1
|
Li X, Zhu R, Liu Q, Sun H, Sheng H, Zhu L. Effects of traditional Chinese medicine polysaccharides on chronic diseases by modulating gut microbiota: A review. Int J Biol Macromol 2024; 282:136691. [PMID: 39437951 DOI: 10.1016/j.ijbiomac.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Intestinal tract is the largest immune system of human body. Gut microbiota (GM) can produce a large number of metabolites, such as short-chain fatty acids and bile acids, which regulate the physiological health of the host and affect the development of disease. In recent years, traditional Chinese medicine (TCM) polysaccharides have attracted extensive attention with multiple biological activities and low toxicity. TCM polysaccharides can promote the growth of intestinal beneficial bacteria and inhibit the growth of harmful bacteria by regulating the structure and function of GM, thus playing a crucial role in preventing or treating chronic diseases such as inflammatory bowel disease (IBD), obesity, type 2 diabetes mellitus (T2DM), liver diseases, cancer, etc. In this paper, the research progress of TCM polysaccharides in the treatment of chronic diseases such as inflammatory bowel disease, obesity, T2DM, liver diseases, cancer, etc. by modulating GM was reviewed. Meanwhile, this review makes an in-depth discussion on the shortcomings of the research of TCM polysaccharides on chronic diseases by modulating GM, and new valuable prospection for the future researches of TCM polysaccharides are proposed, which will provide new ideas for the further study of TCM polysaccharides.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Riran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
2
|
Gao YY, Liu XP, Zhou YH, He JY, Di B, Zheng XY, Guo PT, Zhang J, Wang CK, Jin L. The Addition of Hot Water Extract of Juncao-Substrate Ganoderma lucidum Residue to Diets Enhances Growth Performance, Immune Function, and Intestinal Health in Broilers. Animals (Basel) 2024; 14:2926. [PMID: 39457856 PMCID: PMC11503797 DOI: 10.3390/ani14202926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of this experiment was to investigate the effects of Hot Water Extract of Juncao-substrate Ganoderma lucidum Residue (HWE-JGLR) on the immune function and intestinal health of yellow-feather broilers. In an animal feeding experiment, 288 male yellow-feather broilers (1 day old) were randomly allocated to four treatment groups with six replicates of 12 birds each. The control (CON) group was fed a basal diet. HJ-1, HJ-2, and HJ-3 were fed a basal diet supplemented with 0.25%, 0.50%, and 1.00% HWE-JGLR, respectively. The feeding trial lasted for 63 d. The results showed increased ADFI (p = 0.033) and ADG (p = 0.045) of broilers in HJ-3, compared with the CON group. Moreover, higher contents of serum IL-4 and IL-10 and gene expression of IL-4 and IL-10 in jejunum mucosa and lower contents of serum IL-1β and gene expression of IL-1β in jejunum mucosa in HJ-3 were observed (p < 0.05). Additionally, the jejunal mucosal gene expression of Claudin-1 and ZO-1 in HJ-2 and HJ-3 was higher than that in the CON group (p < 0.05). As for the microbial community, compared with the CON group, the ACE index, Shannon index, and Shannoneven index of cecal microorganisms in HJ-2 and HJ-3 were elevated (p < 0.05). PCoA analysis showed that the cecal microbial structure of broilers in HJ-2 and HJ-3 was different from the CON group (p < 0.05). In contrast with the CON group, the broilers in HJ-2 and HJ-3 possessed more abundant Desulfobacterota at the phylum level and unclassified Lachnospiraceae, norank Clostridia vadinBB60 group and Blautia spp. at the genus level, while Turicibacter spp. and Romboutsia spp. were less (p < 0.05). In conclusion, dietary supplementation with HWE-JGLR can improve growth performance, enhance body immunity and intestinal development, and maintain the cecum microflora balance of yellow-feather broilers.
Collapse
Affiliation(s)
- Yu-Yun Gao
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Xiao-Ping Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ying-Huan Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Jia-Yi He
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Bin Di
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Xian-Yue Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ping-Ting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Jing Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Chang-Kang Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.-P.L.); (Y.-H.Z.); (J.-Y.H.); (B.D.); (X.-Y.Z.); (P.-T.G.); (J.Z.); (C.-K.W.)
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
3
|
Fu J, Zhao J, Shang H. Functions and mechanisms of nonstarch polysaccharides in monogastric animal production. Int J Biol Macromol 2024; 281:136488. [PMID: 39393723 DOI: 10.1016/j.ijbiomac.2024.136488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
As natural active ingredients, polysaccharides are a class of biological macromolecules that are ubiquitous in living organisms and have antibacterial, antioxidant, antitumor and intestinal flora-regulating functions. Nonstarch polysaccharides (NSPs) are an important class of polysaccharides that include both soluble and insoluble nonstarch polysaccharides. As green feed additives, NSPs play important roles in promoting immunity and disease resistance in the body, regulating the intestinal microbial balance and improving the quality of animal products. NSPs regulate cell signal transduction mainly via interactions between short-chain fatty acids and G protein-coupled receptors and inhibiting the histone deacetylation pathway to protect the intestinal barrier in animals. In this paper, the composition, physiological functions, and molecular mechanisms of the gut protective effects of NSPs are reviewed to provide a reference for the application of NSPs in monogastric animal production.
Collapse
Affiliation(s)
- Jia Fu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Dong H, Zhuang H, Yu C, Zhang X, Feng T. Interactions between soluble dietary fibers from three edible fungi and gut microbiota. Int J Biol Macromol 2024; 278:134685. [PMID: 39168729 DOI: 10.1016/j.ijbiomac.2024.134685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Edible fungi are emerging as a valuable dietary fiber source with health benefits, where their bioactivity hinges on their structure. This study targets the structure-activity relationship of soluble dietary fibers from Lentinus edodes (LESDF), Agaricus bisporus (ABSDF), and Hericium erinaceus (HESDF), focusing on their impact on gut microbiota and health. We explored the properties and structures of edible fungi, finding their soluble fibers affect metabolites and gut microbiota by increasing gas and lowering pH. Among these, HESDF demonstrated superior effects (pH: △1.4 ± 0.07; Gas production: △24.5 ± 0.4 mL). Furthermore, different types of edible fungi dietary fiber exhibited distinct capabilities in promoting the production of short-chain fatty acids by gut microorganisms. For instance, ABSDF exceled in acetic acid production (26.12 ± 0.35 mM) and propionic acid production (9.50 ± 0.13 mM), while HESDF stood out in butyric acid production (17.86 ± 0.09 mM). LESDF showed higher levels of Phascolarctobacterium, ABSDF had elevated levels of Ruminococcus, and HESDF displayed increased levels of Faecalibacterium. These results contribute to our understanding of how soluble dietary fiber from different edible fungi impacts gut microbiota and offers insights for the development and utilization of these fibers as functional food.
Collapse
Affiliation(s)
- Huayue Dong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haining Zhuang
- School of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaowei Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
5
|
Guo W, Yun J, Wang B, Xu S, Ye C, Wang X, Qu Y, Zhao F, Yao L. Comparative study on physicochemical properties and hypoglycemic activities of intracellular and extracellular polysaccharides from submerged fermentation of Morchella esculenta. Int J Biol Macromol 2024; 278:134759. [PMID: 39151842 DOI: 10.1016/j.ijbiomac.2024.134759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The structural characteristic, physicochemical properties and structure-hypoglycemic activity relationship of intracellular (IPS) and extracellular (EPS) from submerged fermentation of Morchella esculenta were systematically compared and assessed. Both IPS and EPS were neutral, with a triple-helical conformation, and composed of galactose, glucose and mannose monosaccharides in different molar ratios. The molecular weight and particle size of IPS were higher than those of EPS. FTIR and SEM showed that the main functional group absorption peak intensity, glycosidic bond type and surface morphology of the two polysaccharides differed. Analysis of rheological and thermal properties revealed that the viscosity of IPS was higher than that of EPS, while thermal stability of EPS was greater than that of IPS. Hypoglycemic activity analysis in vitro showed that both IPS and EPS were non-competitive inhibitors of α-amylase and α-glucosidase. EPS showed strong digestive enzyme inhibitory activity due to its higher sulphate content and molar ratio of galactose, lower Mw and particle size. Meanwhile, with its higher Mw and apparent viscosity, IPS showed stronger glucose adsorption capacity and glucose diffusion retardation. These results indicate that IPS and EPS differed considerably in structure and physicochemical properties, which ultimately led to differences in hypoglycemic activity. These results not only suggested that IPS and EPS has the potential to be functional foods or hypoglycemic drugs, but also provided a new target for the prevention and treatment of diabetes with natural polysaccharides.
Collapse
Affiliation(s)
- Weihong Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China.
| | - Biao Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Siya Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Chenguang Ye
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Xuerui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yuling Qu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Liang Yao
- Gannong Moli (Qingyang) Agricultural Development Co., Ltd, Qingyang 745000, Gansu, People's Republic of China
| |
Collapse
|
6
|
Zhang L, Zhu W, Zhang Z. Combined analysis of cecal microbiota and metabolomics reveals the intervention mechanism of Dayuan Yin in acute lung injury. Front Pharmacol 2024; 15:1436017. [PMID: 39318776 PMCID: PMC11420052 DOI: 10.3389/fphar.2024.1436017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024] Open
Abstract
The ancient Chinese medicinal formula, Dayuan Yin (DYY), has a long history of use in treating respiratory ailments and is shown to be effective in treating acute infectious diseases. This study aims to explore how DYY may impact intestinal flora and metabolites induced by acute lung injury (ALI). ALI rats were induced with lipopolysaccharide (LPS) to serve as models for assessing the anti-ALI efficacy of DYY through multiple lung injury indices. Changes in intestinal microflora were assessed via 16SrRNA gene sequencing, while cecum contents were analyzed using non-targeted metabonomics. Differential metabolites were identified through data analysis, and correlations between metabolites, microbiota, and inflammatory markers were examined using Pearson's correlation analysis. DYY demonstrated a significant improvement in LPS-induced lung injury and altered the composition of intestinal microorganisms, and especially reduced the potential harmful bacteria and enriched the beneficial bacteria. At the gate level, DYY exhibited a significant impact on the abundance of Bacteroidota and Firmicutes in ALI rats, as well as on the regulation of genera such as Ruminococcus, Lactobacillus, and Romboutsia. Additionally, cecal metabonomics analysis revealed that DYY effectively modulated the abnormal expression of 12 key metabolic biomarkers in ALI rats, thereby promoting intestinal homeostasis through pathways such as purine metabolism. Furthermore, Pearson's analysis indicated a strong correlation between the dysregulation of intestinal microbiota, differential metabolites, and inflammation. These findings preliminarily confirm that ALI is closely related to cecal microbial and metabolic disorders, and DYY can play a protective role by regulating this imbalance, which provides a new understanding of the multi-system linkage mechanism of DYY improving ALI.
Collapse
Affiliation(s)
- Lei Zhang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Wei Zhu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Zepeng Zhang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| |
Collapse
|
7
|
Pi Y, Fang M, Li Y, Cai L, Han R, Sun W, Jiang X, Chen L, Du J, Zhu Z, Li X. Interactions between Gut Microbiota and Natural Bioactive Polysaccharides in Metabolic Diseases: Review. Nutrients 2024; 16:2838. [PMID: 39275156 PMCID: PMC11397228 DOI: 10.3390/nu16172838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The gut microbiota constitutes a complex ecosystem, comprising trillions of microbes that have co-evolved with their host over hundreds of millions of years. Over the past decade, a growing body of knowledge has underscored the intricate connections among diet, gut microbiota, and human health. Bioactive polysaccharides (BPs) from natural sources like medicinal plants, seaweeds, and fungi have diverse biological functions including antioxidant, immunoregulatory, and metabolic activities. Their effects are closely tied to the gut microbiota, which metabolizes BPs into health-influencing compounds. Understanding how BPs and gut microbiota interact is critical for harnessing their potential health benefits. This review provides an overview of the human gut microbiota, focusing on its role in metabolic diseases like obesity, type II diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular diseases. It explores the basic characteristics of several BPs and their impact on gut microbiota. Given their significance for human health, we summarize the biological functions of these BPs, particularly in terms of immunoregulatory activities, blood sugar, and hypolipidemic effect, thus providing a valuable reference for understanding the potential benefits of natural BPs in treating metabolic diseases. These properties make BPs promising agents for preventing and treating metabolic diseases. The comprehensive understanding of the mechanisms by which BPs exert their effects through gut microbiota opens new avenues for developing targeted therapies to improve metabolic health.
Collapse
Affiliation(s)
- Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyu Fang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruyi Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Wang J, An G, Peng X, Zhong F, Zhao K, Qi L, Ma Y. Effects of three Huanglian-derived polysaccharides on the gut microbiome and fecal metabolome of high-fat diet/streptozocin-induced type 2 diabetes mice. Int J Biol Macromol 2024; 273:133060. [PMID: 38871107 DOI: 10.1016/j.ijbiomac.2024.133060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Plant-derived polysaccharides are important components for biological functions. The objective of this study is to study the mechanisms by which polysaccharides from three Huanglian (Rhizome Coptidis, HL) of Coptis chinensis, C. deltoidea, and Coptis teeta affect type 2 diabetes mellitus (T2DM) by analyzing the gut microbiome and their metabolites. A long-term high-fat diet (HFD) combined with streptozocin (STZ) induction was used to construct the T2DM mice model. The histopathology of liver, pancreas, and colon, biochemical indexes related to mice were determined to assess the ameliorative effects of these three HL polysaccharides (HLPs) on T2DM. The results indicated that oral HLPs improved hyperglycemia, insulin resistance, blood lipid levels, and β-cell function. Further, HLPs elevated the growth of advantageous beneficial bacteria within the gut microbiota and raised the concentrations of short-chain fatty acids (SCFAs), particularly butyric acid. Metabolic analyses showed that HLPs ameliorated the effects of T2DM on microbial-derived metabolites and related metabolic pathways, especially the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan. In the combined analysis, many associations of T2DM-related biochemical indicators with gut microbes and their metabolites were extracted, which suggested the important role of gut microbiome and fecal metabolome in the amelioration of type 2 diabetes mellitus by HLPs.
Collapse
Affiliation(s)
- Jiahao Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guangqin An
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianzhi Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kui Zhao
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan 650224, China.
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Ma Y, Han J, Wang K, Han H, Hu Y, Li H, Wu S, Zhang L. Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of Atherosclerosis. Heliyon 2024; 10:e33307. [PMID: 39022015 PMCID: PMC11253544 DOI: 10.1016/j.heliyon.2024.e33307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from dysregulated lipid metabolism, constituting the pathophysiological foundation of cardiovascular and cerebrovascular diseases. AS has a high incidence rate and mortality rate worldwide. As such, traditional Chinese medicine (TCM) has been widely used recently due to its stable therapeutic effect and high safety. Ganoderma lucidum polysaccharides (GLP) are the main active ingredients of Ganoderma lucidum, a Chinese herbal medicine. Research has also shown that GLP has anti-inflammatory and antioxidant properties, regulates gut microbiota, improves blood glucose and lipid levels, and inhibits obesity. Most of the current research on GLP anti-AS is focused on animal models. Thus, its clinical application remains to be discovered. In this review, we combine relevant research results and start with the pathogenesis and risk factors of GLP on AS, proving that GLP can prevent and treat AS, providing a scientific basis and reference for the future prevention and treatment of AS with GLP.
Collapse
Affiliation(s)
- YiZheng Ma
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - JingBo Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - KangFeng Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - Huan Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - YiBin Hu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - He Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250355, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| | - ShengXian Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - LiJuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014, Jinan, China
| |
Collapse
|
12
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Kulshreshtha S. Mushroom as Prebiotics: a Sustainable Approach for Healthcare. Probiotics Antimicrob Proteins 2024; 16:699-712. [PMID: 37776487 DOI: 10.1007/s12602-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
Mushrooms are considered as sustainable foods as they require less effort and can be cultivated on different agro-industrial wastes. Besides, these possess many nutraceuticals for providing health benefits along with supplementing nutrition. The mushrooms are also used as prebiotics for their ability to support beneficial microbes in the gut and inhibit the growth of pathogens. Furthermore, these remain undigested in the upper gut and reach the intestine to replenish the gut microbiota. The mushrooms boost health by inhibiting the binding of pathogenic bacteria, by promoting the growth of specific gut microbiota, producing short chain fatty acids, and regulating lipid metabolism and cancer. Research has been initiated in the commercial formulation of various products such as yogurt and symbiotic capsules. This paper sheds light on health-promoting effect, disease controlling, and regulating effect of mushroom prebiotics. This paper also presented a glimpse of commercialization of mushroom prebiotics. In the future, proper standardization of mushroom-based prebiotic formulations will be available to boost human health.
Collapse
Affiliation(s)
- Shweta Kulshreshtha
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
14
|
Barcan AS, Barcan RA, Vamanu E. Therapeutic Potential of Fungal Polysaccharides in Gut Microbiota Regulation: Implications for Diabetes, Neurodegeneration, and Oncology. J Fungi (Basel) 2024; 10:394. [PMID: 38921380 PMCID: PMC11204944 DOI: 10.3390/jof10060394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
This review evaluates the therapeutic effects of polysaccharides derived from mushroom species that have medicinal and edible properties. The fungal polysaccharides were recently studied, focusing on their modulation of the gut microbiota and their impact on various diseases. The study covers both clinical and preclinical studies, detailing the results and highlighting the significant influence of these polysaccharides on gut microbiota modulation. It discusses the potential health benefits derived from incorporating these polysaccharides into the diet for managing chronic diseases such as diabetes, neurodegenerative disorders, and cancer. Furthermore, the review emphasizes the interaction between fungal polysaccharides and the gut microbiota, underscoring their role in modulating the gut microbial community. It presents a systematic analysis of the findings, demonstrating the substantial impact of fungal polysaccharides on gut microbiota composition and function, which may contribute to their therapeutic effects in various chronic conditions. We conclude that the modulation of the gut microbiota by these polysaccharides may play a crucial role in mediating their therapeutic effects, offering a promising avenue for further research and potential applications in disease prevention and treatment.
Collapse
Affiliation(s)
- Alexandru Stefan Barcan
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | | | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
15
|
Meng X, Shi M, Guo G, Xing J, Liu Z, Song F, Liu S. In-depth investigation of the therapeutic effect of Tribulus terrestris L. on type 2 diabetes based on intestinal microbiota and feces metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117815. [PMID: 38309487 DOI: 10.1016/j.jep.2024.117815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Tribulus terrestris L. (TT) is extensively documented in the Tibetan medical literature 'Si Bu Yi Dian', has been used to treat diabetes mellitus for more than a thousand years. However, the underlying mechanisms and comprehensive effects of TT on diabetes have yet to be investigated. AIM OF THE STUDY The aim of the study was to systemically elucidate the potential mechanisms of TT in treating diabetes mellitus, and further investigate the therapeutic effects of the water extract, small molecular components and saccharides from TT. MATERIALS AND METHODS Fecal metabolomics was employed to draw the metabolic profile based on UHPLC-Q-TOF-MS/MS. The V3-V4 hypervariable regions of the bacteria 16S rRNA gene were amplified to explore the structural changes of the intestinal microbiome after TT intervention and to analyze the differential microbiota. The microbial metabolites SCFAs were determined by GC-MS, and the BAs and tryptophan metabolites were quantified by UPLC-TQ-MS. Spearman correlation analysis was carried out to comprehensively investigate the relationship among the endogenous metabolites profile, intestinal microbiota and their metabolites. RESULTS TT exhibited remarkably therapeutic effect on T2DM rats, as evidenced by improved glucolipid metabolism and intestinal barrier integrity, ameliorated inflammation and remission in insulin resistance. A total of 24 endogenous biomarkers were screened through fecal metabolomics studies, which were mainly related to tryptophan metabolism, fatty acid metabolism, bile acid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism. Investigations on microbiomics revealed that TT significantly modulated 18 differential bacterial genera and reversed the disordered gut microbial in diabetes rats. Moreover, TT notably altered the content of gut microbiota metabolites, both in serum and fecal samples. Significant correlation among microbial community, metabolites and T2DM-related indicators was revealed. CONCLUSIONS The multiple components of TT regulate the metabolic homeostasis of the organism and the balance of intestinal microbiota and its metabolites, which might mediate the anti-diabetic capacity of TT.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Minjie Shi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Guangpeng Guo
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Junpeng Xing
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
16
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
17
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
18
|
Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol 2024; 15:1362479. [PMID: 38572237 PMCID: PMC10990249 DOI: 10.3389/fmicb.2024.1362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.
Collapse
Affiliation(s)
- Xinjie Qin
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Zinan Fang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Jinkang Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Wenbo Zhao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Ni Zheng
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Xiaoe Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| |
Collapse
|
19
|
Xiong W, Xia J, Peng X, Tan Y, Chen W, Zhou M, Yang C, Wang W. Novel therapeutic role of Ganoderma Polysaccharides in a septic mouse model - The key role of macrophages. Heliyon 2024; 10:e26732. [PMID: 38449666 PMCID: PMC10915390 DOI: 10.1016/j.heliyon.2024.e26732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.
Collapse
Affiliation(s)
- Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wansong Chen
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Minghua Zhou
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| |
Collapse
|
20
|
Colosimo R, Harris HC, Ahn-Jarvis J, Troncoso-Rey P, Finnigan TJA, Wilde PJ, Warren FJ. Colonic in vitro fermentation of mycoprotein promotes shifts in gut microbiota, with enrichment of Bacteroides species. Commun Biol 2024; 7:272. [PMID: 38443511 PMCID: PMC10915147 DOI: 10.1038/s42003-024-05893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Mycoprotein is a fungal-derived ingredient used for meat alternative products whose fungal cell walls are rich in dietary fibre (β-glucans and chitin) and defines its structure. Several health benefits have been reported after mycoprotein consumption, however, little is known about the impact of mycoprotein fermentation on the gut microbiota. This study aims to identify changes in microbiome composition and microbial metabolites during colonic fermentation of mycoprotein following simulated upper gastrointestinal digestion. Changes in microbial populations and metabolites produced by the fermentation of mycoprotein fibre were investigated and compared to a plant (oat bran) and an animal (chicken) comparator. In this model fermentation system, mycoprotein and oat showed different but marked changes in the microbial population compared to chicken, which showed minimal differentiation. In particular, Bacteroides species known for degrading β-glucans were found in abundance following fermentation of mycoprotein fibre. Mycoprotein fermentation resulted in short-chain fatty acid production comparable with oat and chicken at 72 h. Significantly higher branched-chain amino acids were observed following chicken fermentation. This study suggests that the colonic fermentation of mycoprotein can promote changes in the colonic microbial profile. These results highlight the impact that the unique structure of mycoprotein can have on digestive processes and the gut microbiota.
Collapse
Affiliation(s)
- Raffaele Colosimo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Elsevier B.V, Radarweg 29a, 1043, NX, Amsterdam, Netherlands
| | - Hannah C Harris
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Jennifer Ahn-Jarvis
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Perla Troncoso-Rey
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Tim J A Finnigan
- Marlow Foods Ltd, Station Road, Stokesley, North Yorkshire, TS9 7AB, UK
| | - Pete J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Frederick J Warren
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.
| |
Collapse
|
21
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
22
|
Huang D, Shen S, Zhuang Q, Ye X, Qian Y, Dong Z, Wan X. Ganoderma lucidum polysaccharide ameliorates cholesterol gallstone formation by modulating cholesterol and bile acid metabolism in an FXR-dependent manner. Chin Med 2024; 19:16. [PMID: 38268006 PMCID: PMC10809463 DOI: 10.1186/s13020-024-00889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Cholesterol gallstone (CG) disease is a worldwide common disease characterized by cholesterol supersaturation in gallbladder bile. Ganoderma lucidum polysaccharide (GLP) has been shown to possess various beneficial effects against metabolic disorders. However, the role and underlying mechanism of GLP in CG formation are still unknown. This study aimed to determine the role of GLP in ameliorating lithogenic diet (LD)-induced CG formation. METHODS Mice were fed either a normal chow diet, a LD, or LD supplemented with GLP. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression of genes involved in cholesterol and bile acid (BA) metabolism. The BA concentrations in the ileum were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The microbiota in cecal contents were characterized using 16S ribosomal RNA (16S rRNA) gene sequencing. RESULTS GLP effectively alleviated CG formation induced by LD. Specifically, GLP reduced the total cholesterol (TC) levels, increased the total BA levels, and decreased the cholesterol saturation index (CSI) in gallbladder bile. The protective effect of GLP was attributed to the inhibition of farnesoid X receptor (FXR) signaling, increased hepatic BA synthesis and decreased hepatic cholesterol synthesis and secretion. GLP also altered the BA composition in the ileum, reducing FXR-agonistic BAs and increasing FXR-antagonistic BAs, which may contribute to the inhibition of intestinal FXR signaling. Additionally, GLP improved dysbiosis of the intestinal flora and reduced the serum levels of hydrogen sulfide (H2S), a bacterial metabolite that can induce hepatic FXR, thereby inhibiting hepatic FXR signaling. Moreover, the protective effect of GLP against CG formation could be reversed by both the global and gut-restricted FXR agonists. CONCLUSIONS Taken together, GLP ameliorates CG formation by regulating cholesterol and BA metabolism in an FXR-dependent manner. Our study demonstrates that GLP may be a potential strategy for the prevention against CG disease.
Collapse
Affiliation(s)
- Dan Huang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yueqin Qian
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
23
|
Téllez-Téllez M, Diaz-Godinez G. Mushrooms and Fungi and Their Biological Compounds with Antidiabetic Activity: A Review. Int J Med Mushrooms 2024; 26:13-24. [PMID: 38780420 DOI: 10.1615/intjmedmushrooms.2024052864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mushrooms have been used by humans for centuries as food and medicine because they have been shown to affect certain diseases. Mushrooms for medicinal purposes have been consumed in the form of extracts and/or biomass of the mycelium or fruiting body. The beneficial health effects of mushrooms are due to their content of bioactive compounds (polysaccharides, proteins, ergosterol, lectins, etc.). On the other hand, diabetes is one of the metabolic diseases that affects the population worldwide, characterized by hyperglycemia that involves a defective metabolism of insulin, a hormone secreted by β cells and that mainly stimulates glucose absorption by the cells. However, it also affects the metabolism of carbohydrates, fats and proteins; poor control of this disease leads to serious damage to eyesight, kidneys, bones, heart, skin, blood vessels, nerves, etc. It has been reported that the consumption of some mushrooms helps control and treat diabetes, since among other actions, they promote the secretion of insulin by the pancreas, help reduce blood glucose and have α-glucosidase inhibitory activity which improves glucose uptake by cells, which are effects that prescription medications have for patients with diabetes. In that sense, this manuscript shows a review of scientific studies that support the abilities of some mushrooms to be used in the control and/or treatment of diabetes.
Collapse
Affiliation(s)
- Maura Téllez-Téllez
- Laboratory of Mycology, Biological Research Center, Autonomous University of Morelos State, Morelos, Mexico
| | | |
Collapse
|
24
|
Dong YH, Wang ZX, Chen C, Wang PP, Fu X. A review on the hypoglycemic effect, mechanism and application development of natural dietary polysaccharides. Int J Biol Macromol 2023; 253:127267. [PMID: 37820903 DOI: 10.1016/j.ijbiomac.2023.127267] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Diabetes mellitus (DM) as one chronic metabolic disease was greatly increased over recent decades. The major agents treating diabetes have noticeable side effects as well as the tolerability problems. The bioactive dietary polysaccharides from abundant natural resources exhibit good hypoglycemic effect with rare adverse effects, which might serve as a candidate to prevent and treat diabetes. However, the correlations between the hypoglycemic mechanism of polysaccharides and their structure were not mentioned in several studies, what's more, most of the current hypoglycemic studies on polysaccharides were based on in vitro and in vivo experiments, and there was a lack of knowledge about the effects in human clinical trials. The aim of this review is to discuss recent literature about the variety of dietary polysaccharides with hypoglycemic activity, as well the mechanism of action and the structure-function relationship are highlighted. Meanwhile, the application of dietary polysaccharides in functional foods and clinical medicine are realized with an in-depth understanding. So as to promote the exploration of dietary polysaccharides in low glycemic healthy foods or clinical medicine to prevent and treat diabetes.
Collapse
Affiliation(s)
- Yu-Hao Dong
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhen-Xing Wang
- College of life Science, Southwest Forestry University, Kunming 650224, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Ping-Ping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
25
|
Liu X, Feng Y, Zhen H, Zhao L, Wu H, Liu B, Fan G, Tong A. Agrocybe aegerita Polysaccharide Combined with Bifidobacterium lactis Bb-12 Attenuates Aging-Related Oxidative Stress and Restores Gut Microbiota. Foods 2023; 12:4381. [PMID: 38137185 PMCID: PMC10742414 DOI: 10.3390/foods12244381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to examine the impacts of the combing of Agrocybe aegerita polysaccharides (AAPS) with Bifidobacterium lactis Bb-12 (Bb-12) on antioxidant activity, anti-aging properties, and modulation of gut microbiota. The results demonstrated that the AAPS and Bb-12 complex significantly increased the average lifespan of male and female Drosophila melanogaster under natural aging conditions (p < 0.05), with an improvement of 8.42% and 9.79%, respectively. Additionally, the complex enhanced their climbing ability and increased antioxidant enzyme activity, protecting them from oxidative damage induced by H2O2. In D-galactose induced aging mice, the addition of AAPS and Bb-12 resulted in significantly increase in antioxidant enzyme activity, regulation of aging-related biomarker levels, changed gut microbiota diversity, restoration of microbial structure, and increased abundance of beneficial bacteria, particularly lactobacilli, in the intestines. These findings suggested that the complex of AAPS and Bb-12 had the potential to serve as a dietary supplement against organism aging and oxidative stress.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (H.Z.)
| | - Yanyu Feng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (H.W.); (B.L.); (A.T.)
| | - Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (H.Z.)
| | - Lina Zhao
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hongqiang Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (H.W.); (B.L.); (A.T.)
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (H.W.); (B.L.); (A.T.)
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.L.); (H.Z.)
| | - Aijun Tong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.F.); (H.W.); (B.L.); (A.T.)
| |
Collapse
|
26
|
Huang Q, Tian H, Tian L, Zhao X, Li L, Zhang Y, Qiu Z, Lei S, Xia Z. Inhibiting Rev-erbα-mediated ferroptosis alleviates susceptibility to myocardial ischemia-reperfusion injury in type 2 diabetes. Free Radic Biol Med 2023; 209:135-150. [PMID: 37805047 DOI: 10.1016/j.freeradbiomed.2023.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Hao Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Xiaoshuai Zhao
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Lu Li
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Yuxi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhongyuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
27
|
Luo Z, Xu J, Gao Q, Wang Z, Hou M, Liu Y. Study on the effect of licochalcone A on intestinal flora in type 2 diabetes mellitus mice based on 16S rRNA technology. Food Funct 2023; 14:8903-8921. [PMID: 37702574 DOI: 10.1039/d3fo00861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Licorice, has a long history in China where it has various uses, including as a medicine, and is often widely consumed as a food ingredient. Licorice is rich in various active components, including polysaccharides, triterpenoids, alkaloids, and nucleosides, among which licochalcone A (LicA) is an active component with multiple physiological effects. Previous studies from our research group have shown that LicA can significantly improve glucose and lipid metabolism and related complications in Type 2 diabetes mellitus (T2DM) mice. However, research on the mechanism of LicA in T2DM mice based on intestinal flora has not been carried out in depth. Therefore, in this study, LicA was taken as the research object and the effects of LicA on glucose and lipid metabolism and intestinal flora in T2DM mice induced by streptozotocin (STZ)/high-fat feed (HFD) were explored. The results indicated that LicA could reduce serum TC, TG, and LDL-C levels, increase HDL-C levels, reduce blood glucose, and improve insulin resistance and glucose tolerance. LicA also alleviated pathological damage to the liver. The results also showed that LicA significantly affected the intestinal microbiota composition and increased the α diversity index. β Diversity analysis showed that after the intervention of LicA, the composition of intestinal flora was significantly different from that in the T2DM model group. Correlation analysis showed that the changes in glucose and lipid metabolism parameters in mice were significantly correlated with the relative abundance of Firmicutes, Bacteroidetes, Helicobacter, and Lachnospiraceae (p < 0.01). Analysis of key bacteria showed that LicA could significantly promote the growth of beneficial bacteria, such as Bifidobacterium, Turicibacter, Blautia, and Faecococcus, and inhibit the growth of harmful bacteria, such as Enterococcus, Dorea, and Arachnococcus. In conclusion, it was confirmed that LicA reversed the imbalanced intestinal flora, and increased the richness and diversity of the species in T2DM mice.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shuren International College, Shenyang Medical College, Huanghe North Street, No. 146, Shenyang 110034, China.
| | - Jing Xu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Gao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhifang Wang
- College of physical education, Yanshan University, Qinhuangdao 066004, China
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Huanghe North Street, No. 146, Shenyang 110034, China.
| |
Collapse
|
28
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
29
|
Ma Z, Sun W, Wang L, Wang Y, Pan B, Su X, Li H, Zhang H, Lv S, Wang H. Integrated 16S rRNA sequencing and nontargeted metabolomics analysis to reveal the mechanisms of Yu-Ye Tang on type 2 diabetes mellitus rats. Front Endocrinol (Lausanne) 2023; 14:1159707. [PMID: 37732114 PMCID: PMC10507721 DOI: 10.3389/fendo.2023.1159707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Yu-Ye Tang (YYT) is a classical formula widely used in treatment of type 2 diabetes mellitus (T2DM). However, the specific mechanism of YYT in treating T2DM is not clear. Methods The aim of this study was to investigate the therapeutic effect of YYT on T2DM by establishing a rat model of T2DM. The mechanism of action of YYT was also explored through investigating gut microbiota and serum metabolites. Results The results indicated YYT had significant therapeutic effects on T2DM. Moreover, YYT could increase the abundance of Lactobacillus, Candidatus_Saccharimonas, UCG-005, Bacteroides and Blautia while decrease the abundance of and Allobaculum and Desulfovibrio in gut microbiota of T2DM rats. Nontargeted metabolomics analysis showed YYT treatment could regulate arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, glycerophospholipid metabolism, pentose and glucuronate interconversions, phenylalanine metabolism, steroid hormone biosynthesis, terpenoid backbone biosynthesis, tryptophan metabolism, and tyrosine metabolism in T2DM rats. Discussion In conclusion, our research showed that YYT has a wide range of therapeutic effects on T2DM rats, including antioxidative and anti-inflammatory effects. Furthermore, YYT corrected the altered gut microbiota and serum metabolites in T2DM rats. This study suggests that YYT may have a therapeutic impact on T2DM by regulating gut microbiota and modulating tryptophan and glycerophospholipid metabolism, which are potential key pathways in treating T2DM.
Collapse
Affiliation(s)
- Ziang Ma
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenjuan Sun
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Lixin Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Yuansong Wang
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Baochao Pan
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiuhai Su
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hanzhou Li
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Zhang
- Graduate School of Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuquan Lv
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
30
|
Zuo Z, Pang W, Sun W, Lu B, Zou L, Zhang D, Wang Y. Metallothionein-Kidney Bean Polyphenol Complexes Showed Antidiabetic Activity in Type 2 Diabetic Rats by Improving Insulin Resistance and Regulating Gut Microbiota. Foods 2023; 12:3139. [PMID: 37628138 PMCID: PMC10453533 DOI: 10.3390/foods12163139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Previous studies have shown that interaction between polyphenols and proteins can benefit health, but the mechanism of its antidiabetic effect has not been thoroughly elucidated. Therefore, this study aimed to investigate the impact of the metallothionein (MT)-kidney bean polyphenol complex on the blood glucose levels and gut microbiota of rats with type 2 diabetes mellitus (T2DM) induced by a high-fat diet combined with streptozotocin (STZ). After 7 weeks of intervention, the MT-kidney bean polyphenol complex can significantly improve the loss of body weight, the increase in blood glucose and blood lipids, and insulin resistance caused by T2DM in rats. In addition, it can effectively alleviate the damage to the pancreas and liver in rats. The MT-kidney bean polyphenol complex also significantly increased the concentrations of six short-chain fatty acids (SCFAs) in the intestinal contents of rats, especially acetic acid, propionic acid, and butyric acid (296.03%, 223.86%, and 148.97%, respectively). More importantly, the MT-kidney bean polyphenol complex can significantly reverse intestinal microflora dysbiosis in rats caused by T2DM, increase intestinal microorganism diversity, improve the abundance of various beneficial bacteria, and reshape the gut microbiota. In summary, the hypoglycemic effect of the MT-kidney bean polyphenol complex and its possible mechanism was expounded in terms of blood glucose level, blood lipid level, and gut microbiota, providing a new perspective on the development of the MT-kidney bean polyphenol complex as functional hypoglycemic food.
Collapse
Affiliation(s)
- Zhaohang Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.Z.); (W.P.); (W.S.); (D.Z.)
| | - Weiqiao Pang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.Z.); (W.P.); (W.S.); (D.Z.)
| | - Wei Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.Z.); (W.P.); (W.S.); (D.Z.)
| | - Baoxin Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.Z.); (W.P.); (W.S.); (D.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Z.Z.); (W.P.); (W.S.); (D.Z.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Ying Wang
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
31
|
He LY, Li Y, Niu SQ, Bai J, Liu SJ, Guo JL. Polysaccharides from natural resource: ameliorate type 2 diabetes mellitus via regulation of oxidative stress network. Front Pharmacol 2023; 14:1184572. [PMID: 37497112 PMCID: PMC10367013 DOI: 10.3389/fphar.2023.1184572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia that can occur in children, adults, elderly people, and pregnant women. Oxidative stress is a significant adverse factor in the pathogenesis of DM, especially type 2 diabetes mellitus (T2DM), and metabolic syndrome. Natural polysaccharides are macromolecular compounds widely distributed in nature. Some polysaccharides derived from edible plants and microorganisms were reported as early as 10 years ago. However, the structural characterization of polysaccharides and their therapeutic mechanisms in diabetes are relatively shallow, limiting the application of polysaccharides. With further research, more natural polysaccharides have been reported to have antioxidant activity and therapeutic effects in diabetes, including plant polysaccharides, microbial polysaccharides, and polysaccharides from marine organisms and animals. Therefore, this paper summarizes the natural polysaccharides that have therapeutic potential for diabetes in the past 5 years, elucidating their pharmacological mechanisms and identified primary structures. It is expected to provide some reference for the application of polysaccharides, and provide a valuable resource for the development of new diabetic drugs.
Collapse
Affiliation(s)
- Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Qi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| |
Collapse
|
32
|
Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr 2023; 10:1213010. [PMID: 37485384 PMCID: PMC10358859 DOI: 10.3389/fnut.2023.1213010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The gut microbiome is a complex biological community that deeply affects various aspects of human health, including dietary intake, disease progression, drug metabolism, and immune system regulation. Edible mushroom polysaccharides (EMPs) are bioactive fibers derived from mushrooms that possess a range of beneficial properties, including anti-tumor, antioxidant, antiviral, hypoglycemic, and immunomodulatory effects. Studies have demonstrated that EMPs are resistant to human digestive enzymes and serve as a crucial source of energy for the gut microbiome, promoting the growth of beneficial bacteria. EMPs also positively impact human health by modulating the composition of the gut microbiome. This review discusses the extraction and purification processes of EMPs, their potential to improve health conditions by regulating the composition of the gut microbiome, and their application prospects. Furthermore, this paper provides valuable guidance and recommendations for future studies on EMPs consumption in disease management.
Collapse
Affiliation(s)
- Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | | | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Diru Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Wu H, Chen J, Liu Y, Cheng H, Nan J, Park HJ, Yang L, Li J. Digestion profile, antioxidant, and antidiabetic capacity of Morchella esculenta exopolysaccharide: in vitro, in vivo and microbiota analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4401-4412. [PMID: 36807912 DOI: 10.1002/jsfa.12513] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 12/11/2022] [Accepted: 02/19/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Novel functional polysaccharides from fungi are important nutraceuticals. An exopolysaccharide, Morchella esculenta exopolysaccharide (MEP 2), was extracted and purified from the fermentation liquor of M. esculenta. The aim of this study was to investigate its digestion profile, antioxidant capacity, and effect on the microbiota composition in diabetic mice. RESULTS The study found that MEP 2 was stable during in vitro saliva digestion but was partially degraded during gastric digestion. The digest enzymes exerted a negligible effect on the chemical structure of MEP 2. Molecular weight and atomic force microscope (AFM) images suggest that both smaller chains and larger aggregations were produced. Scanning electron microscope (SEM) images reveal that the surface morphology was much altered after intestinal digestion. After digestion, the antioxidant ability increased as revealed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Both MEP 2 and its digested components showed strong α-amylase and moderate α-glucosidase inhibition activity, leading us to further investigate its ability to modulate the diabetic symptoms. The MEP 2 treatment ameliorated the inflammatory cell infiltration and increased the size of pancreas inlets. Serum concentration of HbA1c was significantly reduced. Blood glucose level during the oral glucose tolerance test (OGTT) was also slightly lower. The MEP 2 increased the diversity of the gut microbiota and modulated the abundance of several important bacteria including Alcaligenaceae, Caulobacteraceae, Prevotella, Brevundimonas, Demequina, and several Lachnospiraceae species. CONCLUSION It was found that MEP 2 was partially degraded during in vitro digestion. Its potential antidiabetic bioactivity may be associated with its α-amylase inhibition and gut microbiome modulation ability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jing Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Haoran Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jian Nan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| |
Collapse
|
34
|
Liu X, Zhao Z, Zhao D, Zhao S, Qin X. Comprehensive microbiomes and fecal metabolomics combined with network pharmacology reveal the effects of Jichuanjian on aged functional constipation. Exp Gerontol 2023; 178:112216. [PMID: 37211069 DOI: 10.1016/j.exger.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Functional constipation is a common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole. AIM The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships. METHODS 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ. RESULTS JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ. CONCLUSION The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, Taiyuan 030001, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| |
Collapse
|
35
|
Peng W, Guo X, Xu X, Zou D, Zou H, Yang X. Advances in Polysaccharide Production Based on the Co-Culture of Microbes. Polymers (Basel) 2023; 15:2847. [PMID: 37447493 DOI: 10.3390/polym15132847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Microbial polysaccharides are natural carbohydrates that can confer adhesion capacity to cells and protect them from harsh environments. Due to their various physiological activities, these macromolecules are widely used in food, medicine, environmental, cosmetic, and textile applications. Microbial co-culture is an important strategy that is used to increase the production of microbial polysaccharides or produce new polysaccharides (structural alterations). This is achieved by exploiting the symbiotic/antagonistic/chemo-sensitive interactions between microbes and stimulating the expression of relevant silent genes. In this article, we review the performance of polysaccharides produced using microbial co-culture in terms of yield, antioxidant activity, and antibacterial, antitumor, and anti-inflammatory properties, in addition to the advantages and application prospects of co-culture. Moreover, the potential for microbial polysaccharides to be used in various applications is discussed.
Collapse
Affiliation(s)
- Wanrong Peng
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xueying Guo
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Dan Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hang Zou
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
36
|
Sun W, Zhu J, Qin G, Huang Y, Cheng S, Chen Z, Zhang Y, Shu Y, Zeng X, Guo R. Lonicera japonica polysaccharides alleviate D-galactose-induced oxidative stress and restore gut microbiota in ICR mice. Int J Biol Macromol 2023:125517. [PMID: 37353132 DOI: 10.1016/j.ijbiomac.2023.125517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Lonicera japonica polysaccharides (LJPs) exhibit anti-aging effect in nematodes. Here, we further studied the function of LJPs on aging-related disorders in D-galactose (D-gal)-induced ICR mice. Four groups of mice including the control group, the D-gal-treated group, the intervening groups with low and high dose of LJPs (50 and 100 mg/kg/day) were raised for 8 weeks. The results showed that intragastric administration with LJPs improved the organ indexes of D-gal-treated mice. Moreover, LJPs improved the activity of superoxide dismutase (SOD), catalase (CAT) as well as glutathione peroxidase (GSH-Px) and decreasing the malondialdehyde (MDA) level in serum, liver and brain. Meanwhile, LJPs restored the content of acetylcholinesterase (AChE) in the brain. Further, LJPs reversed the liver tissue damages in aging mice. Mechanistically, LJPs alleviate oxidative stress at least partially through regulating Nrf2 signaling. Additionally, LJPs restored the gut microbiota composition of D-gal-treated mice by adjusting the Firmicutes/Bacteroidetes ratio at the phylum level and upregulating the relative abundances of Lactobacillaceae and Bifidobacteriacesa. Notably, the KEGG pathways involved in hazardous substances degradation and flavone and flavonol biosynthesis were significantly enhanced by LJPs treatment. Overall, our study uncovers the role of LJPs in modulating oxidative stress and gut microbiota in the D-gal-induced aging mice.
Collapse
Affiliation(s)
- Wenwen Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahao Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanyu Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujie Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Siying Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhengzhi Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yeyang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yifan Shu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Renpeng Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
37
|
Wu SY, Ou CC, Lee ML, Hsin IL, Kang YT, Jan MS, Ko JL. Polysaccharide of Ganoderma lucidum Ameliorates Cachectic Myopathy Induced by the Combination Cisplatin plus Docetaxel in Mice. Microbiol Spectr 2023; 11:e0313022. [PMID: 37212664 PMCID: PMC10269453 DOI: 10.1128/spectrum.03130-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023] Open
Abstract
Cachexia is a lethal muscle-wasting syndrome associated with cancer and chemotherapy use. Mounting evidence suggests a correlation between cachexia and intestinal microbiota, but there is presently no effective treatment for cachexia. Whether the Ganoderma lucidum polysaccharide Liz-H exerts protective effects on cachexia and gut microbiota dysbiosis induced by the combination cisplatin plus docetaxel (cisplatin + docetaxel) was investigated. C57BL/6J mice were intraperitoneally injected with cisplatin + docetaxel, with or without oral administration of Liz-H. Body weight, food consumption, complete blood count, blood biochemistry, and muscle atrophy were measured. Next-generation sequencing was also performed to investigate changes to gut microbial ecology. Liz-H administration alleviated the cisplatin + docetaxel-induced weight loss, muscle atrophy, and neutropenia. Furthermore, upregulation of muscle protein degradation-related genes (MuRF-1 and Atrogin-1) and decline of myogenic factors (MyoD and myogenin) after treatment of cisplatin and docetaxel were prevented by Liz-H. Cisplatin and docetaxel treatment resulted in reducing comparative abundances of Ruminococcaceae and Bacteroides, but Liz-H treatment restored these to normal levels. This study indicates that Liz-H is a good chemoprotective reagent for cisplatin + docetaxel-induced cachexia. IMPORTANCE Cachexia is a multifactorial syndrome driven by metabolic dysregulation, anorexia, systemic inflammation, and insulin resistance. Approximately 80% of patients with advanced cancer have cachexia, and cachexia is the cause of death in 30% of cancer patients. Nutritional supplementation has not been shown to reverse cachexia progression. Thus, developing strategies to prevent and/or reverse cachexia is urgent. Polysaccharide is a major biologically active compound in the fungus Ganoderma lucidum. This study is the first to report that G. lucidum polysaccharides could alleviate chemotherapy-induced cachexia via reducing expression of genes that are known to drive muscle wasting, such as MuRF-1 and Atrogin-1. These results suggest that Liz-H is an effective treatment for cisplatin + docetaxel-induced cachexia.
Collapse
Affiliation(s)
- Sung-Yu Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Meng-Lin Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Huang Q, Tian L, Zhang Y, Qiu Z, Lei S, Xia ZY. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother 2023; 163:114795. [PMID: 37146415 DOI: 10.1016/j.biopha.2023.114795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Susceptibility to myocardial ischemia-reperfusion (IR) injury in type-2 diabetes (T2DM) remains disputed, although studies have reported that ferroptosis is associated with myocardial IR injury. Nobiletin, a flavonoid isolated from citrus peels, is an antioxidant that possesses anti-inflammatory and anti-diabetic activities. However, it remains unknown whether nobiletin has any protective effects on susceptibility to myocardial IR injury during T2DM in rats via ferroptosis. To investigate the effects and underlying mechanisms of nobiletin on myocardial IR injury during T2DM, we induced myocardial IR model in rats at T2DM onset vs mature disease. We also established a high-fat high-glucose (HFHG) and hypoxia-reoxygenation (H/R) model in H9c2 cells to imitate abnormal glycolipid metabolism during T2DM. Myocardial injury, oxidative stress and ferroptosis towards myocardial IR in rats with mature T2DM but not at T2DM onset were increased. These changes were restored under treatment with ferrostain-1 or nobiletin. Both ferrostain-1 and nobiletin decreased the expression of ferroptosis-related proteins including Acyl-CoA synthetase long chain family member 4 (ACSL4) and nuclear receptor coactivator 4 (NCOA4) but not glutathione peroxidase 4 (GPX4) in rats with mature T2DM and cells with HFHG and H/R injury. Nobiletin strengthened the effect of si-ACSL4 on inhibiting ACSL4 expression, and also inhibited the effect of Erastin or oe-ACSL4 on increasing ACSL4 expression. Taken together, our data indicates that ferroptosis involves in susceptibility to myocardial IR injury in rats during T2DM. Nobiletin has therapeutic potential for alleviating myocardial IR injury associated with ACSL4- and NCOA4-related ferroptosis.
Collapse
Affiliation(s)
- Qin Huang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Liqun Tian
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China; Department of Anaesthesiology, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Yi Zhang
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China; Department of Anaesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincical Qianfoshan Hospital, Shandong Institute of Anesthesia and Resoiratory Critical Medicine, PR China
| | - Zhen Qiu
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Shaoqing Lei
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China
| | - Zhong-Yuan Xia
- Department of Anaesthesiology, Wuhan Univ, Renmin Hospital, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
39
|
Hussein A, Ghonimy A, Jiang H, Qin G, El‐Ashram S, Hussein S, Abd El‐Razek I, El‐Afifi T, Farouk MH. LC/MS analysis of mushrooms provided new insights into dietary management of diabetes mellitus in rats. Food Sci Nutr 2023; 11:2321-2335. [PMID: 37181306 PMCID: PMC10171545 DOI: 10.1002/fsn3.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2022] [Accepted: 01/07/2023] [Indexed: 01/28/2023] Open
Abstract
Mushrooms possess antihyperglycemic effect on diabetic individuals due to their nonfibrous and fibrous bioactive compounds. This study aimed to reveal the effect of different types of mushrooms on plasma glucose level and gut microbiota composition in diabetic individuals. The effects of five different mushroom species (Ganoderma lucidum, GLM; Pleurotus ostreatus, POM; Pleurotus citrinopileatus, PCM; Lentinus edodes, LEM; or Hypsizigus marmoreus, HMM) on alloxan-induced diabetic rats were investigated in this study. The results indicated that LEM and HMM treatments showed lower plasma glucose levels. For the microbiota composition, ACE, Chao1, Shannon, and Simpson were significantly affected by PCM and LEM treatments (p < .05), while ACE, Shannon, and Simpson indexes were affected by HMM treatment (p < .01). Simpson index was affected in positive control (C+) and POM groups. All these four indices were lower in GLM treatment (p < .05). Dietary supplementation of mushrooms reduced plasma glucose level directly through mushrooms' bioactive compounds (agmatine, sphingosine, pyridoxine, linolenic, and alanine) and indirectly through stachyose (oligosaccharide) and gut microbiota modulation. In conclusion, LEM and HMM can be used as food additives to improve plasma glucose level and gut microbiome composition in diabetic individuals.
Collapse
Affiliation(s)
- Abdelaziz Hussein
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
- Regional Center for Food and FeedAgricultural Research CenterGizaEgypt
| | - Abdallah Ghonimy
- Fish Farming and Technology InstituteSuez Canal UniversityIsmailiaEgypt
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
- Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Hailong Jiang
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
| | - Guixin Qin
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
- Jilin Provincial Key Lab of Animal Nutrition and Feed ScienceJilin Agricultural UniversityChangchunChina
| | - Saeed El‐Ashram
- School of Life Science and EngineeringFoshan UniversityFoshanChina
- Faculty of ScienceKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Saddam Hussein
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Ibrahim Abd El‐Razek
- Animal Production Department, Faculty of AgricultureKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Tarek El‐Afifi
- Regional Center for Food and FeedAgricultural Research CenterGizaEgypt
| | | |
Collapse
|
40
|
Tang C, Zhou R, Cao K, Liu J, Kan J, Qian C, Jin C. Current progress in the hypoglycemic mechanisms of natural polysaccharides. Food Funct 2023; 14:4490-4506. [PMID: 37083079 DOI: 10.1039/d3fo00991b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unhealthy dietary pattern-induced type 2 diabetes mellitus poses a great threat to human health all over the world. Accumulating evidence has revealed that the pathophysiology of type 2 diabetes mellitus is closely associated with the dysregulation of glucose metabolism and energy metabolism, serious oxidative stress, prolonged endoplasmic reticulum stress, metabolic inflammation and intestinal microbial dysbiosis. Most important of all, insulin resistance and insulin deficiency are two key factors inducing type 2 diabetes mellitus. Nowadays, natural polysaccharides have gained increasing attention owing to their numerous health-promoting functions, such as hypoglycemic, energy-regulating, antioxidant, anti-inflammatory and prebiotic activities. Therefore, natural polysaccharides have been used to alleviate diet-induced type 2 diabetes mellitus. Specifically, this review comprehensively summarizes the underlying hypoglycemic mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates hypoglycemic mechanisms of natural polysaccharides from the perspectives of their regulatory effects on glucose metabolism, insulin resistance and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Ruizheng Zhou
- Dongguan Institutes For Food and Drug Control, Dongguan 523808, Guangdong, China
| | - Kexin Cao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
41
|
Ekiz E, Oz E, Abd El-Aty AM, Proestos C, Brennan C, Zeng M, Tomasevic I, Elobeid T, Çadırcı K, Bayrak M, Oz F. Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods 2023; 12:1512. [PMID: 37048331 PMCID: PMC10094145 DOI: 10.3390/foods12071512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.
Collapse
Affiliation(s)
- Elif Ekiz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 15784 Athens, Greece
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia
- The German Institute of Food Technologies (DIL) Professor-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Muharrem Bayrak
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
42
|
Liu X, Dun M, Jian T, Sun Y, Wang M, Zhang G, Ling J. Cordyceps militaris extracts and cordycepin ameliorate type 2 diabetes mellitus by modulating the gut microbiota and metabolites. Front Pharmacol 2023; 14:1134429. [PMID: 36969858 PMCID: PMC10033974 DOI: 10.3389/fphar.2023.1134429] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction:Cordyceps militaris, which has many potential medicinal properties, has rarely been reported to alleviate type 2 diabetes mellitus (T2DM).Methods: The effects of C. militaris extracts (CE) and cordycepin (CCS) on high-fat diet and streptozotocin (STZ) induced T2DM mice were analysed by gut microbiome and metabolomics methods in this study.Results: The results demonstrated that glucose and lipid metabolism parameters, oxidative stress biomarkers and inflammation cytokines were down-regulated in the CCS and CE groups. A comparative analysis of the fecal samples from mice in the model and experimental groups showed that experimental groups resulted in a higher abundance of Firmicutes/Bacteroidetes.Conclusion: This study provides evidence that C. militaris can be used as a food supplement to relieve T2DM, which provides a promising prospect for new functional food in it.
Collapse
Affiliation(s)
- Xinyuan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, SD, China
| | - Mengqian Dun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, SD, China
| | - Tongtong Jian
- Shandong University of Traditional Chinese Medicine, Jinan, SD, China
| | - Yuqing Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, SD, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, SD, China
- *Correspondence: Jianya Ling, ; Guoying Zhang, ; Mingyu Wang,
| | - Guoying Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, SD, China
- *Correspondence: Jianya Ling, ; Guoying Zhang, ; Mingyu Wang,
| | - Jianya Ling
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, SD, China
- *Correspondence: Jianya Ling, ; Guoying Zhang, ; Mingyu Wang,
| |
Collapse
|
43
|
Wei Y, Song D, Wang R, Li T, Wang H, Li X. Dietary fungi in cancer immunotherapy: From the perspective of gut microbiota. Front Oncol 2023; 13:1038710. [PMID: 36969071 PMCID: PMC10032459 DOI: 10.3389/fonc.2023.1038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapies are recently emerged as a new strategy in treating various kinds of cancers which are insensitive to standard therapies, while the clinical application of immunotherapy is largely compromised by the low efficiency and serious side effects. Gut microbiota has been shown critical for the development of different cancer types, and the potential of gut microbiota manipulation through direct implantation or antibiotic-based depletion in regulating the overall efficacy of cancer immunotherapies has also been evaluated. However, the role of dietary supplementations, especially fungal products, in gut microbiota regulation and the enhancement of cancer immunotherapy remains elusive. In the present review, we comprehensively illustrated the limitations of current cancer immunotherapies, the biological functions as well as underlying mechanisms of gut microbiota manipulation in regulating cancer immunotherapies, and the benefits of dietary fungal supplementation in promoting cancer immunotherapies through gut microbiota modulation.
Collapse
Affiliation(s)
- Yibing Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| |
Collapse
|
44
|
Tang Z, Shao T, Gao L, Yuan P, Ren Z, Tian L, Liu W, Liu C, Xu X, Zhou X, Han J, Wang G. Structural elucidation and hypoglycemic effect of an inulin-type fructan extracted from Stevia rebaudiana roots. Food Funct 2023; 14:2518-2529. [PMID: 36820831 DOI: 10.1039/d2fo03687h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Diabetes mellitus (DM) is a common chronic medical condition characterized by hyperglycemia resulting from abnormal insulin functionality, of which type 2 DM (T2DM) is the predominant form. An inulin-type fructan, denoted as SRRP, was obtained from Stevia rebaudiana roots via hot-water extraction and alcoholic precipitation, which was subsequently purified by column chromatography. The extracted SRRP sample had a molecular weight of 5.4 × 103 Da. Structural analyses indicated that SRRP was composed of 2,1-linked-β-D-fructofuranosyl and α-D-glucopyranosyl residues in a ratio of approximately 29 : 1. In vivo assays revealed that SRRP significantly reduced fasting blood glucose levels, improved insulin resistance, decreased oxidative stress, and regulated lipid metabolism in T2DM mouse models. In addition, SRRP altered the diversity of the gut microbiota and its metabolites in T2DM mice; it increased probiotic bacteria and the concentration of short-chain fatty acids and decreased harmful bacteria. The findings demonstrate the potential of SRRP in the treatment of T2DM.
Collapse
Affiliation(s)
- Zhiyan Tang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Taili Shao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Lan Gao
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Pingchuan Yuan
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Zhengrui Ren
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Lei Tian
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Wei Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Chunyan Liu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Xiuxian Xu
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Xuan Zhou
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Jun Han
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - Guodong Wang
- Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241002, China. .,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| |
Collapse
|
45
|
Guo H, Wu H, Kong X, Zhang N, Li H, Dong X, Li Z. Oat β-glucan ameliorates diabetes in high fat diet and streptozotocin-induced mice by regulating metabolites. J Nutr Biochem 2023; 113:109251. [PMID: 36513312 DOI: 10.1016/j.jnutbio.2022.109251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Oats are widely distributed worldwide and oat β-glucan has positive effects on human health. Particularly, oat β-glucan is reported to be beneficial in the management of type 2 diabetes. The aim of the present study is to investigate the effects of oat β-glucan and its possible underlying mechanisms on diabetes in type 2 diabetic mice that was induced by streptozotocin/high-fat diet (STZ/HFD). The data indicated that oat β-glucan significantly reduced the fasting blood glucose, improved glucose tolerance, and insulin sensitivity. The results further showed that oat β-glucan remarkably decreased the levels of total cholesterol (TCHO), total triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and free fatty acids. Moreover, oat β-glucan remarkably increased the hepatic glycogen content, but largely decreased the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in STZ/HFD-induced diabetic mice. Histological analysis showed that oat β-glucan alleviated visceral lesions. Finally, the metabolomic analysis indicated that the metabolic profile was remarkably changed after oat β-glucan intervention in diabetic mice. There were 88 and 106 differential metabolites screened as biomarkers in negative ion mode (NEG) and positive ion mode (POS) after oat β-glucan treatment, respectively. In addition, oat β-glucan significantly affected the serum metabolites of amino acids, organic acids and bile acids. Collectively, the current study elucidates oat β-glucan displays an effective nutritional intervention in diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Haili Wu
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Xiangqun Kong
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Nuonuo Zhang
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Hanqing Li
- Shanxi Key Laboratory for Research and Development of Regional Plants, College of Life Science, Shanxi University, Taiyuan, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhuoyu Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China.
| |
Collapse
|
46
|
Polysaccharide extract from Rosa laevigata fruit attenuates inflammatory obesity by targeting redox balance and gut interface in high-fat diet-fed rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Swallah MS, Bondzie-Quaye P, Wu Y, Acheampong A, Sossah FL, Elsherbiny SM, Huang Q. Therapeutic potential and nutritional significance of Ganoderma lucidum - a comprehensive review from 2010 to 2022. Food Funct 2023; 14:1812-1838. [PMID: 36734035 DOI: 10.1039/d2fo01683d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a long history in traditional Asian medicine, Ganoderma lucidum (G. lucidum) is a mushroom species suggested to improve health and extend life. Its medicinal reputation has merited it with numerous attributes and titles, and it is evidenced to be effective in the prevention and treatment of various metabolic disorders owing to its unique source of bioactive metabolites, primarily polysaccharides, triterpenoids, and polyphenols, attributed with antioxidant, anti-inflammatory, anticancer, hepatoprotective, antidiabetic activities, etc. These unique potential pharmaceutical properties have led to its demand as an important resource of nutrient supplements in the food industry. It is reported that the variety of therapeutic/pharmacological properties was mainly due to its extensive prebiotic and immunomodulatory functions. All literature summarized in this study was collated based on a systematic review of electronic libraries (PubMed, Scopus databases, Web of Science Core Collection, and Google Scholar) from 2010-2022. This review presents an updated and comprehensive summary of the studies on the immunomodulatory therapies and nutritional significance of G. lucidum, with the focus on recent advances in defining its immunobiological mechanisms and the possible applications in the food and pharmaceutical industries for the prevention and management of chronic diseases. In addition, toxicological evidence and the adoption of standard pharmaceutical methods for the safety assessment, quality assurance, and efficacy testing of G. lucidum-derived compounds will be the gateway to bringing them into health establishments.
Collapse
Affiliation(s)
- Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Frederick Leo Sossah
- Council For Scientific And Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, P.O.Box 245, Sekondi, Ghana.,Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China.,Department of Physics, Faculty of Science, Mansoura University, Mansoura 33516, Egypt
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, 230031, China. .,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
48
|
Liu Y, Zhang D, Ning Q, Wang J. Growth characteristics and metabonomics analysis of Lactobacillus rhamnosus GG in Ganoderma lucidum aqueous extract medium. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
49
|
Zhao J, Hu Y, Qian C, Hussain M, Liu S, Zhang A, He R, Sun P. The Interaction between Mushroom Polysaccharides and Gut Microbiota and Their Effect on Human Health: A Review. BIOLOGY 2023; 12:biology12010122. [PMID: 36671814 PMCID: PMC9856211 DOI: 10.3390/biology12010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Mushroom polysaccharides are a kind of biological macromolecule extracted from the fruiting body, mycelium or fermentation liquid of edible fungi. In recent years, the research on mushroom polysaccharides for alleviating metabolic diseases, inflammatory bowel diseases, cancers and other symptoms by changing the intestinal microenvironment has been increasing. Mushroom polysaccharides could promote human health by regulating gut microbiota, increasing the production of short-chain fatty acids, improving intestinal mucosal barrier, regulating lipid metabolism and activating specific signaling pathways. Notably, these biological activities are closely related to the molecular weight, monosaccharide composition and type of the glycosidic bond of mushroom polysaccharide. This review aims to summarize the latest studies: (1) Regulatory effects of mushroom polysaccharides on gut microbiota; (2) The effect of mushroom polysaccharide structure on gut microbiota; (3) Metabolism of mushroom polysaccharides by gut microbiota; and (4) Effects of mushroom polysaccharides on gut microbe-mediated diseases. It provides a theoretical basis for further exploring the mechanism of mushroom polysaccharides for regulating gut microbiota and gives a reference for developing and utilizing mushroom polysaccharides as promising prebiotics in the future.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixin Hu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Qian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China
- Correspondence: (R.H.); (P.S.)
| |
Collapse
|
50
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|