1
|
Lin Q, Zhou H, Zeng J, Zeng M, Kraithong S, Xia X, Kuang W, Zhang X, Zhong S, Huang R. Bioactive polysaccharides mediate ferroptosis to modulate tumor immunotherapy. Int J Biol Macromol 2024; 279:135147. [PMID: 39214195 DOI: 10.1016/j.ijbiomac.2024.135147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Polysaccharides from diverse origins exhibit notable bioactivities, particularly their capacity to exert antitumor and immune-enhancing effects. Concurrently, ferroptosis emerges as a distinctive form of regulated cell death characterized by iron-dependent lipid peroxidation, potentially influencing the demise of specific tumor cells and organismal homeostasis. Recent scholarly attention has increasingly focused on utilizing polysaccharides to modulate tumor cell ferroptosis and manipulate cellular immune responses. This article provides an in-depth analysis of contemporary research concerning using polysaccharides to augment antitumor immunity and combat malignancies. Central to our discourse is examining the pivotal role of polysaccharides in mediating ferroptosis, bolstering immune surveillance, and elucidating the interplay between polysaccharides and antitumor immunity. Furthermore, a comprehensive synthesis of the multifaceted roles of polysaccharides in antitumor and immunomodulatory contexts is provided. Recent advances in understanding how polysaccharides enhance immune function by inducing ferroptosis cell death are explained. Lastly, unresolved inquiries are outlined, and potential avenues for future research are proposed, focusing on the translational applications of polysaccharides in antitumor immunotherapy.
Collapse
Affiliation(s)
- Qianmin Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Heying Zhou
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jinzi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiyang Kuang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Chen Y, Zhu F, Chen J, Liu X, Li R, Wang Z, Cheong KL, Zhong S. Selenium nanoparticles stabilized by Sargassum fusiforme polysaccharides: Synthesis, characterization and bioactivity. Int J Biol Macromol 2024; 269:132073. [PMID: 38705328 DOI: 10.1016/j.ijbiomac.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 μg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Yanzhe Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Feifei Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China.
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China; Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang, China; Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| |
Collapse
|
3
|
Wu L, Zhang X, Zhao J, Yang M, Yang J, Qiu P. The therapeutic effects of marine sulfated polysaccharides on diabetic nephropathy. Int J Biol Macromol 2024; 261:129269. [PMID: 38211917 DOI: 10.1016/j.ijbiomac.2024.129269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Marine sulfated polysaccharide (MSP) is a natural high molecular polysaccharide containing sulfate groups, which widely exists in various marine organisms. The sources determine structural variabilities of MSPs which have high security and wide biological activities, such as anticoagulation, antitumor, antivirus, immune regulation, regulation of glucose and lipid metabolism, antioxidant, etc. Due to the structural similarities between MSP and endogenous heparan sulfate, a majority of studies have shown that MSP can be used to treat diabetic nephropathy (DN) in vivo and in vitro. In this paper, we reviewed the anti-DN activities, the dominant mechanisms and structure-activity relationship of MSPs in order to provide the overall scene of MSPs as a modality of treating DN.
Collapse
Affiliation(s)
- Lijuan Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Xiaonan Zhang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jun Zhao
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Menglin Yang
- Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Yushan Road, Qingdao 266003, China; Center for Innovation Marine Drug Screening &Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
4
|
Zhi N, Chang X, Wang X, Guo J, Chen J, Gui S. Recent advances in the extraction, purification, structural-property correlations, and antiobesity mechanism of traditional Chinese medicine-derived polysaccharides: a review. Front Nutr 2024; 10:1341583. [PMID: 38299183 PMCID: PMC10828026 DOI: 10.3389/fnut.2023.1341583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Traditional Chinese medicine (TCM) has displayed preventive and therapeutic effects on many complex diseases. As natural biological macromolecules, TCM-derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-loss effects and are seen to be a viable tactic in the fight against obesity. Current studies demonstrate that the antiobesity activity of TCMPOs is closely related to their structural characteristics, which could be affected by the extraction and purification methods. Therefore, the extraction, purification and structural-property correlations of TCMPOs were discussed. Investigation of the antiobesity mechanism of TCMPOs is also essential for their improved application. Herein, the possible antiobesity mechanisms of TCMPOs are systematically summarized: (1) modulation of appetite and satiety effects, (2) suppression of fat absorption and synthesis, (3) alteration of the gut microbiota and their metabolites, and (4) protection of intestinal barriers. This collated information could provide some insights and offer a new therapeutic approach for the management and prevention of obesity.
Collapse
Affiliation(s)
- Nannan Zhi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xinrui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Juan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
5
|
Ruzemaimaiti D, Sun H, Zhang J, Xu C, Chen L, Yin R, Zhao J. Oligomer-guided recognition of two fucan sulfate from Bohadschia argus and inhibition of P-selectin binding to its ligand. Carbohydr Polym 2023; 317:121080. [PMID: 37364953 DOI: 10.1016/j.carbpol.2023.121080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Fucan sulfate (FS) from sea cucumber shows intriguing structure and extensive activities. Here, three homogeneous FS (BaFSI - III) were obtained from Bohadschia argus, followed with physicochemical properties analyses including monosaccharide composition, molecular weight, and sulfate content. BaFSI was proposed to carry a unique distribution pattern of sulfate groups as a novel sequence composed of domain A and domain B that formed by different FucS residues, markedly differing from FS reported before, according to the analyses of 12 oligosaccharides and a representative residual saccharide chain. BaFSII possessed a highly regular structure {4-L-Fuc3S-α1,}n according to its peroxide depolymerized product. BaFSIII was confirmed as a FS mixture bearing similar structural characteristics with BaFSI and BaFSII by means of mild acid hydrolysis and oligosaccharide analysis. Bioactivity assays showed that BaFSI and BaFSII could potently inhibit P-selectin binding to PSGL-1 and HL-60 cells. Structure-activity relationship analysis showed that molecular weight and sulfation pattern were the essential factors for the potent inhibition. Meanwhile, an acid hydrolysate of BaFSII with a molecular weight about 15 kDa exhibited a comparable inhibition with the native BaFSII. Given the potent activity and highly regular structure of BaFSII, it shows great potential for development as a P-selectin inhibitor.
Collapse
Affiliation(s)
- Dilihumaer Ruzemaimaiti
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Huifang Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Jiali Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Chen Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Linxia Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
6
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
7
|
Dai N, Li G, Ni J, Li F, Tong H, Liu Y. A novel galactoxylan derived from Viola diffusa alleviates LPS-induced acute lung injury via antagonizing P-selectin-mediated adhesion function. Int J Biol Macromol 2023; 242:124821. [PMID: 37178888 DOI: 10.1016/j.ijbiomac.2023.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Acute lung injury (ALI) greatly threatens human health worldwide. P-selectin is a potential target for the treatment of acute inflammatory diseases, and natural polysaccharides exhibit high-affinity for P-selectin. Viola diffusa, a traditional Chinese herbal, shows strong anti-inflammatory effects, but pharmacodynamic substances and underlying mechanisms are still unclear. In this study, a galactoxylan polysaccharide (VDPS) derived from Viola diffusa was isolated and characterized, evaluated the protective effect on LPS induced ALI and underlying mechanism. VDPS significantly alleviated LPS-induced pathological lung injury, and decreased the numbers of total cells and neutrophils as well as the total protein contents in the bronchoalveolar lavage fluid (BALF). Moreover, VDPS reduced proinflammatory cytokine production both in BALF and lung. Interestingly, VDPS significantly restrained the activation of NF-κB signaling in the lung of LPS-exposed mice, but it cannot inhibit LPS-induced inflammation in human pulmonary microvascular endothelial cells (HPMECs) in vitro. Additionally, VDPS disrupted neutrophil adhesion and rolling on the activated HPMECs. VDPS cannot impact the expression or cytomembrane translocation of endothelial P-selectin, but remarkably interrupt the binding of P-selectin and PSGL-1. Overall, this study demonstrated that VDPS can alleviate LPS-induced ALI via inhibiting P-selectin-dependent adhesion and recruitment of neutrophils on the activated endothelium, providing a potential treatment strategy for ALI.
Collapse
Affiliation(s)
- Ningfeng Dai
- Department of Thoracic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Wenzhou 325800, PR China
| | - Ge Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, PR China
| | - Jiangwei Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Fang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China.
| | - Yu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
8
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
9
|
Wan C, Jiang H, Tang MT, Zhou S, Zhou T. Purification, physico-chemical properties and antioxidant activity of polysaccharides from Sargassum fusiforme by hydrogen peroxide/ascorbic acid-assisted extraction. Int J Biol Macromol 2022; 223:490-499. [PMID: 36356868 DOI: 10.1016/j.ijbiomac.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The biological activities of Sargassum fusiforme polysaccharides (SFP) were affected significantly by the extraction method. In order to screen the optimum extraction technology for SFP with high yield and biological activities, six extraction methods, including hot water extraction (HWE), acid-assisted extraction (ACAE), alkali-assisted extraction (ALAE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE) and hydrogen peroxide/ascorbic acid-assisted extraction (HAE) were compared for the preparation of SFP. Based on the yield and in vitro antioxidant activity of the crude polysaccharides obtained by the six extraction methods, HAE was selected for the extraction of SFP. The SFP prepared by HAE (H-SFP) was purified by cellulose DEAE-52 ion-exchange chromatography, obtaining two purified fractions, namely H-SFP3 and H-SFP5. The analyses of their chemical composition, physico-chemical properties and the antioxidant capacity were performed. It was found that the crude SFP and the purified fractions possessed considerable ability to scavenge DPPH, hydroxyl and ABTS•+ radicals. These polysaccharide fractions were also found to effectively reduce the reactive oxygen species (ROS) level and increase the superoxide dismutase (SOD) activity in H2O2-induced oxidative stress RAW264.7 cells. The SFP prepared by the HAE has the potential as a natural non-toxic antioxidant and can be used as an ingredient in functional foods.
Collapse
Affiliation(s)
- Cheng Wan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Hui Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Meng-Ting Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, United Kingdom
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
10
|
Yu J, Yu W, Li X, Wu X, Hou L. Bone Marrow Mesenchymal Stem Cells (BMSC)-Derived miR-203-3p Ameliorates Acute Myocardial Infarction Through Activating Mammalian Target of Rapamycin (mTOR) Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular disease is currently the number one threaten of human health, which is associated with a high morbidity and high mortality. It is suggested that miR-203-3p has a variety of biological activities such as anticoagulation. However, the role and mechanism of BMSC-derived
miR-203-3p in acute myocardial infarction rats is unclear. The rat model of acute myocardial infarction (AMI) was established and then administrated with the mTOR inhibitor Rapamycin or si-miR-203-3p intervention. Hematoxylin-eosin (HE) staining detected pathologies of myocardial infarction,
proteins expression was measured by Western blot and myocardial enzymes levels in rats were detected by ELISA. The rats in myocardial infarction model group showed severe myocardial damage, which were ameliorated after interventions of Rapamycin or si-miR-203-3p. The intervention of Rapamycin
or si-miR-203-3p can inhibit the mTOR signaling pathway, decrease TNF-α and IL-6 secretion, and reduce the expression level of myocardial enzyme spectrum indicators. In conclusion, BMSCderived miR-203-3p can inhibit mTOR-mediated inflammation and ameliorate myocardial infarction.
Our study provides a basis and lays a scientific basis for the early drug development.
Collapse
Affiliation(s)
- Jinyu Yu
- Internal Medicine-Cardiovascular Department, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, 430014, China
| | - Wen Yu
- Internal Medicine-Cardiovascular Department, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, 430014, China
| | - Xiuqi Li
- Internal Medicine-Cardiovascular Department, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, 430014, China
| | - Xingàn Wu
- Internal Medicine-Cardiovascular Department, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, 430014, China
| | - Liang Hou
- Internal Medicine-Cardiovascular Department, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, 430014, China
| |
Collapse
|
11
|
Wu S, Liu J, Zhang Y, Song J, Zhang Z, Yang Y, Wu M, Tong H. Structural characterization and antagonistic effect against P-selectin-mediated function of SFF-32, a fucoidan fraction from Sargassum fusiforme. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115408. [PMID: 35659565 DOI: 10.1016/j.jep.2022.115408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sargassum fusiforme (Harvey) Setchell, or Haizao, has been used in traditional Chinese medicine (TCM) since at least the eighth century a.d. S. fusiforme is an essential component of several Chinese formulas, including Haizao Yuhu Decoction, used to treat goiter, and Neixiao Lei Li Wan used to treat scrofuloderma. The pharmacological efficacy of S. fusiforme may be related to its anti-inflammatory effect. AIM OF THE STUDY To determine the structural characteristics of SFF-32, a fucoidan fraction from S. fusiforme, and its antagonistic effect against P-selectin mediated function. MATERIALS AND METHODS The primary structure of SFF-32 was determined using methylation/GC-MS and NMR analysis. Surface morphology and solution conformation of SFF-32 were determined by scanning electron microscopy (SEM), Congo red test, and circular dichroic (CD) chromatography, respectively. The inhibitory effects of SFF-32 against the binding of P-selectin to HL-60 cells were evaluated using flow cytometry, static adhesion assay, and parallel-plate flow chamber assay. Furthermore, the blocking effect of SFF-32 on the interaction between P-selectin and PSGL-1 was evaluated using an in vitro protein binding assay. RESULTS The main linkage types of SFF-32 were proven to →[3)-α-l-Fucp-(1→3,4)-α-l-Fucp-(1]2→[4)-β-d-Manp-(1→3)-d-GlcAp-(1]2→4)-β-d-Manp-(1→3)-β-d-Glcp-(1→4)-β-d-Manp-(1→2,3)-β-d-Galp-(1→4)-β-d-Manp-(1→[4)-α-l-Rhap-(1]3→. The sulfated unit or terminal xylose residues were attached to the backbone through the C-3 of some fucose residues and terminal xylose residues were attached to C-3 of galactose residues. Moreover, SFF-32 disrupted P-selectin-mediated cell adhesion and rolling as well as blocked the interaction between P-selectin and its physiological ligand PSGL-1 in a dose-dependent manner. CONCLUSIONS Blocking the binding between P-selectin and PSGL-1 is the possible underlying mechanism by which SFF-32 inhibits P-selectin-mediated function, which demonstrated that SFF-32 may be a potential anti-inflammatory lead compound.
Collapse
Affiliation(s)
- Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Jianxi Song
- Analytical and Testing Center, Beihua University, Jilin, 132013, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou, 313000, PR China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
12
|
Silva MMCL, Dos Santos Lisboa L, Paiva WS, Batista LANC, Luchiari AC, Rocha HAO, Camara RBG. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int J Biol Macromol 2022; 216:757-767. [PMID: 35870628 DOI: 10.1016/j.ijbiomac.2022.07.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 12/28/2022]
Abstract
Antioxidants fucoidans from three seaweeds, Undaria pinnatifida (FUP), Macrocystis pyrifera (FMP) and Fucus vesiculosus (FFV) are sold commercially. However, it is unclear which fucoidan is the most potent antioxidant. Therefore, our objective was to compare the antioxidant activities of these fucoidans. For this purpose, six in vitro antioxidant tests were used, total antioxidant capacity, hydroxyl radical scavenging assay, ferrous and cupric chelating assay, reducing power and H2O2 scavenging assay. The data showed that the fucoidans had a low capacity to donate electrons, and a low capacity to chelate metals. The best activity obtained was in the scavenging of hydroxyl radical. When macrophages were exposed to H2O2 and fucoidans, MTT and live/dead assays showed that all fucoidans protected cells from oxidative damage. The survival rate of zebrafish embryos was significantly higher when exposed to H2O2 and fucoidans than H2O2 alone. In summary, the fucoidans evaluated were ranked according to their antioxidant activity as follows: FMP > FFV > FUP, and the results suggest that these fucoidans, mainly FMP, can be used in the formulation of medicines/foods.
Collapse
Affiliation(s)
- Maylla Maria Correia Leite Silva
- Graduate Program in Biochemistry and Molecular Biology, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN 59078-970, Brazil; Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Lucas Dos Santos Lisboa
- Graduate Program in Biochemistry and Molecular Biology, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN 59078-970, Brazil; Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Lucas Alighieri Neves Costa Batista
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte (UFRN), Natal, RN 59078-970, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Graduate Program in Biochemistry and Molecular Biology, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN 59078-970, Brazil; Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Rafael Barros Gomes Camara
- Graduate Program in Biochemistry and Molecular Biology, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN 59078-970, Brazil; Laboratory of Biotechnology of Natural Polymers (BIOPOL), Department of Biochemistry, Center of Biosciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil; Multicampi School of Medical Sciences (EMCM/UFRN), Brazil
| |
Collapse
|
13
|
Marzban A, Mirzaei SZ, Karkhane M, Kumar S, Danesh A. Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Jia RB, Wu J, Luo D, Lin L, Chen C, Xiao C, Zhao M. The Beneficial Effects of Two Polysaccharide Fractions from Sargassum fusiform against Diabetes Mellitus Accompanied by Dyslipidemia in Rats and Their Underlying Mechanisms. Foods 2022; 11:foods11101416. [PMID: 35626992 PMCID: PMC9141567 DOI: 10.3390/foods11101416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
The current study aimed to assess the anti-diabetic effects and potential mechanisms of two Sargassum fusiform polysaccharide fractions (SFPs, named SFP-1 and SFP-2). The carbohydrate-loading experiment revealed that SFP-2 could control postprandial hyperglycemia by inhibiting the activity of digestive enzymes in rats. The analysis of diabetic symptoms and serum profiles indicated that SFPs could mitigate diabetes accompanied by dyslipidemia, and SFP-2 showed better regulatory effects on body weight, food intake and the levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) and free fatty acid (FFA) in diabetic rats. Intestinal bacterial analysis showed that SFP treatment could reshape the gut flora of diabetic rats, and SFP-2 possessed a greater regulatory effect on the growth of Lactobacillus and Blautia than SFP-1. RT-qPCR analysis revealed that SFPs could regulate the genes involved in the absorption and utilization of blood glucose, hepatic glucose production and lipid metabolism, and the effects of SFP-2 on the relative expressions of Protein kinase B (Akt), Glucose-6-phosphatase (G-6-Pase), Glucose transporter 2 (GLUT2), AMP-activated protein kinase-α (AMPKα), Peroxisome proliferator-activated receptor γ (PPARγ) and Cholesterol 7-alpha hydroxylase (CYP7A1) were greater than SFP-1. All above results indicated that SFPs could be exploited as functional foods or pharmaceutical supplements for the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Rui-Bo Jia
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Lianzhu Lin
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Chong Chen
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China;
| | - Chuqiao Xiao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; (R.-B.J.); (D.L.); (L.L.)
- Correspondence: (C.X.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Correspondence: (C.X.); (M.Z.)
| |
Collapse
|
15
|
Qin Z, Yuan X, Liu J, Shi Z, Cao L, Yang L, Wu K, Lou Y, Tong H, Jiang L, Du J. Albuca Bracteata Polysaccharides Attenuate AOM/DSS Induced Colon Tumorigenesis via Regulating Oxidative Stress, Inflammation and Gut Microbiota in Mice. Front Pharmacol 2022; 13:833077. [PMID: 35264966 PMCID: PMC8899018 DOI: 10.3389/fphar.2022.833077] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation is an important risk factor in the development of inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). Accumulating evidence indicates that some phytochemicals have anti-cancer properties. Polysaccharides extracted from Albuca bracteata (AB) have been reported to possess anti-neoplastic activities on colorectal cancer (CRC) models. However, it is still unclear whether they exert therapeutic effects on colorectal cancer. In this study, we investigate the properties of polysaccharides of A. bracteate, named ABP. The average molecular weight of ABP was 18.3 kDa and ABP consisted of glucose, mannose, galactose, xylose, galacturonic acid, glucuronic acid at a molar ratio of 37.8:8:2.5:1.7:1:1. An Azoxymethane/Dextran sodium sulfate (AOM/DSS) induced CAC mouse model was established. The CAC mice treated with ABP showed smaller tumor size and lower tumor incidence than untreated ones. ABP increased anti-inflammatory cytokine IL-10, inhibited secretion of pro-inflammatory cytokines (IL-6, IFN-γ, and TNF-α), mitigated oxidative stress by increasing GSH and decreasing MDA levels, suppressed the activation of STAT3 and expressions of its related genes c-Myc and cyclin D1. Moreover, ABP treatment increased the relative abundance of beneficial bacteria (f_Ruminococcaceae, g_Roseburia, g_Odoribacter, g_Oscillospira, and g_Akkermansia) and the levels of fecal short-chain fatty acid (SCFA) in CAC model mice. In summary, our data suggest that ABP could be a potential therapeutic agent for treating CAC.
Collapse
Affiliation(s)
- Ziyan Qin
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Xinyu Yuan
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhuqing Shi
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Leipeng Cao
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Lexuan Yang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- *Correspondence: Haibin Tong, ; Lei Jiang, ; Jimei Du,
| | - Lei Jiang
- Central Laboratory, School of the First Clinical Medicine and the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Haibin Tong, ; Lei Jiang, ; Jimei Du,
| | - Jimei Du
- Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, China
- *Correspondence: Haibin Tong, ; Lei Jiang, ; Jimei Du,
| |
Collapse
|
16
|
Yao Y, Yim EKF. Fucoidan for cardiovascular application and the factors mediating its activities. Carbohydr Polym 2021; 270:118347. [PMID: 34364596 PMCID: PMC10429693 DOI: 10.1016/j.carbpol.2021.118347] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Fucoidan is a sulfated polysaccharide with various bioactivities. The application of fucoidan in cancer treatment, wound healing, and food industry has been extensively studied. However, the therapeutic value of fucoidan in cardiovascular diseases has been less explored. Increasing number of investigations in the past years have demonstrated the effects of fucoidan on cardiovascular system. In this review, we will focus on the bioactivities related to cardiovascular applications, for example, the modulation functions of fucoidan on coagulation system, inflammation, and vascular cells. Factors mediating those activities will be discussed in detail. Current therapeutic strategies and future opportunities and challenges will be provided to inspire and guide further research.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
17
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
18
|
He D, Yan L, Zhang J, Li F, Wu Y, Su L, Chen P, Wu M, Choi J, Tong H. Sargassum fusiforme polysaccharide attenuates high-sugar-induced lipid accumulation in HepG2 cells and Drosophila melanogaster larvae. Food Sci Nutr 2021; 9:5590-5599. [PMID: 34646529 PMCID: PMC8498055 DOI: 10.1002/fsn3.2521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
Lipid accumulation is a major factor in the development of non-alcoholic fatty liver disease (NAFLD). Currently, there is a lack of intervention or therapeutic drugs against NAFLD. In this study, we investigated the ability of Sargassum fusiforme polysaccharide (SFPS) to reduce lipid accumulation induced by high sugar in HepG2 cells and Drosophila melanogaster larvae. The results indicated that SFPS significantly (p < .01) decreased the accumulation of lipid droplets in high sugar-induced HepG2 cells. Furthermore, SFPS also suppressed the expression of Srebp and Fas (genes involved in lipogenesis) and increased the expression of PPARɑ and Cpt1 (genes that participated in fatty acid β-oxidation) in these cells. SFPS markedly reduced the content of triglyceride of the third instar larvae developed from D. melanogaster eggs reared on the high-sucrose diet. The expression of the Srebp and Fas genes in the larvae was also inhibited whereas the expression of two genes involved in the β-oxidation of fatty acids, Acox57D-d and Fabp, was increased in the larval fat body (a functional homolog of the human liver). We also found that SFPS ameliorated developmental abnormalities induced by the high-sucrose diet. These results of this study suggest that SFPS could potentially be used as a therapeutic agent for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
| | - Liping Yan
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jiaqi Zhang
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Fang Li
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Yu Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Laijin Su
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Peichao Chen
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Mingjiang Wu
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| | - Jong‐il Choi
- Department of Biotechnology and BioengineeringChonnam National UniversityGwangjuSouth Korea
| | - Haibin Tong
- College of Life and Environmental ScienceWenzhou UniversityWenzhouChina
| |
Collapse
|
19
|
Liu J, Wu S, Cheng Y, Liu Q, Su L, Yang Y, Zhang X, Wu M, Choi JI, Tong H. Sargassum fusiforme Alginate Relieves Hyperglycemia and Modulates Intestinal Microbiota and Metabolites in Type 2 Diabetic Mice. Nutrients 2021; 13:2887. [PMID: 34445047 PMCID: PMC8398017 DOI: 10.3390/nu13082887] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Sargassum fusiforme alginate (SF-Alg) possess many pharmacological activities, including hypoglycemic and hypolipidemic. However, the hypoglycemic mechanisms of SF-Alg remain unclear due to its low bioavailability. In this study, we evaluated the therapeutic effect of SF-Alg on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. SF-Alg intervention was found to significantly reduce fasting blood glucose (FBG), triglycerides (TG), and total cholesterol (TC), while increasing high-density lipoprotein cholesterol (HDL-c) and improving glucose tolerance. In addition, administrating SF-Alg to diabetic mice moderately attenuated pathological changes in adipose, hepatic, and heart tissues as well as skeletal muscle, and diminished oxidative stress. To probe the underlying mechanisms, we further analyzed the gut microbiota using 16S rRNA amplicon sequencing, as well as metabolites by non-targeted metabolomics. Here, SF-Alg significantly increased some benign bacteria (Lactobacillus, Bacteroides, Akkermansia Alloprevotella, Weissella and Enterorhabdus), and significantly decreased harmful bacteria (Turicibacter and Helicobacter). Meanwhile, SF-Alg dramatically decreased branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in the colon of T2D mice, suggesting a positive benefit of SF-Alg as an adjvant agent for T2D.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Qiuhui Liu
- Bestchrom (Shanghai) Biosciences Co., Ltd., Shanghai 200120, China;
| | - Laijin Su
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (J.L.); (S.W.); (Y.C.); (L.S.); (Y.Y.); (X.Z.); (M.W.)
| |
Collapse
|
20
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Wu Q, Wu S, Cheng Y, Zhang Z, Mao G, Li S, Yang Y, Zhang X, Wu M, Tong H. Sargassum fusiforme fucoidan modifies gut microbiota and intestinal metabolites during alleviation of hyperglycemia in type 2 diabetic mice. Food Funct 2021; 12:3572-3585. [PMID: 33900346 DOI: 10.1039/d0fo03329d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type 2 diabetic mellitus (T2DM) is a complicated metabolic disorder that is now considered as a major global public health problem. Fucoidan exhibits diverse biological activities, especially prevention of metabolic diseases. In this regard, we herein aimed to reveal the beneficial effect of Sargassum fusiforme fucoidan (SFF) on high-fat diet (HFD) and streptozotocin (STZ) induced T2DM mice. We noted that on the one hand, SFF significantly decreased fasting blood glucose, diet and water intake, and hyperlipidemia, while on the other hand, it improved glucose tolerance. Furthermore, SFF reduced epididymal fat deposition, attenuated the pathological changes in heart and liver tissues, and decreased oxidative stress in diabetic mice. To explore the underlying mechanisms of these ameliorative effects, the gut microbiota was analyzed. Notably, SFF highly enriched benign microbes including Bacteroides, Faecalibacterium and Blautia, as well as increased levels of (R)-carnitine and choline in the colon of diabetic mice. This may be a potential mechanism for alleviating T2DM, thus implying the benefits of SFF as an adjuvant agent for T2DM treatment. Taken together, this study demonstrated a promising application of fucoidan as one of the adjuvant agents for the management of T2DM in the future.
Collapse
Affiliation(s)
- Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou Cent Hosp, Huzhou 313000, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
| | - Shijun Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Shu G, Lu C, Wang Z, Du Y, Xu X, Xu M, Zhao Z, Chen M, Dai Y, Weng Q, Fang S, Fan K, Liu D, Du Y, Ji J. Fucoidan-based micelles as P-selectin targeted carriers for synergistic treatment of acute kidney injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102342. [PMID: 33253922 DOI: 10.1016/j.nano.2020.102342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Acute kidney injury (AKI) is a life-threatening disease without effective treatment. The utilization of curcumin (Cur) for the treatment of AKI is still facing challenges due to its poor water-solubility and low bioavailability. Herein, kidney-targeted octenyl succinic anhydride-grafted fucoidan loaded with Cur (OSA-Fucoidan/Cur) was fabricated for synergistic treatment of AKI. It was found that OSA-Fucoidan/Cur micelles had a sustained drug release behavior and excellent physicochemical stability. Cellular uptake studies demonstrated that the specific binding between fucoidan and P-selectin overexpressed on H2O2-stimulated HUVECs contributed to the higher internalization of OSA-Fucoidan/Cur micelles by the cells. In addition, OSA-Fucoidan micelles exhibited an ideal kidney-targeted characteristic in lipopolysaccharide (LPS)-induced AKI mice. In vivo studies showed that the combination of Cur and OSA-Fucoidan endowed the OSA-Fucoidan/Cur micelles with synergistically anti-inflammatory and antioxidant abilities, thereby largely enhancing the therapeutic efficacy of AKI. Therefore, OSA-Fucoidan/Cur micelles may represent a potential kidney-targeted nanomedicine for effective treatment of AKI.
Collapse
Affiliation(s)
- Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Zhixian Wang
- First Clinical College of traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuyin Du
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, Japan
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Yiyang Dai
- Department of Gastroenterology, The Fourth Affiliated Hospital of Zhejiang University, School of Medicine, YiWu, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Kai Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, School of Medicine, Lishui, Zhejiang, China.
| |
Collapse
|
23
|
He D, Yan L, Hu Y, Wu Q, Wu M, Choi JI, Tong H. Optimization of Porphyran Extraction from Pyropia yezoensis by Response Surface Methodology and Its Lipid-Lowering Effects. Mar Drugs 2021; 19:53. [PMID: 33498781 PMCID: PMC7911723 DOI: 10.3390/md19020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
Macroalgae polysaccharides are phytochemicals that are beneficial to human health. In this study, response surface methodology was applied to optimize the extraction procedure of Pyropia yezoensis porphyran (PYP). The optimum extraction parameters were: 100 °C (temperature), 120 min (time), and 29.32 mL/g (liquid-solid ratio), and the maximum yield of PYP was 22.15 ± 0.55%. The physicochemical characteristics of PPYP, purified from PYP, were analyzed, along with its lipid-lowering effect, using HepG2 cells and Drosophila melanogaster larvae. PPYP was a β-type sulfated hetero-rhamno-galactan-pyranose with a molecular weight of 151.6 kDa and a rhamnose-to-galactose molar ratio of 1:5.3. The results demonstrated that PPYP significantly reduced the triglyceride content in palmitic acid (PA)-induced HepG2 cells and high-sucrose-fed D. melanogaster larvae by regulating the expression of lipid metabolism-related genes, reducing lipogenesis and increasing fatty acid β-oxidation. To summarize, PPYP can lower lipid levels in HepG2 cells and larval fat body (the functional homolog tissue of the human liver), suggesting that PPYP may be administered as a potential marine lipid-lowering drug.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Liping Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Yingxia Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| |
Collapse
|
24
|
Ponce NMA, Stortz CA. A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae. FRONTIERS IN PLANT SCIENCE 2020; 11:556312. [PMID: 33324429 PMCID: PMC7723892 DOI: 10.3389/fpls.2020.556312] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 05/21/2023]
Abstract
In the current review, compositional data on fucoidans extracted from more than hundred different species were surveyed through the available literature. The analysis of crude extracts, purified extracts or carefully isolated fractions is included in tabular form, discriminating the seaweed source by its taxonomical order (and sometimes the family). This survey was able to encounter some similarities between the different species, as well as some differences. Fractions which were obtained through anion-exchange chromatography or cationic detergent precipitation showed the best separation patterns: the fractions with low charge correspond mostly to highly heterogeneous fucoidans, containing (besides fucose) other monosaccharides like xylose, galactose, mannose, rhamnose, and glucuronic acid, and contain low-sulfate/high uronic acid proportions, whereas those with higher total charge usually contain mainly fucose, accompanied with variable proportions of galactose, are highly sulfated and show almost no uronic acids. The latter fractions are usually the most biologically active. Fractions containing intermediate proportions of both polysaccharides appear at middle ionic strengths. This pattern is common for all the orders of brown seaweeds, and most differences appear from the seaweed source (habitat, season), and from the diverse extraction, purification, and analytitcal methods. The Dictyotales appear to be the most atypical order, as usually large proportions of mannose and uronic acids appear, and thus they obscure the differences between the fractions with different charge. Within the family Alariaceae (order Laminariales), the presence of sulfated galactofucans with high galactose content (almost equal to that of fucose) is especially noteworthy.
Collapse
Affiliation(s)
- Nora M. A. Ponce
- Departamento de Química Orgánica, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A. Stortz
- Departamento de Química Orgánica, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Zhang Y, Zuo J, Yan L, Cheng Y, Li Q, Wu S, Chen L, Thring RW, Yang Y, Gao Y, Wu M, Tong H. Sargassum fusiforme Fucoidan Alleviates High-Fat Diet-Induced Obesity and Insulin Resistance Associated with the Improvement of Hepatic Oxidative Stress and Gut Microbiota Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10626-10638. [PMID: 32866006 DOI: 10.1021/acs.jafc.0c02555] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sargassum fusiforme fucoidan (SFF) exhibits diverse biological activities. Insulin resistance (IR) implicated in type 2 diabetes (T2D) has become an epidemic health issue worldwide. In this study, we investigated whether SFF can improve insulin sensitivity in high-fat diet (HFD)-fed mice. Our present data showed that SFF significantly reduced fasting blood glucose and IR index along with improved glucose tolerance. Impaired phosphorylation of Akt was also restored by SFF. Furthermore, SFF decreased the levels of MDA and 4-HNE-modified protein and increased GSH/GSSG ratio as well as elevated antioxidant enzymes and activated Nrf2 signaling. SFF also increased the abundance and diversity of gut microbiota in the obese mice, as well as improved intestinal integrity and inflammation. Our findings suggested that SFF ameliorated HFD-induced IR through activating the Nrf2 pathway, remodeling gut microbiota, and reducing intestinal inflammation, thus providing a novel perspective into the treatment strategy on metabolic disease.
Collapse
Affiliation(s)
- Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Environmental Science and Environmental Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Jihui Zuo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liping Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiaojuan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ling Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ronald W Thring
- Environmental Science and Environmental Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
26
|
Cheng TM, Li R, Kao YCJ, Hsu CH, Chu HL, Lu KY, Changou CA, Chang CC, Chang LH, Tsai ML, Mi FL. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111064. [DOI: 10.1016/j.msec.2020.111064] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
|
27
|
He D, Yan L, Ma X, Cheng Y, Wu S, Zuo J, Park EJ, Liu J, Wu M, Choi JI, Tong H. Gamma-irradiation degraded sulfated polysaccharide from a new red algal strain Pyropia yezoensis Sookwawon 104 with in vitro antiproliferative activity. Oncol Lett 2020; 20:91. [PMID: 32831910 DOI: 10.3892/ol.2020.11952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Pyropia yezoensis Sookwawon 104 is a newly cultivated strain of red marine algae. The present study aimed to investigate the in vitro antiproliferative activity of sulfated polysaccharide extracted from P. yezoensis Sookwawon 104 (PYSP), as well as that of its low molecular weight (Mw) derivatives. PYSP is a heterogeneous sulfated polysaccharide mainly composed of galactose, glucose and fucose. PYSP was degraded by gamma-irradiation at doses of 20 and 100 kGy to produce two derivatives, named as PYSP-20 and PYSP-100, respectively. Comparison of PYSP, PYSP-20 and PYSP-100 revealed clear differences in their molecular weight (Mw) distributions, and distinct in vitro antiproliferative activities against Hep3B, MDA-MB-231 and HeLa cancer cell lines. PYSP-20 and PYSP-100 exhibited stronger antiproliferative effects than PYSP, suggesting that the reduction in Mw may have increased the in vitro antiproliferative activity. Furthermore, the mRNA expression levels of the antitumor gene P53 and cell cycle-associated genes P21, Cyclin B1 and cyclin dependent kinase 1 (Cdk1) were further analyzed by reverse transcription-quantitative PCR in PYSP-20 and PYSP-100-treated cancer cells. PYSP and its derivatives were shown to inhibit the proliferation of tumor cells by regulating the expression of P53, P21, Cyclin B1 and Cdk1. In conclusion, low-Mw polysaccharide derivatives prepared from P. yezoensis Sookwawon 104 by gamma-irradiation exhibit significant inhibition effects on cancer cell proliferation in vitro and may be a novel source of potential anticancer therapeutic agents.
Collapse
Affiliation(s)
- Dan He
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Liping Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaojing Ma
- National Resource Center of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yang Cheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Eun-Jeong Park
- Seaweed Research Center, National Institute of Fisheries Science, Haenam, South Jeolla 59002, Republic of Korea
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.,Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
28
|
Liu J, Wu SY, Chen L, Li QJ, Shen YZ, Jin L, Zhang X, Chen PC, Wu MJ, Choi JI, Tong HB. Different extraction methods bring about distinct physicochemical properties and antioxidant activities of Sargassum fusiforme fucoidans. Int J Biol Macromol 2020; 155:1385-1392. [PMID: 31733246 DOI: 10.1016/j.ijbiomac.2019.11.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
Fucoidan is a complex sulfated polysaccharide and an active component found in the cell wall of brown seaweeds. In the present study, fucoidans were obtained from Sargassum fusiforme using different extraction methods, including hot water (prepared fucoidan was named as WSFF), dilute hydrochloric acid (ASFF), and calcium chloride solution (CSFF). The assessments were performed on S. fusiforme fucoidans based on their chemical composition, molecular conformations, and in vitro antioxidant activities. ASFF showed the maximum extraction yield (11.24%), whereas CSFF exhibited the minimum yield (3.94%). The monosaccharide composition of WSFF, ASFF, and CSFF was similar, but the molar ratio of monosaccharide was quite different. Moreover, their molecular weight, Fourier transform infrared (FT-IR) spectrum, surface morphology, uronic acid content and degree of sulfation were distinct. The Congo red test and Circular dichroism spectroscopy analysis displayed some differences in solution conformation of these samples. Furthermore, WSFF, ASFF, and CSFF showed distinct in vitro antioxidant activities evaluated by DPPH and hydroxyl radical scavenging assays. The present study provides scientific evidence on the influences of extraction methods on the physicochemical characteristics, conformation behaviors and antioxidant activities of S. fusiforme fucoidans.
Collapse
Affiliation(s)
- Jian Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Si-Ya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ling Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiao-Juan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yi-Zhe Shen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Pei-Chao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ming-Jiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 500-757, South Korea.
| | - Hai-Bin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Costa LEC, Brito TV, Damasceno ROS, Sousa WM, Barros FCN, Sombra VG, Júnior JSC, Magalhães DA, Souza MHLP, Medeiros JVR, de Paula RCM, Barbosa ALR, Freitas ALP. Chemical structure, anti-inflammatory and antinociceptive activities of a sulfated polysaccharide from Gracilaria intermedia algae. Int J Biol Macromol 2020; 159:966-975. [PMID: 32450322 DOI: 10.1016/j.ijbiomac.2020.05.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The present work aimed at carrying out the isolation and biochemical characterization of a sulfated polysaccharide fraction (PLS) from the marine algae Gracilaria intermedia and investigating its anti-inflammatory and antinociceptive potential. PLS was obtained through enzymatic digestion with papain and analyzed by means of gel permeation chromatography and Nuclear Magnetic Resonance to 1H and 13C. In order to evaluate the potential of anti-inflammatory action of PLS, we performed paw edema induced by carrageenan, dextran, compound 48/80, histamine and serotonin. In addition, we also measured the concentration of myeloperoxidase, cytokines, the count of inflammatory cells and performed tests of the nociception. The PLS isolated was of high purity and free of contaminants such as proteins, and had molecular weight of 410 kDa. The same macromolecule was able to decrease the paw edema induced by all inflammatory agents (P < 0.05), myeloperoxidase (MPO) activity, neutrophil migration and IL-1β levels. It also decreased acetic acid-induced writhing (P < 0.05) and formalin-induced paw licking time (P < 0.05), but no in hot plate test. In summary, the PLS decreased the inflammatory response by reducing neutrophil migration and modulating IL-1β production and antinociceptive effects by a peripheral mechanism dependent on the down-modulation of the inflammatory mediators.
Collapse
Affiliation(s)
- Luís Eduardo C Costa
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tarcisio Vieira Brito
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Renan O Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Willer M Sousa
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisco Clark N Barros
- Federal Institute of Education, Science and Technology of Ceará, Juazeiro do Norte, Ceará 63.040-540, Brazil
| | - Venicios G Sombra
- Laboratory of Polymer, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - José Simião C Júnior
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Diva A Magalhães
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Marcellus H L P Souza
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jand-Venes R Medeiros
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Regina Célia M de Paula
- Laboratory of Polymer, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Reis Barbosa
- Laboratory of Experimental Physiopharmacology, Biotechnology and Biodiversity Center Research (BIOTEC), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Ana Lúcia P Freitas
- Laboratory of Proteins and Carbohydrates of Marine Algae, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
30
|
Zhang R, Zhang X, Tang Y, Mao J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr Polym 2020; 228:115381. [PMID: 31635744 DOI: 10.1016/j.carbpol.2019.115381] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/10/2023]
Abstract
Sargassum fusiforme polysaccharides, acidic water-soluble polysaccharides extract from Sargassum fusiforme, are mainly composed of alginic acid, fucoidan and laminaran. Alginic acid is carboxyl-containing polysaccharide formed by joining β-D-mannuronic acid and α-L-guluronic acid through β-(1→4)/α-(1→4) glycosidic bond. Fucoidan, a natural water-soluble sulfated heteropolysaccharide with fucose and sulfuric acid groups as the core structure, is mainly linked by L-fucose through α-(1→3) glycosidic bond and has the strongest biological activity. Laminaran is mainly composed of β-D-glucose through β-(1→3) glycosidic bond linkage. Sargassum fusiforme polysaccharides have a variety of pharmacological activities, including antioxidant, anti-tumor, promoting immunity, anti-aging, prompting bone growth, lowering blood glucose, anti-coagulation, anti-virus, anti-bacteria, anti-fatigue, promoting growth and development, and skin protection. These activities are closely related to the functions of fucoidan in Sargassum fusiforme polysaccharides, which fucoidan is able to strengthen immune system and antioxidation in human body. In this review, the composition, the isolation and purification, and the biological activities of Sargassum fusiforme polysaccharides are discussed and can bereference for further study.
Collapse
Affiliation(s)
- Rui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinxin Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yingxue Tang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|