristic clinical and laboratory features of inborn errors of immunity that are associated with elevated IgE levels DATA SOURCE: Primary peer-reviewed literature. STUDY SELECTION Original research articles reviewed include interventional studies, retrospective studies, case-control studies, cohort studies and review articles related to the subject matter. RESULTS An extensive literature review was completed to allow for comprehensive evaluation of several monogenic inborn errors of immunity. This review includes a description of the classic clinical features, common infections, characteristic laboratory findings, specific diagnostic methods (when applicable), and genetic basis of disease of each syndrome. A comprehensive flow diagram was created to assist them in the diagnosis and evaluation of patients with elevated IgE levels who may require evaluation for an IEI. CONCLUSION IEI should be considered in patients with elevated IgE levels, especially if they have recurrent infections, eczematous dermatitis, malignancy, lymphoproliferation, autoimmunity, and/or connective tissue abnormalities.
Collapse
Affiliation(s)
- Yasmin W Khan
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, South Carolina, USA.
| |
Collapse
|
17
|
Lobo PB, Guisado-Hernández P, Villaoslada I, de Felipe B, Carreras C, Rodriguez H, Carazo-Gallego B, Méndez-Echevarria A, Lucena JM, Aljaro PO, Castro MJ, Noguera-Uclés JF, Milner JD, McCann K, Zimmerman O, Freeman AF, Lionakis MS, Holland SM, Neth O, Olbrich P. Ex vivo effect of JAK inhibition on JAK-STAT1 pathway hyperactivation in patients with dominant-negative STAT3 mutations. J Clin Immunol 2022; 42:1193-1204. [PMID: 35507130 DOI: 10.1007/s10875-022-01273-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE STAT1 gain-of-function (GOF) and dominant-negative (DN) STAT3 syndromes share clinical manifestations including infectious and inflammatory manifestations. Targeted treatment with Janus-kinase (JAK) inhibitors shows promising results in treating STAT1 GOF-associated symptoms while management of DN STAT3 patients has been largely supportive. We here assessed the impact of ruxolitinib on the JAK-STAT1/3 pathway in DN STAT3 patients' cells. METHODS Using flow cytometry, immunoblot, qPCR, and ELISA techniques, we examined the levels of basal STAT1 and phosphorylated STAT1 (pSTAT1) of cells obtained from DN STAT3, STAT1 GOF patients, and healthy donors following stimulation with type I/II interferons (IFNs) or interleukin (IL)-6. We also describe the impact of ruxolitinib on cytokine-induced STAT1 signaling in these patients. RESULTS DN STAT3 and STAT1 GOF resulted in a similar phenotype characterized by increased STAT1 and pSTAT1 levels in response to IFNα (CD3+ cells) and IFNγ (CD14+ monocytes). STAT1-downstream gene expression and C-X-C motif chemokine 10 secretion were higher in most DN STAT3 patients upon stimulation compared to healthy controls. Ex vivo treatment with the JAK1/2-inhibitor ruxolitinib reduced cytokine responsiveness and normalized STAT1 phosphorylation in DN STAT3 and STAT1 GOF patient' cells. In addition, ex vivo treatment was effective in modulating STAT1 downstream signaling in DN STAT3 patients. CONCLUSION In the absence of effective targeted treatment options for AD-HIES at present, modulation of the JAK/STAT1 pathway with JAK inhibitors may be further explored particularly in those AD-HIES patients with autoimmune and/or autoinflammatory manifestations.
Collapse
Affiliation(s)
- Pilar Blanco Lobo
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Paloma Guisado-Hernández
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Isabel Villaoslada
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Beatriz de Felipe
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| | - Carmen Carreras
- Pediatric Infectious Diseases and Immunodeficiency Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Hector Rodriguez
- Pediatric Infectious Diseases and Immunodeficiency Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Begoña Carazo-Gallego
- Pediatric Infectology and Immunodeficiencies Unit, IBIMA, Department of Pediatrics, Hospital Regional Universitario Málaga, Malaga, Spain
| | - Ana Méndez-Echevarria
- Pediatric Infectious and Tropical Diseases Department, Hospital Universitario La Paz, CIBERINFEC, Carlos III Health Institute, Madrid, Spain
| | | | | | - María José Castro
- Servicio de Citometría y Separación Celular, Instituto de Biomedicina de Sevilla - IBiS/HUVR/US/CSIC, Seville, Spain
| | | | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katelyn McCann
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ofer Zimmerman
- Department of Medicine, Division of Allergy/Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, LCIM, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain.
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Institute of Biomedicine of Seville (IBIS)/Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Av Manuel Siurot s/n, 41013, Seville, Spain
| |
Collapse
|
18
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
19
|
Baisya R, Ranganath P, Rajasekhar L. PEPD-Related Prolidase Deficiency Presenting as Hyper-immunoglobulin E Syndrome. J Clin Immunol 2022; 42:892-897. [PMID: 35296989 DOI: 10.1007/s10875-022-01249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Ritasman Baisya
- Department of Clinical Immunology and Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, Telangana, India
| | - Prajnya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, 500082, Telangana, India.
| | - Liza Rajasekhar
- Department of Clinical Immunology and Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, Telangana, India
| |
Collapse
|
20
|
Zampella J, Cohen B. Consideration of underlying immunodeficiency in refractory or recalcitrant warts: A review of the literature. SKIN HEALTH AND DISEASE 2022; 2:e98. [PMID: 35665206 PMCID: PMC9060099 DOI: 10.1002/ski2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Although the exact mechanisms have yet to be elucidated, it is clear that cellular immunity plays a role in clearance of human papillomavirus (HPV) infections as it relates to the development of warts. Patients with extensive, recalcitrant, or treatment‐refractory warts may have an underlying immune system impairment at the root of HPV susceptibility. Early recognition of genetic disorders associated with immunologic defects that allow for recalcitrant HPV infection may expedite appropriate treatment for patients. Early recognition is often pivotal in preventing subsequent morbidity and/or mortality that may arise from inborn errors of immunity, such as WHIM (Warts, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome. Among these, cervical cancer is one of the most common malignancies associated with HPV, can be fatal if not treated early, and is seen more frequently in patients with underlying immune deficiencies. A review of diseases with susceptibility to HPV provides clues to understanding the pathophysiology of warts. We also present diagnostic guidance to facilitate the recognition of inborn errors of immunity in patients with extensive and/or recalcitrant HPV infections.
Collapse
Affiliation(s)
- J. Zampella
- Ronald O. Perelman Department of Dermatology NYU Grossman School of Medicine New York New York USA
| | - B. Cohen
- Division of Pediatric Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
21
|
Kasuga K, Nakamoto K, Doi K, Kurokawa N, Saraya T, Ishii H. Chronic pulmonary aspergillosis in a patient with hyper-IgE syndrome. Respirol Case Rep 2022; 10:e0887. [PMID: 34888059 PMCID: PMC8636203 DOI: 10.1002/rcr2.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperimmunoglobulin E (IgE) syndrome (HIES) is a rare disease with an unclear prognosis. We report a case of HIES comorbid with chronic pulmonary aspergillosis (CPA). A 19-year-old male was referred to our department with a medical history of bacterial pneumonia and skin infection. Laboratory data showed an elevated eosinophil count and serum IgE level. Chest computed tomography (CT) showed a pneumatocele and bronchiectasis. On the basis of the clinical and laboratory findings and genetic mutation analysis, we diagnosed him as having HIES. Fourteen months later, he complained of blood-tinged sputum and haemoptysis. Chest CT showed pneumatocele wall thickening, fungus ball and consolidation. Serum Aspergillus precipitating antibody and serum galactomannan Aspergillus antigen were positive, and Aspergillus fumigatus was detected in the sputum. We diagnosed CPA and treated him using antifungal agents and bronchial artery embolization. CPA is a complication that requires attention in patients with HIES.
Collapse
Affiliation(s)
- Keisuke Kasuga
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Keitaro Nakamoto
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Kazuyuki Doi
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Nozomi Kurokawa
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Takeshi Saraya
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| | - Haruyuki Ishii
- Department of Respiratory MedicineKyorin University School of MedicineMitakaJapan
| |
Collapse
|
22
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
23
|
Luo Y, Alexander M, Gadina M, O'Shea JJ, Meylan F, Schwartz DM. JAK-STAT signaling in human disease: From genetic syndromes to clinical inhibition. J Allergy Clin Immunol 2021; 148:911-925. [PMID: 34625141 PMCID: PMC8514054 DOI: 10.1016/j.jaci.2021.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes. This has provided insights regarding the consequences of aberrant JAK-STAT signaling for immunity, lymphoproliferation, and malignancy. In addition, since the approval of ruxolitinib and tofacitinib, the therapeutic use of JAK inhibitors (jakinibs) has expanded to include a large spectrum of diseases. Efficacy and safety data from over a decade of clinical studies have provided additional mechanistic insights while improving the care of patients with inflammatory and neoplastic conditions. This review discusses major advances in the field, focusing on updates in genetic diseases and in studies of clinical jakinibs in human disease.
Collapse
Affiliation(s)
- Yiming Luo
- Vasculitis Translational Research Program, Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Madison Alexander
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Massimo Gadina
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Francoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
24
|
Picado C, de Landazuri IO, Vlagea A, Bobolea I, Arismendi E, Amaro R, Sellarés J, Bartra J, Sanmarti R, Hernandez-Rodriguez J, Mascaró JM, Colmenero J, Vaquero EC, Pascal M. Spectrum of Disease Manifestations in Patients with Selective Immunoglobulin E Deficiency. J Clin Med 2021; 10:jcm10184160. [PMID: 34575269 PMCID: PMC8466644 DOI: 10.3390/jcm10184160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Selective IgE deficiency (SIgED) has been previously evaluated in selected patients from allergy units. This study investigates the effects of SIgED on the entire population in a hospital setting and sought to delineate in detail the clinical aspects of SIgED. METHODS A retrospective study of the data obtained from electronic medical records of 52 adult patients (56% female) with a mean age of 43 years and IgE levels of <2.0 kU/L with normal immunoglobulin (Ig) IgG, IgA, and IgM levels, seen at our hospital, without selection bias, from 2010 to 2019. RESULTS Recurrent upper respiratory infections were recorded in 18 (34.6%) patients, pneumonia was recorded in 16 (30.7%) patients, bronchiectasis was recorded in 16 (30.7%) patients, and asthma was recorded in 10 (19.2%) patients. Eighteen patients (34.6%) suffered autoimmune clinical manifestations either isolated (19%) or combining two or more diseases (15%), Hashimoto's thyroiditis being the most frequent (19%), which was followed by arthritis (10%) and thrombocytopenia and/or neutropenia (5.7%). Other less frequent associations were Graves' disease, primary sclerosing cholangitis, Sjögren's syndrome, and autoimmune hepatitis. Eczematous dermatitis (15.3%), chronic spontaneous urticaria (17.3%), and symptoms of enteropathy (21%) were also highly prevalent. Thirty percent of patients developed malignancies, with non-Hodgkin lymphomas (13.4%) being the most prevalent. CONCLUSIONS The clinical manifestations of SIgED encompass a variety of infectious, non-infectious complications, and malignancy. Since it cannot be ruled out that some type of selection bias occurred in the routine assessment of IgE serum Ievels, prospective studies are required to better characterize SIgED and to determine whether it should be added to the list of antibody deficiencies.
Collapse
Affiliation(s)
- César Picado
- Institut Clinic Respiratory, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.B.); (E.A.); (R.A.); (J.S.); (J.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence:
| | - Iñaki Ortiz de Landazuri
- Immunology Department, CDB. Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.O.d.L.); (A.V.)
| | - Alexandru Vlagea
- Immunology Department, CDB. Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.O.d.L.); (A.V.)
| | - Irina Bobolea
- Institut Clinic Respiratory, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.B.); (E.A.); (R.A.); (J.S.); (J.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ebymar Arismendi
- Institut Clinic Respiratory, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.B.); (E.A.); (R.A.); (J.S.); (J.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Rosanel Amaro
- Institut Clinic Respiratory, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.B.); (E.A.); (R.A.); (J.S.); (J.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jacobo Sellarés
- Institut Clinic Respiratory, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.B.); (E.A.); (R.A.); (J.S.); (J.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joan Bartra
- Institut Clinic Respiratory, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.B.); (E.A.); (R.A.); (J.S.); (J.B.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
| | - Raimon Sanmarti
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Department of Rheumatology, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - José Hernandez-Rodriguez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Department of Autoimmune Diseases, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - José-Manuel Mascaró
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Department of Dermatology, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Jordi Colmenero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Liver Unit, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Eva C. Vaquero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Centro de Investigaciones en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Department of Gastroenterology, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Mariona Pascal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.S.); (J.H.-R.); (J.-M.M.); (J.C.); (E.C.V.); (M.P.)
- Immunology Department, CDB. Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain; (I.O.d.L.); (A.V.)
| |
Collapse
|
25
|
Baghad B, Bousfiha AA, Chiheb S, Ailal F. [Genetic predisposition to mucocutaneous fungal infections]. Rev Med Interne 2021; 42:566-570. [PMID: 34052048 DOI: 10.1016/j.revmed.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/15/2022]
Abstract
Mucocutaneous fungal infections are common and usually occur in the presence of certain risk factors. However, these infections can occur in patients with no known risk factors. This indicates the presence of an underlying genetic susceptibility to fungi reflecting an innate or adaptive immune deficiency. In this review, we highlight genetic factors that predispose to mucocutaneous fungal infections specially candidiasis and dermatophytosis.
Collapse
Affiliation(s)
- B Baghad
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc; Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc.
| | - A A Bousfiha
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| | - S Chiheb
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc
| | - F Ailal
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| |
Collapse
|
26
|
Farmani AR, Mahdavinezhad F, Moslemi R, Mehrabi Z, Noori A, Kouhestani M, Noroozi Z, Ai J, Rezaei N. Anti-IgE monoclonal antibodies as potential treatment in COVID-19. Immunopharmacol Immunotoxicol 2021; 43:259-264. [PMID: 34018464 PMCID: PMC8146297 DOI: 10.1080/08923973.2021.1925906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with irreversible effects on vital organs, especially the respiratory and cardiac systems. While the immune system plays a key role in the survival of patients to viral infections, in COVID-19, there is a hyperinflammatory immune response evoked by all the immune cells, such as neutrophils, monocytes, and includes release of various cytokines, resulting in an exaggerated immune response, named cytokine storm. This severe, dysregulated immune response causes multi-organ damage, which eventually leads to high mortality. One of the most important components of hypersensitivity is immunoglobulin E (IgE), which plays a major role in susceptibility to respiratory infections and can lead to the activation of mast cells. There is also a negative association between IgE and IFN-α, which can reduce Toll-like receptor (TLR) nine receptor expression and TLR-7 signaling to disrupt IFN production. Moreover, anti-IgE drugs such as omalizumab reduces the severity and duration of COVID-19. In addition to its anti-IgE effect, omalizumab inhibits inflammatory cells such as neutrophils. Hence, blockade of IgE may have clinical utility as an immunotherapy for COVID-19.
Collapse
Affiliation(s)
- Ahmad Reza Farmani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Department, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Anatomy Department-School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Moslemi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Mehrabi
- Internal Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Noori
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Kouhestani
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering and Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
27
|
García-García A, Buendia Arellano M, Deyà-Martínez À, Lozano Blasco J, Serrano M, Van Den Rym A, García-Solis B, Esteve-Solé A, Yiyi L, Vlagea A, Solanich X, Fisher MR, Lyons JJ, de Diego RP, Alsina L. Novel PGM3 compound heterozygous variants with IgE-related dermatitis, lymphopenia, without syndromic features. Pediatr Allergy Immunol 2021; 32:566-575. [PMID: 33098103 DOI: 10.1111/pai.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphoglucomutase-3 (PGM3) deficiency is a congenital disorder of glycosylation (CDG) with hyperimmunoglobulin IgE, atopy, and a variable immunological phenotype; most reported patients display dysmorphic features. The aim of the study was to characterize the genotype and phenotype of individuals with newly identified compound heterozygous variants in the phosphate-binding domain of PGM3 in order to better understand phenotypic differences between these patients and published cases. METHODS We analyzed PGM3 protein expression, PGM3 enzymatic activity, the presence of other gene variants within the N-glycosylation pathway, and the clinical and immunological manifestations of two affected siblings. RESULTS Patients belonged to a non-consanguineous family, presenting with atopic dermatitis, elevated levels of IgE, and CD4+ lymphopenia (a more severe phenotype was observed in Patient 2), but lacked dysmorphic features or neurocognitive impairment. Compound heterozygous PGM3 variants were identified, located in the phosphate-binding domain of the enzyme. PGM3 expression was comparable to healthy donors, but L-PHA binding in naïve-CD4+ cells was decreased. Examination of exome sequence identified the presence of one additional candidate variant of unknown significance (VUS) in the N-glycosylation pathway in Patient 2: a variant predicted to have moderate-to-high impact in ALG12. CONCLUSIONS Our analysis revealed that L-PHA binding is reduced in naïve-CD4+ cells, which is consistent with decreased residual PGM3 enzymatic activity. Other gene variants in the N-glycosylation pathway may modify patient phenotypes in PGM3 deficiency. This study expands the clinical criteria for when PGM3 deficiency should be considered among individuals with hyper-IgE.
Collapse
Affiliation(s)
- Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Monserrat Buendia Arellano
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Jaime Lozano Blasco
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department. Hospital Sant Joan de Déu, Barcelona, Spain.,U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Luo Yiyi
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain.,Immunology Service, Biomedic Diagnostic Center, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Solanich
- Servei de Medicina Interna, Unitat Funcional d'Immunodeficiències Primàries de l'Adult, Hospital Univerisitari de Bellvitge, IDIBELL. L'Hospitalet de Llobregat, Barcelona, Spain
| | - Megan R Fisher
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental group of Immunodeficiencies, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Teke Kisa P, Arslan N. Inborn errors of immunity and metabolic disorders: current understanding, diagnosis, and treatment approaches. J Pediatr Endocrinol Metab 2021; 34:277-294. [PMID: 33675210 DOI: 10.1515/jpem-2020-0277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
Inborn errors of metabolism consist of a heterogeneous group of disorders with various organ systems manifestations, and some metabolic diseases also cause immunological disorders or dysregulation. In this review, metabolic diseases that affect the immunological system and particularly lead to primary immune deficiency will be reviewed. In a patient with frequent infections and immunodeficiency, the presence of symptoms such as growth retardation, abnormal facial appearance, heart, skeletal, lung deformities, skin findings, arthritis, motor developmental retardation, seizure, deafness, hepatomegaly, splenomegaly, impairment of liver function tests, the presence of anemia, thrombocytopenia and eosinophilia in hematological examinations should suggest metabolic diseases for the underlying cause. In some patients, these phenotypic findings may appear before the immunodeficiency picture. Metabolic diseases leading to immunological disorders are likely to be rare but probably underdiagnosed. Therefore, the presence of recurrent infections or autoimmune findings in a patient with a suspected metabolic disease should suggest that immune deficiency may also accompany the picture, and diagnostic examinations in this regard should be deepened.
Collapse
Affiliation(s)
- Pelin Teke Kisa
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Nur Arslan
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
29
|
Bardou MLD, Henriques MT, Grumach AS. Inborn errors of immunity associated with characteristic phenotypes. J Pediatr (Rio J) 2021; 97 Suppl 1:S75-S83. [PMID: 33347837 PMCID: PMC9432272 DOI: 10.1016/j.jped.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES The aim of the report is to describe the main immunodeficiencies with syndromic characteristics according to the new classification of Inborn Errors of Immunity. DATA SOURCE The data search was centered on the PubMed platform on review studies, meta-analyses, systematic reviews, case reports and a randomized study published in the last 10 years that allowed the characterization of the several immunological defects included in this group. DATA SYNTHESIS Immunodeficiencies with syndromic characteristics include 65 immunological defects in 9 subgroups. The diversity of clinical manifestations is observed in each described disease and may appear early or later, with variable severity. Congenital thrombocytopenia, syndromes with DNA repair defect, immuno-osseous dysplasias, thymic defects, Hyper IgE Syndrome, anhidrotic ectodermal dysplasia with immunodeficiency and purine nucleoside phosphorylase deficiency were addressed. CONCLUSIONS Immunological defects can present with very different characteristics; however, the occurrence of infectious processes, autoimmune disorders and progression to malignancy may suggest diagnostic research. In the case of diseases with gene mutations, family history is of utmost importance.
Collapse
Affiliation(s)
- Maine Luellah Demaret Bardou
- Centro Universitário Saúde ABC, Faculdade de Medicina, Serviço de Referência em Doenças Raras, Imunologia Clínica, Santo André, São Paulo, SP, Brazil
| | - Marina Teixeira Henriques
- Centro Universitário Saúde ABC, Faculdade de Medicina, Serviço de Referência em Doenças Raras, Imunologia Clínica, Santo André, São Paulo, SP, Brazil
| | - Anete Sevciovic Grumach
- Centro Universitário Saúde ABC, Faculdade de Medicina, Serviço de Referência em Doenças Raras, Imunologia Clínica, Santo André, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ J 2021; 14:100513. [PMID: 33717395 PMCID: PMC7907539 DOI: 10.1016/j.waojou.2021.100513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders, mainly resulting from mutations in genes associated with immunoregulation and immune host defense. These disorders are characterized by different combinations of recurrent infections, autoimmunity, inflammatory manifestations, lymphoproliferation, and malignancy. Interestingly, it has been increasingly observed that common allergic symptoms also can represent the expression of an underlying immunodeficiency and/or immune dysregulation. Very high IgE levels, peripheral or organ-specific hypereosinophilia, usually combined with a variety of atopic symptoms, may sometimes be the epiphenomenon of a monogenic disease. Therefore, allergists should be aware that severe and/or therapy-resistant atopic disorders might be the main clinical phenotype of some IEI. This could pave the way to target therapies, leading to better quality of life and improved survival in affected patients.
Collapse
|
31
|
Wang L, Yang H, Huang J, Pei S, Wang L, Feng JQ, Jing D, Zhao H, Kronenberg HM, Moore DC, Yang W. Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Res 2021; 9:6. [PMID: 33500396 PMCID: PMC7838289 DOI: 10.1038/s41413-020-00129-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase. PTPN11 mutations are associated with both bone and cartilage manifestations in patients with Noonan syndrome (NS) and metachondromatosis (MC), although the underlying mechanisms remain elusive. Here, we report that SHP2 deletion in bone gamma-carboxyglutamate protein-expressing (Bglap+) bone cells leads to massive osteopenia in both trabecular and cortical bones due to the failure of bone cell maturation and enhanced osteoclast activity, and its deletion in Bglap+ chondrocytes results in the onset of enchondroma and osteochondroma in aged mice with increased tubular bone length. Mechanistically, SHP2 was found to be required for osteoblastic differentiation by promoting RUNX2/OSTERIX signaling and for the suppression of osteoclastogenesis by inhibiting STAT3-mediated RANKL production by osteoblasts and osteocytes. These findings are likely to explain the compromised skeletal system in NS and MC patients and to inform the development of novel therapeutics to combat skeletal disorders.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Huiliang Yang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Jiahui Huang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Shaopeng Pei
- Department of Mechanical Engineering, University of Delaware, Newark, DE, DE19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, DE19716, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Douglas C Moore
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Wentian Yang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
32
|
Kasap N, Celik V, Isik S, Cennetoglu P, Kiykim A, Eltan SB, Nain E, Ogulur I, Baser D, Akkelle E, Celiksoy MH, Kocamis B, Cipe FE, Yucelten AD, Karakoc-Aydiner E, Ozen A, Baris S. A set of clinical and laboratory markers differentiates hyper-IgE syndrome from severe atopic dermatitis. Clin Immunol 2020; 223:108645. [PMID: 33301882 DOI: 10.1016/j.clim.2020.108645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Hyper-IgE syndrome (HIES) patients may share many features observed in severe atopic dermatitis (SAD), making a diagnostic dilemma for physicians. Determining clinical and laboratory markers that distinguish both disorders could provide early diagnosis and treatment. We analyzed patients (DOCK8 deficiency:14, STAT3-HIES:10, SAD:10) with early-onset SAD. Recurrent upper respiratory tract infection and pneumonia were significantly frequent in HIES than SAD patients. Characteristic facial appearance, retained primary teeth, skin abscess, newborn rash, and pneumatocele were more predictable for STAT3-HIES, while mucocutaneous candidiasis and Herpes infection were common in DOCK8 deficiency, which were unusual in SAD group. DOCK8-deficient patients had lower CD3+ and CD4+T cells with a senescent phenotype that unique for this form of HIES. Both DOCK8 deficiency and STAT3-HIES patients exhibited reduced switched memory B cells compared to the SAD patients. These clinical and laboratory markers are helpful to differentiate HIES from SAD patients.
Collapse
Affiliation(s)
- Nurhan Kasap
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Velat Celik
- Trakya University, Faculty of Medicine, Pediatric Allergy and Immunology, Edirne, Turkey
| | - Sakine Isik
- Sureyyapasa Chest Diseases and Thoracic Surgery Training and Research Hospital, Department of Pediatrics, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Pakize Cennetoglu
- Marmara University, Faculty of Medicine, Department of Pediatrics, Istanbul, Turkey
| | - Ayca Kiykim
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ercan Nain
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Ismail Ogulur
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Dilek Baser
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Emre Akkelle
- Sancaktepe Training and Research Hospital, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Mehmet Halil Celiksoy
- Gaziosmanpasa Taksim Training and Research Hospital, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Burcu Kocamis
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Funda Erol Cipe
- Istinye University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Marmara University, Faculty of Medicine, Department of Dermatology, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey.
| |
Collapse
|
33
|
Zhang Y, Li R, Wang X. Monogenetic causes of fungal disease: recent developments. Curr Opin Microbiol 2020; 58:75-86. [DOI: 10.1016/j.mib.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
|
34
|
Shamriz O, Tal Y, Talmon A, Nahum A. Chronic Mucocutaneous Candidiasis in Early Life: Insights Into Immune Mechanisms and Novel Targeted Therapies. Front Immunol 2020; 11:593289. [PMID: 33178226 PMCID: PMC7596184 DOI: 10.3389/fimmu.2020.593289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
Children with chronic mucocutaneous candidiasis (CMC) experience recurrent infections with Candida spp. Moreover, immune dysregulation in the early life of these patients induces various autoimmune diseases and affects normal growth and development. The adaptive and innate immune system components play a significant role in anti-fungal response. This response is mediated through IL-17 production by T helper cells. Inborn errors in IL-17-mediated pathways or Candida spp. sensing molecules are known to cause CMC. In this review, we describe underlying immune mechanisms of monogenic primary immune deficiency disorders known to cause CMC. We will explore insights into current management of these patients and novel available therapies.
Collapse
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviv Talmon
- Allergy and Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amit Nahum
- Pediatrics Department A, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
35
|
Borst J, Ma L. Oral ulcerations in a patient with autosomal dominant hyper-IgE syndrome (AD-HIES). BMJ Case Rep 2020; 13:13/11/e236705. [PMID: 33139362 DOI: 10.1136/bcr-2020-236705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 23-year-old woman with autosomal dominant hyper-IgE syndrome complicated by recurrent pneumonia and sinusitis presented with 1 week of multiple painful oral ulcers unresponsive to empiric antiviral and antifungal treatment. Her ulcers progressively worsened and she required hospitalisation for intravenous hydration and pain control. PCR swab of an ulcer was positive for varicella-zoster virus. Her symptoms never fully resolved despite antiviral therapy, and within 2 weeks, she relapsed with new and worsening ulcers. Biopsy revealed chronic active inflammation with no evidence of viral inclusion bodies or fungal hyphae. She was diagnosed with recurrent aphthous stomatitis and referred to a local dentist for CO2 laser treatments with rapid resolution of her symptoms. This case highlights the broad differential for recurrent oral ulcers in people with a primary immunodeficiency. It also raises awareness of the benefits of laser therapy for aphthous stomatitis treatment and the importance of partnering with our colleagues in dentistry.
Collapse
Affiliation(s)
- Johanna Borst
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lawrence Ma
- Department of Internal Medicine and Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
36
|
Cirillo E, Giardino G, Ricci S, Moschese V, Lougaris V, Conti F, Azzari C, Barzaghi F, Canessa C, Martire B, Badolato R, Dotta L, Soresina A, Cancrini C, Finocchi A, Montin D, Romano R, Amodio D, Ferrua F, Tommasini A, Baselli LA, Dellepiane RM, Polizzi A, Chessa L, Marzollo A, Cicalese MP, Putti MC, Pession A, Aiuti A, Locatelli F, Plebani A, Pignata C. Consensus of the Italian Primary Immunodeficiency Network on transition management from pediatric to adult care in patients affected with childhood-onset inborn errors of immunity. J Allergy Clin Immunol 2020; 146:967-983. [PMID: 32827505 DOI: 10.1016/j.jaci.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Medical advances have dramatically improved the long-term prognosis of children and adolescents with inborn errors of immunity (IEIs). Transfer of the medical care of individuals with pediatric IEIs to adult facilities is also a complex task because of the large number of distinct disorders, which requires involvement of patients and both pediatric and adult care providers. To date, there is no consensus on the optimal pathway of the transitional care process and no specific data are available in the literature regarding patients with IEIs. We aimed to develop a consensus statement on the transition process to adult health care services for patients with IEIs. Physicians from major Italian Primary Immunodeficiency Network centers formulated and answered questions after examining the currently published literature on the transition from childhood to adulthood. The authors voted on each recommendation. The most frequent IEIs sharing common main clinical problems requiring full attention during the transitional phase were categorized into different groups of clinically related disorders. For each group of clinically related disorders, physicians from major Italian Primary Immunodeficiency Network institutions focused on selected clinical issues representing the clinical hallmark during early adulthood.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Francesca Conti
- Unit of Pediatrics, University of Bologna, St. Orsola University Hospital, Bologna, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clementina Canessa
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Baldassarre Martire
- Unit of Pediatric and Neonatology, Maternal-Infant Department, Mons A. R. Dimiccoli Hospital, Barletta, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Laura Dotta
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Donato Amodio
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste and Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Lucia Augusta Baselli
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pediatrics, Milan, Italy
| | - Rosa Maria Dellepiane
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pediatrics, Milan, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - Antonio Marzollo
- Department of Women's and Children's Health, Pediatric Hematology-Oncology Unit, University of Padua, Padua, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Caterina Putti
- Department of Women's and Children's Health, Pediatric Hematology-Oncology Unit, University of Padua, Padua, Italy
| | - Andrea Pession
- Unit of Pediatrics, University of Bologna, St. Orsola University Hospital, Bologna, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Childrens' Hospital, Sapienza, University of Rome, Rome Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy.
| |
Collapse
|
37
|
Oikonomopoulou C, Goussetis E. Autosomal dominant hyper-IgE syndrome: When hematopoietic stem cell transplantation should be considered? Pediatr Transplant 2020; 24:e13699. [PMID: 32497403 DOI: 10.1111/petr.13699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
AD-HIES or Job's syndrome is a primary immunodeficiency, caused by dominant negative mutations in signal transducer and activator of transcription (STAT) 3. The syndrome is characterized by infectious, immunologic, and non-immunologic manifestations and is associated with significant morbidity, mortality, and development of lymphomas. What has not yet been elucidated is the role of HSCT in the disease treatment spectrum. We review published cases of patients with AD-HIES that underwent HSCT and attempt to clarify at what stage HSCT should be considered and what are the complications.
Collapse
Affiliation(s)
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
38
|
Lin L, Wang Y, Sun B, Liu L, Ying W, Wang W, Zhou Q, Hou J, Yao H, Hu L, Sun J, Wang X. The clinical, immunological and genetic features of 12 Chinese patients with STAT3 mutations. Allergy Asthma Clin Immunol 2020; 16:65. [PMID: 32944025 PMCID: PMC7491347 DOI: 10.1186/s13223-020-00462-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023] Open
Abstract
Background Loss-of-function (LOF) mutations in signal transducer and activator of transcription 3 (STAT3) is one of the causes of STAT3 hyperimmunoglobulin E (IgE) syndrome (STAT3-HIES), while gain-of-function (GOF) mutations in STAT3 lead to immune dysregulation diseases. We retrospectively analyzed the age, common clinical symptoms, immunologic and molecular manifestations in 11 patients with LOF STAT3 mutations and 1 patient with a GOF STAT3 mutation. Methods Twelve patients were enrolled in our study. Serum immunoglobulin measurements, lymphocyte subset detection and whole-exome sequencing were performed. Results The median age at diagnosis of STAT3-HIES patients was 4.74 years. Eczema, recurrent respiratory infections, fevers, abscesses and Staphylococcus aureus infections were the classic manifestations. Elevated serum IgE levels are not always observed in conjunction with high eosinophil counts. A moderate viral DNA load was also measured in peripheral blood mononuclear cells. We noticed that c. 1144C>T was the most common mutation site, followed by c.1311C>A. Additionally, c.1311C>A and c. 1826G>C are two novel mutations. Eight patients achieved notable improvement after receiving intravenous immunoglobulin. Conclusion We updated the current knowledge of this topic. We found an earlier median age at diagnosis, a higher survival rate, and a general lack of nonimmunological abnormalities; we also described the treatment details and novel mutations involve in STAT3-HIES and compared STAT3 LOF and GOF mutations.
Collapse
Affiliation(s)
- Li Lin
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| |
Collapse
|
39
|
Parisi X, Bergerson J, Urban A, Darnell D, Stratton P, Freeman AF. Obstetric and Gynecological Care in Patients with STAT3-Deficient Hyper IgE Syndrome. J Clin Immunol 2020; 40:1048-1050. [PMID: 32696285 DOI: 10.1007/s10875-020-00827-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Xenia Parisi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jenna Bergerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH Building 10 Room 12C103, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Amanda Urban
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dirk Darnell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH Building 10 Room 12C103, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Pamela Stratton
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH Building 10 Room 12C103, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Béziat V, Tavernier SJ, Chen YH, Ma CS, Materna M, Laurence A, Staal J, Aschenbrenner D, Roels L, Worley L, Claes K, Gartner L, Kohn LA, De Bruyne M, Schmitz-Abe K, Charbonnier LM, Keles S, Nammour J, Vladikine N, Maglorius Renkilaraj MRL, Seeleuthner Y, Migaud M, Rosain J, Jeljeli M, Boisson B, Van Braeckel E, Rosenfeld JA, Dai H, Burrage LC, Murdock DR, Lambrecht BN, Avettand-Fenoel V, Vogel TP, Esther CR, Haskologlu S, Dogu F, Ciznar P, Boutboul D, Ouachée-Chardin M, Amourette J, Lebras MN, Gauvain C, Tcherakian C, Ikinciogullari A, Beyaert R, Abel L, Milner JD, Grimbacher B, Couderc LJ, Butte MJ, Freeman AF, Catherinot É, Fieschi C, Chatila TA, Tangye SG, Uhlig HH, Haerynck F, Casanova JL, Puel A. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med 2020; 217:e20191804. [PMID: 32207811 PMCID: PMC7971136 DOI: 10.1084/jem.20191804] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 02/18/2020] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients' heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J. Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Cindy S. Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Arian Laurence
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Lisa Roels
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Lisa Worley
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lisa Gartner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Lisa A. Kohn
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Klaus Schmitz-Abe
- Division of Newborn Medicine and Neonatal Genomics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Louis-Marie Charbonnier
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Justine Nammour
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Eva Van Braeckel
- Department of Respiratory Medicine, Ghent University Hospital, Ghent Belgium
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Bart N. Lambrecht
- VIB-UGent Center for Inflammation Research, Unit of Immunoregulation and Mucosal Immunology, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Véronique Avettand-Fenoel
- Laboratory of Clinical Microbiology, Virology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | | | - Charles R. Esther
- Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sule Haskologlu
- Division of Pediatric Immunology and Allergy, Ankara University School of Medicine, Sıhhıye, Ankara, Turkey
| | - Figen Dogu
- Division of Pediatric Immunology and Allergy, Ankara University School of Medicine, Sıhhıye, Ankara, Turkey
| | - Peter Ciznar
- Department of Pediatrics, Faculty of Medicine Comenius University and Children's University Hospital, Bratislava, Slovakia
| | - David Boutboul
- Clinical Immunology Department, Saint Louis Hospital, AP-HP de Paris University of Paris, Paris, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology and Immunology, Robert Debré Hospital, AP-HP, Paris, France
| | - Jean Amourette
- Pulmonology Department, Centre Hospitalier d'Arras, Arras, France
| | - Marie-Noëlle Lebras
- Pediatric Pulmonology, Infectious Disease and Internal Medicine Department, AP-HP, Robert Debré Hospital, Paris, France
| | - Clément Gauvain
- Thoracic Oncology Department, Lille University Hospital, Lille, France
| | | | - Aydan Ikinciogullari
- Division of Pediatric Immunology and Allergy, Ankara University School of Medicine, Sıhhıye, Ankara, Turkey
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, Ghent, Belgium
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joshua D. Milner
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
- German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signaling Studies, Albert Ludwig University, Freiburg, Germany
- RESIST, Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Louis-Jean Couderc
- Hôpital Foch, Pulmonology Department, Suresnes, France
- Simone Veil Faculty of Life Sciences, Versailles-Paris Saclay University, UPRES EA-220, Suresnes, France
| | - Manish J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | | | | | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP de Paris University of Paris, Paris, France
- INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Talal A. Chatila
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Stuart G. Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St. Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| |
Collapse
|
41
|
Eczematous dermatitis in primary immunodeficiencies: A review of cutaneous clues to diagnosis. Clin Immunol 2020; 211:108330. [DOI: 10.1016/j.clim.2019.108330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 11/23/2022]
|
42
|
Villanueva JCMM, Chan KW, Ong RC, Andaya AG, Lau YL, van Zelm MC, Kanegane H. Hyper IgE Syndrome Associated With Warts: A First Case of Dedicator of Cytokinesis 8 Deficiency in the Philippines. Front Pediatr 2020; 8:604725. [PMID: 33251169 PMCID: PMC7673426 DOI: 10.3389/fped.2020.604725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Hyper IgE syndrome (HIES) encompasses a group of primary immunodeficiency diseases (PIDs) that is characterized by severe atopy, and recurrent infections and markedly elevated serum IgE levels. The majority of HIES cases suffer from autosomal dominant mutations in the signal transducer and activator of transcription 3 gene. A minority of cases display autosomal recessive inheritance, and one form is caused by mutations in the dedicator of cytokinesis 8 (DOCK8) gene. Here we describe the first recognized and diagnosed case of DOCK8 deficiency in the Philippines. A 14 year-old-girl was referred due to recalcitrant atopic dermatitis, recurrent sinopulmonary infections, with widespread warts on the face, trunk and extremities. She had no coarse facial features or retained primary teeth, whereas she presented with widespread viral skin infections and multiple allergic diseases. Laboratory examinations revealed elevations in eosinophil count and serum IgE. The level of T-cell receptor excision circles was undetectable. The patient was suspected to have HIES with a probable DOCK8 deficiency. Genetic analysis disclosed a large genomic deletion involving exons 2-4 in the DOCK8 gene. A combination of recalcitrant atopic dermatitis, asthma, food allergies, with viral skin infections should increase the physician's consideration of a PID. Patients with HIES accompanied by warts and T-cell deficiency can be strongly suspected to have DOCK8 deficiency.
Collapse
Affiliation(s)
- Jose Carlo Miguel M Villanueva
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Remedios C Ong
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Agnes G Andaya
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Santo Tomas Hospital, Manila, Philippines
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Menno C van Zelm
- Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
43
|
Khoreva A, Pomerantseva E, Belova N, Povolotskaya I, Konovalov F, Kaimonov V, Gavrina A, Zimin S, Pershin D, Davydova N, Burlakov V, Viktorova E, Roppelt A, Kalinina E, Novichkova G, Shcherbina A. Complex Multisystem Phenotype With Immunodeficiency Associated With NBAS Mutations: Reports of Three Patients and Review of the Literature. Front Pediatr 2020; 8:577. [PMID: 33042920 PMCID: PMC7522312 DOI: 10.3389/fped.2020.00577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives: Mutations in the neuroblastoma-amplified sequence (NBAS) gene were originally described in patients with skeletal dysplasia or isolated liver disease of variable severity. Subsequent publications reported a more complex phenotype. Among multisystemic clinical symptoms, we were particularly interested in the immunological consequences of the NBAS deficiency. Methods: Clinical and laboratory data of 3 patients ages 13, 6, and 5 in whom bi-allelic NBAS mutations had been detected via next-generation sequencing were characterized. Literature review of 23 publications describing 74 patients was performed. Results: We report three Russian patients with compound heterozygous mutations of the NBAS gene who had combined immunodeficiency characterized by hypogammaglobulinemia, low T-cells, and near-absent B-cells, along with liver disease, skeletal dysplasia, optic-nerve atrophy, and dysmorphic features. Analysis of the data of 74 previously reported patients who carried various NBAS mutations demonstrated that although the most severe form of liver disease seems to require disruption of the N-terminal or middle part of NBAS, mutations of variable localizations in the gene have been associated with some form of liver disease, as well as immunological disorders. Conclusions: NBAS deficiency has a broad phenotype, and referral to an immunologist should be made in order to screen for immunodeficiency.
Collapse
Affiliation(s)
- Anna Khoreva
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Inna Povolotskaya
- Genetics and Reproductive Medicine Center "GENETICO" Ltd., Moscow, Russia.,Veltischev Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Vladimir Kaimonov
- Genetics and Reproductive Medicine Center "GENETICO" Ltd., Moscow, Russia
| | - Alena Gavrina
- Center of Inborn Pathology, GMS Clinic, Moscow, Russia
| | | | - Dmitrii Pershin
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Vasilii Burlakov
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Viktorova
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Roppelt
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Kalinina
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
44
|
Fishbein AB, Silverberg JI, Wilson EJ, Ong PY. Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:91-101. [PMID: 31474543 PMCID: PMC7395647 DOI: 10.1016/j.jaip.2019.06.044] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is one of the most common inflammatory skin diseases affecting children and adults. The intense pruritus and rash can be debilitating, significantly impairing quality of life. Until recently, treatment was largely nonspecific and, in severe disease, sometimes ineffective and/or fraught with many side effects. Now, multiple agents targeting specific disease pathways are available or in development. Two new therapies, crisaborole and dupilumab, have become available since 2016, and dupilumab has dramatically improved outcomes for adults with severe AD. This article provides an overview of AD, including strategies for differential diagnosis and assessment of disease severity to guide treatment selection. Key clinical trials for crisaborole and dupilumab are reviewed, and other targeted treatments now in development are summarized. Two cases, representing childhood-onset and adult-onset AD, are discussed to provide clinical context for diagnosis, severity assessment, and treatment selection and outcomes.
Collapse
Affiliation(s)
- Anna B Fishbein
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Jonathan I Silverberg
- Northwestern University Feinberg School of Medicine, Northwestern Medicine Multidisciplinary Eczema Center, Chicago, Ill
| | | | - Peck Y Ong
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Los Angeles, Calif; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| |
Collapse
|
45
|
Zelm MC, McKenzie CI, Varese N, Rolland JM, O'Hehir RE. Recent developments and highlights in immune monitoring of allergen immunotherapy. Allergy 2019; 74:2342-2354. [PMID: 31587309 DOI: 10.1111/all.14078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Allergic diseases are the most common chronic immune-mediated disorders and can manifest with an enormous diversity in clinical severity and symptoms. Underlying mechanisms for the adverse immune response to allergens and its downregulation by treatment are still being revealed. As a result, there have been, and still are, major challenges in diagnosis, prediction of disease progression/evolution and treatment. Currently, the only corrective treatment available is allergen immunotherapy (AIT). AIT modifies the immune response through long-term repeated exposure to defined doses of allergen. However, as the treatment usually needs to be continued for several years to be effective, and can be accompanied by adverse reactions, many patients face difficulties completing their schedule. Long-term therapy also potentially incurs high costs. Therefore, there is a great need for objective markers to predict or to monitor individual patient's beneficial changes in immune response during therapy so that efficacy can be identified as early as possible. In this review, we specifically address recent technical developments that have generated new insights into allergic disease pathogenesis, and how these could potentially be translated into routine laboratory assays for disease monitoring during AIT that are relatively inexpensive, robust and scalable.
Collapse
Affiliation(s)
- Menno C. Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O'Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Respiratory Medicine Allergy and Clinical Immunology (Research) Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
46
|
Nussbaum ES, Torok CM, Carroll J, Gunderman AM. Delayed development of a de novo contralateral middle cerebral artery aneurysm in a patient with hyperimmunoglobulin E syndrome: A case report. Interv Neuroradiol 2019; 25:442-446. [PMID: 30803337 DOI: 10.1177/1591019919828657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A 50-year-old female patient with hyperimmunoglobulin E syndrome (HIES) presented initially at the age of 48 years with subarachnoid hemorrhage (SAH) from a ruptured left middle cerebral artery (MCA) bifurcation aneurysm, which was treated successfully with coiling and microsurgical clipping. Angiography and cross-sectional imaging did not indicate evidence of any additional intracranial aneurysm. However, the patient presented two years later with SAH secondary to a new ruptured right MCA bifurcation aneurysm, which was treated successfully with microsurgical clipping. This case provides further evidence that HIES places the cerebral vasculature at increased risk for cerebral aneurysm formation and that special considerations are indicated in managing and monitoring these patients.
Collapse
Affiliation(s)
- Eric S Nussbaum
- 1 National Brain Aneurysm & Tumor Center, St Paul, USA.,2 Regions Hospital, St. Paul, MN, USA
| | | | | | - Allicia M Gunderman
- 3 St Paul Radiology, St Paul, USA.,4 Medical Laboratory Sciences, Center for Allied Health Programs, University of Minnesota, Minneapolis, USA
| |
Collapse
|