1
|
Silva de Campos Lazzarini G, Da Silva GL, S Lacerda L, Martinez Toledo ALM, Nogueira Barradas T. Impact of Critical Process Parameters on the Dimensional, Mean Weight and Swelling Properties of 3D-Printed Intravaginal Rings: A Quality by Design approach. Pharm Dev Technol 2025:1-29. [PMID: 39899450 DOI: 10.1080/10837450.2025.2462945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
3D printing has been emerging as a transformative technology in pharmaceutical manufacturing, offering potential for personalized medicine and innovative dosage forms. It enables precise control over drug release profiles and dosage customization, addressing individual patient needs. Various 3D printing techniques, including fused deposition modeling (FDM), are being explored for pharmaceutical applications. The choice of polymers and their rheological properties are crucial for successful extrusion-based 3D printing of pharmaceuticals. While 3D printing shows promise in accelerating drug development and facilitating large-scale manufacturing, challenges remain in terms of quality and quality control. Quality-by-design (QbD) approaches for developing 3D-printed dosage forms are essential for assessing drug content, release profiles, and overall quality to ensure safe and effective pharmaceutical products. In this study we highlight the role of critical process parameters (CPPs), such as infill density and printing speed in the production of poly (lactic acid) based intravaginal rings. The effect of the CPPs on critical quality attributes (CQAs), i.e. ring dimensions, mean weight and swelling degree is studied. The study evaluated the influence of printing speed (25-100 mm/s) and infill density (0-20%) on the weight and dimensions of 3D-printed rings using ANOVA. The results showed that printing settings significantly impacted both weight and dimensions. Average weights ranged from 0.537 g to 0.629 g, with the highest weights found in samples with the highest infill density and lowest printing speed. Internal ring dimensions varied between 9.73 mm and 9.81 mm, while external dimensions ranged from 19.43 mm to 19.69 mm. In swelling tests, rings with the lowest printing speed and highest infill density showed the greatest swelling, up to 2.47%, after 3 hours in distilled water with a pH of 4.3. Infill density and printing speed produced a pivotal impact on dimensions, weight and swelling behavior of intravaginal rings. The results demonstrate that FDM offers a viable approach to producing cost-effective, patient-specific intravaginal rings, with statistical analysis confirming the reproducibility and effectiveness of the fabricated devices.
Collapse
Affiliation(s)
| | | | - Laís S Lacerda
- Faculdade de Farmácia, Universidade Federal de Juiz de Fora - UFJF
| | | | | |
Collapse
|
2
|
Coote JP, Larson MC, Bates FS, Ellison CJ. Persistent Toughness and Heat Triggered Plasticization in Polylactide Modified with Poly(ethylene oxide)- block-poly(butylene oxide). ACS Macro Lett 2025; 14:80-86. [PMID: 39743771 DOI: 10.1021/acsmacrolett.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (Tg). We previously showed that addition of a poly(ethylene-oxide)-block-poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %. This work demonstrates that PEO-PBO/PLA blends exhibit substantial toughness for at least nine months, beyond the average lifetime of single-use packaging, even amidst oxidative degradation of PEO-PBO into oligomeric products. Due to the glassy nature of the PLA matrix, these degradation products are confined to macrophase-separated domains, and the blend morphology is preserved. However, modest thermal annealing (∼60 °C) causes these domains to rapidly reduce in area fraction and size from migration and solubilization of the PEO-PBO degradation products into PLA, which plasticizes PLA and reduces the blend Tg. As a result, aged PEO-PBO/PLA blends degrade in just under half the time of similarly aged neat PLA when submerged in artificial seawater at 50 °C. This surprising combination of properties addresses two of PLA's most significant limitations with a single additive by (1) toughening the PLA during its useful lifetime and then (2) accelerating its degradation rate by heat-triggered plasticization when exposed to elevated temperatures at end-of-life, such as those of industrial (or even home) compost.
Collapse
Affiliation(s)
- Jonathan P Coote
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew C Larson
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Liu Y, Dou Q. Enhanced toughness of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by incorporating an ADR chain-extending agent and a bio-resourced plasticizer. Int J Biol Macromol 2024:139344. [PMID: 39743057 DOI: 10.1016/j.ijbiomac.2024.139344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/30/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Over the past decades, emerging bioplastics have attracted much interest from the scientific and industrial communities because of public concerns about environmental problems and sustainable development. In this study, poly(lactic acid) (PLA) was toughened by ductile biodegradable poly(butylene adipate-co-terephthalate) (PBAT) and biosourced plasticizer epoxidized linseed oil (ELO), and a chain-extending agent (CEA) was added to promote the compatibility and toughness of the bio-blends. It was shown that "in situ" grafted polymers were created in the bio-blends with the aid of CEA, greatly enhancing the compatibility and ductility of the compatibilized blends. "In situ" grafted polymers remarkably increased the melt elasticity and viscosity of PLA/PBAT/CEA and PLA/PBAT/ELO/CEA bio-blends. The "in situ" grafts also improved the hydrophobicity and thermostability of the blends. However, the grafts disturbed the melting crystallization ability of the bio-blends. Owing to the synergistic effect of ELO and CEA, the tensile strain at break and Charpy notched impact strength of the PLA/PBAT/ELO/CEA (63/27/10/1) blend attained to 286 % and 52.53 kJ/m2, respectively, i.e., they increased by 275 % and 1750 %, respectively, compared with those of pure PLA. These blends have potential applications in impact-resistant packaging and domestic utensils due to their favorable rheological and mechanical properties.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Qiang Dou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China.
| |
Collapse
|
4
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
5
|
Fan Z, Fu L, Lan L, Dan Y, Jiang L, Huang Y. Effect of poly(vinyl alcohol)-g-poly(lactic acid) on the oxygen barrier performance of poly(lactic acid)-based film. Int J Biol Macromol 2024; 290:138819. [PMID: 39694380 DOI: 10.1016/j.ijbiomac.2024.138819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
In order to improve the oxygen barrier performance of poly(lactic acid) (PLA), a simple and economical melt blending method was chosen and poly(vinyl alcohol) (PVOH) with excellent oxygen barrier was used as the reinforcing phase to meet high oxygen needs. To improve compatibility, PLA was grafted onto PVOH through L-LA ring opening polymerization to get poly(vinyl alcohol)-graft-poly(lactic acid) (PVOH-g-PLA). The films with high oxygen barrier performance were prepared by blending PLA with PVOH-g-PLA. The structure of PVOH-g-PLA were characterized by FTIR and 1H NMR, where 58 % -OH of PVOH grafted PLA and the average polymerization degree of the grafts was 8. The compatibility, crystallization, mechanical properties, and oxygen barrier performance of the blend films were studied. The results indicate that, compared with PVOH, PVOH-g-PLA has better compatibility with PLA. The PVOH-g-PLA separation phase size is <3 μm, whereas the of PVOH separation phase size is 15-40 μm. The oxygen permeability coefficient (PO2) of PLA/PVOH-g-PLA decreases with PVOH-g-PLA. When the amount of PVOH-g-PLA reaches 15 %, PO2 decreases to 1.10 × 10-14 cm3·cm/(cm2·s·Pa), 38 % improvement in oxygen barrier compared to 1.77 × 10-14 cm3·cm/(cm2·s·Pa) of neat PLA. These blends exhibited potential as a novel barrier material for food packages.
Collapse
Affiliation(s)
- Zheyuan Fan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ling Fu
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
7
|
Jiao R, Lin X, Wang J, Zhu C, Hu J, Gao H, Zhang K. 3D-printed constructs deliver bioactive cargos to expedite cartilage regeneration. J Pharm Anal 2024; 14:100925. [PMID: 39811488 PMCID: PMC11730853 DOI: 10.1016/j.jpha.2023.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2025] Open
Abstract
Cartilage is solid connective tissue that recovers slowly from injury, and pain and dysfunction from cartilage damage affect many people. The treatment of cartilage injury is clinically challenging and there is no optimal solution, which is a hot research topic at present. With the rapid development of 3D printing technology in recent years, 3D bioprinting can better mimic the complex microstructure of cartilage tissue and thus enabling the anatomy and functional regeneration of damaged cartilage. This article reviews the methods of 3D printing used to mimic cartilage structures, the selection of cells and biological factors, and the development of bioinks and advances in scaffold structures, with an emphasis on how 3D printing structure provides bioactive cargos in each stage to enhance the effect. Finally, clinical applications and future development of simulated cartilage printing are introduced, which are expected to provide new insights into this field and guide other researchers who are engaged in cartilage repair.
Collapse
Affiliation(s)
- Rong Jiao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jingchao Wang
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chunyan Zhu
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiang Hu
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China
| | - Kun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Department of Orthopedic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
8
|
Palak H, Akdevelioğlu Y, Alishahi M, Uyar T, Nofar M, Kayaoğlu BK. Cellulose nanocrystal dispersion-ability in polylactides with various molecular weights prepared in dichloromethane/dimethyl sulfoxide solvents for electrospinning applications. Int J Biol Macromol 2024; 282:137263. [PMID: 39505160 DOI: 10.1016/j.ijbiomac.2024.137263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
In this study, effects of polylactide molecular weight, i.e., high (HPLA), medium (MPLA), low (LPLA), and dichloromethane (DCM)/dimethyl sulfoxide (DMSO) blend ratio on cellulose nanocrystal (CNC) dispersion quality in solution casted PLA/CNC nanocomposites were investigated via small amplitude oscillatory shear rheological analysis, while crystallization behavior, thermal degradation, morphological structure of the nanocomposites were also reported. Due to its low dielectric constant, none of the nanocomposites with 100DCM indicated a change in their complex viscosity as a result of poor CNC dispersion. This is while the increase in DMSO content (50%vv-1) improved CNC dispersion. The superior CNC dispersion-ability in PLAs with lower molecular weight was confirmed. The poorer CNC dispersion in HPLA attributes to hindering effect of higher molecular weight on solvent and nanoparticle diffusion. The better dispersed CNCs influenced crystal nucleation behavior of PLAs and increased crystallinity degree. In addition, the impact of well-dispersed CNCs on fiber formation quality of nanocomposites was reported. Introducing finely dispersed CNCs (1 wt%) in LPLA refined fiber diameters around 1200 nm with more homogenous structure. Besides, the use of 100DCM and the use of DMSO at high contents (50%vv-1) deteriorated fiber formation, respectively, due to low conductivity of DCM and high boiling temperature of DMSO.
Collapse
Affiliation(s)
- Handan Palak
- Istanbul Technical University, Faculty of Textile Technologies and Design, Department of Textile Engineering, Istanbul, Turkey; Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY, United States
| | - Yavuz Akdevelioğlu
- Sustainable & Green Plastics Laboratory, Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY, United States
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY, United States
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Burçak Karagüzel Kayaoğlu
- Istanbul Technical University, Faculty of Textile Technologies and Design, Department of Textile Engineering, Istanbul, Turkey.
| |
Collapse
|
9
|
Luo H, Yang X, Ding Q, Sheng B, Deng J, Yan X, Wu Y, Chen H, Hao C, Yuan S, Zeng J, Zhou W. Tensile properties and deformation by different compatibilizers in bio-based polylactide/poly(4-hydroxybutyrate) blends. Int J Biol Macromol 2024; 281:136550. [PMID: 39426776 DOI: 10.1016/j.ijbiomac.2024.136550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Blending chemically synthesized poly(4-hydroxybutyrate) (P4HB) with polylactide (PLLA) can overcome PLLA's brittleness, offering fully biobased blends. However, due to low compatibility between PLLA and P4HB, the influence of compatibilizers on the morphology, structure and tensile deformation of PLLA/P4HB blends remains to be unresolved. This article introduces reactive poly(methyl methacrylate-co-styrene-glycidyl methacrylate) (MSG) and non-reactive polyformaldehyde (POM) compatibilizers to improve the compatibility between P4HB and PLLA, achieving the maximal elongation at break exceeding 300 % at 2 wt% MSG or 3 wt% POM. MSG inhibits PLLA crystallization, extending stress stability in the silver streak stage, while POM enhances crystallization, prolonging the strain-hardening stage. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) analysis show that pristine PLLA forms voids before fracture, and PLLA/P4HB blends cavitate at the yield point and develop crazes in the silver streak stage. MSG effectively transmits stress and delays cavitation, extending the silver streak stage, whereas POM forms a microcrystalline network, lowering the energy barrier for stretching-induced recrystallization. These findings could provide theoretical guidelines on selecting compatibilizers for different PLLA based blends.
Collapse
Affiliation(s)
- Haoqi Luo
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiangyan Yang
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Qingyi Ding
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Bogang Sheng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Jing Deng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiaofei Yan
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Yang Wu
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Han Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Chaowei Hao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042 Qingdao, PR China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, PR China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, PR China.
| | - Weihua Zhou
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China.
| |
Collapse
|
10
|
Mazidi MM, Arezoumand S, Zare L. Research progress in fully biorenewable tough blends of polylactide and green plasticizers. Int J Biol Macromol 2024; 279:135345. [PMID: 39244110 DOI: 10.1016/j.ijbiomac.2024.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Plasticized PLA plastic films are being increasingly used in, among others, packaging and agriculture sectors in an attempt to address the rapid growth of municipal waste. The present paper aims to review the recent progress and the state-of-the-art in the field of fully bio-renewable tough blends of PLA with green plasticizers aimed at developing flexible packaging films. The different classes of green substances, derived from completely bio-renewable resources, used as potential plasticizers for PLA resins are reviewed. The effectiveness of these additives for PLA plasticization is discussed by describing their effects on different properties of PLA. The performance of these blends is primarily determined by the solvent power, compatibility, efficiency, and permanence of plasticizer present in the PLA matrix of resulting films. The various chemical modification strategies employed to tailor the phase interactions, dispersion level and morphology, plasticization efficiency, and permanence, including functionalization, oligomerization, polymerization and self-crosslinking, grafting and copolymerization, and dynamic vulcanization are demonstrated. Sometimes a third component has also been added to the plasticized binary blends as compatibilizer to further promote dispersion and interfacial adhesion. The impact of chemical structure, size and molecular weight, chemical functionalities, polarity, concentration, topology as well as molecular architectures of the plasticizers on the plasticizer performance and the overall characteristics of resulting plasticized PLA materials is discussed. The morphological features and toughening mechanisms for PLA/plasticizer blends are also presented. The different green liquids employed show varying degree of plasticization. Some are more useful for semi-rigid applications, while some others can be used for very flexible products. There is an optimum level of plasticizer in PLA matrices above which the tensile ductility deteriorates. Esters-derivatives of bio-based plasticizers have been shown to be very promising additives for PLA modification. Some plasticizers impart additional functions such as antioxidation and antibacterial activity to the resulting PLA materials, or compatibilization in PLA-based blends. While the primary objective of plasticization is to boost the processability, flexibility, and toughness over wider practical conditions, the bio-degradability, permeability and long-term stability of microstructure (and thereby properties) of the plasticized films against light, weathering, thermal aging, and oxidation deserve further investigations.
Collapse
Affiliation(s)
- Majid Mehrabi Mazidi
- Faculty of Polymer Engineering, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran.
| | - Sahar Arezoumand
- Department of Polymer Engineering, University of Tehran, Kish International Campus, Kish Island, Iran
| | - Leila Zare
- Faculty of Polymer and Chemistry Sciences, Islamic Azad University, Fasa 7461195531, Iran
| |
Collapse
|
11
|
Aldahish A, Shanmugasundaram N, Vasudevan R, Alqahtani T, Alqahtani S, Mohammad Asiri A, Devanandan P, Thamaraikani T, Vellapandian C, Jayasankar N. Silk Fibroin Nanofibers: Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing. Pharmaceuticals (Basel) 2024; 17:1305. [PMID: 39458946 PMCID: PMC11510676 DOI: 10.3390/ph17101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Non-healing diabetic wounds represent a significant clinical challenge globally, necessitating innovative approaches in drug delivery to enhance wound healing. Understanding the pathogenesis of these wounds is crucial for developing effective treatments. Bioactive dressings and polymeric nanofibers have emerged as promising modalities, with silk biomaterials gaining attention for their unique properties in diabetic wound healing. PURPOSE OF REVIEW The purpose of this review is to examine the challenges and innovations in treating non-healing diabetic wounds, emphasizing the global burden and the need for effective solutions. This review explores the complex mechanisms of wound healing in diabetes and evaluates the therapeutic potential of bioactive dressings and polymeric nanofibers. Special focus is given to the application of silk biomaterials, particularly silk fibroin, for wound healing, detailing their properties, mechanisms, and clinical translation. This review also describes various nanofiber fabrication methods, especially electrospinning technology, and presents existing evidence on the effectiveness of electrospun silk fibroin formulations. RECENT FINDINGS Recent advancements highlight the potential of silk biomaterials in diabetic wound healing, owing to their biocompatibility, mechanical strength, and controlled drug release properties. Electrospun silk fibroin-based formulations have shown promising results in preclinical and clinical studies, demonstrating accelerated wound closure and tissue regeneration. SUMMARY Non-healing diabetic wounds present a significant healthcare burden globally, necessitating innovative therapeutic strategies. Bioactive dressings and polymeric nanofibers, particularly silk-based formulations fabricated through electrospinning, offer promising avenues for enhancing diabetic wound healing. Further research is warranted to optimize formulation parameters and validate efficacy in larger clinical trials.
Collapse
Affiliation(s)
- Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nirenjen Shanmugasundaram
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmad Mohammad Asiri
- Khamis Mushayt General Hospital, Aseer Health Cluster, Ministry of Health, Khamis Mushait 62433, Saudi Arabia
| | - Praveen Devanandan
- Department of Pharmacy Practice, St. Peter’s Institute of Pharmaceutical Sciences, Vidya Nagar, Hanamkonda 506001, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| |
Collapse
|
12
|
Yu J, Xue Y. Preparation of transferrin-targeted temozolomide nano-micelles and their anti-glioma effect. PeerJ 2024; 12:e17979. [PMID: 39285923 PMCID: PMC11404485 DOI: 10.7717/peerj.17979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This study aims to develop brain-targeted temozolomide (TMZ) nanograins using the biodegradable polymer material PEG-PLA as a carrier. The model drug TMZ was encapsulated within the polymer using targeted nanotechnology. Key characteristics such as appearance, particle size, size distribution, drug loading capacity, in vitro release rate, stability, and anti-tumor effects were systematically evaluated through in vitro experiments. Methods Transmission electron microscopy (TEM) and Malvern size analyzer were employed to observe the morphological and particle size features of the TMZ nanospheres at various time points to assess stability. The effects of TMZ nanograins on glioma cell viability and apoptosis were evaluated using MTT assays and flow cytometry. Results The targeted TMZ nano-micelles were successfully synthesized. After loading and targeted modifications, the particle size increased from 50.7 to 190 nm, indicating successful encapsulation of TMZ. The average particle size of the nano-micelles remained stable around 145 ± 10 nm at 1 day, 15 days, and 30 days post-preparation. The release rate of the nano-micelles was monitored at 2 h, 12 h, 24 h, and 48 h post-dialysis, ultimately reaching 95.8%. Compared to TMZ alone, the TMZ-loaded PEG-PLA nano-micelles exhibited enhanced cytotoxicity and apoptosis in glioma cells. This was accompanied by increased mitochondrial membrane potential and reactive oxygen species (ROS) levels following treatment with the TMZ nano-micelles. Conclusions TMZ-loaded nano-micelles demonstrated a gradual release profile and significantly enhanced inhibitory effects on human glioma U251 cells compared to TMZ alone. The findings suggest that TMZ-loaded PEG-PLA nano-micelles may offer a more effective therapeutic approach for glioma treatment.
Collapse
Affiliation(s)
- Jun Yu
- Department of Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Xue
- Department of Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Dewi R, Sylvia N, Zulnazri Z, Fithra H, Riza M, Siregar JP, Cionita T, Fitriyana DF, Anis S. The Optimization of Avocado-Seed-Starch-Based Degradable Plastic Synthesis with a Polylactic Acid (PLA) Blend Using Response Surface Methodology (RSM). Polymers (Basel) 2024; 16:2384. [PMID: 39204603 PMCID: PMC11360826 DOI: 10.3390/polym16162384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
This research improves the strength of plastic using avocado seed starch and PLA. The effect of blending avocado seed starch and PLA was optimized using the RSM approach by using two variables: water absorption and biodegradability. Mixing them using RSM gave the best result: 1.8 g of starch and 3 g of PLA. Degradable plastic has a tensile strength of 10.1 MPa, elongation at a break of 85.8%, and a Young's modulus of 190 MPa. Infrared spectroscopy showed that the plastic had a -OH bond at 3273.20 cm-1, 3502.73 cm-1, and 3647.39 cm-1, a CH2 bond at 2953.52 cm-1, 2945.30 cm-1, and 2902.87 cm-1, a C=C bond at 1631.78 cm-1, and a C-O bond at 1741.72 cm-1. The plastic decomposed in the soil. It was organic and hydrophilic. Thermal tests demonstrated that the plastic can withstand heat well, losing weight at 356.86 °C to 413.64 °C, forming crystals and plastic melts at 159.10 °C-the same as PLA. In the melt flow test, the sample melted before measurement, and was therefore not measurable-process conditions affected it. A water absorption of 5.763% and biodegradation rate of 37.988% were found when the samples were decomposed for 12 days. The starch and PLA fused in the morphology analysis to form a smooth surface. The RSM value was close to 1. The RSM gave the best process parameters.
Collapse
Affiliation(s)
- Rozanna Dewi
- Chemical Engineering Department, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia; (N.S.); (Z.Z.)
- Center of Excellence Technology Natural Polymer and Recycle Plastics, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia
| | - Novi Sylvia
- Chemical Engineering Department, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia; (N.S.); (Z.Z.)
- Center of Excellence Technology Natural Polymer and Recycle Plastics, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia
| | - Zulnazri Zulnazri
- Chemical Engineering Department, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia; (N.S.); (Z.Z.)
- Center of Excellence Technology Natural Polymer and Recycle Plastics, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia
| | - Herman Fithra
- Civil Engineering Department, Malikussaleh University, Lhokseumawe 24353, Aceh, Indonesia;
| | - Medyan Riza
- Chemical Engineering Department, Syiah Kuala University, Banda Aceh 23111, Aceh, Indonesia;
| | - Januar Parlaungan Siregar
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Pahang, Malaysia;
| | - Tezara Cionita
- Department of Mechanical Engineering, Faculty of Engineering and Quantity Surveying, INTI International University, Seremban 71800, Negeri Sembilan, Malaysia;
| | - Deni Fajar Fitriyana
- Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Central Java, Indonesia; (D.F.F.); (S.A.)
| | - Samsudin Anis
- Department of Mechanical Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Central Java, Indonesia; (D.F.F.); (S.A.)
| |
Collapse
|
14
|
Sabalina A, Gaidukovs S, Aunins A, Gromova A, Gaidukova G, Orlova L, Platnieks O. Exploring the Processing Potential of Polylactic Acid, Polyhydroxyalkanoate, and Poly(butylene succinate- co-adipate) Binary and Ternary Blends. Polymers (Basel) 2024; 16:2288. [PMID: 39204508 PMCID: PMC11360580 DOI: 10.3390/polym16162288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Biodegradable and bio-based polymers, including polyhydroxyalkanoate (PHA), polylactic acid (PLA), and poly(butylene succinate-co-adipate) (PBSA), stand out as sustainable alternatives to traditional petroleum-based plastics for a wide range of consumer applications. Studying binary and ternary blends is essential to exploring the synergistic combinations and efficiencies of three distinct biopolyesters. A comprehensive evaluation of melt-extruded binary and ternary polymer blends of PHA, PLA, and PBSA was conducted. Scanning electron microscopy (SEM) analyses revealed a heterogeneous morphology characteristic of immiscible blends, with a predominant spherical inclusion morphology observed in the majority of the blends. An increased PBSA concentration led to an elevation in melt viscosity and elasticity across both ternary and binary blends. An increased PHA content reduced the viscosity, along with both storage and loss moduli in the blends. Moreover, a rise in PHA concentration within the blends led to increased crystallinity, albeit with a noticeable reduction in the crystallization temperature of PHA. PLA retained amorphous structure in the blends. The resultant bio-based blends manifested enhanced rheological and calorimetric traits, divergent from their pure polymer counterparts, highlighting the potential for optimizing material properties through strategic formulation adjustments.
Collapse
Affiliation(s)
- Alisa Sabalina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia (A.G.); (O.P.)
| | - Sergejs Gaidukovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia (A.G.); (O.P.)
| | - Arturs Aunins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia (A.G.); (O.P.)
| | - Anda Gromova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia (A.G.); (O.P.)
| | - Gerda Gaidukova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia (A.G.); (O.P.)
| | - Liga Orlova
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia
| | - Oskars Platnieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia (A.G.); (O.P.)
| |
Collapse
|
15
|
Patti A, Acierno S. Rheological Changes in Bio-Based Filaments Induced by Extrusion-Based 3D Printing Process. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3839. [PMID: 39124503 PMCID: PMC11313243 DOI: 10.3390/ma17153839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In this work, the authors investigated the impact of extrusion-based printing process on the structural characteristics of bio-based resins through rheological measurements. Two commercially available filaments made from unfilled and wood-filled polylactide (PLA) polymers were considered. Three-dimensional specimens were prepared by printing these filaments under various operating conditions, i.e., changing the extruder temperature and printing rate, and examined using time sweep tests. Specific cycle rheological testing was conducted on pelletized filaments to simulate temperature changes in the printing process. The rheological characteristics of unprocessed materials, in terms of storage (G') and loss (G″) moduli, were found to be slightly affected by temperature changes. For a pure polymer, the G' slope at a low frequency decreased over time, showing that the polymer chains evolved from a higher to a lower molecular weight. For wood-filled materials, the G' slope rose over the testing time, emphasizing the formation of a percolated network of structured filler within the matrix. On the other side, the rheological parameters of both materials were strongly impacted by the printing extrusion and the related conditions. At lower nozzle temperatures (200 °C), by decreasing the printing speed, the G' and G″ curves became increasingly different with respect to unprocessed resin; whereas at higher nozzle temperatures (220 °C), the influence of the printing speed was insignificant, and all curves (albeit distant from those of unprocessed matrix) mainly overlapped. Considerations on degradation kinetics of both materials during the printing process were also provided by fitting experimental data of complex viscosity with linear correlation over time.
Collapse
Affiliation(s)
- Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Stefano Acierno
- Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy;
| |
Collapse
|
16
|
Phuangthong P, Li W, Shen J, Nofar M, Worajittiphon P, Srithep Y. The Effect of Polyethylene Glycol on the Non-Isothermal Crystallization of Poly(L-lactide) and Poly(D-lactide) Blends. Polymers (Basel) 2024; 16:2129. [PMID: 39125155 PMCID: PMC11313765 DOI: 10.3390/polym16152129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The formation of polylactide stereocomplex (sc-PLA), involving the blending of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), enhances PLA materials by making them stronger and more heat-resistant. This study investigated the competitive crystallization behavior of homocrystals (HCs) and stereocomplex crystals (SCs) in a 50/50 PLLA/PDLA blend with added polyethylene glycol (PEG). PEG, with molecular weights of 400 g/mol and 35,000 g/mol, was incorporated at concentrations ranging from 5% to 20% by weight. Differential scanning calorimetry (DSC) analysis revealed that PEG increased the crystallization temperature, promoted SC formation, and inhibited HC formation. PEG also acted as a plasticizer, lowering both melting and crystallization temperatures. The second heating DSC curve showed that the pure PLLA/PDLA blend had a 57.1% fraction of SC while adding 5% PEG with a molecular weight of 400 g/mol resulted in complete SC formation. In contrast, PEG with a molecular weight of 35,000 g/mol was less effective, allowing some HC formation. Additionally, PEG consistently promoted SC formation across various cooling rates (2, 5, 10, or 20 °C/min), demonstrating a robust influence under different conditions.
Collapse
Affiliation(s)
- Panthima Phuangthong
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand; (P.P.); (W.L.); (J.S.)
| | - Wenwei Li
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand; (P.P.); (W.L.); (J.S.)
- College of Mechanical Engineering, Hunan Mechanical & Electrical Polytechnic, Changsha 410151, China
| | - Jun Shen
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand; (P.P.); (W.L.); (J.S.)
- College of Mechanical Engineering, Hunan Mechanical & Electrical Polytechnic, Changsha 410151, China
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey;
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand; (P.P.); (W.L.); (J.S.)
| |
Collapse
|
17
|
Prasitnok O, Prasitnok K. A Temperature-Transferable Coarse-Grained Model for Poly(lactic Acid) Melts. J Phys Chem B 2024; 128:7280-7289. [PMID: 38988099 DOI: 10.1021/acs.jpcb.4c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We present a temperature-transferable coarse-grained (CG) model for poly(lactic acid) (PLA), specifically designed to replicate its volumetric properties and solubility parameter in the molten state. The CG-bonded potentials were derived by using the iterative Boltzmann inversion (IBI) optimization method to match structural properties from detailed atomistic models. A parametrization workflow was employed to determine nonbonded interaction parameters with temperature-dependent corrections that provide agreement with the target properties across the melting temperature range. The CG model successfully replicates key features of the PLA melt. It satisfactory reproduces the density and solubility parameter, maintains the dependence of chain conformation on molecular weight, and captures the dynamic behavior through agreement in scaled mean squared displacement and diffusion coefficients with the atomistic model. Additionally, the CG model offers much faster equilibration compared with the atomistic model. The proposed model is expected to be particularly useful for investigating the miscibility characteristics of PLA in various blends and composites that remain challenging to explore using fully atomistic simulations or experiments.
Collapse
Affiliation(s)
- Orrasa Prasitnok
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Khongvit Prasitnok
- Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
18
|
Raj A, Yousfi M, Prashantha K, Samuel C. Morphologies, Compatibilization and Properties of Immiscible PLA-Based Blends with Engineering Polymers: An Overview of Recent Works. Polymers (Basel) 2024; 16:1776. [PMID: 39000632 PMCID: PMC11244106 DOI: 10.3390/polym16131776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Poly(L-Lactide) (PLA), a fully biobased aliphatic polyester, has attracted significant attention in the last decade due to its exceptional set of properties, such as high tensile modulus/strength, biocompatibility, (bio)degradability in various media, easy recyclability and good melt-state processability by the conventional processes of the plastic/textile industry. Blending PLA with other polymers represents one of the most cost-effective and efficient approaches to develop a next-generation of PLA-based materials with superior properties. In particular, intensive research has been carried out on PLA-based blends with engineering polymers such as polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT) and various polyamides (PA). This overview, consequently, aims to gather recent works over the last 10 years on these immiscible PLA-based blends processed by melt extrusion, such as twin screw compounding. Furthermore, for a better scientific understanding of various ultimate properties, processing by internal mixers has also been ventured. A specific emphasis on blend morphologies, compatibilization strategies and final (thermo)mechanical properties (tensile/impact strength, ductility and heat deflection temperature) for potential durable and high-performance applications, such as electronic parts (3C parts, electronic cases) to replace PC/ABS blends, has been made.
Collapse
Affiliation(s)
- Amulya Raj
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
| | - Mohamed Yousfi
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, 69621 Villeurbanne Cedex, France
| | - Kalappa Prashantha
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
- ACU-Centre for Research and Innovation, Faculty of Natural Sciences, Adichunchanagiri University, B.G. Nagara, Mandya 571448, Karnataka, India
| | - Cédric Samuel
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, 59000 Lille, France
| |
Collapse
|
19
|
Ni H, Li H, Hou W, Chen J, Miao S, Wang Y, Li H. From sea to sea: Edible, hydrostable, and degradable straws based on seaweed-derived insoluble cellulose fibers and soluble polysaccharides. Carbohydr Polym 2024; 334:122038. [PMID: 38553205 DOI: 10.1016/j.carbpol.2024.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
The widespread use of disposable plastic straws has caused a long-lasting environmental problem. Potential alternatives for plastic straws are far from satisfactory due to the low utility, poor water stability, and non-ideal natural degradability. In this work, an edible, hydrostable, and degradable straw was developed from the economically significant seaweed. Seaweed-derived insoluble cellulose fibers were used as the building block of the straw, and the soluble polysaccharide extracts were explored as the natural glue through the chelation with Ca2+. Repeated freeze-thawing was introduced to strengthen the molecular interactions, which further improved its mechanical stability and hydrostability. The straw exhibited remarkable natural degradability in open environments, particularly in marine-mimicking conditions. By incorporating pH-sensitive food pigments, the straws could indicate acid-base property of a beverage or even discriminate the freshness of milk. The versatile seaweed-derived straw adhered to the biocycle concept of "from sea to sea" to alleviate the burden of white pollution on oceans.
Collapse
Affiliation(s)
- Haojie Ni
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huatao Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Wenna Hou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Song Miao
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Ireland
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
20
|
Nofar M, Salehiyan R, Barletta M. Tuning the Structure-Property Relationships in Binary and Ternary Blends of PLA/PBAT/PHBH. Polymers (Basel) 2024; 16:1699. [PMID: 38932048 PMCID: PMC11207277 DOI: 10.3390/polym16121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
While the brittle polylactide (PLA) has a high durability among bioplastics, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) with certain ductility exhibits facile compostability. The addition of polybutylene adipate terephthalate (PBAT) may also be used to improve the ductility and toughness of brittle bioplastics. Binary and ternary blends of PLA/PBAT/PHBH based on either PLA or PHBH as the matrix have been manufactured using a twin-screw extruder. The melt rheological, mechanical, and morphological properties of the processed samples were examined. Binary blends of PLA/PHBH show superior strength, with the PLA75/PHBH25 blend exhibiting a tensile strength of 35.2 ± 3.0 MPa, which may be attributed to miscible-like morphology. In contrast, blends of PLA with PBAT demonstrate low strength, with the PLA50/PBAT50 blend exhibits a tensile strength of 9.5 ± 2.0 MPa due to the presence of large droplets in the matrix. PBAT-containing blends exhibit lower impact strengths compared to PHBH-containing blends. For instance, a PLA75/PBAT25 blend displays an impact strength of 1.76 ± 0.1 kJ/m2, whereas the PHBH75/PBAT25 blend displays an impact strength of 2.61 ± 0.3 kJ/m2, which may be attributed to uniformly dispersed PBAT droplets.
Collapse
Affiliation(s)
- Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Reza Salehiyan
- School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK;
| | - Massimiliano Barletta
- Dipartimento di Ingegneria, Università degli Studi Roma Tre, Via Vito Volterra 62, 00146 Roma, Italy;
| |
Collapse
|
21
|
Xu F, Shang J, Abdurexit A, Jamal R, Abdiryim T, Li Z, You J, Wei J, Su E, Huang L. Effect of Chemical Treatment of Cotton Stalk Fibers on the Mechanical and Thermal Properties of PLA/PP Blended Composites. Polymers (Basel) 2024; 16:1641. [PMID: 38931991 PMCID: PMC11207778 DOI: 10.3390/polym16121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Different chemical treatment methods were employed to modify the surface of cotton stalk fibers, which were then utilized as fillers in composite materials. These treated fibers were incorporated into polylactic acid/polypropylene melt blends using the melt blending technique. Results indicated that increasing the surface roughness of cotton stalk fibers could enhance the overall mechanical properties of the composite materials, albeit potentially leading to poor fiber-matrix compatibility. Conversely, a smooth fiber surface was found to improve compatibility with polylactic acid, while Si-O-C silane coating increased fiber regularity and interfacial interaction with the matrix, thereby enhancing heat resistance. The mechanical properties and thermal stability of the composite materials made from alkali/silane-treated fibers exhibited the most significant improvement. Furthermore, better dispersion of fibers in the matrix and more regular fiber orientation were conducive to increasing the overall crystallinity of the composite materials. However, such fiber distribution was not favorable for enhancing impact resistance, although this drawback could be mitigated by increasing the surface roughness of the reinforcing fibers.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (F.X.); (J.S.); (J.Y.); (J.W.)
| | - Jin Shang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (F.X.); (J.S.); (J.Y.); (J.W.)
| | - Abdukeyum Abdurexit
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, China; (A.A.); (Z.L.); (E.S.); (L.H.)
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, China; (A.A.); (Z.L.); (E.S.); (L.H.)
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (F.X.); (J.S.); (J.Y.); (J.W.)
| | - Zhiwei Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, China; (A.A.); (Z.L.); (E.S.); (L.H.)
| | - Jiangan You
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (F.X.); (J.S.); (J.Y.); (J.W.)
| | - Jin Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (F.X.); (J.S.); (J.Y.); (J.W.)
| | - Erman Su
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, China; (A.A.); (Z.L.); (E.S.); (L.H.)
| | - Longjiang Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, State Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, China; (A.A.); (Z.L.); (E.S.); (L.H.)
| |
Collapse
|
22
|
Ye G, Zhang X, Bi H. Construction of high-performance and sustainable polylactic acid composites for 3D printing applications with plasticizer. Int J Biol Macromol 2024; 269:132162. [PMID: 38723825 DOI: 10.1016/j.ijbiomac.2024.132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Polylactic acid (PLA) attains much attention because of its biodegradability, biocompatibility, and high strength, but its further application was remarkably hindered by its brittleness. In order to improve the toughness of PLA, a biodegradable composite was prepared by blending ductile polycaprolactone (PCL), stiff microcrystalline cellulose (MCC), and green plasticizer tributyl citrate (TBC) with PLA by melting extrusion. The physicochemical properties and microstructure of PLA composites were thoroughly investigated using FTIR, TGA, DSC, XRD, melting rheology, optical transmittance, 3d printing, tensile tests, and SEM. The tensile tests results show that introduction of TBC exhibited a remarkable improvement effect in the elongation at break of PLA/PCL/MCC (PPM) composite, increasing from 2.9 % of PPM to up to 30 % of PPM/6TBC and PPM/8TBC. Noticeably, the strength of PPM/TBC composites (at least 33.1 MPa) was enhanced compared with that of PPM (28.2 MPa). The plasticization of TBC, enhancing the compatibility of composites, and reinforcing effect of MCC were identified as pivotal factors in toughening and reinforcing PLA. Furthermore, it is observed that the incorporation of TBC contributed to enhanced thermal stability, crystallinity, and rheology property of composites. This research supplies a novel approach to bolstering the toughness of PLA and broaden its potential applications.
Collapse
Affiliation(s)
- Gaoyuan Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaochun Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hongjie Bi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
23
|
Eraslan K, Altınbay A, Nofar M. In-situ self-reinforcement of amorphous polylactide (PLA) through induced crystallites network and its highly ductile and toughened PLA/poly(butylene adipate-co-terephthalate) (PBAT) blends. Int J Biol Macromol 2024; 272:132936. [PMID: 38848828 DOI: 10.1016/j.ijbiomac.2024.132936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Crystallites of a semicrystalline polylactide (cPLA) were induced in an amorphous PLA (aPLA) and its blends with poly(butylene adipate-co-terephthalate) (PBAT) to achieve in-situ self-reinforced PLA based structures. The approach involved the melt blending of cPLA as a minor phase with aPLA and its blends with PBAT at processing temperatures below the crystal melting peak of cPLA. An injection molding (IM) process was first adopted to obtain self-reinforced PLA (SR-PLA) structures at aPLA/cPLA weight ratios of 100/0, 95/5, 90/10, 85/15, and 80/20. IM barrel and mold temperatures revealed crucial impacts on preserving the cPLA crystallites and thereby enhancing the final mechanical performance of SR-PLA (i.e., aPLA/cPLA) samples. SR-PLA samples at various aPLA/cPLA weight ratios of 100/0, 90/10, 80/20, and 70/30 were then melt blended with PBAT to produce SR-PLA/PBAT at a given ratio of 85/15. These blends were first prepared in an internal melt mixer (MM) to evaluate the rheological properties. The rheological analysis confirmed the significance of cPLA reinforcing efficiency within SR-PLA and its corresponding blends with PBAT. Similar SR-PLA/PBAT blends were also prepared using the IM process to explore their thermal and mechanical characteristics. The effect of cPLA concentrations in blends was distinctive, leading to significant enhancements in stain at break and toughness values. This was due to the increased crystallite network within the matrix, further refining PBAT droplets. Morphological analysis of the melt-processed blends through MM and IM also revealed that the PBAT droplets were further refined when the IM process was applied. The induced shear during the molding could have further elongated the cPLA crystallites towards a fiberlike structure, which could additionally cause the matrix viscosity to increase and refine the PBAT droplets.
Collapse
Affiliation(s)
- Kerim Eraslan
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey
| | - Aylin Altınbay
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey; Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Mohammadreza Nofar
- Sustainable & Green Plastics Laboratory, Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul 34469, Turkey.
| |
Collapse
|
24
|
Xu X, Li J, Lu Y, Shan Y, Shen Z, Sun F, Zhu J, Chen W, Shi H. Extracellular Vesicles in the Repair of Bone and Cartilage Injury: From Macro‐Delivery to Micro‐Modification. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 01/06/2025]
Abstract
AbstractExtracellular vesicles (EVs) are intermediaries in intercellular signal transmission and material exchange and have attracted significant attention from researchers in bone and cartilage repair. These nanoscale vesicles hold immense potential in facilitating bone and cartilage repair and regeneration by regulating the microenvironment at an injury site. However, their in vivo utilization is limited by their self‐clearance and random distribution. Therefore, various delivery platforms have been developed to improve EV targeting and retention rates in target organs while achieving a controlled release of EVs. Additionally, engineering modification of EVs has been proposed to effectively enhance EVs' intrinsic targeting and drug‐loading abilities and further improve their therapeutic effects on bone and cartilage injuries. This review aims to introduce the biogenesis of EVs and their regulatory mechanisms in the microenvironment of bone and cartilage injuries and comprehensively discuss the application of EV‐delivery platforms of different materials and various EV engineering modification methods in treating bone and cartilage injuries. The review's findings can help advance EV research and develop new strategies for improving the therapy of bone and cartilage injuries.
Collapse
Affiliation(s)
- Xiangyu Xu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Jialu Li
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yi Lu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Yibo Shan
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Zhiming Shen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Fei Sun
- Department of Thoracic Surgery Taizhou People's Hospital Affiliated to Nanjing Medical University Taizhou 225300 China
| | - Jianwei Zhu
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Wenxuan Chen
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| | - Hongcan Shi
- Clinical Medical College Yangzhou University Yangzhou 225001 China
- Institute of Translational Medicine Medical College Yangzhou University Yangzhou 225001 China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou 225001 China
| |
Collapse
|
25
|
He S, Demir B, Bouzy P, Stone N, Ward C, Hamerton I. Taking a Tailored Approach to Material Design: A Mechanistic Study of the Selective Localization of Phase-Separated Graphene Microdomains. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27694-27704. [PMID: 38747638 PMCID: PMC11145585 DOI: 10.1021/acsami.4c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
To achieve multifunctional properties using nanocomposites, selectively locating nanofillers in specific areas by tailoring a mixture of two immiscible polymers has been widely investigated. Forming a phase-separated structure from entirely miscible molecules is rarely reported, and the related mechanisms to govern the formation of assemblies from molecules have not been fully resolved. In this work, a novel method and the underlying mechanism to fabricate self-assembling, bicontinuous, biphasic structures with localized domains made up of amine-functionalized graphene nanoplatelets are presented, involving the tailoring of compositions in a liquid processable multicomponent epoxy blend. Kinetics studies were carried out to investigate the differences in reactivity of various epoxy-hardener pairs. Molecular dynamics simulations and in situ optical photothermal infrared spectroscopy measurements revealed the trajectories of different components during the early stages of polymerization, supporting the migration (phase behavior) of each component during the curing process. Confirmed by the phase structure and the correlated chemical maps down to the submicrometer level, it is believed that the bicontinuous phase separation is driven by the change of the miscibility between various building blocks forming during polymerization, leading to the formation of nanofiller domains. The proposed morphology evolution mechanism is based on combining solubility parameter calculations with kinetics studies, and preliminary experiments are performed to validate the applicability of the mechanism of selectively locating nanofillers in the phase-separated structure. This provides a simple yet sophisticated engineering model and a roadmap to a mechanism for fabricating phase-separated structures with nanofiller domains in nanocomposite films.
Collapse
Affiliation(s)
- Suihua He
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering,
Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Baris Demir
- Centre
for Theoretical and Computational Molecular Science, The Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pascaline Bouzy
- Physics
and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Nicholas Stone
- Physics
and Astronomy, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, U.K.
| | - Carwyn Ward
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering,
Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Ian Hamerton
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering,
Queen’s Building, University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| |
Collapse
|
26
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
27
|
Sessini V, Salaris V, Oliver-Cuenca V, Tercjak A, Fiori S, López D, Kenny JM, Peponi L. Thermally-Activated Shape Memory Behavior of Biodegradable Blends Based on Plasticized PLA and Thermoplastic Starch. Polymers (Basel) 2024; 16:1107. [PMID: 38675026 PMCID: PMC11054922 DOI: 10.3390/polym16081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Biodegradable blends based on plasticized poly(lactic acid) PLA and thermoplastic starch (TPS) have been obtained. The influence of the PLA plasticizer as a compatibility agent has been studied by using two different plasticizers such as neat oligomeric lactic acid (OLA) and functionalized with maleic acid (mOLA). In particular, the morphological, thermal, and mechanical properties have been studied as well as the shape memory ability of the melt-processed materials. Therefore, the influence of the interaction between different plasticizers and the PLA matrix as well as the compatibility between the two polymeric phases on the thermally-activated shape memory properties have been studied. It is very interesting to use the same additive able to act as both plasticizer and compatibilizer, decreasing the glass transition temperature of PLA to a temperature close to the physiological one, obtaining a material suitable for potential biomedical applications. In particular, we obtain that OLA-plasticized blend (oPLA/TPS) show very good thermally-activated capability at 45 °C and 50% deformation, while the blend obtained by using maleic OLA (moPLA/TPS) did not show shape memory behavior at 45 °C and 50% deformation. This fact is due to their morphological changes and the loss of two well-distinguished phases, one acting as fixed phase and the other one acting as switching phase to typically obtain shape memory response. Therefore, the thermally-activated shape memory results show that it is very important to make a balance between plasticizer and compatibilizer, considering the need of two well-established phases to obtain shape memory response.
Collapse
Affiliation(s)
- Valentina Sessini
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Alcalá University, 28871 Alcalá de Henares, Spain
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Victor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - Agnieszka Tercjak
- Group Materials + Technologies (GMT), Department of Chemical and Environmental Engineering, Polytechnic School, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| | - José M. Kenny
- Department of Civil and Environmental Engineering, University of Perugia, 05100 Terni, Italy
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
28
|
Wasyłeczko M, Wojciechowski C, Chwojnowski A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int J Mol Sci 2024; 25:4233. [PMID: 38673817 PMCID: PMC11049998 DOI: 10.3390/ijms25084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland; (C.W.); (A.C.)
| | | | | |
Collapse
|
29
|
Yu D, Duan Z, Wang A, Li L, Guo H, Deng B, Li D, Li H, Liu Q. Structure and properties of chlorogenic acid-loaded polylactide fiber prepared by melt spinning. Int J Biol Macromol 2024; 265:130810. [PMID: 38484822 DOI: 10.1016/j.ijbiomac.2024.130810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Polylactide/chlorogenic acid (PLA/CGA) blends with different weight ratios were prepared by melt mixing, and corresponding PLA/CGA fibers were produced via a two-step melt spinning process. For PLA/CGA blends, CGA was distributed uniformly in the PLA matrix. The intermolecular interactions between CGA and PLA existed. The viscosity of PLA/CGA blends was much lower than that of neat PLA. With the increase of CGA content, the viscosity of PLA/CGA blends decreased. As the CGA content increased, the crystallinity of both PLA/CGA blends and fibers decreased. In addition, the tensile strength of PLA/CGA fibers was slightly lower than that of neat PLA fiber. For PLA/CGA fibers, the 6-fold drawn PLA/CGA fiber with 3 % CGA owned the highest tensile strength of 420 MPa. The ultraviolet (UV) resistance of PLA/CGA fibers were enhanced significantly by the introduction of CGA. When the CGA content was not <3 %, the UV transmittance of PLA/CGA fibers was <8 %. Moreover, PLA/CGA fibers exhibited good antioxidant properties. PLA/CGA fibers with 10 % CGA owned the highest antioxidant rate of >90 %. In addition, the 6-fold drawn PLA/CGA fiber with 10 % CGA presented excellent release performance with a 7-day cumulative CGA release rate of 19 %.
Collapse
Affiliation(s)
- Dongzheng Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zeping Duan
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Aming Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ling Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haiyang Guo
- Jiangsu Doway New Materials Science & Technology Co. Ltd., Suqian 223800, China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dawei Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qingsheng Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
30
|
Rivera P, Torres A, Romero J, Alarcón Á, Martínez S, Arrieta MP, Rodríguez-Mercado F, Galotto MJ. Effect of Operational Variables on Supercritical Foaming of Caffeic Acid-Loaded Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends for the Development of Sustainable Materials. Polymers (Basel) 2024; 16:948. [PMID: 38611209 PMCID: PMC11013249 DOI: 10.3390/polym16070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Expanded polystyrene will account for 5.3% of total global plastic production in 2021 and is widely used for food packaging due to its excellent moisture resistance and thermal insulation. However, some of these packages are often used only once before being discarded, generating large amounts of environmentally harmful plastic waste. A very attractive alternative to the conventional methods used for polymer processing is the use of supercritical carbon dioxide (scCO2) since it has mass-transfer properties adapted to the foam morphology, generating different path lengths for the diffusion of active compounds within its structure and can dissolve a wide range of organic molecules under supercritical conditions. The objective of this research was to evaluate the effect of operational variables on the process of caffeic acid (CA) impregnation and subsequent foaming of polylactic acid (PLA) as well as two PLA/poly(butylene-co-terephthalate-adipate) (PBAT) blends using scCO2. The results showed an increase in the degree of crystallinity of the CA-impregnated samples due to the nucleation effect of the active compound. On the other hand, SEM micrographs of both films and foams showed significant differences due to the presence of PBAT and its low miscibility with PLA. Finally, the results obtained in this work contribute to the knowledge of the important parameters to consider for the implementation of the impregnation and foaming process of PLA and PLA/PBAT blends with potential use in food packaging.
Collapse
Affiliation(s)
- Patricia Rivera
- Packaging Innovation Center (LABEN), Technology Faculty, Center for the Development of Nanoscience and Nanotechnology CEDENNA, University of Santiago de Chile (USACH), Santiago 9170201, Chile; (P.R.); (Á.A.); (S.M.); (F.R.-M.); (M.J.G.)
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile;
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Technology Faculty, Center for the Development of Nanoscience and Nanotechnology CEDENNA, University of Santiago de Chile (USACH), Santiago 9170201, Chile; (P.R.); (Á.A.); (S.M.); (F.R.-M.); (M.J.G.)
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile;
| | - Álvaro Alarcón
- Packaging Innovation Center (LABEN), Technology Faculty, Center for the Development of Nanoscience and Nanotechnology CEDENNA, University of Santiago de Chile (USACH), Santiago 9170201, Chile; (P.R.); (Á.A.); (S.M.); (F.R.-M.); (M.J.G.)
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering, Engineering Faculty, University of Santiago de Chile, Santiago 9170201, Chile;
| | - Sara Martínez
- Packaging Innovation Center (LABEN), Technology Faculty, Center for the Development of Nanoscience and Nanotechnology CEDENNA, University of Santiago de Chile (USACH), Santiago 9170201, Chile; (P.R.); (Á.A.); (S.M.); (F.R.-M.); (M.J.G.)
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación, Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), Technology Faculty, Center for the Development of Nanoscience and Nanotechnology CEDENNA, University of Santiago de Chile (USACH), Santiago 9170201, Chile; (P.R.); (Á.A.); (S.M.); (F.R.-M.); (M.J.G.)
| | - María José Galotto
- Packaging Innovation Center (LABEN), Technology Faculty, Center for the Development of Nanoscience and Nanotechnology CEDENNA, University of Santiago de Chile (USACH), Santiago 9170201, Chile; (P.R.); (Á.A.); (S.M.); (F.R.-M.); (M.J.G.)
| |
Collapse
|
31
|
Ashkenazi S, Matsanov P, Nassar-Marjiya E, Farah S, Weitz IS. Study of PEG- b-PLA/Eudragit S100 Blends on the Nanoencapsulation of Indigo Carmine Dye and Application in Controlled Release. ACS OMEGA 2024; 9:13382-13390. [PMID: 38524501 PMCID: PMC10956112 DOI: 10.1021/acsomega.3c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
A nanocapsule shell of poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) mixed with anionic Eudragit S100 (90/10% w/w) was previously used to entrap and define the self-assembly of indigo carmine (IC) within the hydrophilic cavity core. In the present work, binary blends were prepared by solution mixing at different PEG-b-PLA/Eudragit S100 ratios (namely, 100/0, 90/10, 75/25, and 50/50% w/w) to elucidate the role of the capsule shell in tuning the encapsulation of the anionic dye (i.e., IC). The results showed that the higher content of Eudragit S100 in the blend decreases the miscibility of the two polymers due to weak intermolecular interactions between PEG-b-PLA and Eudragit S100. Moreover, with an increase in the amount of Eudragit S100, a higher thermal stability was observed related to the mobility restriction of PEG-b-PLA chains imposed by Eudragit S100. Formulations containing 10 and 25% Eudragit S100 exhibited an optimal interplay of properties between the negative surface charge and the miscibility of the polymer blend. Therefore, the anionic character of the encapsulating agent provides sufficient accumulation of IC molecules in the nanocapsule core, leading to dye aggregates following the self-assembly. At the same time, the blending of the two polymers tunes the IC release properties in the initial stage, achieving slow and controlled release. These findings give important insights into the rational design of polymeric nanosystems containing organic dyes for biomedical applications.
Collapse
Affiliation(s)
- Shaked Ashkenazi
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Pnina Matsanov
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| | - Eid Nassar-Marjiya
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shady Farah
- The
Laboratory for Advanced Functional/Medicinal Polymers & Smart
Drug Delivery Technologies, The Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
- The
Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Iris S. Weitz
- Department
of Biotechnology Engineering, Braude College
of Engineering Karmiel, Karmiel 2161002, Israel
| |
Collapse
|
32
|
Li J, Jiang P, Yang J, Zhang Q, Chen H, Wang Z, Liu C, Fan T, Cao L, Sui J. Self-Reinforced PTLG Copolymer with Shish Kebab Structures and a Bionic Surface as Bioimplant Materials for Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11062-11075. [PMID: 38378449 PMCID: PMC10910444 DOI: 10.1021/acsami.3c18093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Green and biodegradable materials with great mechanical properties and biocompatibility will offer new opportunities for next-generation high-performance biological materials. Herein, the novel oriented shish kebab crystals of a novel poly(trimethylene carbonate-lactide-glycolide) (PTLG) vascular stent are first reported to be successfully fabricated through a feasible solid-state drawing process to simultaneously enhance the mechanical performance and biocompatibility. The crystal structure of this self-reinforced vascular stent was transformed from spherulites to a shish kebab crystal, which indicates the mechanical interlocking effect and prevents the lamellae from slipping with a significant improvement of mechanical strength to 333 MPa. Meanwhile, it is different from typical biomedical polymers with smooth surface structures, and the as-obtained PTLG vascular stent exhibits a bionic surface morphology with a parallel micro groove and ridge structure. These ridges and grooves were attributed to the reorganization of cytoskeleton fiber bundles following the direction of blood flow shear stress. The structure and parameters of these morphologies were highly similar to the inner surface of blood vessels of the human, which facilitates cell adhesion growth to improve its proliferation, differentiation, and activity on the surface of PTLG.
Collapse
Affiliation(s)
- Jiafeng Li
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Pengfei Jiang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Jianwei Yang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Quntao Zhang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Huiyuan Chen
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Ziyue Wang
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Chang Liu
- China
Coal Research Institute, Coal Mining Branch, Beijing 400037, P. R. China
- CCTEG
Coal Mining Research Institute, Beijing 100013, P. R. China
- State
Key Laboratory of Coal Mining and Clean Utilization, Beijing 100013, P. R. China
| | - Tiantang Fan
- College
of
Medical Engineering & The Key Laboratory for Medical Functional
Nanomaterials, Jining Medical University, Jining 272111, P. R. China
| | - Lu Cao
- Department
of Orthopedic Surgery, Zhongshan Hospital,
Fudan University, Shanghai 200031, P. R. China
- Fudan
Zhangjiang Institute, Fudan University, Shanghai 200437, P. R. China
| | - Junhui Sui
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
33
|
Constantinescu S, Niculescu AG, Hudiță A, Grumezescu V, Rădulescu D, Bîrcă AC, Dorcioman G, Gherasim O, Holban AM, Gălățeanu B, Vasile BȘ, Grumezescu AM, Bolocan A, Rădulescu R. Nanostructured Coatings Based on Graphene Oxide for the Management of Periprosthetic Infections. Int J Mol Sci 2024; 25:2389. [PMID: 38397066 PMCID: PMC10889398 DOI: 10.3390/ijms25042389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.
Collapse
Affiliation(s)
- Sorin Constantinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Dragoș Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (V.G.); (G.D.); (O.G.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, 77206 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri, 050663 Bucharest, Romania; (A.-G.N.); (A.H.); (A.M.H.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 060042 Bucharest, Romania; (A.C.B.); (B.Ș.V.)
| | - Alexandra Bolocan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| | - Radu Rădulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania; (S.C.); (D.R.); (A.B.); (R.R.)
| |
Collapse
|
34
|
Nam K, Kim SG, Kim DY, Lee DY. Enhanced Mechanical Properties of Polylactic Acid/Poly(Butylene Adipate-co-Terephthalate) Modified with Maleic Anhydride. Polymers (Basel) 2024; 16:518. [PMID: 38399896 PMCID: PMC10892572 DOI: 10.3390/polym16040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
An increase in plastic waste pollution and the strengthening of global environmental policies have heightened the need for research on biodegradable plastics. In this regard, polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are notable examples, serving as alternatives to traditional plastics. In this study, the compatibility and mechanical properties of PLA/PBAT blends were improved by the chemical grafting of maleic anhydride (MAH). In addition, qualitative analyses were conducted, dynamic mechanical properties were investigated, and the structure and mechanical characteristics of the blends were analyzed. With an increase in the MAH concentration, the grafting yield of the blends increased, and significantly improved the compatibility of the PLA/PBAT blend, with an ~2 and 2.9 times increase in the tensile strength and elongation at break, respectively. These findings indicate that the modified PLA/PBAT blend demonstrates potential for applications that require sustainable plastic materials, thereby contributing to the development of environmentally friendly alternatives in the plastics industry.
Collapse
Affiliation(s)
| | | | | | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; (K.N.); (S.G.K.); (D.Y.K.)
| |
Collapse
|
35
|
Liu Y, Dou Q. Improving the compatibility and toughness of sustainable polylactide/poly(butylene adipate-co-terephthalate) blends by incorporation of peroxide and diacrylate. Int J Biol Macromol 2024; 259:129355. [PMID: 38218295 DOI: 10.1016/j.ijbiomac.2024.129355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Polylactide/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were compatibilized using dicumyl peroxide (DCP) and poly(ethylene glycol) 600 diacrylate (PEG600DA) through a one-step melt-blending process. The compatibility and performance of these blends were subsequently characterized. The results showed that grafts formed "in situ" effectively improved the compatibility and interfacial adhesion between PLA and PBAT phases. Melt viscosity and elasticity of both the PLA/PBAT/DCP and PLA/PBAT/DCP/PEG600DA blends evinced significant increases. Compared to PLA alone, both cold and melt crystallization abilities of the PLA/PBAT/DCP/PEG600DA blends were enhanced, with crystallinities increasing by 5 % - 10 %. Furthermore, the thermal stability, as well as hydrophobicity and oleophobicity of the compatibilized blends improved. In comparison with PLA, the elongation at break and notched impact strength for the PLA/PBAT/DCP/PEG600DA (60/40/0.1/4) blend achieved increases of 290 % and 44.23 kJ/m2, corresponding to improvements of 279 % and 1457 %, respectively. The toughening effect was substantially influenced by the ductile matrix (either a co-continuous phase or a flexible PBAT matrix) in addition to the strong interfacial adhesion and fine phase domain. These eco-friendly blends exhibit considerable potential for packaging articles and 3D printing products owing to their excellent mechanical properties and enhanced melt rheology.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Qiang Dou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
36
|
Chen Y, Song X, Wang Y, Huang Y, Wang Y, Zhu C. The effect of Pluronic P123 on shape memory of cross-linked polyurethane/poly(l-lactide) biocomposite. Int J Biol Macromol 2024; 259:128788. [PMID: 38154706 DOI: 10.1016/j.ijbiomac.2023.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Polyurethane (PU) and poly(l-lactide) (PLLA) have attracted increasing attention in the development of shape memory polymers (SMPs) due to their good biocompatibility and degradability. Although Pluronic P123 can be used to tune polymeric surface hydrophilicity, its effect on SM performance is a mystery. In this study, a soluble cross-linked PU is synthesized as the switching phase and combined with PLLA and P123 to construct a hydrothermally responsive SM composite. The water contact angle of PU/PLLA/P123 decreases from 22.7° to 5.1° within 2 min. PU and P123 form the switching group, which enhances the SM behavior of the composite. The shape fixity (Rf) and shape recovery (Rr) of PU/PLLA/P123 are 94.4 % and 98 % in 55 °C water, respectively, and the shape recovery time is only 10 s. P123 plays the role of "turbine" in the SM process. PU/PLLA/P123 exhibits a balance between stiffness and elasticity, and good degradability. Furthermore, PU/PLLA/P123 is also biocompatible and beneficial to cell proliferation and growth. Therefore, it offers an alternative approach to developing hydrothermally responsive SM biocomposites based on P123, PU and PLLA for biomedical applications.
Collapse
Affiliation(s)
- Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, China; Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China.
| | - Ying Wang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yuan Huang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yanhe Wang
- Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China
| | - Chuanming Zhu
- School of Chemical Engineering, Changchun University of Technology, China
| |
Collapse
|
37
|
Zhang Q, Hu C, Pang X, Chen X. Multi-Functional Organofluoride Catalysts for Polyesters Production and Upcycling Degradation. CHEMSUSCHEM 2024; 17:e202300907. [PMID: 37735092 DOI: 10.1002/cssc.202300907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
The production and degradation of polyesters are two crucial processes in polyester materials' life cycle. In this work, multi-functional organocatalysts based on fluorides for both processes are described. Organofluorides were developed as catalysts for ring-opening polymerization of lactide (lactone). Compared with a series of organohalides, organofluoride performed the best catalytic reactivity because of the hydrogen bond interaction between F- and alcohol initiator. The Mn values of polyester products could be up to 72 kg mol-1 . With organofluoride catalysts, the ring-opening copolymerization between various anhydrides and epoxides could be established. Furthermore, terpolymerization of anhydride, epoxide, and lactide could be constructed by the self-switchable organofluoride catalyst to yield a block polymer with a strictly controlled polymerization sequence. Organofluorides were also efficient catalysts for upcycling polyester plastic wastes via alcoholysis. Mixed polyester materials could also be hierarchically recycled.
Collapse
Affiliation(s)
- Qiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, 130022, Changchun, China
| |
Collapse
|
38
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
39
|
Zhu J, Sun H, Yang B, Weng Y. Modified Biomass-Reinforced Polylactic Acid Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:336. [PMID: 38255504 PMCID: PMC10817700 DOI: 10.3390/ma17020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Polylactic acid (PLA), as a renewable and biodegradable green polymer material, is hailed as one of the most promising biopolymers capable of replacing petroleum-derived polymers for industrial applications. Nevertheless, its limited toughness, thermal stability, and barrier properties have restricted its extensive application. To address these drawbacks in PLA, research efforts have primarily focused on enhancing its properties through copolymerization, blending, and plasticization. Notably, the blending of modified biomass with PLA is expected not only to effectively improve its deficiencies but also to maintain its biodegradability, creating a fully green composite with substantial developmental prospects. This review provides a comprehensive overview of modified biomass-reinforced PLA, with an emphasis on the improvements in PLA's mechanical properties, thermal stability, and barrier properties achieved through modified cellulose, lignin, and starch. At the end of the article, a brief exploration of plasma modification of biomass is presented and provides a promising outlook for the application of reinforced PLA composite materials in the future. This review provides valuable insights regarding the path towards enhancing PLA.
Collapse
Affiliation(s)
- Junjie Zhu
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
| | - Hui Sun
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (B.Y.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
40
|
Wang K, Wang R, Hu K, Ma Z, Zhang C, Sun X. Crystallization-driven formation poly (l-lactic acid)/poly (d-lactic acid)-polyethylene glycol-poly (l-lactic acid) small-sized microsphere structures by solvent-induced self-assembly. Int J Biol Macromol 2024; 254:127924. [PMID: 37944727 DOI: 10.1016/j.ijbiomac.2023.127924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Improving hydrophobicity through the regulation of surface microstructures has attracted significant interest in various applications. This research successfully prepared a surface with microsphere structures using the Non-solvent induced phase separation method (NIPS). Poly(D-Lactic acid)-block-poly(ethylene glycol)-block-poly(D-Lactic acid) (PDLA-PEG-PDLA) block polymers were synthesized by ring-opening polymerization of D-Lactic acid (D-LA) using polyethylene glycol (PEG) as initiator. PLLA/PDLA-PEG-PDLA membrane with microscale microsphere morphology was fabricated using a nonsolvent-induced self-assembly method by blending the triblock copolymer with a poly(L-lactic acid) (PLLA) solution. In phase separation processes, the amphiphilic block copolymers self-assemble into micellar structures to minimize the Gibbs free energy, and the hydrophilic segments (PEG) aggregate to form the core of the micelles, while the hydrophobic segments (PDLA) are exposed on the outer corona resulting in a core-shell structure. The Stereocomplex Crystalline (SC), formed by the hydrogen bonding between PLLA and PDLA, can facilitate the transition from liquid-liquid phase separation to solid-liquid phase separation, and the PEG chain segments can enhance the formation of SC. The membrane, prepared by adjusting the copolymer content and PEG chain length, exhibited adjustable microsphere quantity, diameter, and surface roughness, enabling excellent hydrophobicity and controlled release of oil-soluble substances.
Collapse
Affiliation(s)
- Kai Wang
- Yantai Research Institute of Harbin Engineering University, Yantai 264006, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Rui Wang
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Keling Hu
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Zhengfeng Ma
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chunhong Zhang
- Yantai Research Institute of Harbin Engineering University, Yantai 264006, China.
| | - Xin Sun
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China.
| |
Collapse
|
41
|
Zhao R, Cai S, Zhao Y, Ning X. Enhanced stereocomplex crystalline polylactic acids in melt processed enantiomeric bicomponent fiber configurations. Int J Biol Macromol 2023; 253:127123. [PMID: 37774817 DOI: 10.1016/j.ijbiomac.2023.127123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The formation of stereocomplex crystalline domains in the bicomponent fiber melt spinning of enantiomeric polylactic acids (PLAs) is systematically explored and enhanced. Here we report a polycrystalline morphology where distinctly different crystalline regions are formed and aligned along the longitudinal direction of the fiber. This approach employs side-by-side and sheath-core bicomponent melt spinning configurations where the two components are the enantiomeric pairs of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA). We demonstrate the formation of the PLA stereocomplexes at the junction interphase through the melt spinning process which subsequently crystallize into a round fibers with stereocomplex and homogeneous crystal lamella morphologies. The fiber morphologies and crystallinities of the melt processed fiber are substantially different from the solution based bicomponent spinning system reported in the prior literature. Furthermore, the different molecular weight in the PLLA/PDLA pairing are found to be crucial to the structural development and properties of the PLA polycrystalline materials. The solid-state annealing does not change the crystal distribution of the crystalline domains and stereocomplex crystalline state, it just enhances the homo-crystallinity in the peripheral of the bicomponent fibers.
Collapse
Affiliation(s)
- Renhai Zhao
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Shunzhong Cai
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Yintao Zhao
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
42
|
Chang WW, Niu J, Peng H, Rong W. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator. Int J Biol Macromol 2023; 253:127230. [PMID: 37797850 DOI: 10.1016/j.ijbiomac.2023.127230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Selective formation of stereocomplex (sc) crystallization in enantiomeric poly(L-lactic acid)/poly(D-lactic acid) (PLLA/PDLA) blends is considered as one of the most effective and promising way to improve the mechanical and thermal properties of polylactide (PLA) materials. However, homocrystallization (hc) prevails over sc crystallization in high-molecular-weight (HMW) PLLA/PDLA blends. Herein, we propose a simple and straightforward approach for fabricating sc crystallization and suppress hc crystallization for HMW PLLA/PDLA blends through the addition of C70 as a nucleator. Non-isothermal crystallization and wide-angel X-ray diffraction studies demonstrate that, the incorporation of 1 wt% C70 overwhelmingly leads to the formation of sc crystallites, while preventing the formation of hc crystallites. Isothermal crystallization experiments at 140 °C reveal a significant reduction in the half-crystallization period of the PLLA/PDLA blend upon the addition of C70. Fourier-transformed infrared spectroscopy suggests that, the improved intermolecular interactions between PLLA and PDLA chains, as well as the inhibition of molecular chain diffusion and mobility, contribute to the accelerated formation of sc facilitated by C70. The enhanced sc crystallization results in a 15.5 °C higher thermal stability in the as-prepared PLLA/PDLA blend with 1 wt% C70 compared to the neat counterpart.
Collapse
Affiliation(s)
- Wei-Wei Chang
- Analysis and Testing Center, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Jinye Niu
- Analysis and Testing Center, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Hui Peng
- Analysis and Testing Center, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Weifeng Rong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| |
Collapse
|
43
|
Khan A, Sapuan SM, Siddiqui VU, Zainudin ES, Zuhri MYM, Harussani MM. A review of recent developments in kenaf fiber/polylactic acid composites research. Int J Biol Macromol 2023; 253:127119. [PMID: 37776930 DOI: 10.1016/j.ijbiomac.2023.127119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Kenaf fiber has recently garnered exponential interest as reinforcement in composite materials across diverse industries owing to its superior mechanical attributes, ease of manufacture, and inherent biodegradability. In the discourse of this review, various methods of manufacturing kenaf/Polylactic acid (PLA) composites have been discussed meticulously, as delineated in recently published scientific literatures. This paper delves into the chemical modification of kenaf fiber, examining its consequential impact on tensile strength and thermal stability of the kenaf/PLA composites. Further, this review illuminates the role of innovative 3D printing techniques and fiber orientation in augmenting the mechanical robustness of the kenaf/PLA composites. Simultaneously, recent insightful explorations into the acoustic properties of the kenaf/PLA composites, underscoring their potential as sustainable alternative to conventional materials have been reviewed. Serving as a comprehensive repository of knowledge, this review paper holds immense value for researchers aiming to utilize the capabilities of kenaf fiber reinforced PLA composites.
Collapse
Affiliation(s)
- Abir Khan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; National Institute of Textile Engineering and Research (NITER), Nayarhat, Savar, Dhaka 1350, Bangladesh
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 4300, Selangor, Malaysia.
| | - Vasi Uddin Siddiqui
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - E S Zainudin
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M Y M Zuhri
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M M Harussani
- Energy Science and Engineering, Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Tokyo, Japan
| |
Collapse
|
44
|
Ong YT, Chen TM, Don TM. Improved miscibility and toughness of biological poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(lactic acid) blends via melt-blending-induced thermal degradation. Int J Biol Macromol 2023; 253:127001. [PMID: 37729999 DOI: 10.1016/j.ijbiomac.2023.127001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Polymer blending has been a facile method to resolve the brittle issue of poly(lactic acid) (PLA). Yet, miscibility becomes the primary concern that would affect the synergy effect of polymer blending. This study aimed to improve the miscibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and PLA by lowering their molecular weights via a melt-blending-induced thermal degradation during mechanical mixing to form m-P34HB/PLA blends. The molecular weight of the P34HB was significantly reduced after blending, thereby improving the miscibility of the blends, as evidenced by the shift of glass transition temperatures. Also, simulation based on Flory-Huggins theory demonstrated increased miscibility with decreasing molecular weight of the polymers. Moreover, the thermal gravimetric analysis revealed that the PLA provided a higher shielding effect to the P34HB in the blends prepared by melt-blending than those by solution-blending, that the addition of PLA could retard the chain scission of P34HB and delay its degradation. The addition of m-P34HB at 20 wt% in the blend contributed to a 60-fold enhancement in the elongation at break and an increment of 4.6 folds in the Izod impact strength. The enzymatic degradation using proteinase K revealed the preferential to degrade the PLA in the blends and followed the surface erosion mechanism.
Collapse
Affiliation(s)
- Yit Thai Ong
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Darul Ridzuan, Malaysia.
| | - Ting-Min Chen
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui District, New Taipei City 251301, Taiwan.
| |
Collapse
|
45
|
Lv C, Luo S, Guo W, Chang L. Enhancing interfacial interaction and crystallization in polylactic acid-based biocomposites via synergistic effect of wood fiber and self-assembly nucleating agent. Int J Biol Macromol 2023; 253:127265. [PMID: 37802453 DOI: 10.1016/j.ijbiomac.2023.127265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Incorporation of natural fibers into polylactic acid (PLA) provides a feasible pathway to improve the performance of PLA with a low environmental impact. However, the insufficient interfacial adhesion between fiber and matrix limits the reinforcement efficiency of fiber and final mechanical properties of the biocomposites. Herein we reported an efficient method to simultaneously enhance interfacial interaction, crystallization and mechanical performance of PLA-based biocomposites via combination of wood fiber (WF) and a self-assembly nucleating agent (TMC-300). The interactions between WF and TMC-300 and its influence on PLA, including interfacial crystal morphology, crystallization behavior, and mechanical performance were studied. The results showed that TMC-300 could self-assemble into dendritic-like structure on WF surface driven by hydrogen bonding, inducing the epitaxial crystallization of PLA. This unique interfacial crystallization integrated PLA matrix with WF, resulting in better interfacial adhesion. Under the optimal TMC-300 content (0.5 wt%), the flexural strength and notched impact strength of PLA composites increased by 10 % and 69 % compared with neat PLA, respectively. Additionally, TMC-300 and WF synergistically functioned as effective nucleating agents, which significantly accelerated the crystallization rate and improved the crystallinity of PLA. This work provides a new insight into the enhancement of interfacial bonding in natural fiber/PLA biocomposites.
Collapse
Affiliation(s)
- Chao Lv
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China
| | - Shupin Luo
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China.
| | - Wenjing Guo
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China
| | - Liang Chang
- Research Institute of Wood Industry, Chinese Academy of Forestry, No. 2 Dongxiaofu, Haidian District, Beijing 100091, China
| |
Collapse
|
46
|
Yang H, Du J. Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems. Molecules 2023; 29:169. [PMID: 38202753 PMCID: PMC10780580 DOI: 10.3390/molecules29010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
As semi-crystalline polyester (lactic acid) (PLA) is combined with other reinforcing materials, challenges such as phase separation, environmental pollution, and manufacturing difficulties could hinder the benefits of PLA, including complete biodegradability and strong mechanical properties. In the present investigation, melt blending is utilized to establish a mixture of low- and high-molecular-weight polylactic acids (LPLA and HPLA). The crystallinity, rheology, and mechanical properties of the combination were analyzed using rotational rheometry, differential scanning calorimetry, X-ray diffraction, polarized optical microscopy, scanning electron microscopy, and universal testing equipment. The results demonstrate compatibility between LPLA and HPLA. Moreover, an increase in LPLA concentration leads to a decrease in the crystallization rate, spherulite size, fractional crystallinity, and XRD peak intensity during isothermal crystallization. LPLA acts as a diluent during isothermal crystallization, whereas HPLA functions as a nucleating agent in the non-isothermal crystallization process, promoting the growth of LPLA crystals and leading to co-crystallization. The blended system with a 5% LPLA mass fraction exhibits the highest tensile strength and enhances rheological characteristics. By effectively leveraging the relationship between various molecular weights of PLA's mechanical, rheological, and crystallization behavior, this scrutiny improves the physical and mechanical characteristics of the material, opening up new opportunities.
Collapse
Affiliation(s)
- Hongwei Yang
- School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Jianghua Du
- School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
- Key Laboratory of Polymer Materials & Manufacturing Technology, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
47
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Laraba SR, Rezzoug A, Avcu E, Luo W, Halimi R, Wei J, Li Y. Enhancing the tribological performance of PLA-based biocomposites reinforced with graphene oxide. J Mech Behav Biomed Mater 2023; 148:106224. [PMID: 37944226 DOI: 10.1016/j.jmbbm.2023.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Poly(lactic acid) (PLA) reinforced with graphene has gained substantial interest as a biomaterial, where the tribological and mechanical behavior of PLA/graphene composites are major concerns. This study aims to develop PLA-based biocomposites reinforced with graphene oxide (GO) that have enhanced tribological capabilities. First, homogenous dispersions of GO and GO treated with the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) were retained. Then, poly(L-lactic acid) (PLLA) biopolymer and PLLA/GO, PLLA/GO(AOT), PLA/GO(AOT), and PLLA/polyethylene glycol (PEG)/GO biocomposite samples were produced via hot pressing, and their tribological behavior was examined in detail. The worn surface characteristics were examined using scanning electron microscopy (SEM), 3D confocal microscopy, and atomic force microscopy (AFM). Results showed that GO reinforcement considerably affected the sliding wear behavior of PLA. Contrary to anticipated, surface treatment of GO does not improve the PLLA/GO wear resistance; rather, it increases the wear rate. PEG positively affects the sliding wear performance of PLLA/GO. PLLA/GO and PLLA/PEG/GO biocomposites exhibited the lowest wear rate at normal loads of 5 and 8 N, respectively, which was decreased by about 50% compared to unreinforced PLLA samples. With the addition of GO, the wear mechanisms of the PLA-based biocomposites changed from adhesive wear to abrasive wear. These findings might increase the applicability of PLA-based biocomposites where tribological performance is the main concern, such as biodegradable implants for load-bearing bone fractures or scaffolds, opening up new opportunities for their use.
Collapse
Affiliation(s)
- Selsabil Rokia Laraba
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Amine Rezzoug
- Research Center in Industrial Technologies (CRTI), P.O.Box 64, Cheraga, 16014, Algiers, Algeria
| | - Egemen Avcu
- Department of Mechanical Engineering, Kocaeli University, Kocaeli, 41001, Turkey; Ford Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli, 41650, Turkey
| | - Wei Luo
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rafik Halimi
- Research Center in Industrial Technologies (CRTI), P.O.Box 64, Cheraga, 16014, Algiers, Algeria
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
49
|
Chen PH, Chen CW, Mao HI, Dai CA, Su CS, Tsai JC, Lin FH. Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite: A Thermal, Physical, and Mechanical Study. Polymers (Basel) 2023; 15:4585. [PMID: 38232012 PMCID: PMC10708084 DOI: 10.3390/polym15234585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
The physical and mechanical properties of novel bio-based polymer blends of polylactic acid (PLA), poly(butylene succinate) (PBS), and poly (butylene adipate-co-terephthalate) (PBAT) with various added amounts of nanohydroxyapatite (nHA) were investigated in this study. The formulations of PLA/PBS/PBAT/nHA blends were divided into two series, A and B, containing 70 or 80 wt% PLA, respectively. Samples of four specimens per series were prepared using a twin-screw extruder, and different amounts of nHA were added to meet the regeneration needs of bone graft materials. FTIR and XRD analyses were employed to identify the presence of each polymer and nHA in the various blends. The crystallization behavior of these blends was examined using DSC. Tensile and impact strength tests were performed on all samples to screen feasible formulations of polymer blends for bone graft material applications. Surface morphology analyses were conducted using SEM, and the dispersion of nHA particles in the blends was further tested using TEM. The added nHA also served as a nucleating agent aimed at improving the crystallinity and mechanical properties of the blends. Through the above analyses, the physical and mechanical properties of the polymer blends are reported and the most promising bone graft material formulations are suggested. All blends were tested for thermal degradation analysis using TGA and thermal stability was confirmed. The water absorption experiments carried out in this study showed that the addition of nHA could improve the hydrophilicity of the blends.
Collapse
Affiliation(s)
- Pei-Hua Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan;
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Hsu-I Mao
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Chi-An Dai
- Department of Chemical Engineering, Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106319, Taiwan;
| | - Chie-Shaan Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan;
| | - Jung-Chin Tsai
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan;
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan;
| |
Collapse
|
50
|
Jaouadi N, Jaziri M, Maazouz A, Lamnawar K. Biosourced Multiphase Systems Based on Poly(Lactic Acid) and Polyamide 11 from Blends to Multi-Micro/Nanolayer Polymers Fabricated with Forced-Assembly Multilayer Coextrusion. Int J Mol Sci 2023; 24:16737. [PMID: 38069060 PMCID: PMC10706448 DOI: 10.3390/ijms242316737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present study was to investigate multiphase systems based on polylactic acid (PLA) and polyamide 11 (PA11) from blends to multilayers. Firstly, PLA/PA11 blends compatibilized with a multifunctionalized epoxide, Joncryl, were obtained through reactive extrusion, and the thermal, morphological, rheological, and mechanical behaviors of these materials were investigated. The role of Joncryl as a compatibilizer for the PLA/PA11 system was demonstrated by the significant decrease in particle size and interfacial tension as well as by the tensile properties exhibiting a ductile behavior. Based on these findings, we were able to further clarify the effects of interdiffusion and diffuse interphase formation on the structure, rheology, and mechanics of compatible multilayered systems fabricated with forced-assembly multilayer coextrusion. The results presented herein aim to provide a deeper understanding of the interfacial properties, including the rheological, mechanical, and morphological behaviors, towards the control of the interface and confinement in multilayer polymers resulting from coextrusion, and also to permit their use in advanced applications.
Collapse
Affiliation(s)
- Nour Jaouadi
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, F-69621 Villeurbanne, France; (N.J.); (K.L.)
- ENIS, Laboratoire Electrochimie et Environnement LEE, Université de Sfax, Sfax 3038, Tunisia
| | - Mohamed Jaziri
- Laboratoire de Chimie Minérale Appliquée (LCMA) LR19ES02, Faculté des Sciences de Tunis (FST), Université Tunis El Manar, Tunis 2092, Tunisia;
| | - Abderrahim Maazouz
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, F-69621 Villeurbanne, France; (N.J.); (K.L.)
| | - Khalid Lamnawar
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, F-69621 Villeurbanne, France; (N.J.); (K.L.)
| |
Collapse
|