1
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2024; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
2
|
Chen Y, Wen Q, Lin M, Yang B, Feng L, Jia X. Scientific Validation of Using Active Constituent as Research Focus in Traditional Chinese Medicine: Case Study of Pueraria lobata Intervention in Type 2 Diabetes. Pharmaceuticals (Basel) 2024; 17:1675. [PMID: 39770517 PMCID: PMC11678734 DOI: 10.3390/ph17121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Traditional Chinese Medicine (TCM) is recognized for its complex composition and multiple therapeutic targets. However, current pharmacological research often concentrates on extracts or individual components. The former approach faces numerous challenges, whereas the latter oversimplifies and disregards the synergistic effects among TCM components. This study aims to investigate the scientific validity of focusing on the active constituent in TCM efficacy research, using Pueraria lobata (P. lobata) as a case study. Methods: Through spectrum-effect correlation analysis, network pharmacology, and molecular docking, five active ingredients of P. lobata were identified: puerarin, formononetin, tuberosin, 4',7-dihdroxy-3'-methoxyisoflavone, and Daidzein-4,7-diglucoside. These ingredients were combined to form an active constituent, which was subsequently tested in vitro and in vivo. Results: In in vitro, the active constituent exhibited superior effects in enhancing glucose consumption and glycogen synthesis compared to both the P. lobata extract and individual components. In vivo experiments demonstrated that medium and high doses of the active constituent were significantly more effective than P. lobata extract, with effects comparable to those of metformin in reducing blood sugar levels. Conclusions: The active constituent effectively improves T2DM by lowering blood glucose levels, promoting glycogen synthesis, and modulating glycolipid metabolism. Both in vitro and in vivo studies indicate that it outperformed the P. lobata extract and individual components. This study establishes the scientific validity and feasibility of utilizing the active constituent as the focus for investigating the efficacy of TCM, thereby offering novel insights and a new research paradigm for future TCM investigations.
Collapse
Affiliation(s)
| | | | | | | | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (Y.C.)
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (Y.C.)
| |
Collapse
|
3
|
Mao J, Li M, Wang X, Wang B, Luo P, Wang G, Guo X. Exploring the mechanism of Pueraria lobata (Willd.) Ohwi in the regulation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118703. [PMID: 39154668 DOI: 10.1016/j.jep.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata (Willd.) Ohwi is a traditional medicinal and edible homologous plant rich in flavonoids, triterpenes, saponins, polysaccharides and other chemical components. At present, studies have shown that Pueraria lobata radix (PR) has the effect of lowering blood sugar, improving insulin sensitivity and inhibiting obesity. However, the specific mechanism of PR inhibits obesity is still unclear, and there are few researches on the anti-obesity effect of PR through the combination of network pharmacology and experiment. AIM OF THE STUDY Pharmacology, molecular docking technology and experimental verification through the network, revealing the PR the material basis of obesity and the potential mechanism. METHODS AND RESULTS The present study used network pharmacology techniques to investigate the therapeutic effect and mechanism of action of PR. Through relevant databases, a total of 6 main chemical components and 257 potential targets were screened. Protein interaction analysis shows that AKT1, AKR1B1, PPARG, MMP9, TNF, TP53, BAD, and BCL2 are core targets. Enrichment analysis shows that the pathway of PR in preventing obesity involves the cancer signaling pathway and the PI3K-Akt signaling pathway, which may be the main pathways of action. Further molecular docking verification indicates that its core target exhibits good binding activity with 4 compounds: formononectin, purerin, 7,8,4 '- trihydroxide and daidzein. Using the ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) technology to detected and confirmed these main compounds. Cell experiment results revealed that puerarin inhibits cell proliferation and differentiation in a concentration dependent manner, significantly promoting cell apoptosis and affecting cell migration. Animal experiments have shown that puerarin reduces food intake and weight gain in mice. It was found that puerarin can upregulate HDL and downregulate TC, TG, and LDL blood biochemical indicators. Western blot results showed that puerarin significantly inhibited the expression of AKT1, AKR1B1, MMP9, TNF, TP53, BCL2, PPARG, and significantly increased the expression of BAD protein at both cellular and animal levels. CONCLUSION The present study established a method for measuring PR content and predicted its active ingredients and their mechanisms of action in the treatment of obesity, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jingxin Mao
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China; Chongqing Medical and Pharmaceutical College, Chongqing, 400030, China
| | - Maolin Li
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, Chongqing, 400030, China
| | - Binbin Wang
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Peng Luo
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Guoze Wang
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China.
| | - Xiulan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
4
|
Oluwabiyi CT, Song Z. Effects of purple sweet potato polysaccharide on performance, egg quality characteristics, jejunal morphology, and gut microbiota of Hy-Line Brown laying hens. Poult Sci 2024; 103:104366. [PMID: 39413705 PMCID: PMC11525212 DOI: 10.1016/j.psj.2024.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
This study was conducted to investigate the effects of dietary purple sweet potato polysaccharide (PSPP) supplementation on production performance, egg quality characteristics, jejunal morphology, and gut microbiota modulation of Hy-line Brown laying hens. A total of 288 23-wk-old Hy-line Brown laying hens were randomly divided into 1 of the 4 dietary treatment groups, with 6 replicates and 12 laying hens per replicate. The 4 groups were fed basal diet supplemented with varying concentrations of PSPP (0, 1, 2, or 4 g/kg) for 6 wks. At the end of the feeding trials, eggs were collected for egg quality analysis, jejunal samples were collected for morphology assessment, and cecal content was analyzed by 16S rRNA high-throughput sequencing to determine intestinal microbiota. Experimental treatments did not differ regarding laying performance and egg quality. However, polynomial contrast analysis showed that there was a linear decrease (P = 0.042) in yolk color. The jejunal morphology did not differ among the treatment groups. The alpha and beta diversity were not different between the treatment groups. The cecal microbiota was dominated by Bacteroidota and Firmicutes at the phylum level and Bacteroides at the genus level. The relative abundance of Firmicutes was increased (P = 0.012) and Bacteroidota was decreased (P = 0.009) in the cecal content of PSPP2. Firmicutes to Bacteroidota ratio increased (P = 0.005) in the PSPP2 group. Polynomial contrast analysis showed that PSPP had a quadratic effect on Firmicutes to Bacteroidota ratio (P = 0.004) and on the relative abundance of Firmicutes (P = 0.006) and Bacteroidota (P = 0.006). At the genus level, increasing PSPP level showed a pattern of linear increase (P = 0.046) in [Ruminococcus]_torques_group and linear decrease (P = 0.015) in the Rikenellaceae_RC9_gut_group. It can be concluded that PSPP altered the gut microbiota, but did not influence jejunal morphology or laying performance and egg quality of laying hens. Further research is recommended to fully understand the potential and determine the optimal level of PSPP in laying hens.
Collapse
Affiliation(s)
- Cecilia T Oluwabiyi
- Department of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China
| | - Zhigang Song
- Department of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Shandong Agricultural University, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
5
|
Yu L, Lin F, Yu Y, Deng X, Shi X, Lu X, Lu Y, Wang D. Rehmannia glutinosa polysaccharides enhance intestinal immunity of mice through regulating the microbiota. Int J Biol Macromol 2024; 283:137878. [PMID: 39571844 DOI: 10.1016/j.ijbiomac.2024.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The Rehmannia glutinosa polysaccharides (RGP) have various benefits such as enhancing immune cell activity, decreasing oxidative stress and delaying or inhibiting tumor occurrence. Although much research has been directed at understanding the role of RGP, its influence on gut immunity is largely understudied. Here, we aimed to dissect the immune-regulating effects of RGP in the mice intestines. In vivo experiments involving the oral administration of RGP to mice at dosages of 100, 200, and 400 mg/kg over seven consecutive days revealed that RGP therapy significantly increased the percentages of CD3+ T lymphocytes and CD19+ B lymphocytes in intestines and improved the integrity of the mucosal barrier. Moreover, RGP modified the gut microbiota composition by enhancing the abundance of beneficial bacteria like Lactobacillus and Akkermansia. Fecal microbiota transplantation (FMT) experiments further revealed that RGP modulated the host's intestinal immunological function by altering the gut microbiota composition. These findings indicate that RGP may control the immunological function of the intestines.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangzhu Lin
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangwen Deng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofeng Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanqi Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Yao L, Zhu L, Chen C, Wang X, Zhang A, Gao S, Wu J, Qin L. A systematic review on polysaccharides from fermented Cordyceps sinensis: Advances in the preparation, structural characterization, bioactivities, structure-activity relationships. Int J Biol Macromol 2024; 282:137275. [PMID: 39510481 DOI: 10.1016/j.ijbiomac.2024.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Cordyceps sinensis (Berk.) Sacc. (Ophiocordyceps sinensis) is an edible and medicinal fungus used as a natural superior tonic. It is considered as scarce fungus with a high market demand. Therefore, as an alternative, fermentation technology has been proposed to produce artificial cordyceps (fermented C. sinensis) to address the shortage of cordyceps resources for industrialization and commercial utilization. Numerous studies have proved that polysaccharides are the important bioactive substances in the fermented C. sinensis, but the research data lack systematic review. In this review, current relevant research data regarding the preparation (including extraction, fractionation, and purification), structural characterization (including molecular weight, monosaccharide composition, glycosidic bond type, structural and conformational features), bioactivities, structure-activity relationships (SAR) and applications of polysaccharides from different sources of fermented C. sinensis last decade were analyzed and discussed. The findings highlight that the most commonly employed methods for preparing fermented Cordyceps sinensis polysaccharides (FCSPs) involve water extraction and alcohol precipitation, combing with sophisticated chromatographic techniques such as ion exchange and gel permeation chromatography. From these processes, 34 different polysaccharides were identified including 5 glucans and 7 heteropolysaccharides that were thoroughly characterized. FCSPs exhibited a broad spectrum of biological activities, ranging from antioxidant and renal protective effects to immunomodulatory, antitumor, and hypolipidemic properties. The structure-activity relationships (SAR) demonstrated that key factors, such as molecular weight, monosaccharide composition and glucosidic bond types, play critical roles in determining the bioactivity of FCSPs. Nevertheless, there remain unknown elements that continue to influence SAR, leaving room for further exploration. Furthermore, the limitation of existing studies and some new perspectives for future investigations on FCSPs were proposed.
Collapse
Affiliation(s)
- Lumeng Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Lili Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Changlun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xingxing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Anna Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Siqi Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
7
|
Lin Y, Zhang Z, Ren S, Wang L, Xiong B, Zheng B, Zhang Y, Pan L. Effects of steam explosion pretreatment on the digestive properties and gut microbiota of Laminaria japonica polysaccharide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8879-8886. [PMID: 38953304 DOI: 10.1002/jsfa.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Laminaria japonica polysaccharide, which is an important bioactive substance of Laminaria japonica with anti-inflammatory and antioxidant effects. In this study, the molecular weight, functional groups and surface morphology were investigated to evaluate the digestive properties of Laminaria japonica polysaccharide before and after steam explosion. RESULTS The results indicated that the Laminaria japonica polysaccharide entered the large intestine to be utilized by the gut microbiota after passing through the oral, gastric and small intestinal. Meanwhile, Laminaria japonica polysaccharide of steam explosion promoted the growth of beneficial bacteria Phascolarctobacterium and Intestinimonas, and increased the content of acetic, propionic and butyric acids, which was 2.29-folds, 2.60-folds and 1.63-folds higher than the control group after 48 h of fermentation. CONCLUSION This study reveals that the effect of steam explosion pretreatment on the digestion in vitro and gut microbiota of Laminaria japonica polysaccharide will provide a basic theoretical basis for the potential application of Laminaria japonica polysaccharide as a prebiotic in the food industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijie Ren
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| |
Collapse
|
8
|
Wang Z, Wu G, Niu T, Guo Y, Wang C, Wang X, Yu J. Polysaccharide isolated from Dioscorea septemloba improves hyperuricemia and alleviates renal fibrosis through gut-kidney axis in mice. Int J Biol Macromol 2024; 282:137112. [PMID: 39489240 DOI: 10.1016/j.ijbiomac.2024.137112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Hyperuricemia (HUA) is a common metabolic disorder that often accompanies kidney diseases such as tubule damage and renal interstitial fibrosis. The preventive and therapeutic effects of Dioscorea septemloba, an anti-HUA herb, polysaccharide of which was considered as the main active ingredient on HUA, need to be explored. The major polysaccharide component, BXP, was purified from Dioscorea septemloba, with an average molecular weight of 10.432 kDa. Structural analysis inferred that BXP backbone was composed of t-β-D-Glcp-(1→4)-α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4, 3)-β-D-Glcp-(1 → , along with the side chain of →1)-α-D-Glcp-(6, 4 → 3, 4)-β-D-Glcp-(1→. The HUA mouse model was further established to clarify the underlying effect of BXP on HUA alleviation. As results shown, BXP decreased serum uric acid by inhibiting XOD and regulating urate transporter expression (GLUT9, OAT3, OAT1, URAT1 and ABCG2) in HUA mice, as well as relieving kidney and liver damage. Moreover, results of microbiome and metabolomics indicated that BXP improved the abundance of gut bacteria and reversed the Lipids-related metabolism disorder caused by HUA. This study indicated that BXP had potential to alleviate HUA and kidney disease through the gut-kidney axis in mice.
Collapse
Affiliation(s)
- Zhenqiang Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Guozhen Wu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Tong Niu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingjian Guo
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chuangchuang Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinqian Yu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
9
|
Zhao S, Tao Y, Huang L, Xue H, Chen R, Li X, Chen K, Tang Q, Wang M. Effects of polysaccharide from Pueraria lobata on osteoarthritis in rats. Int J Biol Macromol 2024; 278:134901. [PMID: 39173791 DOI: 10.1016/j.ijbiomac.2024.134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
The effects of Pueraria lobata polysaccharide (PPL-1) on osteoarthritis (OA) disease were comprehensively evaluated by using chondrocytes and synoviocytes extracted from the joints of SD rats based on in vitro cell experiments and by establishing pathological models of OA rats. The results showed that concentrations of 1.25-10 and 0.2-1.6 μg/mL, PPL-1 did not inhibit or promote chondrocytes and synoviocytes in vitro. However, at concentrations of 1.25-10 and 0.2-1.6 μg/mL, it can promote cartilage and synovial membrane cells after LPS stimulation of cell activity and inhibite LPS-induced apoptosis. The results of animal experiments showed that PPL-1 can reduce the symptoms of joint swelling in OA rats, decrease the production of serum inflammatory cytokines TNF-α, IL-1β, and IL-6, and slow down the occurrence of inflammation. Therefore, from the perspective of symptoms, inflammatory factors and pathology, PPL-1 has therapeutic effects on OA rats and alleviates the development of inflammation. It indicated that PPL-1 has the potential to be developed into an OA therapeutic drug with anti-inflammatory properties that protects and activates chondrocytes.
Collapse
Affiliation(s)
- Shifan Zhao
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yijiong Tao
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Linjie Huang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hualei Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Rong Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiao Li
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Kai Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Qi Tang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
10
|
Zhou Q, Gao J, Sun X, Du J, Wu Z, Liang D, Ling C, Fang B. Immunomodulatory Mechanisms of Tea Leaf Polysaccharide in Mice with Cyclophosphamide-Induced Immunosuppression Based on Gut Flora and Metabolomics. Foods 2024; 13:2994. [PMID: 39335922 PMCID: PMC11431025 DOI: 10.3390/foods13182994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tea polysaccharides (TPSs) are receiving increasing attention because of their diverse pharmacological and biological activities. Here, we explored the immunoregulatory mechanisms of TPSs from fresh tea leaves in a mouse model of cyclophosphamide (CTX)-induced immunosuppression in terms of gut microbiota and metabolites. We observed that TPSs significantly increased the body weight and alleviated CTX-induced thymus atrophy in the immunosuppressed mice; they also increased the plasma levels of immunoglobulins A and M, interleukin (IL) 1β, IL-6, inducible nitric oxide synthase, and tumor necrosis factor α. Furthermore, we conducted 16S rDNA sequencing of cecal contents, resulting in the acquisition of 5008 high-quality bacterial 16S rDNA gene reads from the sequencing of mouse fecal samples. By analyzing the data, we found that TPSs regulated the gut microbiota structure and diversity and alleviated the CTX-induced dysregulation of gut microbiota. The colonic contents of mice were subjected to analysis using the UPLC-Q-TOF/MS/MS technique for the purpose of untargeted metabolomics. In the course of our metabolite identification analysis, we identified a total of 2685 metabolites in positive ion mode and 1655 metabolites in negative ion mode. The analysis of these metabolites indicated that TPSs improved CTX-induced metabolic disorders by regulating the levels of metabolites related to tryptophan, arginine, and proline metabolism. In conclusion, TPSs can alleviate CTX-induced immunosuppression by regulating the structural composition of gut microbiota, indicating the applicability of TPSs as novel innate immune modulators in health foods or medicines.
Collapse
Affiliation(s)
- Qiaoyi Zhou
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Jinjing Gao
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Xueyan Sun
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Junyuan Du
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Zhiyi Wu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Dongxia Liang
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Caijin Ling
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| |
Collapse
|
11
|
Wei S, Li M, Zhao L, Wang T, Wu K, Yang J, Tang M, Zhao Y, Shen J, Du F, Chen Y, Deng S, Xiao Z, Wei M, Li Z, Wu X. Fingerprint profiling for quality evaluation and the related biological activity analysis of polysaccharides from Liuweizhiji Gegen-Sangshen beverage. Front Nutr 2024; 11:1431518. [PMID: 39040925 PMCID: PMC11260736 DOI: 10.3389/fnut.2024.1431518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Liuweizhiji Gegen-Sangshen beverage (LGS) is popular in China, which has been used for alleviating alcohol-mediated discomfort and preventing alcoholic liver disease (ALD). This beverage is consisted of six herbal components that are known as functional foods and fruits. LGS is rich in polysaccharides, however, the activity and quality evaluation of LGS-derived polysaccharides remain unexplored. The purpose of this study is thus to establish a comprehensive quality control methodology for the assessment of LGS polysaccharides (LGSP) and to further explore the anti-oxidant, anti-inflammatory as well as prebiotic effect of LGSP. Methods LGSP was extracted, followed by analysis of molecular weight distribution, monosaccharide content and structural characterization via integrating the application of high-performance size exclusion chromatography (HPSEC), 1-phenyl-3-methyl-5-pyrazolone-HPLC (PMP-HPLC), fourier transform infrared spectroscopy (FT-IR) as well as nuclear magnetic resonance spectroscopy (NMR) techniques. The anti-oxidation activity of LGSP was determined by DPPH, ABTS, hydroxyl radical scavenging capacity and total antioxidant capacity. The anti-inflammation of LGSP were assessed on the RAW 264.7 cells. The effect of LGSP on growth of Lactobacillus, Bifidobacterium bifidum and Bifidobacterium adolescentis was evaluated. Results The results demonstrated that LGSP had two molecular weight distribution peaks, with the average molecular weights of (6.569 ± 0.12) × 104 Da and (4.641 ± 0.30) × 104 Da. LGSP was composed of 8 monosaccharides, with galacturonic acid, glucose rhamnose and galactose representing the highest molar ratios. Homogalacturonic acid (HG) type and rhamnosegalacturonic acid glycans I (RG-I) type and α-1,4-glucan were present in LGSP. LGSP concentration in LGS was 17.94 ± 0.28 mg/mL. Furthermore, fingerprint analysis combined with composition quantification of 10 batches of LGSP demonstrated that there was a high similarity among batches. Notably, LGSP exhibited anti-oxidant effect and inhibited expressions of pro-inflammatory factors (TNF-α and IL-6) in LPS-stimulated RAW 264.7 cells. In addition, LGSP remarkably promoted the proliferation of probiotics Lactobacillus, Bifidobacterium bifidum and Bifidobacterium adolescentis, showing good prebiotic activity. Discussion The results of present study would be of help to gain the understanding of structure-activity relationship of LGSP, provide a reference for quality evaluation of bioactive LGSP, and facilitate development of unique health and functional products in the future.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingyun Tang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mei Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
12
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Xue H, Liang B, Wang Y, Gao H, Fang S, Xie K, Tan J. The regulatory effect of polysaccharides on the gut microbiota and their effect on human health: A review. Int J Biol Macromol 2024; 270:132170. [PMID: 38734333 DOI: 10.1016/j.ijbiomac.2024.132170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Polysaccharides with low toxicity and high biological activities are a kind of biological macromolecule. Recently, growing studies have confirmed that polysaccharides could improve obesity, diabetes, tumors, inflammatory bowel disease, hyperlipidemia, diarrhea, and liver-related diseases by changing the intestinal micro-environment. Moreover, polysaccharides could promote human health by regulating gut microbiota, enhancing production of short-chain fatty acids (SCFAs), improving intestinal mucosal barrier, regulating lipid metabolism, and activating specific signaling pathways. Notably, the biological activities of polysaccharides are closely related to their molecular weight, monosaccharide composition, glycosidic bond types, and regulation of gut microbiota. The intestinal microbiota can secrete glycoside hydrolases, lyases, and esterases to break down polysaccharides chains and generate monosaccharides, thereby promoting their absorption and utilization. The degradation of polysaccharides can produce SCFAs, further regulating the proportion of gut microbiota and achieving the effect of preventing and treating various diseases. This review aims to summarize the latest studies: 1) effect of polysaccharides structures on intestinal flora; 2) regulatory effect of polysaccharides on gut microbiota; 3) effects of polysaccharides on gut microbe-mediated diseases; 4) regulation of gut microbiota on polysaccharides metabolism. The findings are expected to provide important information for the development of polysaccharides and the treatment of diseases.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Beimeng Liang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Haiyan Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Saisai Fang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
14
|
Yang HB, Song JY, Xu C, Li J, Zhang C, Xie S, Teng CL. Interventional effects of Pueraria oral liquid on T2DM rats and metabolomics analysis. Biomed Pharmacother 2024; 175:116780. [PMID: 38781864 DOI: 10.1016/j.biopha.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.
Collapse
Affiliation(s)
- Hong-Bo Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Jie-Yu Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Jin Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| | - Sun Xie
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| | - Chun-Li Teng
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| |
Collapse
|
15
|
Shi P, Yan Z, Chen M, Li P, Wang D, Zhou J, Wang Z, Yang S, Zhang Z, Li C, Yin Y, Huang P. Effects of dietary supplementation with Radix Isatidis polysaccharide on egg quality, immune function, and intestinal health in hens. Res Vet Sci 2024; 166:105080. [PMID: 37952298 DOI: 10.1016/j.rvsc.2023.105080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study aimed to investigate the effects of supplementing laying hen diets with Radix Isatidis Polysaccharide (RIPS) on egg quality, immune function, and intestinal health. The research was conducted using 288 Hyland Brown hens, which were randomly assigned to four dietary treatments: control (without RIPS), low dose (200 g/t), medium dose (500 g/t), and high dose (1000 g/t) of RIPS. Each dietary treatment was administered to eight replicates of nine hens for nine weeks. The results revealed that RIPS inclusion in diets significantly improved egg quality parameters such as egg shape index, yolk color, haugh unit, and protein height (P < 0.05). Additionally, RIPS supplementation enhanced immune function as evidenced by an alteration in serum biochemical parameters, an increase in the spleen index, and a decrease in the liver index. Further, an evaluation of intestinal health showed that RIPS fortified the intestinal barrier, thus increasing the population of beneficial intestinal bacteria and reducing the abundance of harmful ones. Such mechanisms promoted intestinal health, digestion, and nutrient absorption, ultimately leading to enhanced egg quality. In conclusion, supplementing laying hen diets with RIPS has been demonstrated to improve egg quality by boosting immunity and optimizing intestinal digestion and absorption.
Collapse
Affiliation(s)
- Panpan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zenghao Yan
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Miaofen Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaojie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shihao Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhikun Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Dou Z, Zhang Y, Tang W, Deng Q, Hu B, Chen X, Niu H, Wang W, Li Z, Zhou H, Zeng N. Ultrasonic effects on the degradation kinetics, structural characteristics and protective effects on hepatocyte lipotoxicity induced by palmitic acid of Pueraria Lobata polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 101:106652. [PMID: 37865008 PMCID: PMC10597800 DOI: 10.1016/j.ultsonch.2023.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
In this study, a high-molecular-weight Pueraria lobata polysaccharide (PLP) with a molecular weight of 273.54 kDa was degraded by ultrasound, and the ultrasonic degradation kinetics, structural characteristics and hepatoprotective activity of ultrasonic degraded PLP fractions (PLPs) were evaluated. The results showed that the ultrasonic treatment significantly reduced the Mw and particle size of PLP, and the kinetic equation of ultrasonic degradation of PLP followed to the midpoint fracture model (the fist-order model). The monosaccharide composition analysis, FT-IR, triple helix structure and XRD analysis all indicated that the ultrasound degradation did not destroy the primary structure of PLP, but the thermal stability of degraded fractions improved. Additionally, the scanning electron microscopy analysis demonstrated that the surface morphology of PLP was altered from smooth, flat, compact large flaky structure to a sparse rod-like structure with sparse crosslinking (PLP-7). The degraded PLP fractions (0.5 mg/mL) with lower Mw exhibited better antioxidant activities and protective effects against palmitic acid-induced hepatic lipotoxicity, which may be due to the increased exposure of active groups such as hydroxyl groups of PLP after ultrasound. Further investigation showed that PLPs not only increased Nrf2 phosphorylation and its nuclear translocation, thereby activating Nrf2/Keap1 signaling pathway, but also enhanced HO-1, NQO-1, γ-GCL gene expressions and promoted superoxide dismutase and catalase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Overall, our research might provide an in-depth insight into P. Lobata polysaccharide in ameliorating lipid metabolic disorders, and the results revealed that ultrasonic irradiation could be a promising degradation method to produce value-added polysaccharide for use in functional food.
Collapse
Affiliation(s)
- Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yulong Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Waijiao Tang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiong Deng
- School of Business Administration, Guangzhou Institute of Science and Technology, Guangzhou 510282, China
| | - Baishun Hu
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Usnciciences, Enshi 445000, China
| | - Xianwei Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hui Niu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Wenduo Wang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
17
|
Wang H, Li H, Li Z, Feng L, Peng L. Evaluation of Prebiotic Activity of Stellariae Radix Polysaccharides and Its Effects on Gut Microbiota. Nutrients 2023; 15:4843. [PMID: 38004237 PMCID: PMC10675217 DOI: 10.3390/nu15224843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This study aims to evaluate the prebiotic potential of polysaccharides derived from Stellariae Radix (SRPs) and explore their influence on the gut microbiota composition in mice. Lactobacillus acidophilus and Bifidobacterium longum were cultivated in an MRS medium, while their growth kinetics, clumping behavior, sugar utilization, pH variation, growth density, and probiotic index were meticulously monitored. Additionally, the impact of crude Stellariae Radix polysaccharides (CSRP) on the richness and diversity of gut microbiota in mice was assessed via 16S rDNA sequencing. The results demonstrated the remarkable ability of CSRPs to stimulate the proliferation of Lactobacillus acidophilus and Bifidobacterium longum. Moreover, the oral administration of CSRPs to mice led to a noticeable increase in beneficial bacterial populations and a concurrent decrease in detrimental bacterial populations within the intestinal flora. These findings provided an initial validation of CSRPs as a promising agent in maintaining the equilibrium of gut microbiota in mice, thereby offering a substantial theoretical foundation for developing Stellariae Radix as a prebiotic ingredient in various applications, including food, healthcare products, and animal feed. Furthermore, this study presented novel insights for the exploration and utilization of Stellariae Radix resources.
Collapse
Affiliation(s)
- Hong Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
- College of Resource and Environment and Life Science, Ningxia Normal University, Guyuan 756000, China
| | - Haishan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
| | - Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
| | - Lu Feng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; (H.W.); (H.L.)
- Ningxia Natural Medicine Engineering Technology Research Center, Yinchuan 750021, China
| |
Collapse
|
18
|
Zhang Y, Zhou M, Zhou Y, Guan X. Dietary components regulate chronic diseases through gut microbiota: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6752-6766. [PMID: 37225671 DOI: 10.1002/jsfa.12732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
In recent years, gut microbiota as an immune organ has gradually become the mainstream of research. When the composition of the gut microbiota is changed significantly, this may affect human health. This review details the major microbiota composition and metabolites in the gut and discusses chronic diseases based on gut dysbiosis, including obesity, liver injury, colon cancer, atherosclerosis, and central nervous system diseases. We comprehensively summarize the changes in abundance of relevant gut microbiota by ingesting different diet components (such as food additives, dietary polyphenols, polysaccharides, fats, proteins) and their influence on the microbial quorum sensing system, thereby regulating related diseases. We believe that quorum sensing can be used as a new entry point to explain the mechanism of ingesting dietary components to improve gut microbiota and thereby regulate related diseases. This review hopes to provide a theoretical basis for future research on improving disease symptoms by ingesting functional foods containing dietary components. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ming Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqin Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
19
|
Xue H, Mei C, Wang F, Tang X. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr 2023; 11:5837-5855. [PMID: 37823142 PMCID: PMC10563694 DOI: 10.1002/fsn3.3596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic diarrhea, including diarrhea-predominant irritable bowel syndrome (IBS-D), osmotic diarrhea, bile acid diarrhea, and antibiotic-associated diarrhea, is a common problem which is highly associated with disorders of the gut microbiota composition such as small intestinal bacterial overgrowth (SIBO) and so on. A growing number of studies have supported the view that Chinese herbal formula alleviates the symptoms of diarrhea by modulating the fecal microbiota. Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides that are widely found in Chinese herbs and function as important active ingredients. Commensal gut microbiota has an extensive capacity to utilize CHPs and play a vital role in degrading polysaccharides into short-chain fatty acids (SCFAs). Many CHPs, as prebiotics, have an antidiarrheal role to promote the growth of beneficial bacteria and inhibit the colonization of pathogenic bacteria. This review systematically summarizes the relationship among gut microbiota, chronic diarrhea, and CHPs as well as recent progress on the impacts of CHPs on the gut microbiota and recent advances on the possible role of CHPs in chronic diarrhea.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Chun‐Feng Mei
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Feng‐Yun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xu‐Dong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach DiseasesXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
20
|
Shen L, Shen Y, You L, Zhang Y, Su Z, Peng G, Deng JL, Zhong Z, Yu S, Zong X, Wu X, Zhu Y, Cao S. Blood metabolomics reveals the therapeutic effect of Pueraria polysaccharide on calf diarrhea. BMC Vet Res 2023; 19:98. [PMID: 37516856 PMCID: PMC10386334 DOI: 10.1186/s12917-023-03662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Neonatal calf diarrhea (NCD) is typically treated with antibiotics, while long-term application of antibiotics induces drug resistance and antibiotic residues, ultimately decreasing feed efficiency. Pueraria polysaccharide (PPL) is a versatile antimicrobial, immunomodulatory, and antioxidative compound. This study aimed to compare the therapeutic efficacy of different doses of PPL (0.2, 0.4, 0.8 g/kg body weight (BW)) and explore the effect of plasma metabolites in diarrheal calves by the best dose of PPL. RESULTS PPL could effectively improve the daily weight gain, fecal score, and dehydration score, and the dosage of 0.4 g/kg BW could reach curative efficacy against calf diarrhea (with effective rates 100.00%). Metabolomic analysis suggested that diarrhea mainly affect the levels of taurocholate, DL-lactate, LysoPCs, and intestinal flora-related metabolites, trimethylamine N-oxide; however, PPL improved liver function and intestinal barrier integrity by modulating the levels of DL-lactate, LysoPC (18:0/0:0) and bilirubin, which eventually attenuated neonatal calf diarrhea. It also suggested that the therapeutic effect of PPL is related to those differential metabolites in diarrheal calves. CONCLUSIONS The results showed that 0.4 g/kg BW PPL could restore the clinical score of diarrhea calves by improving the blood indexes, biochemical indexes, and blood metabolites. And it is a potential medicine for the treatment of calf diarrhea.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Liuchao You
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Guangxi Innovates Medical Technology Co., Ltd. Lipu, Guangxi, 546600, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd. Lipu, Guangxi, 546600, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun-Liang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaolan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaofeng Wu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yingkun Zhu
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
21
|
Mora-Flores LP, Moreno-Terrazas Casildo R, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The Role of Carbohydrate Intake on the Gut Microbiome: A Weight of Evidence Systematic Review. Microorganisms 2023; 11:1728. [PMID: 37512899 PMCID: PMC10385781 DOI: 10.3390/microorganisms11071728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Carbohydrates are the most important source of nutritional energy for the human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation are the focus of multiple studies. The objective of this weight of evidence systematic review is to investigate the potential relationship between ingested carbohydrates and the gut microbiota composition at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques were used to evaluate the relationship between dietary carbohydrates and the relative abundance of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase, insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase. Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This work provides, for the first time, an integrative review of the subject by using statistical techniques that have not been previously employed in microbiota reviews.
Collapse
Affiliation(s)
- Lorena P Mora-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Rubén Moreno-Terrazas Casildo
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - José Fuentes-Cabrera
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Hugo Alexer Pérez-Vicente
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| | - Elier Ekberg Neri-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| |
Collapse
|
22
|
Wang J, Dai G, Shang M, Wang Y, Xia C, Duan B, Xu L. Extraction, structural-activity relationships, bioactivities, and application prospects of Pueraria lobata polysaccharides as ingredients for functional products: A review. Int J Biol Macromol 2023:125210. [PMID: 37271269 DOI: 10.1016/j.ijbiomac.2023.125210] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Pueraria lobata (Willd.) Ohwi is an important resource with dual functions in medicine and food since ancient times. Polysaccharides are the main bioactive component of P. lobata and have various bioactivities, such as antidiabetic, antioxidant, immunological activities, etc. Due to the distinctive bioactivity of P. lobata polysaccharides (PLPs), the research on PLPs is booming. Although a series of PLPs have been isolated and characterized, the chemical structure and mechanism are unclear and need further study. Here, we reviewed recent progress in isolation, identification, pharmacological properties, and possible therapeutic mechanisms of PLPs to update awareness of these value-added natural polysaccharides. Besides, the structure-activity relationships, application status, and toxic effects of PLPs are highlighted and discussed to afford a deeper understanding of PLPs. This article may provide theoretical insights and technical guidance for developing PLPs as novel functional foods.
Collapse
Affiliation(s)
- Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Li Xu
- College of Basic Medicine, Dali University, Dali 671000, China.
| |
Collapse
|
23
|
Zhang Z, Cui Y, Ouyang H, Zhu W, Feng Y, Yao M, Yang S. Radix Pueraria lobata polysaccharide relieved DSS-induced ulcerative colitis through modulating PI3K signaling. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
24
|
Zhao S, Xue H, Tao Y, Chen K, Li X, Wang M. An Acidic Heteropolysaccharide Isolated from Pueraria lobata and Its Bioactivities. Int J Mol Sci 2023; 24:ijms24076247. [PMID: 37047221 PMCID: PMC10094262 DOI: 10.3390/ijms24076247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
A novel water-soluble acidic heteropolysaccharide, called PPL-1, was purified from Pueraria lobata. PPL-1 had an average molecular weight of 35 Kad, and it was composed of glucose, arabinose, galactose and galacturonic acid (6.3:0.8:0.8:2.1). In accordance with methylation and nuclear magnetic resonance analyses, PPL-1 primarily consisted of (1→2)-linked α-Araf, (1→4)-linked α-Glcp, (1→)-linked β-Glcp, (1→6)-linked α-Glcp, (1→3,6)-linked α-Galp, (1→)-linked β-GalpA and (1→4)-linked α-GalpA. In terms of bioactivities, PPL-1 exhibited remarkable scavenging ability towards DPPH (1,1-Diphenyl-2-picrylhydrazyl) radicals and moderate activity by enhancing the proliferation rate of RAW 264.7 cells by approximately 30% along with the secretion of NO. This work demonstrates that PPL-1 can be a potential source of immunoenhancers and antioxidants.
Collapse
|
25
|
Huang S, Zou Y, Tang H, Zhuang J, Ye Z, Wei T, Lin J, Zheng Q. Cordyceps militaris polysaccharides modulate gut microbiota and improve metabolic disorders in mice with diet-induced obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1885-1894. [PMID: 36571152 DOI: 10.1002/jsfa.12409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cordyceps militaris is an edible and medicinal fungus, and its polysaccharides are among its main pharmacological components. They can display immunomodulation, anti-oxidation, anti-inflammation, anti-hypolipidemic, and other functions. The anti-obesity effect of C. militaris polysaccharides (CMP) is not yet fully understood, however. RESULTS In this study, a CMP diet intervention was applied over a 4 week period to mice with obesity induced by a high-fat diet (HFD), followed by profiling of obesity-induced dyslipidemia, low-grade inflammation, and gut dysbiosis. The results suggested that CMP could significantly reduce HFD-induced obesity, alleviate obesity-induced hyperlipidemia and insulin resistance, and ameliorate systemic inflammation, showing a promising ability to protect mice from obesity. Further analyses revealed that CMP could regulate obesity-induced gut dysbiosis by restoring the phylogenetic diversity of gut microbiota. It could also increase the relative abundance of short-chain fatty acid (SCFA)-producing bacteria, while down-regulating the level of bacteria that were positively related to the development of obesity. A correlation analysis showed that Helicobacter, Allobaculum, Clostridium XVIII, Parabacteroides, Ligilactobacillus, Faecalibaculum, Adlercreutzia, and Mediterraneibacter were positively related to obese phenotypes. CONCLUSION This study highlights the potential of CMP as a prebiotic agent to protect obese individuals from metabolic disorders and gut dysbiosis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shishi Huang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Yuan Zou
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hongbiao Tang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Jingyu Zhuang
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhiwei Ye
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Qianwang Zheng
- Institute of Food Biotechnology, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
26
|
Shen L, Shen Y, You L, Zhang Y, Su Z, Peng G, Deng J, Zuo Z, Zhong Z, Ren Z, Yu S, Zong X, Zhu Y, Cao S. Pueraria lobata polysaccharides alleviate neonatal calf diarrhea by modulating gut microbiota and metabolites. Front Vet Sci 2023; 9:1024392. [PMID: 36686167 PMCID: PMC9845628 DOI: 10.3389/fvets.2022.1024392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Neonatal calf diarrhea (NCD) is still one of the most critical diseases in calf rearing. Studies have shown that Pueraria lobata polysaccharides (PLP) have intense antioxidant and immunomodulatory activity and modulate gut microbiota. This randomized clinical trial aimed to determine the effect of PLP on the neonatal calf with diarrhea. Methods In this study, we recorded the fecal score of experimental calves, and calves with fecal scores ≥ 2 were determined as diarrhea and assessed their serum concentrations of inflammatory cytokines and oxidative damage-related indices. Fecal microbiota and metabolomics of diarrheal calves were further investigated. Results Results showed that treatment with PLP decreased the fecal score of diarrheal calves, serum concentrations of IL-1β, TNF-γ, and malondialdehyde, and also elevated the level of superoxide dismutase. In addition, PLP treatment altered the gut microbiota, significantly increased the relative abundances of beneficial bacteria, including the phyla Bacteroidetes and Actinobacteria, the genus Collinsella, Megamonas, and Bifidobacterium; decreased the relative abundances of pathogenetic or diarrhea related bacteria, such as Proteobacteria, Fusobacteria, Clostridium_sensu_stricto_1, and Escherichia_Shigella. Moreover, PLP can increase the fecal concentrations of isobutyric acid, propionic acid, and pantothenate; lower the levels of PC [18:0/18:1(9Z)], arachidonic acid, and docosahexaenoic acid. Discussion Thus, the results suggested that the PLP may perform the therapeutic activity via alleviating intestinal inflammation and regulating gut microbiota, avoiding further dysbiosis to restore the metabolism of gut microbiota, and finally promoting the recovery of diarrhea. The change further mitigated intestinal inflammation and oxidative damage in diarrheal calves. This indicated that PLP might be a promising treatment to attenuate diarrhea in neonatal calves.
Collapse
Affiliation(s)
- Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liuchao You
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu, Guangxi, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junliang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhicai Zuo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Zong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingkun Zhu
- School of Agriculture and Food Science, University College Dublin, Belfield, Ireland,*Correspondence: Yingkun Zhu ✉
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Suizhong Cao ✉
| |
Collapse
|
27
|
Li Q, Liu W, Zhang H, Chen C, Liu R, Hou H, Luo Q, Yu Q, Ouyang H, Feng Y, Zhu W. α-D-1,3-glucan from Radix Puerariae thomsonii improves NAFLD by regulating the intestinal flora and metabolites. Carbohydr Polym 2023; 299:120197. [PMID: 36876767 DOI: 10.1016/j.carbpol.2022.120197] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Radix Puerariae thomsonii, the root of the botanical family Fabaceae species Pueraria montana var. thomsonii (Benth.) MR Almeida, can be used as food or medicine. Polysaccharides are important active constituents of this root. A low molecular weight polysaccharide, RPP-2 having α-D-1,3-glucan as the main chain, was isolated and purified. RPP-2 could promote the growth of probiotics in-vitro. Therefore, the effects of RPP-2 on a high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) C57/BL6J mouse models were investigated. RPP-2 could reduce HFD-induced liver injury by reducing inflammation, glucose metabolism, and steatosis, thereby improving NAFLD. RPP-2 regulated the abundances of intestinal floral genera Flintibacter, Butyricicoccus, and Oscillibacter, and their metabolites Lipopolysaccharide (LPS), bile acids, and short-chain fatty acids (SCFAs), thereby improving inflammation, lipid metabolism, and energy metabolism signaling pathways. These results confirmed that RPP-2 play a prebiotic role by regulating intestinal flora and microbial metabolites, playing a multi-pathway and multi-target role in improving NAFLD.
Collapse
Affiliation(s)
- Qiong Li
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang 330103, PR China
| | - Hua Zhang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Chong Chen
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang 330103, PR China
| | - Ronghua Liu
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Hengwei Hou
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Quan Luo
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Qinqin Yu
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China
| | - Hui Ouyang
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, No. 56 Yangming Road, Nanchang 330006, PR China.
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China; Key Laboratory of Modern Preparation of Chinese Medicine of Jiangxi University of Chinese Medicine, No. 818 Yunwan Road, Nanchang 330002, PR China.
| |
Collapse
|
28
|
Ou J, Wang Z, Liu X, Song B, Chen J, Li R, Jia X, Huang R, Xiang W, Zhong S. Regulatory effects of marine polysaccharides on gut microbiota dysbiosis: A review. Food Chem X 2022; 15:100444. [PMID: 36211733 PMCID: PMC9532782 DOI: 10.1016/j.fochx.2022.100444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The gut microbiota dysbiosis is a state which the physiological combinations of flora are transformed into pathological combinations caused by factors such as diets, pollution, and drugs. Increasing evidence shows that dysbiosis is closely related to many diseases. With the continuous development and utilization of marine resources, marine polysaccharides have been found to regulate dysbiosis in many studies. In this review, we introduce the types of dysbiosis and the degree of it caused by different factors. We highlight the regulating effects of marine polysaccharides on dysbiosis as a potential prebiotic. The mechanisms of marine polysaccharides to regulate dysbiosis including protection of intestinal barrier, regulatory effect on gut microbiota, alteration for related metabolites, and some other possible mechanisms were summarized. And we aim to provide some references for the high-value utilization of marine polysaccharides and new targets for the treatment of gut microbiota dysbiosis by this review.
Collapse
Affiliation(s)
- Jieying Ou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Riming Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenzhou Xiang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
29
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
30
|
Wang Y, Chen J, Wang Y, Zheng F, Qu M, Huang Z, Yan J, Bao F, Li X, Sun C, Zheng Y. Cyanidin-3-O-glucoside extracted from the Chinese bayberry (Myrica rubra Sieb. et Zucc.) alleviates antibiotic-associated diarrhea by regulating gut microbiota and down-regulating inflammatory factors in NF-κB pathway. Front Nutr 2022; 9:970530. [PMID: 36091245 PMCID: PMC9449314 DOI: 10.3389/fnut.2022.970530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese bayberry has been used to treat diarrhea in China for more than 2,000 years, but the mechanism is not clear. Due to the extensive use of antibiotics, antibiotic-associated diarrhea (AAD) is becoming more and more common in clinic, but there is no effective drug for the treatment. The present study aimed to explore the therapeutic effect of Chinese bayberry on AAD for the first time, and explained the underlying mechanism from different aspects. The BALB/c mice model was established by intragastric administration of lincomycin (3 g/kg). Successfully modeled mice were treated with purified water, dried bayberry powder suspension (100 mg/kg), C3G suspension (40 mg/kg) and montmorillonite powder suspension (40 mg/kg), respectively. The changes of body weight, diarrhea index, diarrhea status score were recorded and calculated regularly. 16S rRNA gene sequencing, intestinal immunofluorescence and inflammatory factor detection were further performed. The treatment with dried bayberry powder suspension and C3G suspension could rapidly reduce the diarrhea score and diarrhea index, increase food intake and restore body weight gain. The gut microbiota richness and diversity were significantly increased after dried bayberry powder suspension and C3G suspension treatments, typically decreased bacterial genera Enterococcus and Clostridium senus stricto 1. In addition, intake of Chinese bayberry powder and C3G significantly decreased the level of p65 phosphorylation, and up-regulated the expression of intestinal tight junction protein claudin-1 and ZO-1. Chinese bayberry fruit had the effect of alleviating AAD, and C3G was supposed to play the predominant role. The mechanism was indicated to be related with restoring the homeostasis of gut microbiota, inhibiting the level of harmful bacteria and increasing the abundance of beneficial bacteria, down-regulating TNF-α, IL-6, and IL-12 factors to reduce inflammation, restoring intestinal tight junction proteins and reducing intestinal permeability.
Collapse
Affiliation(s)
- Yanshuai Wang
- Department of General Surgery, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Fruit Science Institute, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Fruit Science Institute, Zhejiang University, Hangzhou, China
| | - Fanghong Zheng
- Department of General Surgery, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Meiyu Qu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziwei Huang
- Department of General Surgery, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Jialang Yan
- Department of General Surgery, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Fangping Bao
- Department of Anesthesiology, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Xian Li
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Fruit Science Institute, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development, and Quality Improvement, Fruit Science Institute, Zhejiang University, Hangzhou, China
| | - Yixiong Zheng
- Department of General Surgery, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
- *Correspondence: Yixiong Zheng
| |
Collapse
|
31
|
Xu S, Lane JA, Chen J, Zheng Y, Wang H, Fu X, Huang Q, Dhital S, Liu F, Zhang B. In Vitro Infant Fecal Fermentation Characteristics of Human Milk Oligosaccharides Were Controlled by Initial Microbiota Composition More than Chemical Structure. Mol Nutr Food Res 2022; 66:e2200098. [PMID: 35989465 DOI: 10.1002/mnfr.202200098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/16/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Human milk oligosaccharides (HMOs), multifunctional glycans naturally present in human milk, are known to contribute to the infant's microbiota and immune system development. However, the molecular specificity of HMOs on microbiota and associated fermentation is not yet fully understood, and is important for the development of infant formula optimum functionality. METHODS AND RESULTS In vitro fermentation is carried out on structurally different HMOs with infant fecal inocula dominated by Bifidobacterium longum, Bifidobacterium breve, and Bacteroides. The gas, metabolite (SCFA, lactate, and succinate) profiles, and microbiota responses differ between individual microbiota inocula patterns regardless of HMO structure. In terms of HMO pairs with same sugar composition but different glycosidic bonds, gas and metabolite profiles are similar with the B. longum- and B. breve-dominated inocula. However, large individual variations are observed with the Bacteroides-dominated inocula. The microbial communities at the end of fermentation are closely related to the initial microbiota composition. CONCLUSION The findings demonstrate that short-term in vitro fermentation outcomes largely depend on the initial gut microbiota composition more than the impact of HMO molecular specificity. These results advance the current understanding for the design of personalized infant nutritional solutions and therapies in future.
Collapse
Affiliation(s)
- Shiqi Xu
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Jonathan A Lane
- H&H Group, H&H Research, Global Research and Technology Centre, P61 K202 Co, Cork, Ireland
| | - Juchun Chen
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Yuxing Zheng
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Hongwei Wang
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Xiong Fu
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China.,Sino-Singapore International Research Institute, Guangzhou, 510555, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China.,Sino-Singapore International Research Institute, Guangzhou, 510555, China
| |
Collapse
|
32
|
Cai G, Wu C, Mao N, Song Z, Yu L, Zhu T, Peng S, Yang Y, Liu Z, Wang D. Isolation, purification and characterization of Pueraria lobata polysaccharide and its effects on intestinal function in cyclophosphamide-treated mice. Int J Biol Macromol 2022; 218:356-367. [PMID: 35878664 DOI: 10.1016/j.ijbiomac.2022.07.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
This study investigated the structure of acidic Pueraria lobata polysaccharide (a-PLP) and its bioactive effects on intestinal function in cyclophosphamide (CY)-treated mice. The structure of a-PLP was preliminarily analyzed, and the results showed that it is composed of fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar proportion of 2.54:16.52: 6.14: 16.60: 4.05: 4.75: 0.48: 47.44: 1.47 with a weight average molecular weight of 22.675 kDa. In addition, the methylation analysis suggested that 4-Gal(p)-UA may be the main backbone of a-PLP. Furthermore, a-PLP (1.2 g/kg, 0.8 g/kg, and 0.4 g/kg) was administered orally for the treatment of CY-treated mice. The results showed that a-PLP could remarkably relieved weight loss and intestinal villous atrophy in CY-treated mice. Meanwhile, the secretion levels of sIgA, β-defensin, cytokines, Mucin-2, and tight junction proteins increased significantly. Moreover, the ratio of T (CD4+ and CD8+) cells in the Peyer's patches and mesenteric lymph nodes also increased remarkably, along with the number of goblet cells. Furthermore, a-PLP decreased the levels of diamino oxidase and malondialdehyde, but up-regulated the activity of superoxide dismutase. In summary, a-PLP exhibited great benefits by attenuating CY side effects, opening a potential avenue to effectively treat cancer and reduce the suffering of chemotherapy patients.
Collapse
Affiliation(s)
- Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caihong Wu
- College of Veterinary Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
33
|
Ma Q, Zhai R, Xie X, Chen T, Zhang Z, Liu H, Nie C, Yuan X, Tu A, Tian B, Zhang M, Chen Z, Li J. Hypoglycemic Effects of Lycium barbarum Polysaccharide in Type 2 Diabetes Mellitus Mice via Modulating Gut Microbiota. Front Nutr 2022; 9:916271. [PMID: 35845787 PMCID: PMC9280299 DOI: 10.3389/fnut.2022.916271] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 12/16/2022] Open
Abstract
This study aims to explore the molecular mechanisms of Lycium barbarum polysaccharide (LBP) in alleviating type 2 diabetes through intestinal flora modulation. A high-fat diet (HFD) combined with streptozotocin (STZ) was applied to create a diabetic model. The results indicated that LBP effectively alleviated the symptoms of hyperglycemia, hyperlipidemia, and insulin resistance in diabetic mice. A high dosage of LBP exerted better hypoglycemic effects than low and medium dosages. In diabetic mice, LBP significantly boosted the activities of CAT, SOD, and GSH-Px and reduced inflammation. The analysis of 16S rDNA disclosed that LBP notably improved the composition of intestinal flora, increasing the relative abundance of Bacteroides, Ruminococcaceae_UCG-014, Intestinimonas, Mucispirillum, Ruminococcaceae_UCG-009 and decreasing the relative abundance of Allobaculum, Dubosiella, Romboutsia. LBP significantly improved the production of short-chain fatty acids (SCFAs) in diabetic mice, which corresponded to the increase in the beneficial genus. According to Spearman’s correlation analysis, Cetobacterium, Streptococcus, Ralstonia. Cetobacterium, Ruminiclostridium, and Bifidobacterium correlated positively with insulin, whereas Cetobacterium, Millionella, Clostridium_sensu_stricto_1, Streptococcus, and Ruminococcaceae_UCG_009 correlated negatively with HOMA-IR, HDL-C, ALT, AST, TC, and lipopolysaccharide (LPS). These findings suggested that the mentioned genus may be beneficial to diabetic mice’s hypoglycemia and hypolipidemia. The up-regulation of peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and insulin were remarkably reversed by LBP in diabetic mice. The real-time PCR (RT-PCR) analysis illustrated that LBP distinctly regulated the glucose metabolism of diabetic mice by activating the IRS/PI3K/Akt signal pathway. These results indicated that LBP effectively alleviated the hyperglycemia and hyperlipidemia of diabetic mice by modulating intestinal flora.
Collapse
|
34
|
Li S, Wang Y, Dun W, Han W, Ning T, Sun Q, Wang Z. Effect of Polysaccharide Extracted From Gynostemma Pentaphyllum on the Body Weight and Gut Microbiota of Mice. Front Nutr 2022; 9:916425. [PMID: 35719169 PMCID: PMC9199513 DOI: 10.3389/fnut.2022.916425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Researchers have investigated the role of polysaccharides in disease treatment via gut microbiota regulation but ignore their function in disease prevention and physique enhancement. In this work, a Gynostemma pentaphyllum polysaccharide (GPP) was tested by methyl thiazolyl tetrazolium (MTT) assay and proved to be safe to Caco-2 cells. Animal experiments showed that the administration of GPP for 3 weeks decreased the body weight gain of mice from 15.4 ± 1.7 to 12.2 ± 1.8 g in a concentration-dependent manner. Analysis of short-chain fatty acids (SCFAs) indicated that GPP increased the levels of acetate, propionate, butyrate, and total SCFAs in the cecum contents of normal mice. Furthermore, GPP improved the species richness and abundance in the gut microbiota but reduced the Firmicutes/Bacteroidetes ratio from 0.8021 to 0.3873. This work provides a basis for incorporating GPP into diet to prevent or mitigate the occurrence of obesity via gut microbiota regulation.
Collapse
Affiliation(s)
- Shiwei Li
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yingna Wang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Weipeng Dun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wanqing Han
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Tao Ning
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
35
|
Huo R, Zhang M, Zhang Y, Bai X, Zhang Y, Guo X. Effects of Oat Complex High-Fiber Formula Powder on the Composition of Intestinal Microbiota and Enzyme Activities in Mice Induced by a High-Fat Diet. Front Nutr 2022; 9:871556. [PMID: 35685874 PMCID: PMC9172999 DOI: 10.3389/fnut.2022.871556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Using oat-corn-konjac extruded mixed powder, oat bran micro powder, skim milk powder, Pueraria whole powder, and pumpkin powder as raw materials, a formula powder with high dietary fiber was prepared, and its effect on obesity in mice with a high-fat diet was investigated. After 7 days of adaptive feeding, the mice were divided into blank group, high-fat diet group, formula powder + high-fat diet group, and weight-loss drug + high-fat diet group. After 8 weeks of treatment, the body weight of mice were observed and measured to determine the composition of tract flora, liver leptin content, insulin content, and activities of AMP-activated protein kinase (AMPK), lipoprotein lipase (LPL), fatty acid synthetase (FAS), sterol-regulatory element-binding proteins (SREBPs), and acetyl CoA carboxylase 1 (ACC1). The results indicated that treatment with the formula powder could reduce the body weight of mice and increase the abundance of Bifidobacterium, Akkermansia, and Romboutsia compared to the group given a high-fat diet. Moreover, the leptin and insulin contents of the experimental group decreased from 5.67 μg/L to 0.12 μg/L and from 12.71 μg/L to 7.13 μg/L, respectively, compared to the control group, which was not significantly different from the blank group (P > 0.05). Also, the activities of AMPK and LPL increased, and the activities of FAS, SREBPs, and ACC1 were significantly decreased (P < 0.05). Some pathogenic bacteria were significantly positively correlated with leptin and FAS and significantly negatively correlated with LPL. Some beneficial bacteria were positively correlated with LPL. Therefore, the formula powder used in this study could reduce the body weight of mice, increase the abundance of some beneficial bacteria in the colonic intestinal microbiota, and improve the activities of enzymes related to lipid metabolism in the liver. This study provides a theoretical reference for the pathway by which high-fiber diet improves liver and intestinal metabolic abnormalities.
Collapse
|
36
|
Polysaccharides from Medicine and Food Homology Materials: A Review on Their Extraction, Purification, Structure, and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103215. [PMID: 35630690 PMCID: PMC9147777 DOI: 10.3390/molecules27103215] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/16/2023]
Abstract
Medicine and food homology (MFH) materials are rich in polysaccharides, proteins, fats, vitamins, and other components. Hence, they have good medical and nutritional values. Polysaccharides are identified as one of the pivotal bioactive constituents of MFH materials. Accumulating evidence has revealed that MFH polysaccharides (MFHPs) have a variety of biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progress and future prospects of MFHPs must be systematically reviewed to promote their better understanding. This paper reviewed the extraction and purification methods, structure, biological activities, and potential molecular mechanisms of MFHPs. This review may provide some valuable insights for further research regarding MFHPs.
Collapse
|
37
|
Xu X, Guo Y, Chen S, Ma W, Xu X, Hu S, Jin L, Sun J, Mao J, Shen C. The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Front Nutr 2022; 9:868188. [PMID: 35425798 PMCID: PMC9001911 DOI: 10.3389/fnut.2022.868188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pueraria lobata, an edible food and medicinal plant, is a rich source of bioactive components. In this study, a polyphenol-rich extract was isolated from P. lobata. Puerarin was identified, and the high antioxidant bioactivity of the P. lobata extract was evaluated using the methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), and hydroxyl free radical scavenging ratio. Additionally, the IC50 values of DPPH, ABTS, and hydroxyl radical scavenging activities were 50.8, 13.9, and 100.4 μg/ml, respectively. Then, the P. lobata extract was administered to C57Bl/6J mice and confirmed to have a superior effect on enhancing the antioxidant status including improving superoxide dismutase activity, glutathione peroxidase peroxide activity, total antioxidant capacity activity, and malondialdehyde contents in vivo. Furthermore, the P. lobata extract had beneficial and prebiotic effects on the composition and structure of gut microbiota. Results showed that the P. lobata extract significantly increased the abundance of beneficial bacteria, involving Lactobacillaceae and Bacteroidetes, and decreased the abundance of Ruminococcaceae, Prevotellaceae, and Burkholderiaceae. Overall, our results provided a basis for using the P. lobata extract as a promising and potential functional ingredient for the food industry.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Ying Guo
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shaoqin Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenliang Ma
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xinlei Xu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Shuning Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lifang Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jianqiu Sun
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Jian Mao
- School of Life Sciences, Shaoxing University, Shaoxing, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Jian Mao,
| | - Chi Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
- Chi Shen,
| |
Collapse
|
38
|
Jiang D, Zhang L, Zhu G, Zhang P, Wu X, Yao X, Luo Y, Yang Z, Ren M, Wang X, Chen S, Wang Y. The Antiviral Effect of Isatis Root Polysaccharide against NADC30-like PRRSV by Transcriptome and Proteome Analysis. Int J Mol Sci 2022; 23:ijms23073688. [PMID: 35409050 PMCID: PMC8998840 DOI: 10.3390/ijms23073688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
(1) Background: In recent years, the porcine reproductive and respiratory syndrome virus (PRRSV) has become a virulent pathogen that has caused devastating diseases and economic losses worldwide in the swine industry. IRPS has attracted extensive attention in the field of virology. However, it is not clear that IRPS has an antiviral effect on PRRSV at gene and protein levels. (2) Methods: We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. Additionally, a microbiome was used to explore the effects of IRPS on gut microbes. (3) Results: IRPS significantly extenuated the pulmonary pathological lesions and inflammatory response. We used transcriptomic and proteomic analysis to investigate the antiviral effect of IRPS against PRRSV. In the porcine model, 1669 differentially expressed genes (DEGs) and 370 differentially expressed proteins (DEPs) were identified. Analysis of the DEG/DEP-related pathways indicated immune-system and infectious-disease (viral) pathways, such as the NOD-like receptor (NLR) signaling pathway, toll-like receptor (TLR) signaling pathway, and Influenza A-associated signaling pathways. It is noteworthy that IRPS can inhibit NLR-dependent gene expression, then reduce the inflammatory damage. IRPS could exert beneficial effects on the host by regulating the structure of intestinal flora. (4) Conclusions: The antiviral effect of IRPS on PRRSV can be directly achieved by omics techniques. Specifically, the antiviral mechanism of IPRS can be better elucidated by screening target genes and proteins using transcriptome and proteome sequencing, and then performing enrichment and classification according to DEGs and DEPs.
Collapse
Affiliation(s)
- Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Ling Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130012, China;
| | - Guangheng Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Pengfei Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Xulong Wu
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu 611130, China;
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun 130012, China;
- Correspondence: (X.W.); (Y.W.)
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China;
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (D.J.); (G.Z.); (P.Z.); (X.Y.); (Y.L.); (Z.Y.); (M.R.)
- Correspondence: (X.W.); (Y.W.)
| |
Collapse
|
39
|
Panax quinquefolius Polysaccharides Ameliorate Antibiotic-Associated Diarrhoea Induced by Lincomycin Hydrochloride in Rats via the MAPK Signaling Pathways. J Immunol Res 2022; 2022:4126273. [PMID: 35345778 PMCID: PMC8957475 DOI: 10.1155/2022/4126273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
American ginseng (Panax quinquefolius L.) is an herbal medicine with polysaccharides as its important active ingredient. The purpose of this research was to identify the effects of the polysaccharides of P. quinquefolius (WQP) on rats with antibiotic-associated diarrhoea (AAD) induced by lincomycin hydrochloride. WQP was primarily composed of galacturonic acid, glucose, galactose, and arabinose. The yield, total sugar content, uronic acid content, and protein content were 6.71%, 85.2%, 31.9%, and 2.1%, respectively. WQP reduced the infiltration of inflammatory cells into the ileum and colon, reduced the IL-1β, IL-6, IL-17A, and TNF-α levels, increased the levels of IL-4 and IL-10 in colon tissues, improved the production of acetate and propionate, regulated the gut microbiota diversity and composition, improved the relative richness of Lactobacillus and Bacteroides, and reduced the relative richness of Blautia and Coprococcus. The results indicated that WQP can enhance the recovery of the intestinal structure in rats, reduce inflammatory cytokine levels, improve short-chain fatty acid (SCFA) levels, promote recovery of the gut microbiota and intestinal mucosal barrier, and alleviate antibiotic-related side effects such as diarrhoea and microbiota dysbiosis caused by lincomycin hydrochloride. We found that WQP can protect the intestinal barrier by increasing Occludin and Claudin-1 expression. In addition, WQP inhibited the MAPK inflammatory signaling pathway to improve the inflammatory status. This study provides a foundation for the treatment of natural polysaccharides to reduce antibiotic-related side effects.
Collapse
|
40
|
Abstract
Oscillospira is a class of organism that often appears in high-throughput sequencing data but has not been purely cultured and is widely present in the animal and human intestines. There is a strong association between variation in Oscillospira abundance and obesity, leanness, and human health. In addition, a growing body of studies has shown that Oscillospira is also implicated in other diseases, such as gallstones and chronic constipation, and has shown some correlation with the positive or negative changes in its course. Sequencing data combined with metabolic profiling indicate that Oscillospira is likely to be a genus capable of producing short-chain fatty acids (SCFAs) such as butyrate, which is an important reference indicator for screening "next-generation probiotics ". Considering the positive effects of Oscillospira in some specific diseases, such as obesity-related metabolic diseases, it has already been characterized as one of the next-generation probiotic candidates and therefore has great potential for development and application in the future food, health care, and biopharmaceutical products.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,CONTACT Jingpeng Yang
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China,He Huang School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| |
Collapse
|
41
|
Structural and Functional Modulation of Gut Microbiota by Jiangzhi Granules during the Amelioration of Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2234695. [PMID: 34966475 PMCID: PMC8712166 DOI: 10.1155/2021/2234695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Recently, accumulating evidence revealed that nonalcoholic fatty liver disease (NAFLD) is highly associated with the dysbiosis of gut microbiota. Jiang Zhi Granule (JZG), which is composed of five widely used Chinese herbs, has shown hypolipidemic effect, while whether such effect is mediated by gut microbiota is still unclear. Here, we found that both low and high doses of JZG (LJZ and HJZ) could improve hepatic steatosis and function, as well as insulin resistance in NAFLD mice. 16S rRNA gene sequencing revealed that JZG treatment could reverse the dysbiosis of intestinal flora in NAFLD mice, exhibiting a dose-dependent effect. Notably, HJZ could significantly reduce the relative abundance of Desulfovibrionaceae, while increasing the relative abundance of such as S24_7 and Lachnospiraceae. PICRUSt analysis showed that HJZ could significantly alter the functional profile of gut microbiota, including the reduction of the lipopolysaccharide biosynthesis and sulfur metabolism pathway, which is verified by the decreased levels of fecal hydrogen sulfide (H2S) and serum lipopolysaccharide binding protein (LBP). In addition, hepatic mRNA sequencing further indicated that the HJZ group can regulate the peroxisome proliferator-activated receptor (PPAR) pathway and inflammatory signaling pathway, as validated by RT-PCR and Western blot. We also found that different doses of JZG may regulate lipid metabolism through differentiated pathways, as LJZ mainly through the promotion of hepatic lipid hydrolysis, while HJZ mainly through the improvement of hepatic lipid oxidation. Taken together, JZG could modulate gut dysbiosis with dose-effect, alleviate inflammation level, and regulate hepatic lipid metabolism, which may subsequently contribute to the improvement of NAFLD. Our study revealed the underlying mechanisms in the improvement of NAFLD by a Chinese herbal compound, providing future guidance for clinical usage.
Collapse
|
42
|
Sun X, Wang D, Wei L, Ding L, Guo Y, Wang Z, Kong Y, Yang J, Sun L, Sun L. Gut Microbiota and SCFAs Play Key Roles in QingFei Yin Recipe Anti- Streptococcal Pneumonia Effects. Front Cell Infect Microbiol 2021; 11:791466. [PMID: 34950611 PMCID: PMC8688933 DOI: 10.3389/fcimb.2021.791466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence has revealed the presence in animals of a bidirectional regulatory “lung-gut axis” that provides resistance to respiratory infections. Clues to the existence of this system stem from observations that respiratory infections are often accompanied by gastrointestinal symptoms, whereby intestinal microbiota appear to play pivotal roles in combating pathogenic infections. Importantly, short-chain fatty acids (SCFAs) produced by the gut microbiota appear to serve as the biological link between host immune defenses and gut flora. Streptococcus pneumoniae (S.pn), the main cause of lower respiratory tract infections, is involved in more than 1.189 million deaths per year. QingFei Yin (QFY) is known for its excellent therapeutic efficacy in combating bacterial lung infections. In this study, effects of S.pn infection on gut homeostasis were assessed using 16S RNA-based microbiota community profiling analysis. In addition, potential mechanisms underlying QFY recipe beneficial therapeutic effects against bacterial pneumonia were explored using S.pn-infected gut microbiota-depleted mice. Results of data analysis indicated that QFY treatment alleviated lung infection-associated pathogenic processes, while also promoting repair of disordered gut flora and counteracting S.pn infection-associated decreases in levels of SCFAs, particularly of acetate and butyrate. Mechanistically, QFY treatment suppressed inflammatory lung injury through inhibition of the host NF-κB-NLRP3 pathway. These results inspired us to identify precise QFY targets and mechanisms underlying QFY anti-inflammatory effects. In addition, we conducted an in-depth evaluation of QFY as a potential treatment for bacterial pneumonia.
Collapse
Affiliation(s)
- Xiaozhou Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China., Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lina Wei
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lizhong Ding
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yinan Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yibu Kong
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jingjing Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China., Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liping Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
43
|
Shao J, Li Z, Gao Y, Zhao K, Lin M, Li Y, Wang S, Liu Y, Chen L. Construction of a "Bacteria-Metabolites" Co-Expression Network to Clarify the Anti-Ulcerative Colitis Effect of Flavonoids of Sophora flavescens Aiton by Regulating the "Host-Microbe" Interaction. Front Pharmacol 2021; 12:710052. [PMID: 34721011 PMCID: PMC8553221 DOI: 10.3389/fphar.2021.710052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Ulcerative colitis (UC) is considered an immune disease, which is related to the dysbiosis of intestinal microbiota and disorders of the host immune system and metabolism. Sophora flavescens Aiton has been used for the clinical treatment of UC in China and East Asia for thousands of years. It has many traditional prescriptions and modern preparations, and its curative effects are definite. We are the first to report that the flavonoids in Sophora flavescens (S. flavescens) Aiton EtOAc extract (SFE) could potentially attenuate the dextran sodium sulfate–induced UC in mice, which changed the current understanding of considering alkaloids as the only anti-UC pharmacological substances of S. flavescens Aiton. Based on the 16S rRNA gene sequencing and metabolomic analysis, it was found that the anti-UC effects of SFE were due to the regulation of gut microbiota, reversing the abnormal metabolisms, and regulation of the short-chain fatty acids synthesis. Notably, according to the interaction networks of specific bacteria and “bacteria and metabolites” co-expression network, the SFE could enrich the abundance of the commensal bacterium Lactobacillus, Roseburia, norank_f__Muribaculaceae, Anaerotruncus, Candidatus_Saccharimona, and Parasutterella, which are proposed as potentially beneficial bacteria, thereby playing vital roles in the treatment of UC.
Collapse
Affiliation(s)
- Jing Shao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhaocheng Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanping Gao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kairui Zhao
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minling Lin
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yadi Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Liu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medical of State Administration of TCM, China, Engineering & Technology Research Center for Chinese Materia Medical Quality of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
44
|
Yang Z, Xu M, Li Q, Wang T, Zhang B, Zhao H, Fu J. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int J Biol Macromol 2021; 182:1874-1882. [PMID: 34058211 DOI: 10.1016/j.ijbiomac.2021.05.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to investigate the effect of polysaccharide extracts from persimmon (PPE) on the proliferation of Lactobacillus and the gut microbiota of mice. Lactobacillus strains were cultured in medium containing PPE, and differential gene expression was evaluated using transcriptomics. In addition, 16S rDNA was employed to analyze the abundance and diversity of fecal colonies in mice, and the influence of PPE on the intestinal flora in mice was further examined. The results showed that Lactobacillus acidophilus NCFM and Lactobacillus acidophilus CICC 6075 could proliferate in PPE medium. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis indicated that glucose metabolism-related genes, such as phosphoyruvate hydratase (eno) and PTS mannose transporter subunit IIAB (manX), were up-regulated. The metabolic pathways of fructose and mannose were also significantly up-regulated. After gavage of mice with PPE, 16S rDNA sequencing of mouse feces indicated that the beneficial bacteria in the intestines proliferated and the abundance of harmful bacteria was reduced. PPE can maintain the balance of intestinal microorganisms in mice. Therefore, PPE has a significant positive effect on both Lactobacillus proliferation and gut microbiota of mice.
Collapse
Affiliation(s)
- Ziyuan Yang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Qi Li
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Jianmin Fu
- Non-timber Forest R&D Center, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
45
|
Sun X, Wang Z, Hu X, Zhao C, Zhang X, Zhang H. Effect of an Antibacterial Polysaccharide Produced by Chaetomium globosum CGMCC 6882 on the Gut Microbiota of Mice. Foods 2021; 10:foods10051084. [PMID: 34068357 PMCID: PMC8153350 DOI: 10.3390/foods10051084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, a polysaccharide produced by Chaetomiumglobosum CGMCC 6882 was found to have antibacterial activity, but its toxic effects on body health and gut microbiota were concealed. Recent results showed that this polysaccharide was safe to Caco-2 cells and mice, while it reduced the body weight gain of mice from 10.5 ± 1.21 g to 8.4 ± 1.17 g after 28 days administration. Acetate, propionate, butyrate and total short-chain fatty acids concentrations increased from 23.85 ± 1.37 μmol/g, 10.23 ± 0.78 μmol/g, 7.15 ± 0.35 μmol/g and 41.23 ± 0.86 μmol/g to 42.77 ± 1.29 μmol/g, 20.03 ± 1.44 μmol/g, 12.06 ± 0.51 μmol/g and 74.86 ± 2.07 μmol/g, respectively. Furthermore, this polysaccharide enriched the abundance of gut microbiota and the Firmicutes/Bacteroidetes ratio was increased from 0.5172 to 0.7238. Overall, this study provides good guidance for the promising application of polysaccharides as preservatives in foods and in other fields in the future.
Collapse
Affiliation(s)
- Xincheng Sun
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence:
| | - Xuyang Hu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Chengxin Zhao
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Xiaogen Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
46
|
PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. Int J Biol Macromol 2020; 165:1694-1705. [PMID: 33058986 DOI: 10.1016/j.ijbiomac.2020.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharides are important active constituents of Radix Puerariae lobatae (RPL). In this study, a novel homogeneous polysaccharide from RPL was successfully obtained by HP-20 macroporous resin and purified by Sepharose G-100 column chromatography. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-1,3-linked and α-1,4-linked glucose. The molecular weight of PL-S2 was 18.73 kDa. The hypolipidemic effect of PL-S2 on hyperlipidemic rats was evaluated in histopathology and metabolomics analyses. PL-S2 significantly reduced plasma lipid levels and inhibited bile acid metabolism. We also demonstrated that treatment with PL-S2 activated FXR, CYP7A1, BESP, and MRP2 in rat liver. Our findings first indicate that PL-S2 decreases plasma lipid levels in hyperlipidemic rats by activating the FXR signaling pathway and promoting bile acid excretion. Therefore, PL-S2 derived from RPL is implicated as a functional food factor with lipid-regulating activity, and highlighted as a potential food supplement for the treatment of hyperlipidemia.
Collapse
|