1
|
Li Z, Bao T, Chen K, Hu C, Zhang X, Hu X, Yang J, Zhang H. Tailoring of levansucrase product size by a comparative molecular dynamics approach. Enzyme Microb Technol 2024; 184:110577. [PMID: 39721367 DOI: 10.1016/j.enzmictec.2024.110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Levan is widely used as food additives. Its utilization is significantly influenced by its molecular weight. Bacillus subtilis levansucrase (Bs-SacB) and Priestia megaterium levansucrase (Pm-SacB) yield levan of different weights. To delve deeper into the molecular underpinnings of the molecular weight disparity between the products of these two enzymes, we conducted a focused study on the eight loops surrounding the active sites of Bs-SacB and Pm-SacB and identified Loop3 and loop4 as critical determinants in changing the molecular weight of Bs-SacB 's products. Subsequently, leveraging mutation energy analysis and non-homologous substitution strategies, we crafted tailored modifications in loop3 and loop4, yielding a spectrum of mutant enzymes that exhibit diverse molecular weight profiles including F182Y (3698 Da), CYTI (3093 Da), 3-Pbl (2776 Da), 4-Bml (1845 Da), and F182K (1571 Da). This research provide a novel comparative molecular dynamics approach to change product molecular weight and it is successfully applied in the modification of levansucrase.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tong Bao
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Kaiwen Chen
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xinyu Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xueqin Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
2
|
Castrejón-Carrillo S, Morales-Moreno LA, Rodríguez-Alegría ME, Zavala-Padilla GT, Bello-Pérez LA, Moreno-Zaragoza J, López Munguía A. Insights into the heterogeneity of levan polymers synthesized by levansucrase Bs-SacB from Bacillus subtilis 168. Carbohydr Polym 2024; 323:121439. [PMID: 37940304 DOI: 10.1016/j.carbpol.2023.121439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Levan is an enzymatically synthesized fructose polymer with widely reported structural heterogeneity depending on the producing levansucrase, the reaction conditions employed for its synthesis and the characterization techniques. We studied here the specific properties of levan produced by recombinant levansucrase from B. subtilis 168 (Bs-SacB), often characterized as a bimodal distribution, that is, a mixture of low and high molecular weight levan. We found significant differences between both levans in terms of the already reported molecular weight, size and morphology using different analytical methods. The low molecular weight levan consists of a non-uniform polymer ranging from 50 to 230 kDa, synthesized through a non-processive mechanism that can spontaneously form spherical nanoparticles in the reaction medium. In contrast, high molecular weight levan is a uniform polymer, most probably synthesized through a processive mechanism, with an average molecular weight of 30,750 kDa and a poorly defined nano-structure. This is the first report exploring differences in morphology between low and high molecular weight levans. Our findings demonstrate that only the low molecular weight levan forms spherical nanoparticles in the reaction medium and that high molecular weight levan is mainly composed of a 33,000 kDa fraction with a microgel behavior.
Collapse
Affiliation(s)
- Sol Castrejón-Carrillo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Luis Alberto Morales-Moreno
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - María Elena Rodríguez-Alegría
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Guadalupe Trinidad Zavala-Padilla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Luis Arturo Bello-Pérez
- Instituto Politécnico Nacional, CEPROBI, km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec, Morelos 62731, Mexico.
| | - Josué Moreno-Zaragoza
- Instituto Politécnico Nacional, CEPROBI, km 6 Carr. Yautepec-Jojutla, Calle Ceprobi No. 8, Apartado Postal 24, Yautepec, Morelos 62731, Mexico.
| | - Agustín López Munguía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
3
|
Radenkovs V, Valdovska A, Galina D, Cairns S, Jakovlevs D, Gaidukovs S, Cinkmanis I, Juhnevica-Radenkova K. Elaboration of Nanostructured Levan-Based Colloid System as a Biological Alternative with Antimicrobial Activity for Applications in the Management of Pathogenic Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2969. [PMID: 37999323 PMCID: PMC10674346 DOI: 10.3390/nano13222969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Considering the documented health benefits of bacterial exopolysaccharides (EPSs), specifically of bacterial levan (BL), including its intrinsic antimicrobial activity against certain pathogenic species, the current study concentrated on the development of active pharmaceutical ingredients (APIs) in the form of colloid systems (CoSs) containing silver nanoparticles (AgNPs) employing in-house biosynthesized BL as a reducing and capping agent. The established protocol of fermentation conditions implicating two species of lactic acid bacteria (LAB), i.e., Streptococcus salivarius K12 and Leuconostoc mesenteroides DSM 20343, ensured a yield of up to 25.7 and 13.7 g L-1 of BL within 72 h, respectively. An analytical approach accomplished by Fourier-transform infrared (FT-IR) spectroscopy allowed for the verification of structural features attributed to biosynthesized BL. Furthermore, scanning electron microscopy (SEM) revealed the crystalline morphology of biosynthesized BL with a smooth and glossy surface and highly porous structure. Molecular weight (Mw) estimated by multi-detector size-exclusion chromatography (SEC) indicated that BL biosynthesized using S. salivarius K12 has an impressively high Mw, corresponding to 15.435 × 104 kilodaltons (kDa). In turn, BL isolated from L. mesenteroides DSM 20343 was found to have an Mw of only 26.6 kDa. Polydispersity index estimation (PD = Mw/Mn) of produced BL displayed a monodispersed molecule isolated from S. salivarius K12, corresponding to 1.08, while this was 2.17 for L. mesenteroides DSM 20343 isolate. The presence of fructose as the main backbone and, to a lesser extent, glucose and galactose as side chain molecules in EPS hydrolysates was supported by HPLC-RID detection. In producing CoS-BL@AgNPs within green biosynthesis, the presence of nanostructured objects with a size distribution from 12.67 ± 5.56 nm to 46.97 ± 20.23 was confirmed by SEM and energy-dispersive X-ray spectroscopy (EDX). The prominent inhibitory potency of elaborated CoS-BL@AgNPs against both reference test cultures, i.e., Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, and Staphylococcus aureus and those of clinical origin with multi-drug resistance (MDR), was confirmed by disc and well diffusion tests and supported by the values of the minimum inhibitory and bactericidal concentrations. CoS-BL@AgNPs can be treated as APIs suitable for designing new antimicrobial agents and modifying therapies in controlling MDR pathogens.
Collapse
Affiliation(s)
- Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia;
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Anda Valdovska
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Daiga Galina
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Stefan Cairns
- Malvern Panalytical Ltd., Worcestershire, Malvern WR14 1XZ, UK
| | - Dmitrijs Jakovlevs
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| | - Ingmars Cinkmanis
- Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | | |
Collapse
|
4
|
Xu L, Wu D, Xu H, Zhao Z, Chen Q, Li H, Wei Z, Chen L. Characterization, production optimization, and fructanogenic traits of levan in a new Microbacterium isolate. Int J Biol Macromol 2023; 250:126330. [PMID: 37579898 DOI: 10.1016/j.ijbiomac.2023.126330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Levan is a high-valued β-(2,6)-linked fructan with promising physicochemical and physiological properties and has diverse potential applications in the food, nutraceutical, pharmaceutical and cosmetic industry, but its commercial availability is still restricted to the relatively high costs of production. In this study, a strain identified as Microbacterium sp. XL1 was isolated from soil and highly produced exopolysaccharide (EPS). HPLC, FTIR and NMR spectroscopy revealed XL1-EPS is a levan-type fructan connected by β-(2, 6) linkages. SEM, DLS and TGA-DSC analysis showed that XL1-EPS processed high morphological versatility, narrow size distribution in its solutions and excellent thermal stability. The levan yield reached 83.67 ± 4.06 g/L with corresponding productivity of 3.49 ± 0.17 g/L/h and a conversion yield of 39.8 ± 1.9 % using sucrose (210 g/L) as substrates under the optimal cultivation conditions concluded by the response surface methodology (RSM). More strikingly, the XL1 strain also has multi-type fructanases to generate levanbiose, kestose, DFA IV and other L-FOSs. These results suggest Microbacterium sp. XL1 is a promising strain to produce levan and can provide various levan/inulin-degrading enzymes to create a great diversity of FOSs.
Collapse
Affiliation(s)
- Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Dan Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Ziyan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Hanqi Li
- School of Ocean Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.
| |
Collapse
|
5
|
Keerthashalini P, Sobanadevi V, Uppuluri KB. Deep eutectic solvent assisted recovery of high molecular weight levan from an isolated Neobacillus pocheonensis BPSCM4. Prep Biochem Biotechnol 2023; 54:407-418. [PMID: 37632396 DOI: 10.1080/10826068.2023.2245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The present study demonstrates the usage of deep eutectic solvent to recover microbial levan from the clarified fermented broth. The classic ethanol precipitation method for levan recovery is expensive because ethanol can be utilized as a biofuel. Production of ethanol consumes more energy and is not easily recycled. As a result, the current work concentrates on using environmentally friendly solvents for levan recovery. Deep Eutectic Solvents (DES) are greener and can replace ethanol from the microbial polysaccharides precipitation. Thus the proposed approach is environment friendly, technically feasible, reliable and economically viable. The levan was produced from a microbial isolate of aged sugarcane molasses, recovered using traditional ethanol and proposed DES (Choline Chloride and Ethylene Glycol) assisted precipitation. The levan-producing strain was characterized and identified as Neobacillus pocheonensis BPSCM4. The DES-precipitated levan has a high molecular weight of levan, 1.54 × 106 KDa, compared with the ethanol-precipitated levan, 4.246 KDa. The high molecular weight of DES-precipitated levan is due to the low viscosity and hydrogen interaction of ChCl:EG with the levan present in the fermented broth. Further, the optimization enhanced the levan yield to 32.56 g/L when the sucrose concentration was 250 g/L.
Collapse
Affiliation(s)
- P Keerthashalini
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - V Sobanadevi
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Kiran Babu Uppuluri
- Bioprospecting Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Gojgic-Cvijovic G, Jakovljevic D, Zivkovic L, Cosovic V, Pavlovic V, Nikolic I, Maravic N, Dokic L. Synthesis of octenyl succinic anhydride-modified levan and investigation of its microstructural, physicochemical, and emulsifying properties. Int J Biol Macromol 2023; 242:124837. [PMID: 37178878 DOI: 10.1016/j.ijbiomac.2023.124837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
In this study, levan from Bacillus licheniformis NS032 was modified in an aqueous medium by octenyl succinic anhydride (OSA), and the properties of the obtained derivatives were studied. The maximum efficiency in the synthesis reaction was achieved at 40 °C and a polysaccharide slurry concentration of 30 %. Increasing the reagent concentration (2-10 %) led to an increase in the degree of substitution (0.016-0.048). Structures of derivatives were confirmed by FTIR and NMR. Scanning electronic microscopy, thermogravimetry, and dynamic light scattering analyses showed that the derivatives with degrees of substitution of 0.025 and 0.036 retained levan's porous structure and thermostability and showed better colloidal stability than the native polysaccharide. The intrinsic viscosity of derivatives increased upon modification, while the surface tension of the 1 % solution was lowered to 61 mN/m. Oil-in-water emulsions prepared with sunflower oil (10 % and 20 %) by mechanical homogenization and 2 and 10 % derivatives in the continuous phase showed mean oil droplet sizes of 106-195 μm, while the distribution curves exhibited bimodal character. The studied derivatives have a good capacity to stabilize emulsions, as they have a creaming index ranging from 73 % to 94 %. The OSA-modified levans could have potential applications in new formulations of emulsion-based systems.
Collapse
Affiliation(s)
- Gordana Gojgic-Cvijovic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Dragica Jakovljevic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Ljiljana Zivkovic
- University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia
| | - Vladan Cosovic
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Vladimir Pavlovic
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ivana Nikolic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nikola Maravic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ljubica Dokic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
7
|
Nasir A, Ahmad W, Sattar F, Ashfaq I, Lindemann SR, Chen MH, Van den Ende W, Ӧner ET, Kirtel O, Khaliq S, Ghauri MA, Anwar MA. Production of a high molecular weight levan by Bacillus paralicheniformis, an industrially and agriculturally important isolate from the buffalo grass rhizosphere. Antonie Van Leeuwenhoek 2022; 115:1101-1112. [PMID: 35840814 DOI: 10.1007/s10482-022-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
A new exopolysaccharide (EPS) producing Gram-positive bacterium was isolated from the rhizosphere of Bouteloua dactyloides (buffalo grass) and its EPS product was structurally characterized. The isolate, designated as LB1-1A, was identified as Bacillus paralicheniformis based on 16S rRNA gene sequence and phylogenetic tree analysis. The EPS produced by LB1-1A was identified as a levan, having β(2 → 6) linked backbone with β(2 → 1) linkages at the branch points (4.66%). The isolate LB1-1A yielded large amount (~ 42 g/l) of levan having high weight average molecular weight (Mw) of 5.517 × 107 Da. The relatively low degree of branching and high molecular weight of this levan makes B. paralicheniformis LB1-1A a promising candidate for industrial applications.
Collapse
Affiliation(s)
- Anam Nasir
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan
| | - Fazal Sattar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Iram Ashfaq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Ming-Hsu Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Ebru Toksoy Ӧner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Onur Kirtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Muhammad A Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Munir A Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan.
| |
Collapse
|
8
|
Chen S, Tong Q, Guo X, Cong H, Zhao Z, Liang W, Li J, Zhu P, Yang H. Complete secretion of recombinant Bacillus subtilis levansucrase in Pichia pastoris for production of high molecular weight levan. Int J Biol Macromol 2022; 214:203-211. [PMID: 35714864 DOI: 10.1016/j.ijbiomac.2022.06.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022]
Abstract
Three signal peptides from α-mating factor (α-MF), inulinase (INU) and native levansucrase (LS) were compared for secretion efficiency of Bacillus subtilis levansucrase SacB-T305A in Pichia pastoris GS115. The first complete secretion of bacterial levansucrase in yeasts under methanol induction was achieved while using α-MF signal. The secreted recombinant Lev(α-MF) proved to be glycosylated by combination of NanoLC-MS/MS and Endo H digestion. Interestingly, glycosylation not only improved significantly the polymerase thermostability, but also reversed the products profiles to favor synthesis of high molecular weight (HMW) levan which accounted for approximately 73 % to total levan-type polysaccharides. It indicated for the first time that the glycosylation of recombinant B. subtilis levansucrase affected significantly the products molecular weight distribution. It also provided a promising enzymatic way to effectively product HMW levan from sucrose resources.
Collapse
Affiliation(s)
- Shuochang Chen
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiuping Tong
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Xiaolei Guo
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Hao Cong
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zi Zhao
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Wenfeng Liang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jiemin Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, 174 East Daxue Road, Nanning, Guangxi 530007, China
| | - Ping Zhu
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Hui Yang
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China; Guangxi Research Center for Microbial and Enzyme Engineering Technology, 100 Daxue Road, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Mummaleti G, Sarma C, Kalakandan SK, Gazula H, Sivanandham V, Anandharaj A. Characterization of levan produced from coconut inflorescence sap using Bacillus subtilis and its application as a sweetener. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Haddar A, Ben Ayed E, Sila A, Putaux JL, Bougatef A, Boufi S. Hybrid levan-Ag/AgCl nanoparticles produced by UV-irradiation: properties, antibacterial efficiency and application in bioactive poly(vinyl alcohol) films. RSC Adv 2021; 11:38990-39003. [PMID: 35492492 PMCID: PMC9044478 DOI: 10.1039/d1ra07852f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023] Open
Abstract
Foodborne diseases caused by resistance of microorganisms to multiple antimicrobial agents have emerged as a major public health concern around the world. The search for potential antimicrobials has resulted in the emergence of metal nanoparticles for protection against these infections. In this study an eco-friendly and green approach was used to biosynthesize hybrid Ag/AgCl nanoparticles (NPs), using levan from Bacillus mojavensis as a stabilizing/reducing agent, with a high efficiency against a broad spectrum of foodborne bacteria as well as biofilm formations. The morphology and physicochemical characteristics of levan-Ag/AgCl NPs were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis spectroscopy (UV), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The hybrid levan-Ag/AgCl was evaluated for antibacterial activity against foodborne pathogenic bacteria (Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes, Enterococcus faecalis, Bacillus subtilis and Bacillus thuringiensis). The study demonstrated the strong efficiency of hybrid levan-Ag/AgCl NPs as a potent inhibitor against all tested strains, with much higher activity against Gram-negative than Gram-positive bacteria. Furthermore, bacterial strains were found to be highly sensitive to hybrid levan-Ag/AgCl NPs in comparison to the tested antibiotics. As a possible application of levan-Ag/AgCl NPs as an additive in packaging, PVA films with different amounts of hybrid levan-Ag/AgCl NPs were prepared by casting and their antibacterial, mechanical, and optical properties and ability to expand the shelf life of beef meat were explored. Interestingly, the amount of Ag leached out from films was below the permissible limit. This work demonstrates the strong antibacterial action of hybrid levan-Ag/AgCl NPs and their potential use in bioactive packaging material.
Collapse
Affiliation(s)
- Anissa Haddar
- Laboratory of Plants Improvement and Valorization of Agroressources (LAPVA), National School of Engineering of Sfax (ENIS), University of Sfax 3038 Sfax Tunisia +216 74 275 595 +216 74 674 354
- University of Sfax, High Institute of Biotechnology Sfax Tunisia
| | - Emna Ben Ayed
- University of Sfax, Faculty of Science, LMSE BP 802 3018 Sfax Tunisia
| | - Assaad Sila
- Laboratory of Plants Improvement and Valorization of Agroressources (LAPVA), National School of Engineering of Sfax (ENIS), University of Sfax 3038 Sfax Tunisia +216 74 275 595 +216 74 674 354
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa University 2112 Gafsa Tunisia
| | | | - Ali Bougatef
- Laboratory of Plants Improvement and Valorization of Agroressources (LAPVA), National School of Engineering of Sfax (ENIS), University of Sfax 3038 Sfax Tunisia +216 74 275 595 +216 74 674 354
- University of Sfax, High Institute of Biotechnology Sfax Tunisia
| | - Sami Boufi
- University of Sfax, Faculty of Science, LMSE BP 802 3018 Sfax Tunisia
| |
Collapse
|
11
|
Chen Z, Ni D, Cheng M, Zhu Y, Mu W. Comparative study of physicochemical properties of dextran and reuteran synthesised by two glucansucrases that are highly similar in amino acid sequence. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Mei Cheng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi, Jiangsu 214122 China
| |
Collapse
|
12
|
Islamov B, Petrova O, Mikshina P, Kadyirov A, Vorob’ev V, Gogolev Y, Gorshkov V. The Role of Pectobacterium atrosepticum Exopolysaccharides in Plant-Pathogen Interactions. Int J Mol Sci 2021; 22:12781. [PMID: 34884586 PMCID: PMC8657720 DOI: 10.3390/ijms222312781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
The phytopathogenic bacterium Pectobacterium atrosepticum (Pba), one of the members of the soft rot Pectobacteriaceae, forms biofilm-like structures known as bacterial emboli when colonizing the primary xylem vessels of the host plants. The initial extracellular matrix of the bacterial emboli is composed of the host plant's pectic polysaccharides, which are gradually substituted by the Pba-produced exopolysaccharides (Pba EPS) as the bacterial emboli "mature". No information about the properties of Pba EPS and their possible roles in Pba-plant interactions has so far been obtained. We have shown that Pba EPS possess physical properties that can promote the maintenance of the structural integrity of bacterial emboli. These polymers increase the viscosity of liquids and form large supramolecular aggregates. The formation of Pba EPS aggregates is provided (at least partly) by the acetyl groups of the Pba EPS molecules. Besides, Pba EPS scavenge reactive oxygen species (ROS), the accumulation of which is known to be associated with the formation of bacterial emboli. In addition, Pba EPS act as suppressors of the quantitative immunity of plants, repressing PAMP-induced reactions; this property is partly lost in the deacetylated form of Pba EPS. Overall, our study shows that Pba EPS play structural, protective, and immunosuppressive roles during Pba-plant interactions and thus should be considered as virulence factors of these bacteria.
Collapse
Affiliation(s)
- Bakhtiyar Islamov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (B.I.); (O.P.); (P.M.); (V.V.); (Y.G.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (B.I.); (O.P.); (P.M.); (V.V.); (Y.G.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (B.I.); (O.P.); (P.M.); (V.V.); (Y.G.)
| | - Aidar Kadyirov
- Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia;
| | - Vladimir Vorob’ev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (B.I.); (O.P.); (P.M.); (V.V.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (B.I.); (O.P.); (P.M.); (V.V.); (Y.G.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (B.I.); (O.P.); (P.M.); (V.V.); (Y.G.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| |
Collapse
|
13
|
Tilwani YM, Lakra AK, Domdi L, Yadav S, Jha N, Arul V. Optimization and physicochemical characterization of low molecular levan from Enterococcus faecium MC-5 having potential biological activities. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Zhang X, Liang Y, Yang H, Yang H, Chen S, Huang F, Hou Y, Huang R. A novel fusion levansucrase improves thermostability of polymerization and production of high molecular weight levan. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Islam MS, Hongxin W, Admassu H, Noman A, Ma C, An wei F. Degree of hydrolysis, functional and antioxidant properties of protein hydrolysates from Grass Turtle ( Chinemys reevesii) as influenced by enzymatic hydrolysis conditions. Food Sci Nutr 2021; 9:4031-4047. [PMID: 34401055 PMCID: PMC8358382 DOI: 10.1002/fsn3.1903] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Grass turtle muscle was hydrolyzed with papain enzyme to produce protein hydrolysate (PH) and the degree of hydrolysis (DH) was determined. Under optimal conditions, the highest DH was 19.52% and the yield was recorded as 17.26%. Protein content of the hydrolysates was ranged from 73.35% to 76.63%. Total amino acids were more than 96.77% for each PH. The PH obtained at DH 19.52% achieved excellent solubility and emulsifying activity which were 95.56% and 108.76 m2/g, respectively at pH 6. Foam capacity amounted 100% in PH of DH 19.52% at pH 2, and water-holding capacity was 4.38 g/g. The antioxidant activity showed the strongest hydroxyl radical scavenging activity (95.25%), ABTS (84.88%), DPPH (75.89%), iron chelating (63.25%), and cupper chelating (66.90%) at DH 11.96%, whereas reducing power (0.88) at DH 19.52%. Thus, the findings indicated that utilization of grass turtle muscle protein hydrolysate is a potential alternative protein resource to improve the nutritional and functional properties in food ingredients and product formulations.
Collapse
Affiliation(s)
- Md. Serajul Islam
- State key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu province214122China
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu province214122China
- Department of Food Technology and Nutritional ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Wang Hongxin
- State key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu province214122China
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu province214122China
| | - Habtamu Admassu
- Department of Food Process Engineering, Biotechnology and Bioprocessing Center of ExcellenceAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
| | - Anwar Noman
- State key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu province214122China
| | - Chaoyang Ma
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu province214122China
| | - Fu An wei
- Guangxi zhongtaikang Technology Industry Co., Ltd.NanningGuangxi530029P. R. China
| |
Collapse
|
16
|
Mendonça CMN, Oliveira RC, Freire RKB, Piazentin ACM, Pereira WA, Gudiña EJ, Evtuguin DV, Converti A, Santos JHPM, Nunes C, Rodrigues LR, Oliveira RPS. Characterization of levan produced by a Paenibacillus sp. isolated from Brazilian crude oil. Int J Biol Macromol 2021; 186:788-799. [PMID: 34245738 DOI: 10.1016/j.ijbiomac.2021.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear β(2 → 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Carlos M N Mendonça
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo C Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Rominne K B Freire
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Anna C M Piazentin
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Wellison A Pereira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Eduardo J Gudiña
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Dmitry V Evtuguin
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Cláudia Nunes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lígia R Rodrigues
- CEB, Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo P S Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, 05508-000 São Paulo, Brazil.
| |
Collapse
|
17
|
Gan L, Jiang G, Li X, Zhang S, Tian Y, Peng B. Structural elucidation and physicochemical characteristics of a novel high-molecular-weight fructan from halotolerant Bacillus sp. SCU-E108. Food Chem 2021; 365:130496. [PMID: 34237575 DOI: 10.1016/j.foodchem.2021.130496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/29/2022]
Abstract
An exopolysaccharide, EPS-B108, was isolated from the fermented broth (with a yield of 11.3 g/L) of halotolerant Bacillus sp. SCU-E108 by ethanol precipitation, anion-exchange and gel-filtration chromatography, and well characterized by means of physical, chemical and spectral techniques. Data indicated that EPS-B108 was composed solely of fructose with a high molecular weight of 3.578 × 107 g/mol, and contained a β-(2 → 6)-linked d-Fruf backbone with a single β-d-Fruf at C-1 position. An irregular saccular- or cake-like shape was observed under the enlarged view. It showed no acute oral toxicity in mice, and had good thermal stability (242 °C), solubility in water (91.3%) and oil-holding capacity (1717.0%). Steady-shear flow and dynamical viscoelasticity of aqueous EPS-B108 solutions varied with the polymer concentration, shear rate and temperature, and were described by the Power-law model. Together, these findings support the further application of EPS-B108 as an alternative source of functional food additives and ingredients.
Collapse
Affiliation(s)
- Longzhan Gan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Xiaoguang Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Shihao Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China.
| | - Biyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China.
| |
Collapse
|
18
|
Lakra AK, Ramatchandirane M, Kumar S, Suchiang K, Arul V. Physico-chemical characterization and aging effects of fructan exopolysaccharide produced by Weissella cibaria MD2 on Caenorhabditis elegans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Cloning and Expression of Levansucrase Gene of Bacillus velezensis BM-2 and Enzymatic Synthesis of Levan. Processes (Basel) 2021. [DOI: 10.3390/pr9020317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Levan is a versatile and valuable fructose homopolymer, and a few bacterial strains have been found to produce levan. Although levan products have numerous specific functions, their application and promotion were limited by the production capacity and production cost. Bacillus velezensis BM-2 is a levan-synthesizing strain, but its levan production is too low to apply. In this study, the levansucrase gene of B. velezensis BM-2 was cloned to plasmid pET-32a-Acma-zz, and the recombinant plasmids were transferred to Escherichia coli BL21. A transformed clone was selected to express and secrete the fusion enzymes with an Acma-tag efficiently. The expressed products were further purified by a self-developed separating material called bacterial enhancer matrix (BEM) particles. The purification efficiency was 93.4%, with a specific activity of 16.589 U/mL protein. The enzymatic reaction results indicated that the optimal reaction temperature is 50 °C, the optimal pH of the acetate buffer is 5.6, and the buffer system greatly influenced the enzyme activity. The enzyme activity was enhanced to 130% in the presence of 5 mM Ca2+, K+, Zn2+, and Mn2+, whereas it was almost abolished in the case of Cu2+ and Fe3+. The values of Km, kcat, and kcat/Km were 17.41 mM, 376.83 s−1, and 21.64 mM−1s−1, respectively. The enzyme amount of 20 U/g sucrose was added to the system containing 400 g/L sucrose, and the levan products with a concentration of 120 g/L reached after an incubation of 18 h, which was 8 times that of the yield before optimization. The results of molecular docking analysis indicated that the Asp86 might act as a nucleophilic catalytic residue for sucrose, Arg246 and Asp247 act as transition state stabilizer of transfructosylation, and Glu340 and Arg306 were recognized as general acid donors. They formed the catalytic-groups triad. The unique properties and catalytic activity of the levansucrase suggest that it deserves further research and might have good industrial application prospects.
Collapse
|
20
|
Hou Y, Huang F, Yang H, Cong H, Zhang X, Xie X, Yang H, Tong Q, Luo N, Zhu P, Meng J. Factors affecting the production and molecular weight of levan in enzymatic synthesis by recombinant
Bacillus subtilis
levansucrase
SacB‐T305A. POLYM INT 2020. [DOI: 10.1002/pi.6112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yuanyuan Hou
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
- Department of Food and Biological Engineering Handan Polytechnic College Handan China
| | - Fei Huang
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
| | - Hui Yang
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
| | - Hao Cong
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
| | - Xi Zhang
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
| | - Xiaoxu Xie
- College of Life Science and Technology Guangxi University Nanning China
| | - Haibo Yang
- College of Life Science and Technology Guangxi University Nanning China
| | - Qiuping Tong
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
| | - Ning Luo
- College of Life Science and Technology Guangxi University Nanning China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources Guangxi University Nanning China
| | - Ping Zhu
- College of Life Science and Technology Guangxi University Nanning China
| | - Jianzong Meng
- College of Life Science and Technology Guangxi University Nanning China
| |
Collapse
|
21
|
Ni D, Zhu Y, Xu W, Pang X, Lv J, Mu W. Production and Physicochemical Properties of Food-Grade High-Molecular-Weight Lactobacillus Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5854-5862. [PMID: 32366099 DOI: 10.1021/acs.jafc.9b07894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inulin has been widely applied in food, pharmaceuticals, and many other fields because of its versatile physicochemical properties and physiological functions. Previous research showed that inulosucrase from microorganisms could produce higher-molecular-weight inulin than vegetal inulin. Herein, a food-grade recombinant Bacillus subtilis expression system was constructed to produce inulosucrase from Lactobacillus gasseri DSM 20604 without antibiotic resistance genes. The produced inulosucrase was used to biosynthesize inulin with an average molecular weight of 5.8 × 106 Da. The physicochemical properties of the produced Lactobacillus inulin were evaluated including microstructure, thermal characteristics, crystallinity, rheological behaviors, and storage stability. By comparing with vegetal inulin and other polymers, the biosynthesized microbial inulin showed some superior properties, such as better gel-forming capability and storage stability in aqueous solution than vegetal inulin. These results opened up possibilities for further investigations aimed at developing microbial inulin in the food industry.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyang Pang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaping Lv
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
Production and characterization of a high molecular weight levan and fructooligosaccharides from a rhizospheric isolate of Bacillus aryabhattai. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Shimizu N, Abea A, Ushiyama T, Toksoy Öner E. Effect of temperature on the hydrolysis of levan treated with compressed hot water fluids. Food Sci Nutr 2020; 8:2004-2014. [PMID: 32328267 PMCID: PMC7174225 DOI: 10.1002/fsn3.1488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 12/27/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
The hydrolysis of levan using compressed hot water for the production of functional fructooligosaccharides (FOSs) was investigated. Levans from Erwinia herbicola (EH) and Halomonas smyrnensis (HS) were characterized using scanning electron microscopy and light scattering techniques, and hydrolyzed using compressed hot water at four temperatures (120, 140, 160, and 180°C). The hydrolysates were analyzed using high-performance liquid chromatography and electrospray ionization-mass spectrometry. Levan HS showed a crystalline morphology, whereas levan EH showed an aggregated structure. Both levans had molar masses on the order of 106 g/mol, but levan EH had a smaller radius of gyration, hydrodynamic radius, and intrinsic viscosity. Levan EH hydrolyzed into FOSs at approximately 120°C, whereas levan HS required a temperature of at least 160°C, possibly because of differences in the degree of branching of the two levans. Both samples were degraded to fructose when treated at 180°C.
Collapse
Affiliation(s)
- Naoto Shimizu
- Research Faculty of AgricultureHokkaido UniversitySapporoJapan
- Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| | - Andres Abea
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | | | - Ebru Toksoy Öner
- Department of BioengineeringIBSBMarmara UniversityIstanbulTurkey
| |
Collapse
|
24
|
Hundschell C, Bäther S, Drusch S, Wagemans A. Osmometric and viscometric study of levan, β-lactoglobulin and their mixtures. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Xu W, Peng J, Ni D, Zhang W, Wu H, Mu W. Preparation, characterization and application of levan/montmorillonite biocomposite and levan/BSA nanoparticle. Carbohydr Polym 2020; 234:115921. [DOI: 10.1016/j.carbpol.2020.115921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
|
26
|
Hundschell CS, Braun A, Wefers D, Vogel RF, Jakob F. Size-Dependent Variability in Flow and Viscoelastic Behavior of Levan Produced by Gluconobacter albidus TMW 2.1191. Foods 2020; 9:E192. [PMID: 32075024 PMCID: PMC7073539 DOI: 10.3390/foods9020192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Levan is a fructan-type exopolysaccharide which is produced by many microbes from sucrose via extracellular levansucrases. The hydrocolloid properties of levan depend on its molecular weight, while it is unknown why and to what extent levan is functionally diverse depending on its size. The aim of our study was to gain deeper insight into the size-dependent functional variability of levan. For this purpose, levans of different sizes were produced using the water kefir isolate Gluconobacter albidus TMW 2.1191 and subsequently rheologically characterized. Three levan types could be identified, which are similarly branched, but differ significantly in their molecular size and rheological properties. The smallest levan (<107 Da), produced without adjustment of the pH, exhibited Newton-like flow behavior up to a specific concentration of 25% (w/v). By contrast, larger levans (>108 Da) produced at pH ≥ 4.5 were shear-thinning, and the levan produced at pH 5.0 showed a gel-like behavior at 5% (w/v). A third (intermediate) levan variant was obtained through production in buffers at pH 4.0 and exhibited the properties of a viscoelastic fluid up to concentrations of 15% (w/v). Our study reveals that the rheological properties of levan are determined by its size and polydispersity, rather than by the amount of levan used or the structural composition.
Collapse
Affiliation(s)
- Christoph S. Hundschell
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
- Department of Food Technology and Food Material Science, Technical University of Berlin, 14195 Berlin, Germany;
| | - Andre Braun
- Anton Paar Germany GmbH, Hellmuth-Hirth-Strasse 6, 73760 Ostfildern-Scharnhausen, Germany;
- Lehrstuhl für Systemverfahrenstechnik, Technische Universität München, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Daniel Wefers
- Division of Food Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rudi F. Vogel
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| | - Frank Jakob
- Chair of Technical Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany;
| |
Collapse
|
27
|
Domżał-Kędzia M, Lewińska A, Jaromin A, Weselski M, Pluskota R, Łukaszewicz M. Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics. Bioorg Chem 2019; 93:102787. [DOI: 10.1016/j.bioorg.2019.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
|
28
|
Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Lunter DJ, Daniels R, Savić S. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. Eur J Pharm Sci 2019; 142:105109. [PMID: 31770662 DOI: 10.1016/j.ejps.2019.105109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
Ongoing demand in sustainable and biocompatible drug dosage forms is reflected in the search for novel pharmaceutical excipients with equal properties. A group of microbial exopolysaccharides offers a variety of biopolymers with many alleged uses and effects. This study aims to assess applicative properties of levan obtained from Bacillus licheniformis NS032, focusing on its potential co-stabilizing and drug release-controlling functions in pertaining emulsion systems. Despite its high molecular weight and partial existence in globular nanometric structures (180-190 nm), levan was successfully incorporated into both tested colloidal systems: those stabilized with synthetic/anionic or natural-origin/non-ionic emulsifiers. In the tested levan concentrations range (0.2-3.0% w/w) the monitored flow and thermal parameters failed to show linear concentration dependence, which prompted us to revisit certain colloidal fundamentals of this biopolymer. Being a part of the external phase of the investigated emulsion systems, levan contributed to formation of a matrix-like environment, offering additional stabilization of the microstructure and rheology modifying properties (hysteresis loop elevation as high as 4167±98 to 20792±3166 Pa•s-1), especially in case of the samples where lamellar liquid crystalline formation occurred. Apart from its good water solubility and considerable conformational flexibility, the investigated homofructan easily saturated the external phase of the samples stabilized with a conventional anionic emulsifier, leading to similar properties of 0.2% and 3.0% levan-containing samples. After closer consideration of thermal and release behavior, this was considered as a favorable property for a novel excipient, offering tailored formulation characteristics even with lower levan concentrations, consequently not compromising the potential cost of the final drug dosage form.
Collapse
Affiliation(s)
- Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| | - Milica Lukić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| | - Gordana Gojgić-Cvijović
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, 11 000 Belgrade, Serbia.
| | - Dragica Jakovljević
- Department of Chemistry, University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, 11 000 Belgrade, Serbia.
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| | - Dominique Jasmin Lunter
- Institut für Pharmazeutische Technologie, Eberhard-Karls Universität, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Rolf Daniels
- Institut für Pharmazeutische Technologie, Eberhard-Karls Universität, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11 221 Belgrade, Serbia.
| |
Collapse
|
29
|
A close look at the structural features and reaction conditions that modulate the synthesis of low and high molecular weight fructans by levansucrases. Carbohydr Polym 2019; 219:130-142. [DOI: 10.1016/j.carbpol.2019.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
30
|
Chidambaram JSC, Veerapandian B, Sarwareddy KK, Mani KP, Shanmugam SR, Venkatachalam P. Studies on solvent precipitation of levan synthesized using Bacillus subtilis MTCC 441. Heliyon 2019; 5:e02414. [PMID: 31687543 PMCID: PMC6819800 DOI: 10.1016/j.heliyon.2019.e02414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
Levan is a water soluble biopolymer widely used in food, pharma, personal care and aquaculture industries. In this work, levan was synthesized by Bacillus subtilis MTCC 441 using sucrose as a sole carbon source. Effects of pH, sucrose concentration, nitrogen source, nitrogen concentration, inoculum size and agitation speed on levan production were studied. Yeast extract (YE) was found to be the best nitrogen source. Sucrose concentration - 100 g/L, pH - 7, YE concentration - 2 g/L, inoculum size 10% (v/v) and RPM - 150 were found to be optimal values for levan production. Effects of precipitation pH (3-12), choice of solvent (ethanol, isopropanol, acetone, and methanol) and supernatant to solvent ratio (1:1 to 1:6) on levan yield were also studied. Isopropanol resulted in maximum levan recovery among the four solvents considered. Optimal pH and supernatant to solvent ratio for levan precipitation were found to be 11 and 1:5, respectively. Corresponding levan yield was 0.395 g/g of sucrose supplied. The product obtained was characterized using FTIR, 1H-NMR, 13C-NMR, and GPC. The cytotoxicity of the precipitated levan was studied on EA.hy926 cell line using MTT assay and the compound was proven to be non-toxic to the cells.
Collapse
Affiliation(s)
- Jothi Sailaja C.A. Chidambaram
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Bhuvaneshwari Veerapandian
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Kartik Kumar Sarwareddy
- Cardiomyocyte Toxicity and Oncology Research Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Krishna Priya Mani
- Cardiomyocyte Toxicity and Oncology Research Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Saravanan Ramiah Shanmugam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Ponnusami Venkatachalam
- Biomass Conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, India
| |
Collapse
|
31
|
Kırtel O, Lescrinier E, Van den Ende W, Toksoy Öner E. Discovery of fructans in Archaea. Carbohydr Polym 2019; 220:149-156. [DOI: 10.1016/j.carbpol.2019.05.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
|
32
|
Taylan O, Yilmaz MT, Dertli E. Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. Int J Biol Macromol 2019; 136:436-444. [PMID: 31201910 DOI: 10.1016/j.ijbiomac.2019.06.078] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
Leuconostoc mesenteroides S81 was isolated from traditional sourdough as an exopolysaccharide (EPS) producer strain. The monosaccharide composition of the EPS from strain S81 was characterized by HPLC analysis and only fructose was found in the repeating unit structure. The NMR spectroscopy analysis revealed that EPS was a levan type EPS as a β-(2 → 6)-linked fructan. The FTIR analysis further confirmed the presence of the furanoid rings in the EPS structure. The levan S81 showed high level of thermal stability determined by DSC and TGA analysis. The lyophilised levan S81 showed a sheet-like compact morphology and its aqueous solution formed spheroidal lumps with a compact structure detected by SEM and AFM analysis, respectively. Importantly the levan S81 showed a high level of immunomodulatory role, induced the anti-inflammatory cytokine IL-4, and exhibited a strong antioxidant capacity with EC50 value 1.7 mg mL-1 obtained by hydroxyl radical scavenging activity test under in vitro conditions. These findings reveal potential of levan S81 for technological purposes and as a potential natural immunomodulatory and antioxidant.
Collapse
Affiliation(s)
- Osman Taylan
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, Jeddah, Saudi Arabia
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, Jeddah, Saudi Arabia
| | - Enes Dertli
- Bayburt University, Faculty of Engineering, Department of Food Engineering, Bayburt, Turkey.
| |
Collapse
|
33
|
Hundschell CS, Wagemans AM. Rheology of common uncharged exopolysaccharides for food applications. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ni D, Xu W, Zhu Y, Zhang W, Zhang T, Guang C, Mu W. Inulin and its enzymatic production by inulosucrase: Characteristics, structural features, molecular modifications and applications. Biotechnol Adv 2019; 37:306-318. [DOI: 10.1016/j.biotechadv.2019.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
|
35
|
Combie J, Öner ET. From healing wounds to resorbable electronics, levan can fill bioadhesive roles in scores of markets. BIOINSPIRATION & BIOMIMETICS 2018; 14:011001. [PMID: 30457113 DOI: 10.1088/1748-3190/aaed92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Levan is a fructose homopolysaccharide which gained attention recently for its unusual combination of properties distinguishing it from other natural biodegradable polysaccharides like chitosan, cellulose or starch. Among the strongest bioadhesives, film-forming levan is garnering interest for its role in some simple solutions to difficult problems. One of these is illustrated by the elegant research using laser-based techniques to construct levan films for healing wounds and burned tissue. Another is the development of bioresorbable electronic implants. Levan has been found in habitats as diverse as salterns and thermal waters to tropical plants and sugar factories. This review of the low viscosity, levan adhesive describes the mechanisms by which it forms bonds and the reasons behind some of its practical and industrial applications. Here we present descriptions from the literature for feasible approaches ready to transition from the laboratory to those searching for answers in fields as varied as medicine, packaging and furniture assembly.
Collapse
Affiliation(s)
- Joan Combie
- Montana Biopolymers Inc., 119 Cathcart Circle, Winnsboro, SC 29180, United States of America
| | | |
Collapse
|
36
|
Peng J, Xu W, Ni D, Zhang W, Zhang T, Guang C, Mu W. Preparation of a novel water-soluble gel from Erwinia amylovora levan. Int J Biol Macromol 2018; 122:469-478. [PMID: 30342147 DOI: 10.1016/j.ijbiomac.2018.10.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 02/04/2023]
Abstract
Less attention has been focused on the industrial applications of levan-type fructan than that of inulin. Levan-type fructan is a unique homopolysaccharide consisting of fructose residues with a β-(2, 6) linkage that possesses unique physiochemical properties such as low intrinsic viscosity. In this study, the recombinant levansucrase from Erwinia amylovora was used to efficiently produce levan from sucrose, and under optimised conditions, 195 g/L levan was produced from 500 g/L sucrose, with the highest conversion rate of 59%. The physicochemical properties of E. amylovora levan, such as surface morphology, thermal behaviour, rheology behaviour and texture analysis, were evaluated and compared with those of commercial gels, including xanthan, guar, carrageenan and Arabic gums. The produced E. amylovora levan showed a series of acceptable physicochemical properties, indicating a potential application for levan as a novel water-soluble micro gel. The conclusions of this study support the exploration of the use of more hydrogels in the food, medicinal and cosmetic industries.
Collapse
Affiliation(s)
- Jiaying Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|