1
|
Shah LA, Subhan H, Alam S, Ye D, Ullah M. Bentonite clay reinforced alginate grafted composite hydrogel with remarkable sorptive performance toward removal of methylene green. Int J Biol Macromol 2024; 279:135600. [PMID: 39276899 DOI: 10.1016/j.ijbiomac.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The rapid industrial progress in today's world has led to an alarming increase in water pollution caused by various contaminants such as synthetic dyes. To address this issue, a new hydrogel sorbent, BC-r-Na-Alg-g-p(NIPAm-co-AAc), was developed by combining bentonite clay, sodium alginate, and poly(N-isopropyl acrylamide-co-acrylic acid) through one-pot free radical polymerization at 60 °C. The developed sorbent was characterized using several analytical techniques including SEM, FTIR, TGA, UTM, and swelling studies. The swelling capacity of the sorbent was observed to increase remarkably with an increase in pH, reaching a maximum of 9664 % at pH 11. In batch mode sorption experiments, the sorbent's performance toward methylene green (MG) was investigated by analysing the effects of contact time, pH, temperature, and concentration. The experimental data were fitted to pseudo-second-order kinetic and Langmuir isotherm models, indicating chemisorption as the dominant interaction mode between the anionic sorbent and cationic MG. However, physisorption may also occur to a lesser extent, indicated by the significant R2 of the pseudo-first-order kinetic and Freundlich isotherm models. Additionally, the sorbent exhibited very little decrease (approximately 5 %) in sorptive performance for six sorption-desorption cycles. Overall, the facile fabrication, excellent swelling (9664 %), promising sorption performance (2573 mg.g-1), and good recyclability (6 cycles) make the developed sorbent a potential candidate for various industrial applications.
Collapse
Affiliation(s)
- Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan.
| | - Hanif Subhan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan; Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Sultan Alam
- Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mohib Ullah
- Department of Chemistry, Balochistan university of Information Technology Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta 87300, Pakistan
| |
Collapse
|
2
|
El Blidi L, El-Harbawi M, Alhawtali S, Alrashed M, Aleid M. Synthesis of hydrochar from date palm seeds using microwave-enhanced hydrothermal carbonization and its application in dyes removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2137-2153. [PMID: 39011840 DOI: 10.1080/15226514.2024.2377809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This work reports new findings on the preparation of hydrochar from date palm (Phoenix dactylifera) seeds through the application of the microwave hydrothermal carbonization (HTC) method. Optimization investigations involving temperatures and reaction times were conducted to establish the highest yield, achieving a maximum yield of 60.87%. The prepared material was then impregnated in phosphoric acid and carbonized in the tube furnace at 550 °C for 1.5 h with a nitrogen flow of 50 CCM. The samples were characterized via scanning electron microscopy (SEM), Brunauer-Emmet-Teller (BET) and Fourier transform infrared (FTIR). The samples showed remarkable BET surface areas following activation, reaching up to 992 m2·g-1. The substance was subsequently used to absorb methylene blue with good fitting to the Freundlich and Redlich-Peterson isotherm and achieved a peak adsorption capacity of 196.6 ± 3.9 mg·g-1.
Collapse
Affiliation(s)
- Lahssen El Blidi
- Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Mohanad El-Harbawi
- Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Alhawtali
- Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Maher Alrashed
- Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Musaad Aleid
- Water Management and Treatment Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Chen X, Zhang G, Hou F, Zhu J. Highly effective removal of basic fuchsin dye using carboxymethyl konjac glucomannan grafted acrylic acid-acrylamide/montmorillonite composite hydrogel. Int J Biol Macromol 2024; 277:134163. [PMID: 39059536 DOI: 10.1016/j.ijbiomac.2024.134163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
This study developed a nanocomposite hydrogel, CAM4-MMT, for efficiently removing basic fuchsin dye from water. The hydrogel was prepared by grafting a copolymer of acrylic acid (AA) and acrylamide (AM) onto carboxymethyl konjac glucomannan (CMKGM), and doped with montmorillonite (MMT), exhibited excellent thermal stability, a porous inner structure, large specific surface area (1.407 m2/g), and high swelling capacity (107.3 g/g). The hydrogel achieved a maximum adsorption capacity of 694.1 mg/g and a removal rate of 99.5 %. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption process. Regeneration and reuse tests confirmed that the hydrogel has excellent recyclability. In conclusion, the CAM4-MMT composite hydrogel efficiently removed basic fuchsin from water solutions, offering a new scheme for eliminating basic fuchsin using natural polysaccharides with promising applications.
Collapse
Affiliation(s)
- Xing Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Feifan Hou
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
4
|
Guembe-García M, Utzeri G, Valente AJM, Ibeas S, Trigo-López M, García JM, Vallejos S. Efficient extraction of textile dyes using reusable acrylic-based smart polymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135006. [PMID: 38941828 DOI: 10.1016/j.jhazmat.2024.135006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Water pollution from industrial or household waste, containing dyes from the textile industry, poses a significant environmental challenge requiring immediate attention. In this study, we have developed a crosslinked-smart-polymer film based on 2-(dimethylamino)ethyl methacrylate copolymerized with other hydrophilic and hydrophobic commercial monomers, and its efficacy in removing 21 different textile dyes was assessed. The smart polymer effectively interacts with and adsorbs dyes, inducing a noticeable colour change. UV-Vis spectroscopy analysis confirmed a removal efficiency exceeding 90 % for anionic dyes, with external diffusion identified as the primary influencing factor on process kinetics, consistent with both pseudo-first-order kinetics and the Crank-Dual model. Isothermal studies revealed distinct adsorption behaviors, with indigo carmine adhering to a Freundlich isotherm while others conformed to the Langmuir model. Permeation and fluorescence analyses corroborated isotherm observations, verifying surface adsorption. Significantly, our proof-of-concept demonstrated the resilience of the smart-film to common fabric softeners and detergents without compromising adsorption capacity. Additionally, the material exhibited reusability (for at least 5 cycles), durability, and good thermal and mechanical properties, with T5 and T10 values of 265 °C and 342 °C, respectively, a Tg of 168 °C, and a water swelling percentage of 54.3 %, thus confirming its stability and suitability for industrial application. ENVIRONMENTAL IMPLICATION: Dyes released during laundry processes should be classified as "hazardous materials" owing to their significant toxicity towards aquatic organisms, with the potential to disrupt ecosystems and harm aquatic biodiversity. This paper discusses the development of a novel acrylic material in film form, engineered to extract toxic anionic dyes. This study directly contributes to mitigating the environmental impact associated with the fashion industry and the domestic use of textiles. It can be implemented on both an industrial and personal scale, thereby encouraging more sustainable practices and promoting collaborative citizen science efforts towards.
Collapse
Affiliation(s)
- Marta Guembe-García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Gianluca Utzeri
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Artur J M Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jose Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saul Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
5
|
Ruiz-Fresneda MA, González-Morales E, Gila-Vilchez C, Leon-Cecilla A, Merroun ML, Medina-Castillo AL, Lopez-Lopez MT. Clay-polymer hybrid hydrogels in the vanguard of technological innovations for bioremediation, metal biorecovery, and diverse applications. MATERIALS HORIZONS 2024. [PMID: 39145624 DOI: 10.1039/d4mh00975d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Polymeric hydrogels are among the most studied materials due to their exceptional properties for many applications. In addition to organic and inorganic-based hydrogels, "hybrid hydrogels" have been gaining significant relevance in recent years due to their enhanced mechanical properties and a broader range of functionalities while maintaining good biocompatibility. In this sense, the addition of micro- and nanoscale clay particles seems promising for improving the physical, chemical, and biological properties of hydrogels. Nanoclays can contribute to the physical cross-linking of polymers, enhancing their mechanical strength and their swelling and biocompatibility properties. Nowadays, they are being investigated for their potential use in a wide range of applications, including medicine, industry, and environmental decontamination. The use of microorganisms for the decontamination of environments impacted by toxic compounds, known as bioremediation, represents one of the most promising approaches to address global pollution. The immobilization of microorganisms in polymeric hydrogel matrices is an attractive procedure that can offer several advantages, such as improving the preservation of cellular integrity, and facilitating cell separation, recovery, and transport. Cell immobilization also facilitates the biorecovery of critical materials from wastes within the framework of the circular economy. The present work aims to present an up-to-date overview on the different "hybrid hydrogels" used to date for bioremediation of toxic metals and recovery of critical materials, among other applications, highlighting possible drawbacks and gaps in research. This will provide the latest trends and advancements in the field and contribute to search for effective bioremediation strategies and critical materials recovery technologies.
Collapse
Affiliation(s)
| | | | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Mohamed L Merroun
- Universidad de Granada, Departamento de Microbiología, E-18071 Granada, Spain.
| | - Antonio L Medina-Castillo
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
- Universidad de Granada, Departamento de Química Analítica, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| |
Collapse
|
6
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
7
|
Sundaresan R, Mariyappan V, Chen SM, Ramachandran B, Paulsamy R, Rasu R. Construction of an electrochemical sensor towards environmental hazardous 4-nitrophenol based on Nd(OH) 3-embedded VSe 2 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46470-46483. [PMID: 36781666 DOI: 10.1007/s11356-023-25688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of 4-nitrophenol (4-NP) is one of the most common threats to the environment; therefore, developing a simple and sensitive analytical method to detect 4-NP is crucial. In this study, we prepared the Nd(OH)3/VSe2 nanocomposite using the simple hydrothermally assisted ultrasonication method and it was used to detect the 4-NP. Different characterization techniques were used to investigate the morphological and chemical compositions of Nd(OH)3/VSe2 nanocomposite. All of these investigations revealed that Nd(OH)3 nanoparticles were finely dispersed on the surface of the VSe2 nanosheet. The electrical conductivity of our prepared samples was evaluated by the electrochemical impedance spectroscopic technique. The CV and DPV methods were used to explore the electrochemical activity of 4-NP at the Nd(OH)3/VSe2/GCE sensor which exhibited a wide linear range (0.001 to 640 µM), low limit of detection (0.008 µM), and good sensitivity (0.41 µA µM-1 cm-2), respectively. Additionally, Nd(OH)3/VSe2/GCE sensor was tested in water samples for the detection of 4-NP, which exhibited good recovery results. The Nd(OH)3/VSe2 electrode material is a novel one for the electrochemical sensor field, and the obtained overall results also proved that our proposed material is an active material for sensor applications.
Collapse
Affiliation(s)
- Ruspika Sundaresan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Balaji Ramachandran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Raja Paulsamy
- Department of Chemistry, Vivekananda College of Arts and Science, Agastheeswaram, Kanyakumari, 629 004, Tamil Nadu, India
| | - Ramachandran Rasu
- Department of Chemistry, The Madura College, Tamil Nadu, Vidya Nagar, Madurai, 625 011, India
| |
Collapse
|
8
|
Arif M, Rauf A, Akhter T. A review on Ag nanoparticles fabricated in microgels. RSC Adv 2024; 14:19381-19399. [PMID: 38887640 PMCID: PMC11182451 DOI: 10.1039/d4ra02467b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In recent years, there has been growing interest in the composites of multi-responsive microgels and silver nanoparticles. This innovative hybrid system harnesses the responsive qualities of microgels while capitalizing on the optical and electronic attributes of silver nanoparticles. This combined system demonstrates a rapid response to minor changes in pH, temperature, ionic strength of the medium, and the concentration of specific biological substances. This review article presents an overview of the recent advancements in the synthesis, classification, characterization methods, and properties of microgels loaded with silver nanoparticles. Furthermore, it explores the diverse applications of these responsive microgels containing silver nanoparticles in catalysis, the biomedical field, nanotechnology, and the mitigation of harmful environmental pollutants.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
9
|
Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Singh A. Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of Rhododendron arboreum for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1193-1211. [PMID: 38226539 DOI: 10.1080/15226514.2023.2300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.
Collapse
Affiliation(s)
- Tanuj
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Neerja Kalra
- Department of Chemistry, Government College, Ateli, Haryana, India
| | - Subhash Sharma
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C, México
| | - Amritpal Singh
- Department of Pure of Applied Chemistry, Strathclyde University, Glasgow, UK
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Yue J, Zhang H, Zhang Y, Xu S. Experimental investigation of influence of amide polymer on loess for subgrade. Sci Rep 2024; 14:12229. [PMID: 38806533 PMCID: PMC11133324 DOI: 10.1038/s41598-024-62503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The effects of moisture and drying shrinkage can lead to uneven settlement, cracking, and other diseases in loess subgrade. The objective of this study was to investigate the effects of amide polymer (AP) on the permeability, mechanical properties and crack resistance of loess by orthogonal experiments. The basic properties of AP and the permeability, mechanical properties, and dry-wet variation properties of polymer-modified loess were tested, and a scale model verification and simulation analysis were conducted. In this paper, water migration in subgrade is regulated by improving the water sensitivity of loess. By reducing the variation range of subgrade water content, the stress accumulation in subgrade caused by water is weakened. The results show that the curing time and mechanical properties of AP are directly affected by the oxidant and reducing agent, and the mechanical properties of AP are compatible with the characteristics of loess. AP filled the grain gap and reduced the permeability of loess by 34.05-280.83%. The ductility of polymer-modified loess is significantly increased, and the strain of peak strength is increased by 17.21-126.36%. AP can regulate moisture change, reduce the surface tension between particles, and reduce stress concentration. The strength loss rate was reduced by 19.98-51.21% by enhancing the cracking resistance and weakening the strength loss caused by dry and wet cycling. The increase of upper layer moisture content in the scale model of polymer-modified loess subgrade is reduced by 31.38-36.11%.
Collapse
Affiliation(s)
- Jianwei Yue
- School of Civil Engineering and Architecture, Henan University, North Section of Jinming Avenue, Longting District, Kaifeng, 475004, Henan, China
| | - Haonan Zhang
- School of Civil Engineering and Architecture, Henan University, North Section of Jinming Avenue, Longting District, Kaifeng, 475004, Henan, China
| | - Yage Zhang
- School of Civil Engineering and Architecture, Henan University, North Section of Jinming Avenue, Longting District, Kaifeng, 475004, Henan, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300072, China.
| | - Shaopeng Xu
- School of Civil Engineering and Architecture, Henan University, North Section of Jinming Avenue, Longting District, Kaifeng, 475004, Henan, China
| |
Collapse
|
11
|
Rando G, Sfameni S, Milone M, Mezzi A, Brucale M, Notti A, Plutino MR. Smart pillar[5]arene-based PDMAEMA/PES beads for selective dye pollutants removal: design, synthesis, chemical-physical characterization, and adsorption kinetic studies. CHEMSUSCHEM 2024; 17:e202301502. [PMID: 38154027 DOI: 10.1002/cssc.202301502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
This article reports on the synthesis of an innovative smart polymer, P5-QPDMAEMA, opportunely developed with the aim of combining the responsiveness of PDMAEMA polymer and the host-guest properties of covalently linked pillar[5]arenes. Thanks to a traditional Non-Induced Phase Separation (NIPS) process performed at various coagulation pH, the blending of P5-QPDMAEMA with polyethersulfone gave rise to the formation of functional beads for the removal of organic dyes in water. Adsorption tests are carried out on all the produced blend-based beads by employing two representative dyes, the cationic methylene blue (MB), and the anionic methyl orange (MO). In particular, the P5-QPDMAEMA based beads, prepared at acidic pH, featured the best MO removal rate (i. e., 91.3 % after 150 minutes starting from a 20 mg ⋅ L-1 solution) and a high selectivity towards the removal of the selected anionic dye. Based on the adsorption kinetics and isotherm calculations, the pseudo-first order and Freundlich models were shown to be the most suitable to describe the MO adsorption behavior, achieving a maximum adsorption capacity of 21.54 mg ⋅ g-1. Furthermore, zwitterionic beads are obtained by a post-functionalization of the PDMAEMA and the P5-QPDMAEMA based beads, to test their removal capability towards both anionic and cationic dyes, as shown.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Milone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via Salaria Km 29.3, 00015, Monterotondo stazione, Rome, Italy
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials, ISMN - CNR, via P. Gobetti 101, 40129, Bologna, Italy
| | - Anna Notti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN - CNR, URT Messina, c/o Dep. ChiBioFarAm, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
12
|
Pinto da Silva C, Xavier de Campos S. Combined process of chemically enhanced sedimentation and rapid filtration for urban wastewater treatment for potable reuse. ENVIRONMENTAL TECHNOLOGY 2024; 45:1696-1707. [PMID: 36476154 DOI: 10.1080/09593330.2022.2150568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The objective of this study is to propose a new post-treatment of effluents from Upflow Anaerobic Sludge Blanket (UASB) using rapid filtration, aiming at the production of water for potable reuse. The final quality of the effluent produced by the treatment using gravel, sand, clinoptilolite and activated carbon associated with disinfection was evaluated by physical chemical analysis, heavy metals and persistent organic contaminants. Experiments were carried out in jar test, filter operation time, evaluation of the efficiency using peracetic acid and free chlorine as disinfectant and all results were statistically analysed. The best conditions were those using 20 mg/L of ferric chloride and natural pH of the effluent (≈ 7.0), which resulted in less reagent consumption. The use of intermediate fund discharges made it possible to obtain approximately 91% of recovered water efficiency. The effluent treated under these conditions showed DOC <2.0 mg/L, COD <1.0 mg/L, BOD <1.0 mg/L, turbidity <1.0 NTU, TSS <1.0 mg/L, ammonia <0.1 mg/L, total phosphorus <0.1 mg/L and surfactants <0.1 mg/L. The disinfection process with free chlorine and PAA allowed the total inactivation of faecal coliforms and total coliforms. The treatment using rapid filtration with disinfection by chlorine reached the appropriate level for urban, environmental, industrial and indirect potable water reuse.
Collapse
Affiliation(s)
- Cleber Pinto da Silva
- Laboratory of Analytical Chemistry, Environmental and Sanitary, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Sandro Xavier de Campos
- Laboratory of Analytical Chemistry, Environmental and Sanitary, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
13
|
Soltani L, Varmira K, Nazari M. Comparison of the differentiation of ovine fetal bone-marrow mesenchymal stem cells towards osteocytes on chitosan/alginate/CuO-NPs and chitosan/alginate/FeO-NPs scaffolds. Sci Rep 2024; 14:161. [PMID: 38168144 PMCID: PMC10762099 DOI: 10.1038/s41598-023-50664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study, the creation of a chitosan/alginate scaffold hydrogel with and without FeO-NPs or CuO-NPs was studied. From fetal ovine bone marrow mesenchymal stem cells (BM-MSCs) were isolated and cultivated. Their differentiation into osteocyte and adipose cells was investigated. Also, on the scaffolds, cytotoxicity and apoptosis were studied. To investigate the differentiation, treatment groups include: (1) BM-MSCs were plated in DMEM culture medium with high glucose containing 10% FBS and antibiotics (negative control); (2) BM-MSCs were plated in osteogenic differentiation medium (positive control); (3) positive control group + FeO-NPs, (4) positive control group + CuO-NPs; (5) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold; (6) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/FeO-NPs scaffold; and (7) BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/CuO-NPs scaffold. Alkaline phosphatase enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were evaluated after 21 days of culture. In addition, qRT-PCR was used to assess the expression of the ALP, ColA, and Runx2 genes. When compared to other treatment groups, the addition of CuO-NPs in the chitosan/alginate hydrogel significantly increased the expression of the ColA and Runx2 genes (p < 0.05). However, there was no significant difference between the chitosan/alginate hydrogel groups containing FeO-NPs and CuO-NPs in the expression of the ALP gene. It appears that the addition of nanoparticles, in particular CuO-NPs, has made the chitosan/alginate scaffold more effective in supporting osteocyte differentiation.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, 67144-14971, Iran.
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Nazari
- Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
14
|
Pandey S, Kim S, Kim YS, Kumar D, Kang M. Fabrication of next-generation multifunctional LBG-s-AgNPs@ g-C 3N 4 NS hybrid nanostructures for environmental applications. ENVIRONMENTAL RESEARCH 2024; 240:117540. [PMID: 37925126 DOI: 10.1016/j.envres.2023.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Toxic industrial wastes and microbial pathogens in water pose a continuous threat to aquatic life as well as alarming situations for humans. Developing advanced materials with an environmentally friendly approach is always preferable for heterogeneous visible light photocatalysis. As a green reducing tool, LBG-s-AgNPs@ g-C3N4 NS hybrid nanostructures were anchored onto graphitic carbon nitride (g-C3N4) using an environmentally friendly approach of anchoring/decorating AgNPs onto g-C3N4. With the help of advanced techniques, the fabricated hybrid nanostructures were characterized. Using a sheet like matrix of g-C3N4, nanosized and well-defined uniform AgNPs displayed good antibacterial activity as well as superior photodegradation of hazardous dyes, including methylene blue (MB) and Rhodamine B (RhB). Based on the disc diffusion method, three pathogenic microorganisms of clinical significance can be identified by showing the magnitude of their susceptibility. As a result, the following antimicrobial potency was obtained: E. coli ≥ M. luteus ≥ S. aureus. In this study, green synthesized (biogenic) AgNPs decorated with g-C3N4 were found to be more potent antimicrobials than traditional AgNPs. Under visible light irradiation, LBG-s-AgNPs@g-C3N4 NS (0.01 M) demonstrated superior photocatalytic performance: ∼100% RhB degradation and ∼99% of MB degradation in 160 min. LBG-s-AgNPs@g-C3N4 NS showed the highest kinetic rate, 3.44 × 10-2 min-1, which is 27.74 times for the control activity in case of MB dye. While in case of RhB dye LBG-s-AgNPs@g-C3N4 NS showed the highest kinetic rate, 2.26 × 10-2 min-1, which is 17.51 times for the control activity. Due to the surface plasmon resonance (SPR) and reduction in recombination of the electrons and holes generated during photocatalysis, anchoring AgNPs to g-C3N4 further enhanced the photocatalytic degradation of dyes. Using this photocatalyst, hazardous dyes can be efficiently and rapidly degraded, allowing it to be applied for wastewater treatment contaminated with dyes. It also showed remarkable antimicrobial activity towards Gram-ve/Gram + ve pathogens.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India.
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young Soo Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
15
|
Al-Kazragi MAUR, Al-Heetimi DTA, Wilson LD. Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:639-668. [PMID: 37846031 DOI: 10.1080/15226514.2023.2259989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Recently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were classified into five categories based on their chemical composition: bio-sorbents, activated carbon, biochar, clays and minerals, and composites. In this review article, we want to demonstrate the capacity of natural and modified materials for dye adsorption which can yield significant improvements to the adsorption capacity of dyes such as methyl orange. In addition, the effect of critical variables including contact time, initial methyl orange concentration, dosage of adsorbent, pH, temperature and mechanism on the adsorption efficiency will be covered as part of this literature review.
Collapse
Affiliation(s)
| | - Dhafir T A Al-Heetimi
- Department of Chemistry, College of Education for Pure Science Ibn-Al-Haitham, University of Baghdad, Baghdad, Iraq
| | - Lee D Wilson
- Department of Chemistry, College of Art and Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
16
|
Salehi MM, Hassanzadeh-Afruzi F, Heidari G, Maleki A, Nazarzadeh Zare E. In situ preparation of MOF-199 into the carrageenan-grafted-polyacrylamide@Fe 3O 4 matrix for enhanced adsorption of levofloxacin and cefixime antibiotics from water. ENVIRONMENTAL RESEARCH 2023; 233:116466. [PMID: 37348634 DOI: 10.1016/j.envres.2023.116466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
In this research study, a novel method, an in-situ growth approach, to incorporate metal-organic framework (MOF) into carrageenan-grafted- polyacrylamide-Fe3O4 substrate was introduced. Carrageenan-grafted-polyacrylamide-Fe3O4/MOF nanocomposite (kC-g-PAAm@Fe3O4-MOF-199) was fabricated utilizing three stages. In this way, the polyacrylamide (PAAm) was grafted onto the carrageenan (kC) backbone via free radical polymerization in the presence of methylene bisacrylamide (MBA) as cross-linker and Fe3O4 magnetic nanoparticles. Next, the kC-g-PAAm@Fe3O4 was modified by MOF-199 via an in-situ solvothermal approach. Several analyses such as Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-Dispersive X-ray Spectroscopy (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET) demonstrated the successful synthesis of kC-g-PAAm@Fe3O4-MOF-199 magnetic hydrogel nanocomposite. The XRD pattern of magnetic hydrogel nanocomposite illustrated characteristic peaks of Fe3O4, neat kC, and MOF-199 with enhanced crystallinity in comparison with kC-g-PAAm@Fe3O4. TGA showed it has a char yield of 24 wt% at 800 °C. VSM confirmed its superparamagnetic behavior (with Ms of 8.04 emu g-1), and the BET surface area of kC-g-PAAm@Fe3O4-MOF-199 was measured at 64.864 m2 g-1, which was higher than that of kC-g-PAAm@Fe3O4 due to the highly porous MOF-199 incorporation with a BET surface area of 905.12 m2 g-1). The adsorption effectiveness of kC-g-PAAm@Fe3O4-MOF-199 for eliminating cephalosporin and quinolones antibiotics, i.e., Cefixime (CFX) and Levofloxacin (LEV) from the aquatic area was considered. Several experimental setups were used to evaluate the efficacy of adsorption, such as solution pH, amount of adsorbent, contact duration, and initial concentration. The maximum adsorption capacity (Qmax) of the prepared magnetic hydrogel nanocomposite was found to be 2000 and 1666.667 mg-1 for LEV and CFX using employing 0.0025 g of adsorbent. The Freundlich isotherm model well described the experimental adsorption data with R2CFX = 0.9986, and R2LEV = 0.9939. And the adsorption kinetic data were successfully represented by the pseudo-second-order model with R2LEV = 0.9949 and R2CFX = 0.9906. Hydrogen bonding, π-π interaction, diffusion, and entrapment in the hydrogel network all contributed to the successful adsorption of both antibiotics onto the kC-g-PAAm@Fe3O4-MOF-199 adsorbent. Other notable physicochemical properties include the three-dimensional structure and availability of the reactive adsorption sites. Moreover, the adsorption/desorption efficacy of magnetic hydrogel nanocomposites was not significantly diminished after four cycles of recovery.
Collapse
Affiliation(s)
- Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Golnaz Heidari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | | |
Collapse
|
17
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
18
|
Saddique Z, Imran M, Javaid A, Latif S, Kim TH, Janczarek M, Bilal M, Jesionowski T. Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. ENVIRONMENTAL RESEARCH 2023; 229:115861. [PMID: 37062477 DOI: 10.1016/j.envres.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
19
|
Li L, Liu X, Duan T, Xu F, Abdulkhani A, Zhang X. Construction of Cu-N coordination into natural biopolymer lignin backbone for highly efficient and selective removal of cationic dyes. BIORESOURCE TECHNOLOGY 2023; 376:128841. [PMID: 36898563 DOI: 10.1016/j.biortech.2023.128841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Here, a Cu2+-doped lignin-based adsorbent (Cu-AL) was fabricated via the amination and Cu2+-doping of industrial alkali lignin for massive and selective adsorption of cationic dyes azure B (AB) and saffron T (ST). The Cu-N coordination structures endowed Cu-AL with stronger electronegativity and higher dispersity. Through the electrostatic attraction, π-π interaction, H-bonding, and Cu2+ coordination, the adsorption capacities of AB and ST reached up to 1168 and 1420 mg g-1, respectively. The pseudo-second-order model and Langmuir isotherm model were more relevant to the AB and ST adsorption on Cu-AL. Based on the thermodynamic study, the adsorption progresses were endothermic, spontaneous, and feasible. The Cu-AL maintained high removal efficiency to dyes after 4 reuses (>80%). Importantly, the Cu-AL could efficiently remove and separate AB and ST from dye mixtures even in real time. All the above characteristics demonstrated that Cu-AL was an excellent adsorbent for fast wastewater treatment.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tong Duan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Yang F, Liu X, Wang N, Li L, Kong Y, Yang S, Lei Z. Preparation and water erosion resistance properties of tara gum-g-poly (acrylic acid-co-methyl methacrylate) emulsion. Int J Biol Macromol 2023; 242:124645. [PMID: 37119886 DOI: 10.1016/j.ijbiomac.2023.124645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
The main purpose of this paper is to synthesize a new kind of green and environmental protection emulsion, which can be used as water erosion resistant materials. Here, a non-toxic polymer was prepared by grafting acrylic acid (AA) and methyl methacrylate (MMA) onto the long chains of tara gum (TG) to synthesize a copolymer emulsion (TG-g-P (AA-co-MMA)). The structure, thermal stability, morphology and wettability of the polymer were characterized by conventional methods, and the effects of key synthesis conditions on the performance of the emulsion (viscosity) were optimized. The erosion resistance and compressive strength of polymer-treated loess and laterite soils were evaluated under laboratory conditions. The results showed that the successful grafting of AA and MMA monomers onto TG improved its thermal stability and viscosity. In soil performance tests with low amounts of polymer additive, a 0.3 wt% application of TG-g-P (AA-co-MMA) to loess could resist continuous precipitation for >30 h with an erosion rate of 2.0 %. The compressive strength of the laterite treated with 0.4 % TG-g-P (AA-co-MMA) was 3.7 MPa, which was about three times that of the untreated soil. The results from this study suggest that TG-g-P (AA-co-MMA) emulsions have good potential for soil remediation applications.
Collapse
Affiliation(s)
- Fenghong Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaomei Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Na Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Li Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yanrong Kong
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shenghua Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environment Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
21
|
Yuan W, Wang F, Qu X, Wang S, Lei B, Shao J, Wang Q, Lin J, Wang W, Dong X. In situ rapid synthesis of hydrogels based on a redox initiator and persistent free radicals. NANOSCALE ADVANCES 2023; 5:1999-2009. [PMID: 36998656 PMCID: PMC10044294 DOI: 10.1039/d3na00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The development of fast and economical hydrogel manufacturing methods is crucial for expanding the application of hydrogels. However, the commonly used rapid initiation system is not conducive to the performance of hydrogels. Therefore, the research focuses on how to improve the preparation speed of hydrogels and avoid affecting the properties of hydrogels. Herein, a redox initiation system with nanoparticle-stabilized persistent free radicals was introduced to rapidly synthesize high-performance hydrogels at room temperature. A redox initiator composed of vitamin C and ammonium persulfate rapidly provides hydroxyl radicals at room temperature. Simultaneously, three-dimensional nanoparticles can stabilize free radicals and prolong their lifetime, thereby increasing the free radical concentration and accelerating the polymerization rate. And casein enabled the hydrogel to achieve impressive mechanical properties, adhesion, and electrical conductivity. This method greatly facilitates the rapid and economical synthesis of high-performance hydrogels and presents broad application prospects in the field of flexible electronics.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Siying Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Bing Lei
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
22
|
Altintig E, Özcelik TÖ, Aydemir Z, Bozdag D, Kilic E, Yılmaz Yalçıner A. Modeling of methylene blue removal on Fe 3O 4 modified activated carbon with artificial neural network (ANN). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1714-1732. [PMID: 36927305 DOI: 10.1080/15226514.2023.2188424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, AC/Fe3O4 adsorbent was first synthesized by modifying activated carbon with Fe3O4. The structure of the adsorbent was then characterized using analysis techniques specific surface area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), and Fourier Transform Infrared Spectroscopy (FTIR). Equilibrium, thermodynamic and kinetic studies were carried out on the removal of methylene blue (MB) dyestuff from aqueous solutions AC/Fe3O4 adsorbent. The Langmuir maximum adsorption capacity of AC/Fe3O4 was 312.8 mg g-1, and the best fitness was observed with the pseudo-second-order kinetics model, with an endothermic adsorption process. In the final stage of the study, the adsorption process of MB on AC/Fe3O4 was modeled using artificial neural network modeling (ANN). Considering the smallest mean square error (MSE), The backpropagation neural network was configured as a three-layer ANN with a tangent sigmoid transfer function (Tansig) at the hidden layer with 10 neurons, linear transfer function (Purelin) the at output layer and Levenberg-Marquardt backpropagation training algorithm (LMA). Input parameters included initial solution pH (2.0-9.0), amount (0.05-0.5 g L-1), temperature (298-318 K), contact time (5-180 min), and concentration (50-500 mg L-1). The effect of each parameter on the removal and adsorption percentages was evaluated. The performance of the ANN model was adjusted by changing parameters such as the number of neurons in the middle layer, the number of inputs, and the learning coefficient. The mean absolute percentage error (MAPE) was used to evaluate the model's accuracy for the removal and adsorption percentage output parameters. The absolute fraction of variance (R2) values were 99.83, 99.36, and 98.26% for the dyestuff training, validation, and test sets, respectively.
Collapse
Affiliation(s)
- Esra Altintig
- Pamukova Vocational School, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Tijen Över Özcelik
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
| | | | - Dilay Bozdag
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
- Akcoat Advanced Chemical Coating Materials Industry and Trade Joint Stock Company, Sakarya, Turkey
| | - Eren Kilic
- Ser Durable Consumer Goods Domestic and Foreign Trade Industry Inc., Kayseri, Turkey
| | - Ayten Yılmaz Yalçıner
- Industrial Engineering Department, Engineering Faculty, Sakarya University, Sakarya, Turkey
| |
Collapse
|
23
|
Hu SZ, Deng YF, Li L, Zhang N, Huang T, Lei YZ, Wang Y. Biomimetic Polylactic Acid Electrospun Fibers Grafted with Polyethyleneimine for Highly Efficient Methyl Orange and Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3770-3783. [PMID: 36856335 DOI: 10.1021/acs.langmuir.2c03508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid growth of industrialization has resulted in the release of large quantities of pollutants into the environment, especially dyes and heavy metals, which are environmentally hazardous for humans and animals. It is considered as the most promising and environmentally friendly route to develop green materials by using the green modification method, which has no negative impact on the environment. In this work, the green material of polylactic acid (PLA) was used as the substrate material, and a novel modification method of polydopamine (PDA)-assisted polyethyleneimine (PEI) grafting was developed. The electrospun PLA fibers are mainly composed of stereocomplex crystallites, which were achieved via the electrospinning of poly(l-lactic acid) and poly(d-lactic acid). The water-soluble PEI was grafted onto the PDA-modified PLA fibers through the glutaraldehyde-assisted cross-linking reaction. The prepared composite fibers can be degraded, which is environmentally friendly and meets the requirements of sustainable development. The potential application of such PLA composite fibers in wastewater treatment was intensively evaluated. The results show that at appropriate fabrication conditions (PDA concentration of 3 g·L-1 and a PEI molecular weight of 70,000 g·mol-1), the composite fibers exhibit the maximum adsorption capacities of 612 and 398.41 mg·g-1 for methyl orange (MO) and hexavalent chromium [Cr(VI)], respectively. Simultaneously, about 64.79% of Cr(VI) adsorbed on the composite fibers was reduced to Cr(III). The above results show that the PLA composite fibers have a good development prospect in the field of wastewater treatment.
Collapse
Affiliation(s)
- Shao-Zhong Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Fan Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
24
|
Wagh S, Kadam VS, Jagtap CV, Salunkhe DB, Patil RS, Pathan HM, Patole SP. Comparative Studies on Synthesis, Characterization and Photocatalytic Activity of Ag Doped ZnO Nanoparticles. ACS OMEGA 2023; 8:7779-7790. [PMID: 36872997 PMCID: PMC9979246 DOI: 10.1021/acsomega.2c07499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
In this work, silver (Ag) doped zinc oxide (ZnO) nanoparticles were synthesized using zinc chloride, zinc nitrate, and zinc acetate precursors with (0 to 10) wt % Ag doping by a simple reflux chemical method. The nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet visible spectroscopy, and photoluminescence spectroscopy. The nanoparticles are studied as a photocatalyst for visible light driven annihilation of methylene blue and rose bengal dyes. The 5 wt % Ag doped ZnO displayed optimum photocatalytic activity toward methylene blue and rose bengal dye degradation at the rate of 13 × 10-2 min-1 and 10 × 10-2 min-1, respectively. Here we report antifungal activity for the first time using Ag doped ZnO nanoparticles against Bipolaris sorokiniana, displaying 45% efficiency for 7 wt % Ag doped ZnO.
Collapse
Affiliation(s)
- Snehal
S. Wagh
- School
of Polytechnic and Skill Development, Dr.
Vishwanath Karad MIT World Peace University, Pune, 411038, India
- Advanced
Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
- PSGVPM
ASC College, Shahada, Nandurbar 425409, India
| | - Vishal S. Kadam
- Advanced
Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | - Chaitali V. Jagtap
- Advanced
Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
| | | | | | - Habib M. Pathan
- Advanced
Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, 411007, India
- Department
of Physics, Khalifa University of Science
and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Shashikant P. Patole
- Department
of Physics, Khalifa University of Science
and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
25
|
Karimi P, Azarpira H, Rasolevandi T, Sarkhosh M, Azizi S, Mohseni SM, Sadani M. Simultaneous Cr (VI) reduction and diazinon oxidation with organometallic sludge formation under photolysis: kinetics, degradation pathways, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14630-14640. [PMID: 36161559 DOI: 10.1007/s11356-022-22892-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, simultaneous removal of an organic matter (diazinon, DIZ) and an inorganic substance (chromium, Cr) was used. Breaking down of organic matter by UV irradiation produces various radicals, including sulfides, carboxyl, hydroxyl, hydrated electrons, and various organic radicals that are highly reactive and help us to precipitation inorganic substance (Cr). The optimal condition was 30:1 DIZ:Cr molar ratio, pH 9, and about 100% and 82.3% of DIZ and Cr were obtained in 30 min. Cr deposition was very slow at first. After the destruction of the DIZ structure, Cr deposition began, and various types of sludge with disturbed properties were formed. These sledges were analyzed by FTIR analysis and showed that green sludge could be chromium (III) hydroxide; brown sludge due to chromium (III) hydroxide, tiny green crystals from chromium (III) oxide, red brick from chromium (II) acetate chromium trioxide, as well as black sludge caused by chromium oxide were identified. In UV/DIZ/Cr process, kobs and robs range obtained 0.33-0.15 and 16.8-23.4 $ with both Cr and DIZ concentration increased from 50 to 150 mg L-1. Also, EEO for Cr precipitation was 24.65 to 5.74 and for DIZ 12.54 to 4.73 (kwh m-3). Depending on the amount of energy consumption, TCS was 37.19 to 10.47 for Cr precipitation and 4.46 to 1.25 $. It is important to note that when both pollutants are exposed to ultraviolet light, more energy and cost are generally required from UV/DIZ process and less than of UV/Cr process. But it should be noted that in fact 50 mg L-1 of chromium and 50 mg L-1 of DIZ are being removed at the same time. In UV/DIZ and UV/Cr processes that are exposed to ultraviolet radiation alone, only one of them is removed. Also, when these two pollutants are being removed at the same time, the total amount of energy is much less than the total energy consumption of the pollutants one by one.
Collapse
Affiliation(s)
- Pouria Karimi
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Azarpira
- Environmental Health Engineering Department, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Tayebeh Rasolevandi
- Environmental Health Engineering Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sarkhosh
- Environmental Health Engineering Department, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, 7131, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, 7131, South Africa
| | - Seyed Mohsen Mohseni
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental Health Engineering Department, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadani
- Environmental Health Engineering Department, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. ENVIRONMENTAL RESEARCH 2023; 217:114909. [PMID: 36455632 DOI: 10.1016/j.envres.2022.114909] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
One of the main problems with water pollution is dye contamination of rivers, industrial effluents, and water sources. It has endangered the world's sources of drinking water. Several remediation strategies have been carefully developed and tested to minimize this ominous picture. Due to their appealing practical and financial benefits, adsorption methods in particular are often listed as one of the most popular solutions to remediate dye-contaminated water. Biopolymer-based hydrogel nanocomposites are a cutting-edge class of materials with a wide range of applications that are effective in removing organic dyes from the environment. Since the incorporation of various materials into hydrogel matrices generated composite materials with distinct characteristics, these unique materials were often alluded to as ideal adsorbents. The fundamental emphasis of the conceptual and critical review of the literature in this research is the significant potential of hydrogel nanocomposites (HNCs) to remediate dye-contaminated water (especially for articles from the previous five years). The review also provides knowledge for the development of biopolymer-based HNCs, prospects, and opportunities for future research. It is also focused on optimum conditions for dye adsorption processes along with their adsorption kinetics and isotherm models. In summary, the information gained in this review research may contribute to a strengthened scientific rationale for the practical and efficient application of these novel adsorbent materials.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, 0727, Polokwane, South Africa
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
27
|
Moeen M, Nouren S, Zaib M, Bibi I, Kausar A, Sultan M. Green synthesis, characterization and sorption efficiency of MnO 2 nanoparticles and MnO 2@waste eggshell nanocomposite. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2139483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mariya Moeen
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Shazia Nouren
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Maria Zaib
- Department of Chemistry, University of Jhang, Jhang, Pakistan
| | - Ismat Bibi
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abida Kausar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Misbah Sultan
- Center for Applied Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
28
|
Ge H, Ding K, Guo F, Wu X, Zhai N, Wang W. Green and Superior Adsorbents Derived from Natural Plant Gums for Removal of Contaminants: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:179. [PMID: 36614516 PMCID: PMC9821582 DOI: 10.3390/ma16010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The ubiquitous presence of contaminants in water poses a major threat to the safety of ecosystems and human health, and so more materials or technologies are urgently needed to eliminate pollutants. Polymer materials have shown significant advantages over most other adsorption materials in the decontamination of wastewater by virtue of their relatively high adsorption capacity and fast adsorption rate. In recent years, "green development" has become the focus of global attention, and the environmental friendliness of materials themselves has been concerned. Therefore, natural polymers-derived materials are favored in the purification of wastewater due to their unique advantages of being renewable, low cost and environmentally friendly. Among them, natural plant gums show great potential in the synthesis of environmentally friendly polymer adsorption materials due to their rich sources, diverse structures and properties, as well as their renewable, non-toxic and biocompatible advantages. Natural plant gums can be easily modified by facile derivatization or a graft polymerization reaction to enhance the inherent properties or introduce new functions, thus obtaining new adsorption materials for the efficient purification of wastewater. This paper summarized the research progress on the fabrication of various gums-based adsorbents and their application in the decontamination of different types of pollutants. The general synthesis mechanism of gums-based adsorbents, and the adsorption mechanism of the adsorbent for different types of pollutants were also discussed. This paper was aimed at providing a reference for the design and development of more cost-effective and environmentally friendly water purification materials.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ke Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xianli Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Naihua Zhai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
29
|
Morsy M, Abdel-Salam AI, Gomaa I, Moustafa H, Kalil H, Helal A. Highly Efficient Photocatalysts for Methylene Blue Degradation Based on a Platform of Deposited GO-ZnO Nanoparticles on Polyurethane Foam. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010108. [PMID: 36615302 PMCID: PMC9822506 DOI: 10.3390/molecules28010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The demand for reactive dyes in industries has increased rapidly in recent years, and producing a large quantity of dye-containing effluent waste contaminates soils and water streams. Current efforts to remove these harmful dyes have focused on utilizing functionalized nanomaterials. A 3D polyurethane foam loaded with reduced graphene oxide (rGO) and ZnO nanocomposite (PUF/rGO/ZnO) has been proposed as an efficient structural design for dye degradation under the influence of visible light. The proposed structure was synthesized using a hydrothermal route followed by microwave irradiation. The resultant 3D PUF/rGO/ZnO was examined and characterized by various techniques such as XRD, FTIR, SEM, EDAX, BET, and UV-visible spectroscopy. SEM data illustrated that a good dispersion and embedment of the rGO/ZnO NPs within the PUF matrix occurred. The adsorption capacity for neat PUF showed that around 20% of the Methylene blue (MB) dye was only adsorbed on its surface. However, it was found that an exceptional adsorption capacity for MB degradation was observed when the rGO/ZnO NPs inserted into the PUF, which initially deteriorated to ~ 70 % of its initial concentration. Notably, the MB dye was completely degraded within 3 h.
Collapse
Affiliation(s)
- Mohamed Morsy
- Building Physics and Environment Institute, Housing & Building National Research Center (HBRC), Dokki, Giza 12311, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: author: (M.M.); (H.K.)
| | - Ahmed I. Abdel-Salam
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| | - Islam Gomaa
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| | - Hesham Moustafa
- Department of Polymer Metrology & Technology, National Institute of Standards (NIS), Tersa Street, El Ha-ram, P.O. Box 136, Giza 12211, Egypt
- Bioanalysis Laboratory, National Institute of Standards (NIS), Tersa Street, El Haram, P.O. Box 136, Giza 12211, Egypt
| | - Haitham Kalil
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: author: (M.M.); (H.K.)
| | - Ahmed Helal
- Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute, Helwan, Cairo 11722, Egypt
| |
Collapse
|
30
|
Selvaraj R, Pai S, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. CHEMOSPHERE 2022; 308:136331. [PMID: 36087731 DOI: 10.1016/j.chemosphere.2022.136331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology is considered the budding discipline in various fields of science and technology. In this review, the various synthesis methods of iron and iron oxide nanoparticles were summarised with more emphasis on green synthesis - a sustainable and eco-friendly method. The mechanism of green synthesis of these nanomaterials was reviewed in recent literature. The magnetic properties of these nanomaterials were briefed which makes them unique in the family of nanomaterials. An overview of various removal methods for the pollutants such as dye, heavy metals, and emerging contaminants using green synthesized iron and iron oxide nanoparticles is discussed. The mechanism of pollutant removal methods like Fenton-like degradation, photocatalytic degradation, and adsorption techniques was also detailed. The review is concluded with the challenges and possible future aspects of these nanomaterials for various environmental applications.
Collapse
Affiliation(s)
- Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
31
|
Tian J, Zhang H, Zhao X, Liu W, Fakhri Y. A study on the adsorption property and mechanism of β-cyclodextrin/polyvinyl alcohol/polyacrylic acid hydrogel for ciprofloxacin. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Polyvinyl alcohol (PVA), acrylic acid (AA), and β-cyclodextrin (β-CD) were used as monomers, and ammonium persulfate was used as an initiator. Orthogonal tests were optimized the experimental condition, and aqueous polymerization was used to prepare poly-β-cyclodextrin/polyvinyl alcohol/polyacrylic acid (β-CD/PVA/PAA) hydrogel. The samples were characterized by FT-IR (Fourier transform infrared), SEM (Scanning electron microscopy), and XRD (X-ray diffraction). β-CD/PVA/PAA hydrogel was analyzed, which influenced external environmental factors on the β-CD/PVA/PAA hydrogel adsorption performance, and the kinetic behavior of β-CD/PVA/PAA hydrogel on ciprofloxacin (CIP) adsorption was explored. The results concluded that the prepared β-CD/PVA/PAA hydrogel has a well-defined three-dimensional network structure. The decrease in the pH of the CIP solution and the adsorption temperature reduces the adsorption reaction of β-CD/PVA/PAA hydrogel on CIP. The kinetics of CIP adsorption by β-CD/PVA/PAA hydrogel confirmed the pseudo-second-order kinetic model (R
2 > 0.997), the maximum equilibrium adsorption amounts is 372.12 mg/g, the removal rate reaches 74.42%. The adsorption process was mainly chemisorption, the adsorption isotherm fits the Freundlich adsorption isotherm model (R
2 > 0.946), and the adsorption process was heterogeneous with multi-molecular layer adsorption. The adsorption process inclined more toward the adsorption of inhomogeneous multi-molecular layers. The β-CD/PVA/PAA hydrogel retained 80% adsorption properties after three adsorption-desorption under optimal conditions.
Collapse
Affiliation(s)
- Jintao Tian
- College of resources and environment , Jilin Agricultural University , Changchun 130000 , China
| | - Hongyu Zhang
- College of resources and environment , Jilin Agricultural University , Changchun 130000 , China
| | - Xinyu Zhao
- College of resources and environment , Jilin Agricultural University , Changchun 130000 , China
| | - Wanyi Liu
- College of resources and environment , Jilin Agricultural University , Changchun 130000 , China
| | - Yasser Fakhri
- Department of Pharmaceutical Chemistry, University of Isfahan , Isfahan , Iran
| |
Collapse
|
32
|
Bilal M, Ikram M, Shujah T, Haider A, Naz S, Ul-Hamid A, Naz M, Haider J, Shahzadi I, Nabgan W. Chitosan-Grafted Polyacrylic Acid-Doped Copper Oxide Nanoflakes Used as a Potential Dye Degrader and Antibacterial Agent: In Silico Molecular Docking Analysis. ACS OMEGA 2022; 7:41614-41626. [PMID: 36406528 PMCID: PMC9670908 DOI: 10.1021/acsomega.2c05625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This study examined the catalytic and bactericidal properties of polymer-doped copper oxide (CuO). For this purpose, a facile co-precipitation method was used to synthesize CuO nanostructures doped with CS-g-PAA. Various concentrations (2, 4, and 6%) of dopants were systematically incorporated into a fixed amount of CuO. The prepared samples were analyzed by different optical, structural, and morphological characterizations. Field emission scanning electron microscopy and transmission electron microscopy micrographs indicated that doping transformed CuO's agglomerated rod-like surface morphology to form nanoflakes. UV-vis spectroscopy revealed that the optical spectra of the samples exhibit a redshift after doping, leading to a decrease in band gap energy from 3.3 to 2.5 eV. The purpose of the study was to test the catalytic activity of pristine and CS-g-PAA doped CuO for the degradation of methylene blue in acidic, basic, and neutral conditions using NaBH4 as a reducing agent in an aqueous medium. Furthermore, antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria, namely, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, enhanced bactericidal performance was observed upon doping CS-g-PAA into CuO, i.e., 4.25-6.15 and 4.40-8.15 mm against S. aureus and 1.35-4.20 and 2.25-5.25 mm against E. coli at the lowest and highest doses, respectively. The relevant catalytic and bactericidal action mechanisms of samples are also proposed in the study. Moreover, in silico molecular docking studies illustrated the role of these prepared nanomaterials as possible inhibitors of FabH and FabI enzymes of the fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- Muhammad Bilal
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000, Punjab, Pakistan
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad
Nawaz Shareef, University of Agriculture, 66000Multan, Punjab, Pakistan
| | - Sadia Naz
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anwar Ul-Hamid
- Core
Research Facilities, King Fahd University
of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Misbah Naz
- Department
of Chemistry, University of the Education, 54000Lahore, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore54000, Pakistan
| | - Walid Nabgan
- Departament
d’Enginyeria Química, Universitat
Rovira i Virgili, 43007Tarragona, Spain
| |
Collapse
|
33
|
Faizal ANM, Putra NR, Zaini MAA. Insight into the adsorptive mechanisms of methyl violet and reactive orange from water—a short review. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2140462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Azrul Nurfaiz Mohd Faizal
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| | - Nicky Rahmana Putra
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| |
Collapse
|
34
|
Thiacalix[4]arene-functionalized magnetic xanthan gum (TC4As-XG@FeO) as a hydrogel adsorbent for removal of dye and pesticide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Pandey S, Son N, Kim S, Balakrishnan D, Kang M. Locust Bean gum-based hydrogels embedded magnetic iron oxide nanoparticles nanocomposite: Advanced materials for environmental and energy applications. ENVIRONMENTAL RESEARCH 2022; 214:114000. [PMID: 35948150 DOI: 10.1016/j.envres.2022.114000] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 05/26/2023]
Abstract
This paper reports a simple method of designing and synthesizing magnetic iron oxide (IO) integrated locust bean gum-cl-polyacrylonitrile hydrogel nanocomposites (LBG-cl-PAN/IONP) by in situ mineralization of iron ions in a hydrogel matrix. A two-step gel crosslink method followed by co-precipitation method was used to prepare these novel hydrogels embedded with magnetic iron oxide nanoparticles. The LBG-cl-PAN/IONP hydrogel nanocomposite (HNC) were tested in batch adsorption experiments for their ability to remove a cationic dyes, methylene blue (MB) & Methyl violet (MV), from aqueous solution. In order to analyze the LBG-cl-PAN/IONP HNC, FTIR, XRD, XPS, VSM, TEM, and EDX techniques were applied. Numerous operating parameters were studied, including the amount of adsorbent, the contact time, pH, temperature, the dye concentration, and the coexisting ion concentration. According to the Langmuir isotherm model, MB and MV had maximum monolayer adsorptive capacities of 1250 and 1111 mg/g, respectively. LBG-cl-PAN/IONP HNC controlled IONP oxidation as well as sustained adsorptive removal over a wide pH range (7-10). The key mechanism of adsorption consisted of electrostatic interaction and ion exchange. For successful use in successive cycles after regeneration using HNO3 as eluent, the LBG-cl-PAN/IONP HNC can easily be reused. As a material, the LBG-cl-PAN/IONP HNC is a promising sorbent or composite material for removing toxic dyes from water, and therefore can be applied to enhance water and wastewater treatment technology. Additionally, we have briefly evaluated LBG-cl-PAN/IONP HNC for antibacterial and supercapacitor applications. According to our knowledge, this is the first report describing the use of LBG-cl-PAN/IONP HNC multifunctional efficacy as an excellent sorbent, antibacterial and electrochemical supercapacitor applications.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar, 31952, Saudi Arabia
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
36
|
Yin T, Zhang X, Shao S, Xiang T, Zhou S. Covalently crosslinked sodium alginate/poly(sodium p-styrenesulfonate) cryogels for selective removal of methylene blue. Carbohydr Polym 2022; 301:120356. [DOI: 10.1016/j.carbpol.2022.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
37
|
Naseem K, Tahir MH, Farooqi F, Manzoor S, Khan SU. Strategies adopted for the preparation of sodium alginate–based nanocomposites and their role as catalytic, antibacterial, and antifungal agents. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alginate extracted from the marine brown algae is a massively utilized biopolymer in multiple fields such as microreactors for the fabrication of metal nanoparticles along with other polymeric and nonpolymeric materials to enhance their mechanical strength. These sodium alginate (Na-Alg)-based fabricated nanocomposites find applications in the field of catalysis and biological treatment as antibacterial/antifungal agent due to the synergistic properties of Na-Alg and fabricated metal nanoparticles (NPs). Na-Alg offers mechanical strength and nanoparticles provide high reactivity due to their small size. Sodium alginate exhibits hydroxyl and carboxylate functional groups that can easily interact with the metal nanoparticles to form composite particles. The research on the preparation of Na-Alg–based nanoparticles and nanoaggregates have been started recently but developed quickly due to their extensive applications in different fields. This review article encircles different methods of preparation of sodium alginate–based metal nanocomposites; analytical techniques reported to monitor the formation of these nanocomposites and used to characterize these nanocomposites as well as applications of these nanocomposites as catalyst, antibacterial, and antifungal agent.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Basic and Applied Chemistry , Faculty of Science and Technology, University of Central Punjab , Lahore 54000 , Pakistan
| | - Mudassir Hussain Tahir
- Department of Chemistry, Division of Sciences and Technology , University of Education , Lahore 54000 , Pakistan
- Bonn-Rhein-Sieg University of Applied Sciences , Von-Liebig-Str. 20 , D-53359 Rheinbach , Germany
| | - Fatima Farooqi
- Department of Basic and Applied Chemistry , Faculty of Science and Technology, University of Central Punjab , Lahore 54000 , Pakistan
| | - Suryyia Manzoor
- Institute of Chemical Sciences, Bahauddin Zakayria University , Multan 60800 , Pakistan
| | - Saba Urooge Khan
- Institute of Polymer and Textile Engineering, University of the Punjab , Lahore 54590 , Pakistan
| |
Collapse
|
38
|
Guaya D, Cobos H, Valderrama C, Cortina JL. Effect of Mn 2+/Zn 2+/Fe 3+ Oxy(Hydroxide) Nanoparticles Doping onto Mg-Al-LDH on the Phosphate Removal Capacity from Simulated Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203680. [PMID: 36296870 PMCID: PMC9609385 DOI: 10.3390/nano12203680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/13/2023]
Abstract
A parent Mg-Al-LDH was upgraded in its adsorption properties due to the incorporation of tri-metal species oxy(hydroxide) nanoparticles obtaining Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite for the phosphate recovery from simulated urban treated wastewater. The physicochemical properties of the synthesized Mn2+/Zn2+/Fe3+/Mg-Al-LDH make promising for real application without being environmentally harmful. The performance of Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was evaluated through batch adsorption assays. The support of iron, manganese, and zinc (oxy)hydroxide nanoparticles onto the parent Mg-Al-LDH structure was performed by precipitation, isomorphic substitution, and complexation reactions. The main improvement of the Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was the highest phosphate adsorption capacity (82.3 mg∙g-1) in comparison to the parent Mg-Al-LDH (65.3 mg∙g-1), in a broad range of concentrations and the effective phosphate adsorption at neutral pH (7.5) near to the real wastewater effluents conditions in comparison to the conventional limitations of other adsorbents. The effectiveness of Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was higher than the conventional metal LDHs materials synthesized in a single co-precipitation step. The phosphate adsorption onto Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite was described to be governed by both physical and chemical interactions. The support of Mn2+/Zn2+/Fe3+ oxy(hydroxide) nanoparticles over the parent Mg-Al-LDH was a determinant for the improvement of the phosphate adsorption that was governed by complexation, hydrogen bonding, precipitation, and anion exchange. The intra-particular diffusion also described well the phosphate adsorption onto the Mn2+/Zn2+/Fe3+/Mg-Al-LDH composite. Three specific stages of adsorption were determined during the phosphate immobilization with an initial fast rate, followed by the diffusion through the internal pores and the final equilibrium stage, reaching 80% of removal and the equilibrium within 1 h. The Mn2+/Zn2+/Fe3+/Mg-Al-LDH was strongly selective towards phosphate adsorption in presence of competing ions reducing the adsorption capacity at 20%. The Mn2+/Zn2+/Fe3+/Mg-Al-LDH has limited reusability, only 51% of the adsorbed phosphate could be recovered in the second cycle of the adsorption-desorption process. Around 14% of phosphate was loosely-bond to Mn2+/Zn2+/Fe3+/Mg-Al-LDH which brings the opportunity to be a new source of phosphorus. The use of eluted concentrates and the final disposal of the exhausted adsorbent for soil amendment applications can be an integral nutrient system (P, Mn, Zn, Fe) for agriculture purposes.
Collapse
Affiliation(s)
- Diana Guaya
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110107, Ecuador
- Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain
- Correspondence:
| | - Hernán Cobos
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja 110107, Ecuador
| | - César Valderrama
- Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| | - José Luis Cortina
- Department of Chemical Engineering, BarcelonaTECH-UPC, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, 08930 Barcelona, Spain
| |
Collapse
|
39
|
Saravanan A, Kumar PS, Rangasamy G. Removal of Toxic Pollutants from Industrial Effluent: Sustainable Approach and Recent Advances in Metal Organic Framework. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Anbalagan Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai−602105, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai−603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai−603110, India
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab−140413, India
| |
Collapse
|
40
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
41
|
He C, Liu Y, Zheng C, Jiang Y, Liao Y, Huang J, Fujita T, Wei Y, Ma S. Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water. TOXICS 2022; 10:489. [PMID: 36136454 PMCID: PMC9504436 DOI: 10.3390/toxics10090489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Utilising waste amine-oxime (WAO) resin through microwave semi-carbonization, a carbon adsorbent (CA) was obtained to remove Pb(II). After microwave treatment, the pore size of the skeleton structure, three-dimensional porous network, and lamellar pore structure of WAO was improved. The distribution coefficient (Kd) of Pb(II) onto CA is 620 mL/g, and the maximum adsorption capacity of Pb(II) is 82.67 mg/g after 20 min of WAO microwave treatment. The adsorption kinetics and adsorption isotherms conform to the quasi-second-order kinetic equation and Langmuir adsorption isotherm model, respectively. The surface of MT-WAO is negatively charged and the adsorption mechanism is mainly electrostatic interaction. Pb(II) elution in hydrochloric acid solution is more than 98%, and its recovery is high at 318 K and for 1 h.
Collapse
Affiliation(s)
- Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yun Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Chunhui Zheng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yanming Jiang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yan Liao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jiaxin Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421000, China
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaojian Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Processing for Non-Ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
42
|
Enhanced adsorption of crystal violet from aqueous solution by polyethyleneimine-modified magnetic hydrogel nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
43
|
Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules 2022; 27:molecules27154856. [PMID: 35956804 PMCID: PMC9369816 DOI: 10.3390/molecules27154856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
World population growth, with the consequent consumption of primary resources and production of waste, is progressively and seriously increasing the impact of anthropic activities on the environment and ecosystems. Environmental pollution deriving from anthropogenic activities is nowadays a serious problem that afflicts our planet and that cannot be neglected. In this regard, one of the most challenging tasks of the 21st century is to develop new eco-friendly, sustainable and economically-sound technologies to remediate the environment from pollutants. Nanotechnologies and new performing nanomaterials, thanks to their unique features, such as high surface area (surface/volume ratio), catalytic capacity, reactivity and easy functionalization to chemically modulate their properties, represent potential for the development of sustainable, advanced and innovative products/techniques for environmental (bio)remediation. This review discusses the most recent innovations of environmental recovery strategies of polluted areas based on different nanocomposites and nanohybrids with some examples of their use in combination with bioremediation techniques. In particular, attention is focused on eco-friendly and regenerable nano-solutions and their safe-by-design properties to support the latest research and innovation on sustainable strategies in the field of environmental (bio)remediation.
Collapse
|
44
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
45
|
Enhanced Methylene Blue Adsorption by Cu-BTC Metal-Organic Frameworks with Engineered Particle Size Using Surfactant Modulators. WATER 2022. [DOI: 10.3390/w14121864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metal–organic frameworks (MOFs) featuring porous structures and large specific surface areas have shown great potential in removing organic pollutants from wastewater via adsorption processes. Although the particle size of MOFs determines the adsorption performance (something known as the size-dependent effect), engineering it into desirable dimensions for enhancing the adsorption performance is a great challenge. Here, we develop a practical and facile approach to regulate the particle size of copper benzene-1,3,5-tricarboxylate (Cu-BTC) adsorbents with high tunability by screening the functional modulator of various surfactants adding in hydrothermal synthesis procedure. The effect of surfactant type and concentration on the particle size of Cu-BTC was systematically investigated. The results show that the nonionic surfactant polyvinylpyrrolidone (PVP) demonstrated the greatest ability to control the particle size of Cu-BTC among other counterparts (e.g., N, N, N-trimethyl-1-dodecanaminium bromide (DTAB), polyethylene glycol (PEG1000), sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS) and hexadecyl trimethyl ammonium bromide (CTAB)). By increasing the PVP concentration to 0.14 mmol L−1, the average particle size of Cu-BTC could be correspondingly reduced by more than ten times, reaching to a comparative smaller value of 2.4 μm as compared with the reported counterparts. In addition, the PVP allowed a large increase of the surface area of Cu-BTC according to porosity analysis, resulting in a great enhancement of methylene blue (MB) adsorption. The PVP-modulated Cu-BTC showed fast adsorption kinetics for MB removal accompanied with a maximum adsorption capacity of 169.2 mg g−1, which was considerably competitive with most of the analogs reported. Therefore, our study may inspire concepts for engineering the particle size of Cu-BTCs with improved properties for more practical applications.
Collapse
|