1
|
Devi NA, Jegatheesan A, Raj MSA, Sundari MM, Kajli SK, Srinivasan K, Ravikumar P, Ayyanar M, Ravichandran K, Varshini M, Mohan R. Cost-effective synthesis of zinc oxide/crab shell-derived chitosan nanocomposite: Insights into its biomedical applications. Int J Biol Macromol 2024; 283:137869. [PMID: 39566807 DOI: 10.1016/j.ijbiomac.2024.137869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
For biomedical applications, material scientists all over the world are working to develop cost-effective technologies and thereby synthesize new nanocomposite materials that are biocompatible, bioactive, scalable and naturally abundant. This study focuses on synthesizing and evaluating nanocomposites of zinc oxide (ZnO) and chitosan (CS) derived from crab shells, in three different weight proportions (1:0.5, 1:1, and 1:2). ZnO/CS nanocomposites were synthesized using a soft-chemical method. Characterization of the nanocomposites was done using XRD, FESEM, EDAX, FTIR, and PL techniques. Among the three formulations, the ZnO/CS nanocomposite with a 1:2 ratio (ZnO/CS)1:2 exhibited the most significant antioxidant, anti-diabetic, and antibacterial properties. The (ZnO/CS)1:2 demonstrated 89.46 and 90.85 % of inhibition in DPPH and superoxide free radical scavenging assays, respectively, and showed 91.86 % inhibition against the alpha-glucosidase enzyme. It also exhibited strong antibacterial activity against both gram-positive (Staphylococcus epidermidis, Bacillus subtilis) and gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Additionally, the cytotoxicity of the (ZnO/CS)1:2 nanocomposite was assessed against the MCF-7 breast cancer cell line, showing an IC50 value of 11.58 ± 0.05 μg/mL at 30 μg/mL. The (ZnO/CS)1:2 nanocomposite shows potential as a candidate for biomedical applications, particularly in antioxidant, anti-diabetic, and antibacterial activities.
Collapse
Affiliation(s)
- N Ambika Devi
- PG & Research Department of Physics, Sree Sevugan Annamalai College, (Affiliated to Alagappa University, Karaikudi), Devakottai 630 303, Tamil Nadu, India
| | - A Jegatheesan
- Department of Physics, AVS Engineering College, (Affiliated to Anna University, Chennai), Salem 636 003, Tamil Nadu, India
| | - M Sam Arul Raj
- Department of Botany, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Thiruchirappalli), Poondi 613 503, Thanjavur, Tamil Nadu, India
| | - M Meenakshi Sundari
- PG & Research Department of Physics, Sree Sevugan Annamalai College, (Affiliated to Alagappa University, Karaikudi), Devakottai 630 303, Tamil Nadu, India
| | - Sourav Kumar Kajli
- Department of Physics, School of Engineering, Presidency University, Bangalore, Karnataka 560 064, India
| | - K Srinivasan
- Department of Chemistry, Sree Sevugan Annamalai College (Affiliated to Alagappa University, Karaikudi), Devakottai 630 303, Tamil Nadu, India
| | - P Ravikumar
- Department of Physics, Tagore Govt. Arts and Science College, (Affiliated to Pondicherry University), Puducherry 605 008, India
| | - M Ayyanar
- Department of Botany, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Thiruchirappalli), Poondi 613 503, Thanjavur, Tamil Nadu, India
| | - K Ravichandran
- PG & Research Department of Physics, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Thiruchirappalli), Poondi 613 503, Thanjavur, Tamil Nadu, India
| | - M Varshini
- PG & Research Department of Physics, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Thiruchirappalli), Poondi 613 503, Thanjavur, Tamil Nadu, India
| | - R Mohan
- PG & Research Department of Physics, Sree Sevugan Annamalai College, (Affiliated to Alagappa University, Karaikudi), Devakottai 630 303, Tamil Nadu, India.
| |
Collapse
|
2
|
Elgamal AM, Ali EA, Saad GR, Abdelhamid IA, Elsabee MZ, Hamed AA. Biologically active ionic chitosan Schiff base nanocomposites: Synthesis, characterization and antimicrobial activity against Helicobacter pylori. Int J Biol Macromol 2024; 282:137321. [PMID: 39515719 DOI: 10.1016/j.ijbiomac.2024.137321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
1-(2-((4-Bromophenyl)amino)-2-oxoethyl)pyridin-1-ium chloride Schiff base (CH-Py) was prepared via reacting (CH) with pyridine-3-carboxaldehyde, followed by reacting the product with N-(4-bromophenyl)-2-chloroacetamide. The structure of the resulting CH derivative was determined via1HNMR and FTIR. The CH-Py derivative was converted into nanoparticles (CH-Py-Cl NPs) using sodium tripolyphosphate (TPP). Additionally, the nanocomposites (CH-Py-Cl NPs) were prepared discretely by dispersion of 3.0 % Se and 3.0 % Fe2O3 nanoparticles into the CH-Py-Cl NPs matrix to derive the products denoted as CH-Py-Cl/Se and CH-Py-Cl/Fe, respectively aiming to develop innovative effective chitosan Schiff base nanocomposites towards H. pylori. Anti-H. pylori activity of CH-Py-Cl NPs, CH-Py-Cl/Fe, and CH-Py-Cl/Se were found to be at a minimal inhibitory concentrations MIC value of 62.5, 31.25, and 15.62 μg/mL, indicating that CH-Py-Cl/Se possessed the highest biological activity in our investigation. Finally, the CH-Py-Se-NPs nanocomposite was examined for its in vitro cytotoxicity against colon cancer cell lines (Caco-2). The results obtained indicated that the developed CH-Py-Cl/Se showed toxic effects on Caco-2 cells, with an IC50 value of 124.52 ± 1.15 μg/mL.
Collapse
Affiliation(s)
- Ahmed M Elgamal
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Gamal R Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Maher Z Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Amira A Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| |
Collapse
|
3
|
Vijayasree VP, Abdul Manan NS. Bio-inspired magnetic chitosan/Iron oxide macromolecules for multiple anionic dyes adsorption from aqueous media. Int J Biol Macromol 2024; 277:134103. [PMID: 39047997 DOI: 10.1016/j.ijbiomac.2024.134103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Organic anionic dyes are major water pollutants due to their low degradability caused by complex aromatic structures. Not only do they exert toxic, mutagenic, teratogenic, tumorigenic, and genotoxic effects, but they also decrease fertility and cause irritation to the skin and respiratory system in humans. This long-term toxicity has detrimental effects on aquatic organisms and their surroundings, resulting in an imbalanced ecosystem. In this study, a Cs@Fe3O4 magnetic biosorbent was synthesised to uptake three anionic dyes and characterised for FTIR, BET/BJH, XRD, TGA, VSM, and FESEM analyses. The biosorbent average surface area was confirmed to be 52.6524 m2/g, with average pore sizes of 7.3606 nm and 6.9823 nm for adsorption-desorption processes, respectively. Batch adsorption studies pH values, contact times, temperature, initial dye concentrations, and adsorbent dosages were examined. Several isotherm and kinetic models were studied to determine the adsorption mechanism. The adsorption data of these dyes at equilibrium was observed to match Langmuir's isotherm and pseudo-second-order kinetic models. The thermodynamic study revealed that the adsorption process for these dyes was an exothermic reaction. Maximum adsorption capacities for congo red, methyl orange, and metanil yellow were 117.77 mg/g, 137.77 mg/g, and 155.57 mg/g, respectively. The reusability of recovered Cs@Fe3O4 after dye adsorption was evaluated up to five continuous adsorption-desorption cycles for its possible industrial applications.
Collapse
Affiliation(s)
- V P Vijayasree
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ninie Suhana Abdul Manan
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Center for Ionic Liquids, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Abbasian M, Khayyatalimohammadi M. In-situ forming Cu-based metal-organic framework in the presence of chitosan-Fe 3O 4 nanohybrids: A pH-sensitive carrier for controlled release of doxorubicin. Int J Biol Macromol 2024; 278:134224. [PMID: 39074707 DOI: 10.1016/j.ijbiomac.2024.134224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
In recent years, stimuli-responsive drug delivery systems based on pH, particularly those developed using bio-derived nanocomposite systems, have gained significant attention. In this work, a novel magnetic carrier was designed based on biopolymeric chitosan and metal-organic framework (MOF) for pH-controlling the release of anticancer drugs. To end this, an in-situ green method was performed to form Cu-based MOF in the presence of a magnetic polysaccharide synthesized by precipitation method toward the construction of CS/Fe3O4/Cu-MOF nanocomposite. The nanocomposite was immersed in an aqueous solution of a model anticancer drug, doxorubicin (DOX), and a higher loading capacity (90.1 ± 0.5 %) was achieved. The in-vitro drug release study showed low release rates in simulated physiological environments (pH 7.4, 37 °C, lower than about 20 %), but higher release rates in tumor tissue conditions (pH 4.5, 41 °C, higher than about 60 %) over 96 h, allowing for sustained and extended delivery of DOX. Additionally, the MTT assay demonstrated that the blank and DOX-loaded CS/Fe3O4/Cu-MOF had good cytocompatibility (over 80 % cell viability) and considerable cytotoxicity (lower than 40 % at 16 μg/mL) toward breast cancer (MCF-7) cell line, respectively. These results indicated that the synthesized nanocomposite with suitable pH-sensitivity has potential as a targeted anticancer agent.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran.
| | | |
Collapse
|
5
|
Al-Rajhi AMH, Selim S, Abdalla AE, Hagagy N, Saddiq AA, Al Jaouni SK, Abdelghany TM. Synthesis of chitosan/Fe 2O 3/CuO-nanocomposite and their role as inhibitor for some biological disorders in vitro with molecular docking interactions studies. Int J Biol Macromol 2024; 280:135664. [PMID: 39278450 DOI: 10.1016/j.ijbiomac.2024.135664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The hybrid material between the functional elements particularly with the polymer compounds as a nanocomposites are attractive in numerous fields. In the current work, chitosan/Fe2O3/CuO-nanocomposite has been successfully synthesized in situ via a coprecipitation method and characterized by several apparatuses. The X-ray diffraction cleared that chitosan/Fe2O3/CuO-nanocomposite was crystalline. Transmission Electron Microscopy (TEM) showed that the size of chitosan/Fe2O3/CuO-nanocomposite was of 17-85 nm. Candida albicans, Candida tropicalis, and Geotrichum candidum were inhibited employing the chitosan/Fe2O3/CuO-nanocomposite with inhibition areas of 25 ± 0.1 and 30 ± 0.1, and 23 ± 0.2 mm, respectively. Minimum inhibitory concentration (MIC) of chitosan/Fe2O3/CuO-nanocomposite was 15.62, 31.25, and 62.5 μg/mL for C. tropicalis, C. albicans, and G. candidum, respectively. Biofilm formation of C. albicans, C. tropicalis and G. candidum was inhibited at level of 95.31, 96.65, and 93.63 %, respectively at 75 % MIC of chitosan/Fe2O3/CuO-nanocomposite. The exposed C. tropicalis to chitosan/Fe2O3/CuO-nanocomposite showed severe damag of cytoplasm membrane with cell wall rupture. Chitosan/Fe2O3/CuO-nanocomposite reflected anticancer potential against human skin cancer (A-431) cells with IC50 of 77.79 ± 1.37 μg/mL. Moreover, wound heals was induced by chitosan/Fe2O3/CuO-nanocomposite with closure level 92.76 %. Molecular docking studies suggested strong binding of C. tropicalis (PDB ID: 8BH8) and A-431 (PDB ID: 5JJX) proteins with CuO nanoparticles and FeO nanoparticles.
Collapse
Affiliation(s)
- Aisha M H Al-Rajhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.
| | - Nashwa Hagagy
- Department of Biology, College of Science & Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Amna A Saddiq
- Department of Biology Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Tarek M Abdelghany
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11725, Egypt.
| |
Collapse
|
6
|
Basati M, Moghadam A, Khazaei BA, Hajkarim MC. Chitosan/MgO NPs/CQDs bionanocomposite coating: Fabrication, characterization and determination of antimicrobial efficacy. Int J Biol Macromol 2024; 276:133693. [PMID: 38971277 DOI: 10.1016/j.ijbiomac.2024.133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The development of new polymer nanocomposites or antibacterial coatings is crucial in combating drug-resistant infections, particularly bacterial infections. In this study, a new chitosan polymer based nanocomposite reinforced with magnesium oxide nanopowders and carbon quantum dots was fabricated by sol-gel technique and coated on 316 L stainless steel. In order to gaining the optimal amount of components to achieve the maximum antibacterial properties, the effect of concentration of nanocomposite components on its antibacterial properties was investigated. Crystal structure, microstructure, elemental dispersion, size distribution, chemical composition and morphology of nanocomposite and coating were characterized with various analyses. The obtained results exhibited that the carbon quantum dot and magnesium oxide nanopowders were distributed uniformly and without agglomeration in the chitosan matrix and created a uniform coating. The antibacterial properties of the synthesized samples against Staphylococcus aureus bacteria (gram positive) were evaluated using disk diffusion and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) antibacterial tests. The inhibition growth zone formed around the antibiotic and nanocomposite 25 mg/ml under dark and light was about 32 and 14, 11 mm, respectively. Also, MIC and MBC values for final nanocomposite were 62.5 and 125 μg/ml, respectively.
Collapse
Affiliation(s)
- Mahsa Basati
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran
| | - Ayoub Moghadam
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran.
| | - Bijan Abbasi Khazaei
- Department of Materials Science and Engineering, Razi University, Kermanshah, Iran
| | - Maryam Chalabi Hajkarim
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Deymeh F, Ahmadpour A, Allahresani A, Arami-Niya A. Collaborative adsorption and photocatalytic degradation of high concentration pharmaceutical pollutants in water using a novel dendritic fibrous nano-silica modified with chitosan and UiO-66. Int J Biol Macromol 2024; 275:133534. [PMID: 38950805 DOI: 10.1016/j.ijbiomac.2024.133534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
This study presents a novel hybrid mesoporous material for degrading drug pollutants in water. The hybrid materials, derived from UiO-66 metal-organic framework and chitosan, coated on nano-silica, showed excellent drug adsorption through hydrogen-bonding interactions and efficient photodegradation of antibiotics. The hybrid material's enhanced conductivity and reduced band gap significantly improved pollution reduction by minimising electron-hole recombination. This allows for more efficient charge transport and better light absorption, boosting the material's ability to break down pollutants. Structural and morphological analyses were conducted using various techniques, including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Optimising the adsorption-photodegradation process involved investigating pH, catalyst dose, and radiation time. Non-linear optimisation revealed an efficiency exceeding 85 % for 400 mg/L tetracycline and doxycycline, the model antibiotics. The optimal parameters for maximal elimination were determined as pH = 4.3, hybrid mesosphere dose = 4.0 mg/mL, and radiation time = 10 min. Kinetic studies favored pseudo-second-order diffusion models over pseudo-first-order models. The hybrid mesosphere showed sustained efficiency after three cycles and performed well in real aqueous samples, removing over 80 % of each antibiotic. This study demonstrates the potential of the hybrid mesoporous material for removing pharmaceutical pollutants in water systems.
Collapse
Affiliation(s)
- Fatemeh Deymeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91779-48944, Mashhad, Iran; Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box 91779-48974, Mashhad, Iran
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91779-48944, Mashhad, Iran; Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box 91779-48974, Mashhad, Iran.
| | - Ali Allahresani
- Department of Chemistry, College of Sciences, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| | - Arash Arami-Niya
- Discipline of Chemical Engineering, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
8
|
Giacalone G, Quaillet M, Huang N, Nicolas V, Boulogne C, Gillet C, Fattal E, Bochot A, Hillaireau H. An injectable, nanostructured implant for the delivery of adenosine triphosphate: towards long-acting formulations of small, hydrophilic drugs. Drug Deliv Transl Res 2024; 14:2146-2157. [PMID: 38822092 DOI: 10.1007/s13346-024-01631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
While long-acting injectable treatments are gaining increasing interest in managing chronic diseases, the available drug delivery systems almost exclusively rely on hydrophobic matrixes, limiting their application to either hydrophobic drugs or large and hydrophilic molecules such as peptides. To address the technological lock for long-acting delivery systems tailored to small, hydrophilic drugs such as anticancer and antiviral nucleoside/nucleotide analogues, we have synthesized and characterized an original approach with a multi-scale structure: (i) a nucleotide (adenosine triphosphate, ATP) is first incorporated in hydrophilic chitosan-Fe(III) nanogels; (ii) these nanogels are then transferred by freeze-drying and resuspension into a water-free, hydrophobic medium containing PLGA and an organic solvent, N-methyl-2-pyrrolidone. We show that this specific association allows an injectable and homogeneous dispersion, able to form in situ implants upon injection in physiological or aqueous environments. This system releases ATP in vitro without any burst effect in a two-step mechanism, first as nanogels acting as an intermediate reservoir over a week, then as free drug over several weeks. In vivo studies confirmed the potential of such nanostructured implants for sustained drug release following subcutaneous injection to mice hock, opening perspectives for sustained and targeted delivery through the lymphatic system.
Collapse
Affiliation(s)
- Giovanna Giacalone
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Marion Quaillet
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Nicolas Huang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Valérie Nicolas
- Université Paris-Saclay, MIPSIT Microscopy Facility, IPSIT, Orsay, 91400, France
- Light Microscopy Facility Imagerie-Gif, CNRS - I2BC (present address), Gif-sur-Yvette, 91198, France
| | - Claire Boulogne
- Electron Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Cynthia Gillet
- Electron Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, 91198, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Amélie Bochot
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France.
| |
Collapse
|
9
|
Ahmad S, Ahmad N, Islam MS, Ahmad MA, Ercisli S, Ullah R, Bari A, Munir I. Rice seeds biofortification using biogenic ıron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield ımprovement. Sci Rep 2024; 14:12368. [PMID: 38811671 PMCID: PMC11137158 DOI: 10.1038/s41598-024-62907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.
Collapse
Affiliation(s)
- Sidra Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Nayab Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Mian Afaq Ahmad
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
10
|
Hussan, Nisa S, Bano SA, Zia M. Chemically synthesized ciprofloxacin-PEG-FeO nanotherapeutic exhibits strong antibacterial and controlled cytotoxic effects. Nanomedicine (Lond) 2024; 19:875-893. [PMID: 38530883 DOI: 10.2217/nnm-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Aim: To develop a biocompatible conjugated ciprofloxacin-PEG-FeO nanodelivery system with increased efficacy of available therapeutics in a controlled manner. Materials & methods: FeO nanoparticles were synthesized by chemical and biological methods and modified as ciprofloxacin-PEG-FeO nanoformulations. After initial antibacterial and cytotoxicity studies, the effective and biocompatible nanoformulations was further fabricated as nanotherapeutics for in vivo studies in mouse models. Results: Chemically synthesized ciprofloxacin-PEG-FeO nanoformulations demonstrated boosted antibacterial activity against clinically isolated bacterial strains. Nanoformulations were also found to be compatible with baby hamster kidney 21 cells and red blood cells. In in vivo studies, nanotherapeutic showed wound-healing effects with eradication of Staphylococcus aureus infection. Conclusion: The investigations indicate that the developed nanotherapeutic can eradicate localized infections and enhance wound healing with controlled cytotoxicity.
Collapse
Affiliation(s)
- Hussan
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Sobia Nisa
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Syeda Asma Bano
- Department of Microbiology, University of Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid e Azam University Islamabad, Islamabad, 15320, Pakistan
| |
Collapse
|
11
|
Hamed AA, Ali EA, Saad GR, Elsabee MZ. Synthesis and biological evaluation against H. pylori of chitosan menthone Schiff base hybrid with different types of inorganic nanoparticles. Int J Biol Macromol 2024; 257:128742. [PMID: 38092112 DOI: 10.1016/j.ijbiomac.2023.128742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023]
Abstract
The production of novel natural medicines for the treatment of Helicobacter pylori (H. pylori) has lately attracted a lot of interest. Some bacterial infections have traditionally been alleviated by terpenes. The present work intended to examine the impact of several chitosan menthone Schiff base nanocomposites on the treatment of H. pylori infection as well as on its anti-inflammatory capacity. Chitosan (Cs) was condensed with menthone with different molar ratios of Cs:menthone (1:0.5, 1:1, and 1:2) to produce chitosan Schiff bases namely; Cs-SB1, Cs-SB2, and Cs-SB3, respectively. Cs-SB3 Schiff base nanocomposites were prepared individually by adding 2%Ag, 2%Se, (1%Ag + 1%Se), and 2%Fe2O3 nanoparticles to produce compounds denoted as Cs-SB-Ag, Cs-SB-Se, Cs-SB-Ag/ Se, and Cs-SB-Fe, respectively. The anti-H. pylori activity of Cs-SB-Se was detected at a minimal inhibitory concentration MIC of 1.9 μg/mL making it the most biologically active compound in our study. Cs-SB-Se nanocomposite was tested for its cyclooxygenases (COX-1 and COX-2) inhibitory potential which demonstrated inhibitory efficacy towards COX enzymes with inhibition value against COX-1 (IC50 = 49.86 ± 1.784 μg/mL) and COX-2 (IC50 = 12.64 ± 0.463 μg/mL) which were less than the well-known Celecoxib (22.65 ± 0.081 and 0.789 ± 0.029 μg/mL) and Indomethacin (0.035 ± 0.001 and 0.08 ± 0.003 μg/mL) inhibitors. The selectivity index SI = 3.94 for tested nanocomposites indicated higher selectivity for COX-1. The cytotoxicity of the Cs-SB-Se nanocomposite was evaluated in Vero cells (CCL-81) and it showed that at a concentration of 62.5 μg/mL, cell viability was 85.43 %.
Collapse
Affiliation(s)
- Amira A Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Eman AboBakr Ali
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza 12622, Egypt.
| | - Gamal R Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Maher Z Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| |
Collapse
|
12
|
Mohtashami M, Rezagholizade-Shirvan A, Bonab ZH, Amiryousefi MR, Darroudi M, Ahmadi Solimani MS, Yaghoobi S, Dolatabadi S, Ghasemi A, Momtazi-Borojeni AA. Green Synthesis of Silver Nanoparticles using Cirsium congestum Extract Modified by Chitosan/Alginate: Bactericidal Activity against Pathogenic Bacteria and Cytotoxicity Analysis in Normal Cell Line. Curr Pharm Des 2024; 30:1610-1623. [PMID: 38661036 DOI: 10.2174/0113816128304460240408085736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/26/2024]
Abstract
AIM The study aimed to determine in vitro pharmacological effects of modified Ag nanoparticles (AgNPs). BACKGROUND AgNPs are considered antimicrobial agents. However, the cytotoxicity of chemically synthesized AgNPs (cAgNPs) has raised challenges that limit their use. OBJECTIVE The purpose of the study was to examine the antimicrobial and cytotoxicity effects of AgNPs synthesized using Cirsium congestum extract modified by chitosan/alginate AgNPS (Ch/ALG-gAgNPs). METHODS Nanoparticles were characterized using TEM, DLS, XRD, and FTIR. Resistant strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used for the antimicrobial analysis of Ch/ALG-gAgNPs using disc diffusion and microdilution methods. The effects of NPs on cell viability and apoptosis in L929 normal cells were determined using MTT assay and annexin/PI staining, respectively. RESULTS Physicochemical characterizations confirmed Ch/ALG-gAgNPs to be spherical and uniformly dispersed, and their size ranged from 50 to 500 nm. Ch/ALG-gAgNPs inhibited the growth of microbial strains in a dose-dependent manner. The antibacterial effect of Ch/ALG-gAgNPs was significantly higher than cAgNPs. The Ch/ALG-gAgNPs showed little cytotoxicity against normal cells at concentrations less than 50 μg/ml. Cytotoxicity effects of Ch/ALG-gAgNP were less than cAgNPs. Flow cytometry and real-time PCR results showed a decrease in apoptosis percentage and BAX marker in the presence of Ch/ALG-gAgNPs relative to when the cell was treated with cAgNPs. CONCLUSION Current findings introduce novel gAgNPs modified with chitosan/alginate for use in medicine.
Collapse
Affiliation(s)
- Mahnaz Mohtashami
- Department of Microbiology, School of Basic Science, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | | | - Zahra Hojati Bonab
- Department of Microbiology, School of Basic Science, Islamic Azad University, Bonab Branch, Bonab, Iran
| | - Mohammad Reza Amiryousefi
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sajad Yaghoobi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Samaneh Dolatabadi
- Department of Microbiology, School of Basic Science, Islamic Azad University, Neyshabur Branch, Neyshabur, Iran
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Biotechnology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Bashal AH, Khalil KD, Abu-Dief AM, El-Atawy MA. Cobalt oxide-chitosan based nanocomposites: Synthesis, characterization and their potential pharmaceutical applications. Int J Biol Macromol 2023; 253:126856. [PMID: 37714231 DOI: 10.1016/j.ijbiomac.2023.126856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
This research aimed to prepare, characterize, and investigate the biological efficacy of chitosan‑cobalt (II) oxide hybrid nanocomposites against a variety of micrograms. Analytical methods, FTIR, SEM, XRD, and EDX, were utilized to thoroughly characterize the produced CS-CoO nanocomposite. In FTIR spectra, the presence of the chitosan peaks in addition to that of CoO at 681 and 558 cm-1 confirmed that CoO molecules interact with the chitosan backbone. Moreover, in the XRD measurements, significantly less chitosan crystallinity was observed. Due to the incorporation of a larger amount of cobalt oxide within the polymer matrix. Applying the Debye-Sherrer calculation, the crystallite size was obviously reduced from 48.24 nm (5 wt %) to 19.27 nm (20 wt %) for the obtained nanocomposites. Furthermore, SEM measurements showed a transformation in the chitosan surface with the physical adsorption of CoO molecules on the surface active sites of chitosan that were visible in SEM graphs. Additionally, EDX determined the amount of Co element within the chitosan, with the sample of 20 wt % weight being found to be 19.26 wt %. The variable dose well-diffusion method was utilized to assess the efficacy of the CS-Co nanocomposite against a wide range of bacteria and fungi. CS - CoO nanocomposite is more effective than chitosan alone as an antibacterial agent against both Gram-positive and Gram-negative bacteria. Moreover, the MTT approach was employed to measure the cytotoxicity based on the cell viability of different cancer cell lines under different UV expositions. The proportion of the destroyed cells elevated due to the easy diffusion of CS - CoO nanocomposite into cancer cells as UV-free anticancer activity. UV exposition has stimulated the anticancer activity, which was attributed to an increase in ROS generation caused by the increased dose of the chitosan and its CS - CoO nanocomposites. Furthermore, the antioxidant capacities of the prepared nano-composites thin films were validated using the DPPH free radical scavenging method and showed good antioxidant activities with the DPPH radical compared with standard vitamin C. It has been noticed that by increasing the content of CoO nanoparticles from 5 to 20 wt %, the biological activity of the prepared nanocomposites was enhanced.
Collapse
Affiliation(s)
- Ali H Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu El-Bahr 46423, Saudi Arabia.
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu El-Bahr 46423, Saudi Arabia; Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ahmed M Abu-Dief
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah 30002, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Mohamed A El-Atawy
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu El-Bahr 46423, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, P.O. 426 Ibrahemia, Alexandria 21321, Egypt.
| |
Collapse
|
14
|
Yang Y, Liu Y, Song L, Cui X, Zhou J, Jin G, Boccaccini AR, Virtanen S. Iron oxide nanoparticle-based nanocomposites in biomedical application. Trends Biotechnol 2023; 41:1471-1487. [PMID: 37407395 DOI: 10.1016/j.tibtech.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Iron-oxide-based biomagnetic nanocomposites, recognized for their significant properties, have been utilized in MRI and cancer treatment for several decades. The expansion of clinical applications is limited by the occurrence of adverse effects. These limitations are largely attributed to suboptimal material design, resulting in agglomeration, reduced magnetic relaxivity, and inadequate functionality. To address these challenges, various synthesis methods and modification strategies have been used to tailor the size, shape, and properties of iron oxide nanoparticle (FeONP)-based nanocomposites. The resulting modified nanocomposites exhibit significant potential for application in diagnostic, therapeutic, and theranostic contexts, including MRI, drug delivery, and anticancer and antimicrobial activity. Yet, their biosafety profile must be rigorously evaluated. Such efforts will facilitate the broader clinical translation of FeONP-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Yuyun Yang
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China.
| | - Yuejun Liu
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Laiming Song
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Xiufang Cui
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Juncen Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Guo Jin
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sannakaisa Virtanen
- Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Phalake SS, Somvanshi SB, Tofail SAM, Thorat ND, Khot VM. Functionalized manganese iron oxide nanoparticles: a dual potential magneto-chemotherapeutic cargo in a 3D breast cancer model. NANOSCALE 2023; 15:15686-15699. [PMID: 37724853 DOI: 10.1039/d3nr02816j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Localized heat generation from manganese iron oxide nanoparticles (MIONPs) conjugated with chemotherapeutics under the exposure of an alternating magnetic field (magneto-chemotherapy) can revolutionize targeted breast cancer therapy. On the other hand, the lack of precise control of local temperature and adequate MIONP distribution in laboratory settings using the conventional two-dimensional (2D) cellular models has limited its further translation in tumor sites. Our current study explored advanced 3D in vitro tumor models as a promising alternative to replicate the complete range of tumor characteristics. Specifically, we have focused on investigating the effectiveness of MIONP-based magneto-chemotherapy (MCT) as an anticancer treatment in a 3D breast cancer model. To achieve this, chitosan-coated MIONPs (CS-MIONPs) are synthesized and functionalized with an anticancer drug (doxorubicin) and a tumor-targeting aptamer (AS1411). CS-MIONPs with a crystallite size of 16.88 nm and a specific absorption rate (SAR) of 181.48 W g-1 are reported. In vitro assessment of MCF-7 breast cancer cell lines in 2D and 3D cell cultures demonstrated anticancer activity. In the 2D and 3D cancer models, the MIONP-mediated MCT reduced cancer cell viability to about 71.48% and 92.2%, respectively. On the other hand, MIONP-mediated MCT under an AC magnetic field diminished spheroids' viability to 83.76 ± 2%, being the most promising therapeutic modality against breast cancer.
Collapse
Affiliation(s)
- Satish S Phalake
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416 006, Maharashtra, India.
| | - Sandeep B Somvanshi
- School of Materials Engineering, Purdue University, West Lafayette, USA
- Department of Physics, Dr. B. A. M. University, Aurangabad-431004, Maharashtra, India
| | - Syed A M Tofail
- Department of Physics and Bernal Institute, Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Co. Limerick, Limerick, V94 T9PX, Ireland.
| | - Nanasaheb D Thorat
- Department of Physics and Bernal Institute, Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Co. Limerick, Limerick, V94 T9PX, Ireland.
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Vishwajeet M Khot
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416 006, Maharashtra, India.
| |
Collapse
|
16
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
17
|
Manjusha V, Rajeev MR, Anirudhan TS. Magnetic nanoparticle embedded chitosan-based polymeric network for the hydrophobic drug delivery of paclitaxel. Int J Biol Macromol 2023; 235:123900. [PMID: 36870643 DOI: 10.1016/j.ijbiomac.2023.123900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Safe delivery of hydrophobic drugs to the tumor site is a major problem for the scientific community. To improve the in vivo efficacy of hydrophobic drugs by avoiding solubility concerns and providing targeted delivery by nanoparticle, we have developed robust iron oxide nanoparticles coated chitosan with ([2- (methacryloyloxy) ethyl] trimethyl ammonium chloride) (METAC) [CS-IONPs-METAC-PTX] as a drug carrier for the delivery of hydrophobic drug, paclitaxel (PTX). Drug carrier was characterized using various techniques like FT-IR, XRD, FE-SEM, DLS and VSM. Maximum drug release of 93.50 ± 2.80 % from CS-IONPs-METAC-PTX occurs at pH 5.5 in 24 h. Significantly, the nanoparticles exhibited excellent therapeutic efficacy when appraised in L929 (Fibroblast) cell lines with a good cell viability profile. CS-IONPs-METAC-PTX shows excellent cytotoxic effect in MCF-7 cell lines. In 100 μg/mL concentration, CS-IONPs-METAC-PTX formulation shows 13.46 ± 0.40 % of cell viability. Selectivity index of 2.12 indicates the highly selective and safe performance of CS-IONPs-METAC-PTX. Admirable hemocompatibility of the developed polymer material demonstrating its applicability towards drug delivery. Results of the investigation substantiate that the prepared drug carrier is a potent material for the delivery of PTX.
Collapse
Affiliation(s)
- V Manjusha
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - M R Rajeev
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India
| | - T S Anirudhan
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum 695 581, India.
| |
Collapse
|
18
|
Badawy MMM, Abdel-Hamid GR, Mohamed HE. Antitumor Activity of Chitosan-Coated Iron Oxide Nanocomposite Against Hepatocellular Carcinoma in Animal Models. Biol Trace Elem Res 2023; 201:1274-1285. [PMID: 35867269 PMCID: PMC9898336 DOI: 10.1007/s12011-022-03221-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent and lethal cancers worldwide. Chitosan-coated iron oxide nanocomposite (Fe3O4/Cs) is a promising bio-nanomaterial for many biological applications. The objective of this research was to evaluate the anticancer efficacy of Fe3O4/Cs against HCC in animal models. Fe3O4 nanoparticles were prepared and added to chitosan solution; then, the mixture was exposed to gamma radiation at a dose of 20 kGy. Rats have received diethylnitrosamine (DEN) orally at a dose of 20 mg/kg body weight 5 times per week during a period of 10 weeks to induce HCC and then have received Fe3O4/Cs intraperitoneal injection at a dose of 50 mg/kg body weight 3 times per week during a period of 4 weeks. After the last dose of Fe3O4/Cs administration, animals were sacrificed. DEN induced upregulation of PI3K/Akt/mTOR and MAPK (ERK, JNK, P38) signaling pathways and inflammatory markers (TLR4, iNOS, and TNF-α). DEN also decreases cleaved caspase-3 and increases liver enzymes (ALT, AST, and GGT) activities. Administration of Fe3O4/Cs significantly ameliorated the above-mentioned parameters.
Collapse
Affiliation(s)
- Monda M. M. Badawy
- Department of Health Radiation Research, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gehan R. Abdel-Hamid
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hebatallah E. Mohamed
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
19
|
Fragou F, Theofanous A, Deligiannakis Y, Louloudi M. Nanoantioxidant Materials: Nanoengineering Inspired by Nature. MICROMACHINES 2023; 14:383. [PMID: 36838085 PMCID: PMC9963756 DOI: 10.3390/mi14020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Oxidants are very active compounds that can cause damage to biological systems under specific environmental conditions. One effective way to counterbalance these adverse effects is the use of anti-oxidants. At low concentrations, an antioxidant is defined as a compound that can delay, control, or prevent an oxidative process. Antioxidants exist in plants, soil, and minerals; therefore, nature is a rich source of natural antioxidants, such as tocopherols and polyphenols. In nature, antioxidants perform in tandem with their bio-environment, which may tune their activity and protect them from degradation. In vitro use of antioxidants, i.e., out of their biomatrix, may encounter several drawbacks, such as auto-oxidation and polymerization. Artificial nanoantioxidants can be developed via surface modification of a nanoparticle with an antioxidant that can be either natural or synthetic, directly mimicking a natural antioxidant system. In this direction, state-of-the-art nanotechnology has been extensively incorporated to overcome inherent drawbacks encountered in vitro use of antioxidants, i.e., out of their biomatrix, and facilitate the production and use of antioxidants on a larger scale. Biomimetic nanoengineering has been adopted to optimize bio-medical antioxidant systems to improve stability, control release, enhance targeted administration, and overcome toxicity and biocompatibility issues. Focusing on biotechnological sciences, this review highlights the importance of nanoengineering in developing effective antioxidant structures and comparing the effectiveness of different nanoengineering methods. Additionally, this study gathers and clarifies the different antioxidant mechanisms reported in the literature and provides a clear picture of the existing evaluation methods, which can provide vital insights into bio-medical applications.
Collapse
Affiliation(s)
- Fotini Fragou
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Annita Theofanous
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Maria Louloudi
- Laboratory of Biomimetic Catalysis & Hybrid Materials, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| |
Collapse
|
20
|
Preparation of rutin-loaded mesoporous silica nanoparticles and evaluation of its physicochemical, anticancer, and antibacterial properties. Mol Biol Rep 2023; 50:203-213. [PMID: 36319783 DOI: 10.1007/s11033-022-07953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The studies have shown that rutin has great potential as an anticancer and antimicrobial plant base agent; nevertheless, poor bioavailability and low aqueous solubility of rutin limit its application. One of the beneficial routes to increase the solubility and bioavailability of rutin is the development of nanoparticulate material. This study aimed to assess the anticancer and antibacterial effects of rutin-loaded mesoporous silica nanoparticles (RUT-MSNs). METHODS RUT-MSNs were prepared and physicochemically characterized. The cytotoxicity of RUT-MSNs on the HN5 cells as head and neck cancer cells was evaluated. The expression level of apoptosis-related genes such as Bcl-2 and Bax genes were evaluated. In addition, ROS production of RUT-MSNs treated cells was assessed. In addition, minimum inhibitory concentration (MIC), biofilm, and attachment inhibitory effects of RUT-MSNs compared with free rutin were assessed against different bacterial strains. RESULTS Transmission electron microscopy (TEM) showed mesoporous rod-shaped nanoparticles with an average particle size of less than 100 nm. RUT-MSNs displayed the cytotoxic effect with IC50 of 20.23 µM in 48 h of incubation time (p < 0.05). The elevation in the ratio of Bax/Bcl-2 was displayed within the IC50 concentration of RUT-MSNs in 48 h (p < 0.05). The antibacterial action of rutin was improved by loading rutin in MSNs to the nano-sized range in the MIC test. CONCLUSION The anticancer and antibacterial effects of RUT-MSNs were considerably more than rutin. RUT-MSNs inhibited the growth of HN5 cells by inducing apoptosis and producing ROS. These results suggest that RUT-MSNs may be useful in the treatment of cancers and infections.
Collapse
|
21
|
Bhatia N, Kumari A, Chauhan N, Thakur N, Sharma R. Duchsnea indica plant extract mediated synthesis of copper oxide nanomaterials for antimicrobial activity and free-radical scavenging assay. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2022.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Effective Removal of Methylene Blue from Simulated Wastewater Using ZnO-Chitosan Nanocomposites: Optimization, Kinetics, and Isotherm Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154746. [PMID: 35897923 PMCID: PMC9332308 DOI: 10.3390/molecules27154746] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Successful synthesis of ZnO-chitosan nanocomposites was conducted for the removal of methylene blue from an aqueous medium. Remarkable performance of the nanocomposites was demonstrated for the effective uptake of the dye, thereby achieving 83.77, 93.78 and 97.93 mg g-1 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. The corresponding adsorption efficiency was 88.77, 93.78 and 97.95 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. Upon regeneration, good reusability of the nanocomposites was manifested for the continuous removal of the dye up to six consecutive cycles. The adsorption process was kinetically described by a pseudo-first order model, while the isotherms were best fitted by the Langmuir model.
Collapse
|
23
|
Advances in research with rutin-loaded nanoformulations in mitigating lung diseases. Future Med Chem 2022; 14:1293-1295. [PMID: 35876083 DOI: 10.4155/fmc-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Abstract
Nanocomposites based on polymers and nanoparticles are used in agriculture for photoconversion of solar radiation, as a basis for covering material, as a packaging material, and as functional films. At the same time, nanocomposites are almost never used in agriculture as biosafe structural materials. In this work, we have developed a technology for obtaining a nanocomposite based on PLGA and iron oxide nanoparticles. The nanocomposite has unique physical and chemical properties and also exhibits pronounced antibacterial properties at a concentration of iron oxide nanoparticles of more than 0.01%. At the same time, the nanocomposite does not affect the growth and development of pepper and is biocompatible with mammalian cells. Nanocomposites based on PLGA and iron oxide nanoparticles can be an attractive candidate for the manufacture of structural and packaging materials in agriculture.
Collapse
|
25
|
Umoren PS, Kavaz D, Nzila A, Sankaran SS, Umoren SA. Biogenic Synthesis and Characterization of Chitosan-CuO Nanocomposite and Evaluation of Antibacterial Activity against Gram-Positive and -Negative Bacteria. Polymers (Basel) 2022; 14:1832. [PMID: 35567006 PMCID: PMC9104765 DOI: 10.3390/polym14091832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
Chitosan-copper oxide (CHT-CuO) nanocomposite was synthesized using olive leaf extract (OLE) as reducing agent and CuSO4⋅5H2O as precursor. CHT-CuO nanocomposite was prepared using an in situ method in which OLE was added to a solution of chitosan and CuSO4⋅5H2O mixture in the ratio of 1:5 (v/v) and heated at a temperature of 90 °C. The obtained CHT-CuO nanocomposite was characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) spectrophotometry, energy-dispersive X-ray spectroscopy (EDAX), Fourier transform infrared spectroscopy (FTIR), and high-resolution transmission electron microscopy (TEM). TEM results indicated that CHT-CuO nanocomposite are spherical in shape with size ranging from 3.5 to 6.0 nm. Antibacterial activity of the synthesized nanocomposites was evaluated against Gram-positive (Bacillus cereus, Staphyloccous haemolytica and Micrococcus Luteus) and Gram-negative (Escherichia coli, Pseudomonas citronellolis, Pseudomonas aeruginosa, kliebisella sp., Bradyrhizobium japonicum and Ralstonia pickettii) species by cup platting or disc diffusion method. Overall, against all tested bacterial strains, the diameters of the inhibition zone of the three nanocomposites fell between 6 and 24 mm, and the order of the antimicrobial activity was as follows: CuO-1.0 > CuO-0.5 > CuO-2.0. The reference antibiotic amoxicillin and ciprofloxacin showed greater activity based on the diameter of zones of inhibition (between 15−32 mm) except for S. heamolytica and P. citronellolis bacteria strains. The nanocomposites MIC/MBC were between 0.1 and 0.01% against all tested bacteria, except S. heamolityca (>0.1%). Based on MIC/MBC values, CuO-0.5 and CuO-1.0 were more active than CuO-2.0, in line with the observations from the disc diffusion experiment. The findings indicate that these nanocomposites are efficacious against bacteria; however, Gram-positive bacteria were less susceptible. The synthesized CHT-CuO nanocomposite shows promising antimicrobial activities and could be utilized as an antibacterial agent in packaging and medical applications.
Collapse
Affiliation(s)
- Peace Saviour Umoren
- Department of Bioengineering, Cyprus International University, via Mersin 10, Nicosia 98258, Turkey;
| | - Doga Kavaz
- Department of Bioengineering, Cyprus International University, via Mersin 10, Nicosia 98258, Turkey;
| | - Alexis Nzila
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.N.); (S.S.S.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Saravanan Sankaran Sankaran
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.N.); (S.S.S.)
| | - Saviour A. Umoren
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
26
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
27
|
Saeed T, Naeem A, Din IU, Farooq M, Khan IW, Hamayun M, Malik T. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127902. [PMID: 34872779 DOI: 10.1016/j.jhazmat.2021.127902] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 05/10/2023]
Abstract
The iron metal-organic framework composite with chitosan (CS/MOF-235) was synthesized using a solvothermal method and its synthesis was confirmed by surface area, PZC, XRD, FESEM, XPS, TGA, TEM, EDX mapping and EDX analysis. The chitosan composite of the iron metal-organic framework (CS/MOF-235), MOF-235 and chitosan were used for the removal of methylene blue (MB) and methyl orange (MO) from aqueous solutions. The maximum adsorption capacities were found to be 2857-2326 mg/g for CS/MOF-235, 357 - 236 mg/g for MOF-235 and 209-171 mg/g for chitosan (CS) which reveal that the adsorption capacity of CS/MOF-235 is almost 8 and 14 times greater than MOF-235 and chitosan respectively. The adsorption selectivity of the (CS/MOF-235) towards the dye was in the order MO > MB. Moreover, hydrogen bonding, pi-pi bonding, pore-filling, electrostatic interactions and chemisorption were proposed as possible mechanisms for the removal of dyes onto CS/MOF-235. The intraparticle diffusion and Richenberg models confirmed that the adsorption process was jointly controlled by the pore and film diffusion. The negative values of the isosteric heat of adsorption (ΔH¯) fall with surface coverage indicating that a lesser amount of heat is required for the greater uptake of dyes.
Collapse
Affiliation(s)
- Tooba Saeed
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Abdul Naeem
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan.
| | - Israf Ud Din
- Prince Sattam Bin Abdul Aziz University, Saudi Arabia
| | - Muhammad Farooq
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Ihtisham Wali Khan
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| | - Muhammad Hamayun
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Pakistan
| | - Tabassum Malik
- National Center of Excellence in Physical Chemistry, University of Peshawar, Pakistan
| |
Collapse
|
28
|
Maheo AR, B. SMV, T. AAP. Biosynthesis and characterization of Eupatorium adenophorum and chitosan mediated Copper oxide nanoparticles and their antibacterial activity. RESULTS IN SURFACES AND INTERFACES 2022. [DOI: 10.1016/j.rsurfi.2022.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Quiñones ED, Lu TY, Liu KT, Fan YJ, Chuang EY, Yu J. Glycol chitosan/iron oxide/polypyrrole nanoclusters for precise chemodynamic/photothermal synergistic therapy. Int J Biol Macromol 2022; 203:268-279. [PMID: 35051505 DOI: 10.1016/j.ijbiomac.2022.01.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
Noninvasive photothermal therapy (PTT) represents a promising direction for more modern and precise medical applications. However, PTT efficacy is still not satisfactory due to the existence of heat shock proteins (HSPs) and poorly targeted delivery. Herein, the design of a nanosystem with improved delivery efficacy for anticancer treatment employing the synergetic effects of reactive oxygen species (ROS)-driven chemodynamic therapy (CDT) to inactivated HSPs with photothermal-hyperthermia was therefore achieved through the development of pH-targeting glycol chitosan/iron oxide enclosed core polypyrrole nanoclusters (GCPI NCs). The designed NCs effectively accumulated toward cancer cells due to their acidic microenvironment, initiating ROS generation via Fenton reaction at the outset and performing site-specific near infrared (NIR)-photothermal effect. A comprehensive analysis of both surface and bulk material properties of the CDT/PTT NCs as well as biointerface properties were ascertained via numerous surface specific analytical techniques by bringing together heightened accumulation of CDT/PTT NCs, which can significantly eradicate cancer cells thus minimizing the side effects of conventional chemotherapies. All of these attributes act in synergy over the cancer cells succeeding in fashioning NC's able to act as competent agents in the MRI-monitored enhanced CDT/PTT synergistic therapy. Findings in this study evoke attention in future oncological therapeutic strategies.
Collapse
Affiliation(s)
- Edgar Daniel Quiñones
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
30
|
Soleimani Amiri S, Hossaini Z, Azizi Z. Synthesis and investigation of antioxidant and antimicrobial activity of new pyrazinopyrroloazepine derivatives using Fe
3
O
4
/CuO/ZnO@MWCNT MNCs as organometallic nanocatalyst by new MCRs. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Zahra Azizi
- Department of Chemistry, Karaj Branch Islamic Azad University Karaj Iran
| |
Collapse
|
31
|
Marchi RC, Campos IA, Santana VT, Carlos RM. Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
33
|
Cheng SY, Chiang YL, Chang YH, Thissen H, Tsai SW. An aqueous-based process to bioactivate poly(ε-caprolactone)/mesoporous bioglass composite surfaces by prebiotic chemistry-inspired polymer coatings for biomedical applications. Colloids Surf B Biointerfaces 2021; 205:111913. [PMID: 34120089 DOI: 10.1016/j.colsurfb.2021.111913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/23/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Despite the wide use of aliphatic polyesters, such as poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL), for many biomedical applications, these materials are limited due to their hydrophobic properties and lack of functional groups to bond with ligands to enhance the cell reorganization. Recently, a composite consisting of bioglass and PCL was demonstrated to enhance the mechanical strength and to improve the degradation rate. Although numerous approaches have been developed to improve the wettability of aliphatic polyesters to create a favorable interface with cells, only few surface modification methods can be independently applied to surfaces with different material. In this work, mesoporous bioglass (MBG) nanoparticles embedded in PCL films were modified by the polymerization of aminomalonitrile (AMN) with 3,4,5-trihydroxybenzaldehyde (THBA). The copolymer layer was further utilized as a mediator to conjugate chitosan and evaluate the antibacterial efficacy. Our results show that the hydrophilicity of the composite membranes significantly improved after treatment. In addition, after immersion in simulated body fluid (SBF) for 14 days, hydroxyapatite formation was only observed on the treated membranes. This result demonstrates that the surface treatment did not alter the MBG bioactivity. Moreover, the cell culture results reveal that the extension level of cells and expression of alkaline phosphatase activity (ALP) of osteoblast-like (MG63) cells were higher on treated composite films compared to untreated ones. The results imply that the treatment procedure can be simultaneously and homogeneously applied to the organic/inorganic composites. In addition, Staphylococcus aureus adhesion on AMN-co-THBA and chitosan/ AMN-co-THBA was significantly lower than untreated PCL. Moreover, the percentage of dead bacteria was highest on the chitosan/ AMN-co-THBA membranes. These results indicate that the AMN-co-THBA modification can be used in composite materials and complex constructs, and it provides a potential method to create versatile surface properties for biomedical applications.
Collapse
Affiliation(s)
- Sheng-Ying Cheng
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Lun Chiang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Shiao-Wen Tsai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 333, Taiwan; Department of Periodontics, Chang Gung Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
34
|
Appu M, Lian Z, Zhao D, Huang J. Biosynthesis of chitosan-coated iron oxide (Fe 3O 4) hybrid nanocomposites from leaf extracts of Brassica oleracea L. and study on their antibacterial potentials. 3 Biotech 2021; 11:271. [PMID: 34017676 DOI: 10.1007/s13205-021-02820-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
In this study, we prepared chitosan (CS)-coated iron oxide (Fe3O4) nanocomposites (NCs) by employing the aqueous leaf extract of Brassica oleracea L. and evaluated its antimicrobial potential. The characterization of hybrid CS-Fe3O4 NCs was performed using Fourier-transform infrared spectroscopy (FTIR) analysis to evaluate the chemical bonding of chitosan to nanoparticles (NPs). X-ray photoelectron spectroscopy (XPS) studies revealed the presence of oxidation state elements Fe 2p, O 1s, N 1s, and C 1s, and the zeta potential analysis was found to have well-colloidal stability (+ 76.9 mV) of NCs. Transmission electron microscopy (TEM) analysis determined that CS-Fe3O4 NCs were spherical with an average particle size of 27 nm. The X-ray diffractometer (XRD) spectrum ascertained the crystallinity of the hybrid NCs and the vibrating sample magnetometer (VSM) inferred the ferromagnetic behavior of the synthesized NCs. Furthermore, the significant antibacterial efficacy of NPs was demonstrated against foodborne bacterial pathogens, such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and the highest zone of inhibition was observed to be 11.5 mm and 13.5 mm in CS-Fe3O4 NCs, respectively. In comparison with Fe3O4 NPs, synergistic impacts of CS-Fe3O4 NCs displayed great antibacterial potential as exhibited by a clearly enlarged zone. Thus, CS-Fe3O4 NCs could be used as efficacious antimicrobial agents in food packaging and food preservation fields.
Collapse
|
35
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
36
|
Elemike EE, Onwudiwe DC, Mbonu JI. Green Synthesis, Structural Characterization and Photocatalytic Activities of Chitosan-ZnO Nano‐composite. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01988-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Panchu SJ, Swart HC, Savariroyan SRI. Synthesis of biocompatible chitosan functionalized Ag decorated biocomposite for effective antibacterial and anticancer activity. Int J Biol Macromol 2021; 178:270-282. [PMID: 33647336 DOI: 10.1016/j.ijbiomac.2021.02.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
The transition-metal dichalcogenides (TMDCs) like MoS2 and WS2 are a new and interesting class of materials and show considerable promise for use in a wide variety of fields, including nanomedicine for cancer. The eco-friendly, biodegradability, toxicity, and antimicrobial activity remain an open issue. Herein, we focused on the current demands of two dimensional (2D) TMDCs and produced high-quality, few-layered MoS2 nanosheets. Noble metal Ag incorporated into the 2D-CS/MoS2 NC by the liquid exfoliated process. The manufactured CS/MoS2/Ag hybrid NC showed excellent antibacterial activity against two microorganisms such as Gram-positive (21, 27, and 33 mm) and Gram-negative bacteria (23, 30, and 39 mm). The CS/MoS2/Ag hybrid NC was designed to have significant antibacterial activity against E.coli bacteria than S.aureus. Furthermore, the hybrid NC has a 74.18% cell inhibition against MCF-7 cancer cells. According to the literature relevant, it is the first extensive experimental analysis on the nano-bio interaction of 2D TMDCs nanomaterials in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India.
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Selvam Samayanan
- Department of Chemical and Biochemical Engineering, Dongguk University, Jung-Gu, Pil-Dong, Seoul 100715, Republic of Korea
| | - Sarojini Jeeva Panchu
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | - Hendrik C Swart
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
| | | |
Collapse
|
38
|
Bag J, Mukherjee S, Ghosh SK, Das A, Mukherjee A, Sahoo JK, Tung KS, Sahoo H, Mishra M. Fe 3O 4 coated guargum nanoparticles as non-genotoxic materials for biological application. Int J Biol Macromol 2020; 165:333-345. [PMID: 32980413 DOI: 10.1016/j.ijbiomac.2020.09.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The current study aims to check various behavioural, developmental, cytotoxic, and genotoxic effects of Fe3O4-GG nanocomposite (GGNCs) on Drosophila melanogaster. Fe3O4 nanoparticles were prepared by the chemical co-precipitation method and cross-linked with guargum nanoparticles to prepare the nanocomposites. The nanocomposites were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and FTIR techniques. To investigate the biomolecular interaction, GGNCs was further tagged with Fluorescein isothiocyanate. Various concentrations of nanocomposites were mixed with the food and flies were allowed to complete the life cycle. The life cycle of the flies was studied as a function of various concentrations of GGNCs. The 1st instar larvae after hatching from the egg start eating the food mixed with GGNCs. The 3rd instar larvae were investigated for various behavioural and morphological abnormalities within the gut. The 3rd instar larva has defective crawling speed, crawling path, and more number of micronuclei within the gut. Similarly, in adult flies thermal sensitivity, climbing behaviour was found to be altered. In adult flies, a significant reduction in body weight was found which is further correlated with variation of protein, carbohydrate, triglyceride, and antioxidant enzymes. Altogether, the current study suggests GGNCs as a non-genotoxic nanoparticle for various biological applications.
Collapse
Affiliation(s)
- Janmejaya Bag
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Sumanta Kumar Ghosh
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India
| | - Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India
| | - Arup Mukherjee
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India; Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, West Bengal 741249, India.
| | - Jitendra Kumar Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India; Department of Basic Science and Humanities, GIET University, Gunupur, Odisha 765022, India
| | - Kshyama Subhadarsini Tung
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India; Centre for Nanomaterials, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India; Centre for Nanomaterials, NIT Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
39
|
Abbas HS, Krishnan A, Kotakonda M. Antifungal and antiovarian cancer properties of α Fe 2O 3 and α Fe 2O 3/ZnO nanostructures synthesised by Spirulina platensis. IET Nanobiotechnol 2020; 14:774-784. [PMID: 33399108 PMCID: PMC8676415 DOI: 10.1049/iet-nbt.2020.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Candida albicans (C. albicans) infection shows a growing burden on human health, and it has become challenging to search for treatment. Therefore, this work focused on the antifungal activity, and cytotoxic effect of biosynthesised nanostructures on human ovarian tetracarcinoma cells PA1 and their corresponding mechanism of cell death. Herein, the authors fabricated advanced biosynthesis of uncoated α-Fe2O3 and coated α-Fe2O3 nanostructures by using the carbohydrate of Spirulina platensis. The physicochemical features of nanostructures were characterised by UV-visible, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The antifungal activity of these nanostructures against C. albicans was studied by the broth dilution method, and examined by 2', 7'-dichlorofluorescein diacetate staining. However, their cytotoxic effects against PA1 cell lines were evaluated by MTT and comet assays. Results indicated characteristic rod-shaped nanostructures, and increasing the average size of α-Fe2O3@ZnO nanocomposite (105.2 nm × 29.1 nm) to five times as compared to α-Fe2O3 nanoparticles (20.73nm × 5.25 nm). The surface coating of α-Fe2O3 by ZnO has increased its antifungal efficiency against C. albicans. Moreover, the MTT results revealed that α-Fe2O3@ZnO nanocomposite reduces PA1 cell proliferation due to DNA fragmentation (IC50 18.5 μg/ml). Continual advances of green nanotechnology and promising findings of this study are in favour of using the construction of rod-shaped nanostructures for therapeutic applications.
Collapse
Affiliation(s)
- Heba Salah Abbas
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620024, Tamilnadu, India.
| | - Akilandeswari Krishnan
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620024, Tamilnadu, India
| | - Muddukrishnaiah Kotakonda
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli-620024, Tamilnadu, India
| |
Collapse
|
40
|
Honarmand M, Mirzadeh M, Honarmand M. Green synthesis of SnO 2-ZnO-eggshell nanocomposites and study of their application in removal of mercury (II) ions from aqueous solution. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1581-1593. [PMID: 33312663 PMCID: PMC7721856 DOI: 10.1007/s40201-020-00576-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Mercury (Hg) in dental amalgam is the world's hidden source of mercury contamination. The development of more eco-friendly and cost-effective adsorbents to reduce mercury pollutants in wastewater is highly desirable and is still a major challenge. In this study, a novel nanocomposite was synthesized and used as an efficient adsorbent for the removal of Hg(II) ions from aqueous solution. METHODS A green and cost-effective method was described to the synthesis of SnO2-ZnO-eggshell nanocomposites using teucrium polium extract as a renewable reductant and mild stabilizer. The biosynthesized nanocomposites were characterized by various techniques. The novel SnO2-ZnO-eggshell nanocomposites were used as an effective adsorbent in the removal of mercury (II) ions. To achieve the maximum absorption efficiency of Hg(II) ions, the effect of operating factors such as pH value, the dose of catalyst, the initial metal concentration of Hg(II) ions, and catalyst type were evaluated. RESULTS The removal percentage and adsorption capacity of Hg(II) were obtained 99.15% and 396.6 mg.g-1, respectively, under optimal conditions after 5 minutes. The selectivity of SnO2-ZnO-eggshell nanocomposites for the adsorption of metal ions was studied, and the highest selectivity was obtained for adsorption of Hg (II) ions. Furthermore, the SnO2- ZnO-eggshell nanocomposites could be recovered and reused at least three times without considerable loss of their efficiency. CONCLUSIONS The present approach has advantages such as rapidity, simplicity, selectivity, low cost and, most importantly, the use of nanocomposites containing a bio-waste material of eggshell for removal of Hg(II) ions from aqueous solution.
Collapse
Affiliation(s)
- Marieh Honarmand
- Oral and Dental Disease Research Center, Department of Oral Medicine, School of Dentistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Mirzadeh
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
| | - Moones Honarmand
- Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran
| |
Collapse
|
41
|
Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology 2020; 18:172. [PMID: 33225973 PMCID: PMC7682049 DOI: 10.1186/s12951-020-00704-4] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
Capping agents are of utmost importance as stabilizers that inhibit the over-growth of nanoparticles and prevent their aggregation/coagulation in colloidal synthesis. The capping ligands stabilize the interface where nanoparticles interact with their medium of preparation. Specific structural features of nanoparticles are attributed to capping on their surface. These stabilizing agents play a key role in altering the biological activities and environmental perspective. Stearic effects of capping agents adsorbed on the surface of nanoparticles are responsible for such changing physico-chemical and biological characteristics. Firstly, this novel review article introduces few frequently used capping agents in the fabrication of nanoparticles. Next, recent advancements in biomedicine and environmental remediation approaches of capped nanoparticles have been elaborated. Lastly, future directions of the huge impact of capping agents on the biological environment have been summarized.![]()
Collapse
Affiliation(s)
- Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, 110122, China.
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sania Naz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samson O Aisida
- Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Nigeria
| | - Noor Ul Ain
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, 110122, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
42
|
Kobyliukh A, Olszowska K, Szeluga U, Pusz S. Iron oxides/graphene hybrid structures - Preparation, modification, and application as fillers of polymer composites. Adv Colloid Interface Sci 2020; 285:102285. [PMID: 33070104 DOI: 10.1016/j.cis.2020.102285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 01/06/2023]
Abstract
The current status of knowledge regarding magnetic hybrid structures based on graphene or carbon nanotubes with various forms of iron oxides is reviewed. The paper starts with a summary of the preparation and properties of iron oxide nanoparticles, both untreated and coated with silica or polymer layers. In the next section, organic-inorganic hybrid materials obtained as a result of a combination of graphene or carbon nanotubes and iron chemical compounds are characterized and discussed. These hybrids constitute an increasing percentage of all consumable high performance biomedical, electronic, and energy materials due to their valuable properties and low production costs. The potential of their application as components of materials used in corrosion protection, catalysis, spintronics, biomedicine, photoelectrochemical water splitting and groundwater remediation, as well as magnetic nanoparticles in polymer matrices, are also presented. The last part of this review article is focused on reporting the most recent developments in design and the understanding of the properties of polymer composites reinforced with nanometer-sized iron oxide/graphene and iron oxide/carbon nanotubes hybrid fillers. The discussion presents comparative analysis of the magnetic, electromagnetic shielding, electrical, thermal, and mechanical properties of polymer composites with various iron oxide/graphene structures. It is shown that the introduction of hybrid filler nanoparticles into polymer matrices enhances both the macro- and microproperties of final composites as a result of synergistic effects of individual components and the simultaneous formation of an oriented filler network in the polymer. The reinforcing effect is related to the structure and geometry of hybrid nanoparticles applied as a filler, the interactions between the filler particles, their concentration in a composite, and the method of composite processing.
Collapse
Affiliation(s)
- Anastasiia Kobyliukh
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland
| | - Karolina Olszowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland
| | - Urszula Szeluga
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland.
| | - Sławomira Pusz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, Poland
| |
Collapse
|
43
|
Negahdari R, Bohlouli S, Sharifi S, Maleki Dizaj S, Rahbar Saadat Y, Khezri K, Jafari S, Ahmadian E, Gorbani Jahandizi N, Raeesi S. Therapeutic benefits of rutin and its nanoformulations. Phytother Res 2020; 35:1719-1738. [PMID: 33058407 DOI: 10.1002/ptr.6904] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Rutin as a natural flavonoid compound has revealed an extensive range of therapeutic potentials. PURPOSE The current paper is focused on the numerous studies on rutin nanoformulations regarding its broad spectrum of therapeutic potentials. STUDY AND METHODS A review was conducted in electronic databases (PubMed) to identify relevant published literature in English. No restrictions on publication date were imposed. RESULTS The literature search provided 7,078 results for rutin. Among them, 25 papers were related to the potential biological activities of rutin nanoformulations. Polymeric nanoparticles were the most studied nanoformulations for rutin (14 titles) and lipid nanoparticles (5 titles) were in second place. The reviewed literature showed that rutin has been used as an antimicrobial, antifungal, and anti-allergic agent. Improving the bioavailability of rutin using novel drug-delivery methods will help the investigators to use its useful effects in the treatment of various chronic human diseases. CONCLUSION It can be concluded that the preparation of rutin nanomaterials for the various therapeutic objects confirmed the enhanced aqueous solubility as well as enhanced efficacy compared to conventional delivery of rutin. However, more investigations should be conducted to confirm the improved bioavailability of the rutin nanoformulations.
Collapse
Affiliation(s)
- Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran, University of Medical Sciences, Sari, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Gorbani Jahandizi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Raeesi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Hojnik Podrepšek G, Knez Ž, Leitgeb M. Development of Chitosan Functionalized Magnetic Nanoparticles with Bioactive Compounds. NANOMATERIALS 2020; 10:nano10101913. [PMID: 32992815 PMCID: PMC7599998 DOI: 10.3390/nano10101913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
In this study, magnetic maghemite nanoparticles, which belong to the group of metal oxides, were functionalized with chitosan, a non-toxic, hydrophilic, biocompatible, biodegradable biopolymer with anti-bacterial effects. This was done using different synthesis methods, and a comparison of the properties of the synthesized chitosan functionalized maghemite nanoparticles was conducted. Characterization was performed using scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). Characterizations of size distribution were performed using dynamic light scattering (DLS) measurements and laser granulometry. A chitosan functionalization layer was confirmed using potentiometric titration on variously synthesized chitosan functionalized maghemite nanoparticles, which is important for further immobilization of bioactive compounds. Furthermore, after activation of chitosan functionalized maghemite nanoparticles with glutaraldehyde (GA) or pentaethylenehexamine (PEHA), immobilization studies of enzyme cholesterol oxidase (ChOx) and horseradish peroxidase (HRP) were conducted. Factors influencing the immobilization of enzymes, such as type and concentration of activating reagent, mass ratio between carrier and enzyme, immobilization time and enzyme concentration, were investigated. Briefly, microparticles made using the chitosan suspension cross-linking process (MC2) proved to be the most suitable for obtaining the highest activity of immobilized enzyme, and nanoparticles functionalized with chitosan using the covalent binding method (MC3) could compete with MC2 for their applications.
Collapse
Affiliation(s)
- Gordana Hojnik Podrepšek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (G.H.P.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (G.H.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ul. 17, 2000 Maribor, Slovenia; (G.H.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-222-94-462
| |
Collapse
|
45
|
Ren E, Zhang C, Li D, Pang X, Liu G. Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. VIEW 2020. [DOI: 10.1002/viw.20200052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Chang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
- Department of Magnetic Resonance Imaging The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health Xiamen University Xiamen China
| |
Collapse
|
46
|
Mizwari ZM, Oladipo AA, Yilmaz E. Chitosan/metal oxide nanocomposites: synthesis, characterization, and antibacterial activity. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1725753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zirar M Mizwari
- Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, TR North Cyprus, Turkey
- Department of Medical Laboratory Technology, Shaqlawa Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | - Akeem Adeyemi Oladipo
- Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, TR North Cyprus, Turkey
| | - Elvan Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, TR North Cyprus, Turkey
| |
Collapse
|
47
|
Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V. Bio-inspired synthesis of chitosan/copper oxide nanocomposite using rutin and their anti-proliferative activity in human lung cancer cells. Int J Biol Macromol 2019; 141:476-483. [PMID: 31473316 DOI: 10.1016/j.ijbiomac.2019.08.235] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
Abstract
Polymer functionalized metal oxide nanocomposites are great interest due to wide range of application, especially in nanomedicine. The present study reports an eco-friendly bio-inspired synthesis of chitosan/copper oxide (CS-CuO) nanocomposite for the first time using rutin. The bio-synthesized CS-CuO nanocomposite was characterized using UV-Visible spectroscopy, FE-SEM, EDS, TEM, XRD and FTIR analyses. FE-SEM and TEM images revealed the synthesized CS-CuO nanocomposite having spherical shaped structure with an average size of 10-30 nm. EDS analysis confirmed the elements present in synthesized CS-CuO nanocomposite. FTIR studies revealed the role of rutin and chitosan for reduction, capping and synthesis of CS-CuO nanocomposite from the precursor copper salt. The XRD analysis revealed monoclinic structure of CS-CuO nanocomposite. Anti-proliferative activity of the CS-CuO nanocomposite was evaluated in human lung cancer cell line A549. Synthesized CS-CuO nanocomposite showed concentration-depended anti-proliferative activity against A549 cancer cells and their IC50 value was found to be 20 ± 0.50 μg/mL. Furthermore, synthesized nanocomposite induce apoptosis in treated A549 cancer cells assayed by AO/EtBr fluorescent staining method. In conclusion, the synthesized CS-CuO nanocomposite using rutin can be used as a potential anticancer agent in biomedical and clinical sectors.
Collapse
Affiliation(s)
- Devaraj Bharathi
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 029, Tamilnadu, India.
| | - R Ranjithkumar
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 029, Tamilnadu, India
| | - B Chandarshekar
- Nanotechnology Research Lab, Department of Physics, Kongunadu Arts and Science College, Coimbatore 029, Tamilnadu, India
| | - V Bhuvaneshwari
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 029, Tamilnadu, India.
| |
Collapse
|