1
|
Gachara G, Suleiman R, Kilima B, Taoussi M, El Kadili S, Fauconnier ML, Barka EA, Vujanovic V, Lahlali R. Pre- and post-harvest aflatoxin contamination and management strategies of Aspergillus spoilage in East African Community maize: review of etiology and climatic susceptibility. Mycotoxin Res 2024; 40:495-517. [PMID: 39264500 DOI: 10.1007/s12550-024-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Globally, maize (Zea mays L.) is deemed an important cereal that serves as a staple food and feed for humans and animals, respectively. Across the East African Community, maize is the staple food responsible for providing over one-third of calories in diets. Ideally, stored maize functions as man-made grain ecosystems, with nutritive quality changes influenced predominantly by chemical, biological, and physical factors. Food spoilage and fungal contamination are convergent reasons that contribute to the exacerbation of mycotoxins prevalence, particularly when storage conditions have deteriorated. In Kenya, aflatoxins are known to be endemic with the 2004 acute aflatoxicosis outbreak being described as one of the most ravaging epidemics in the history of human mycotoxin poisoning. In Tanzania, the worst aflatoxin outbreak occurred in 2016 with case fatalities reaching 50%. Similar cases of aflatoxicoses have also been reported in Uganda, scenarios that depict the severity of mycotoxin contamination across this region. Rwanda, Burundi, and South Sudan seemingly have minimal occurrences and fatalities of aflatoxicoses and aflatoxin contamination. Low diet diversity tends to aggravate human exposure to aflatoxins since maize, as a dietetic staple, is highly aflatoxin-prone. In light of this, it becomes imperative to formulate and develop workable control frameworks that can be embraced in minimizing aflatoxin contamination throughout the food chain. This review evaluates the scope and magnitude of aflatoxin contamination in post-harvest maize and climate susceptibility within an East African Community context. The paper also treats the potential green control strategies against Aspergillus spoilage including biocontrol-prophylactic handling for better and durable maize production.
Collapse
Affiliation(s)
- G Gachara
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| | - R Suleiman
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - B Kilima
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - M Taoussi
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - S El Kadili
- Department of Animal Production, Ecole Nationale d'Agriculture de Meknès, Route Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - M L Fauconnier
- Gembloux AgroBiotech, University of Liege, Gembloux, Belgium
| | - E A Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - V Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - R Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
| |
Collapse
|
2
|
Ismail AM, Raza MH, Zahra N, Ahmad R, Sajjad Y, Khan SA. Aflatoxins in Wheat Grains: Detection and Detoxification through Chemical, Physical, and Biological Means. Life (Basel) 2024; 14:535. [PMID: 38672805 PMCID: PMC11050897 DOI: 10.3390/life14040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Wheat (Triticum aestivum L.) is an essential food crop in terms of consumption as well as production. Aflatoxin exposure has a widespread public health impact in economically developing nations, so there is a need to establish preventive techniques for these high-risk populations. Pre-harvest and post-harvest practices are the two strategies used to control aflatoxin contamination, which include the use of genetically modified crops that show resistance against Aspergillus infection, the use of pesticides, changing the planting and harvesting time of crops, and physical, chemical, and biological methods. In this research, aflatoxin detection and quantification were performed in different wheat varieties to determine quantitative differences in comparison to the European Commission's limit of 4 ppb aflatoxins in wheat. TLC for qualitative and the ELISA kit method for quantitative analysis of aflatoxins were used. Out of 56 samples, 35 were found contaminated with aflatoxins, while the remaining 21 samples did not show any presence of aflatoxins. Out of the 35 contaminated samples, 20 samples showed aflatoxin contamination within the permissible limit, while the remaining 15 samples showed aflatoxin concentration beyond the permissible level, ranging from 0.49 to 20.56 ppb. After quantification, the nine highly contaminated wheat samples were detoxified using physical, chemical, and biological methods. The efficiency of these methods was assessed, and they showed a significant reduction in aflatoxins of 53-72%, 79-88%, and 80-88%, respectively. In conclusion, the difference in aflatoxin concentration in different wheat varieties could be due to genetic variations. Furthermore, biological treatment could be the method of choice for detoxification of aflatoxins in wheat as it greatly reduced the aflatoxin concentration with no harmful effect on the quality of the grains.
Collapse
Affiliation(s)
- Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Muhammad Hassan Raza
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600, Pakistan;
| | - Naseem Zahra
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600, Pakistan;
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad 22060, Pakistan; (M.H.R.); (R.A.); (Y.S.)
| |
Collapse
|
3
|
Sindhu M, Rajkumar V, Annapoorani CA, Gunasekaran C, Kannan M. Nanoencapsulation of garlic essential oil using chitosan nanopolymer and its antifungal and anti-aflatoxin B1 efficacy in vitro and in situ. Int J Biol Macromol 2023:125160. [PMID: 37271266 DOI: 10.1016/j.ijbiomac.2023.125160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The present study investigated the comparative efficacy of garlic essential oil (GEO) and its nanoencapsulated within chitosan nanomatrix (GEO-CSNPs) as a novel preservative for the protection of stored food commodities from fungal infestations, aflatoxin B1 (AFB1) contamination and lipid peroxidation against a toxigenic strain of Aspergillus flavus. GC-MS examination of GEO showed the presence of allyl methyl tri-sulfide (23.10 %) and diallyl sulfide (19.47 %) as the major components. GEO-CSNPs were characterized through TEM micrograph, DLS, XRD, and FTIR instrumentation. During the in-vitro investigation, GEO-CSNPs at 1.0 μL/mL dose completely inhibited the growth of A. flavus while preventing the synthesis of AFB1 at 0.75 μL/mL compared to the pure GEO. The biochemical analysis reveals that A. flavus exposed to GEO-CSNPs significantly changed its ergosterol level, ions leakage, mitochondrial membrane potential (MMP), and antioxidant system. Additionally, GEO-CSNPs exhibited enhanced antioxidant activity against DPPH compared with GEO. Likewise, during in-situ experiments on A. hypogea GEO-CSNPs MIC and 2 MIC concentration prohibited fungal development, AFB1 synthesis, and lipid peroxidation or inflicting any negative impacts on germinating seeds. Overall, investigations concluded that GEO-CSNPs could be used as a novel preservative agent to improve the shelf life of stored food commodities.
Collapse
Affiliation(s)
- Murugesan Sindhu
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Coimbatore Alagubrahmam Annapoorani
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Malaichamy Kannan
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Jiang LL, Wang JB, Wang WH, Lei B, Feng JT, Wu H, Ma ZQ. Effects of Three Essential Oil Fumigation Treatments on the Postharvest Control of Botrytis cinerea and Their Efficacy as Preservatives of Cherry Tomatoes. PLANT DISEASE 2023; 107:1874-1882. [PMID: 36480731 DOI: 10.1094/pdis-09-22-2134-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cherry tomatoes (Solanum lycopersicum) are becoming increasingly popular due to their nutrition and delicious flavor. However, cherry tomatoes are highly perishable and susceptible to various pathogenic microorganisms after harvest, such as Botrytis cinerea. In the pretest experiment, we screened out three kinds of plant essential oils (EOs) (Torreya grandis oil, Eriobotrya japonica oil, and Citrus medica oil) that have strong fungicidal activity on B. cinerea from cherry tomatoes. To further evaluate the postharvest preservation application prospect of these three oils for cherry tomatoes, the oils were extracted from different parts of three plants by hydrodistillation, and their chemical constituents were analyzed by gas chromatography-mass spectrometry. The main representative components of T. grandis oil, E. japonica oil, and C. medica oil were δ-cadinene (11.76%), transnerolidol (9.70%), and 5,7-dimethoxycoumarin (23.22%), respectively. These three EOs effectively inhibited the mycelial growth of B. cinerea in vitro, with EC50 values of 81.672, 144.046, and 221.500 μl/liter, respectively. Compared with the blank control and other oil treatments, the T. grandis oil (at a concentration of 200 µl/liter) fumigation treatment was more effective at inhibiting the growth rate of the pathogen. In addition, the phenolic content and phenylalanine ammonia lyase, β-1,3-glucanase, chitinase, and peroxidase activities of tomatoes significantly increased on the seventh day due to the T. grandis oil treatment. The present study shows that these three oils with high extraction rates have preservation potential for cherry tomatoes. Among these three EOs, T. grandis oil can be used to further develop preservative products as a fumigant.
Collapse
Affiliation(s)
- Lin-Lin Jiang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jing-Bo Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Wen-Hao Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Bin Lei
- Research at the Xinjiang Academy of Agricultural Sciences Biotechnology Institute of Nuclear Technology, Xinjiang 830091, China
| | - Jun-Tao Feng
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhi-Qing Ma
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
5
|
Kushveer JS, Sharma R, Samantaray M, Amutha R, Sarma VV. Purification and evaluation of 2, 4-di-tert butylphenol (DTBP) as a biocontrol agent against phyto-pathogenic fungi. Fungal Biol 2023; 127:1067-1074. [PMID: 37344008 DOI: 10.1016/j.funbio.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
A fungal strain, Marasmiellus sp (PUK64), isolated from the mangrove forests in Muthupet, Tamil Nadu, East coast of India, along with others were screened for the search of potent bioactive compounds. A phenolic compound, 2,4-di-tert-butylphenol (DTBP), was isolated from the most promising strain PUK64 and its chemical structure was ascertained. DTBP demonstrated remarkable antifungal activity against the phytopathogenic fungi Aspergillus oryzae, Curvularia lunata and Fusarium verticillioides. In an in-vitro experimental setup, DTBP suppressed the growth of all three fungi, among which F. verticillioides was found to be highly susceptible. This effect relates with the inhibition of spore germination and hyphal growth that we observed. DTBP showed high affinity with the F. verticillioides's β-tubulin protein (determined by ligand-protein docking) as compared to the standard fungicide carbendazim (CBZ). Molecular docking and simulation studies of DTBP with target β-tubulin further confirmed the potential of β-tubulin binding in F. verticillioides. To our knowledge, this is the first report on DTBP-mediated biocontrol of phytopathogenic fungi, produced by Marasmiellus sp. PUK64 that can be potent inhibitor of β-tubulin protein of F. verticillioides.
Collapse
Affiliation(s)
- J S Kushveer
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Rahul Sharma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mahesh Samantaray
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - R Amutha
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | | |
Collapse
|
6
|
Mishra P, Gupta P, Srivastava R, Srivastava AK, Poluri KM, Prasad R. Exploration of Antibiofilm and In Vivo Wound Healing Activity of p-Cymene-Loaded Gellan/PVA Nanofibers. ACS APPLIED BIO MATERIALS 2023; 6:1816-1831. [PMID: 37075306 DOI: 10.1021/acsabm.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era University, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad 244001, Uttar Pradesh, India
| | - Amit Kumar Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
7
|
Li H, Zhao L, Dai Q, Mo H, Liu Z, Pu H, Zhu X, Yao L, Xu D, Hu L. Blended cumin/Zanthoxylum essential oil improve the antibacterial, fresh-keeping performance and flavor of chilled fresh mutton. Meat Sci 2023; 200:109173. [PMID: 37001444 DOI: 10.1016/j.meatsci.2023.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Microbial pollution and fat oxidation are the main factors that induce the deterioration in the quality of chilled fresh mutton. This study evaluated the effects of cumin (Cuminum cyminum) essential oil (CEO), Zanthoxylum essential oil (ZEO), and blended cumin/zanthoxylum essential oil (BEO) on the antibacterial, preservation of freshness, and flavor improvement of chilled fresh mutton. The results show that BEO exerts a good inhibition effect on microbial growth, lipid oxidation, and the formation of TVB-N, as well as slowing down the rate of juice loss under chilled conditions. GC-IMS assay results showed that BEO can enrich the flavor of roasted mutton with a higher level of volatile organic substances, such as ethyl acetate D. In conclusion, BEO treatments were more efficient than single treatments in ensuring the quality of lamb to improve microbiological safety and improve the flavor of roasted lamb stored under chilled conditions. Overall research indicates that BEO is an effective natural addition that can be used to preserve the quality and safety of chilled fresh mutton during storage.
Collapse
|
8
|
Chitosan-Based Nanoencapsulation of Ocimum americanum Essential Oil as Safe Green Preservative Against Fungi Infesting Stored Millets, Aflatoxin B1 Contamination, and Lipid Peroxidation. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Hlebová M, Foltinová D, Vešelényiová D, Medo J, Šramková Z, Tančinová D, Mrkvová M, Hleba L. The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods 2022; 11:3517. [PMID: 36360130 PMCID: PMC9655813 DOI: 10.3390/foods11213517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 10/13/2023] Open
Abstract
This study aimed to determine the in vitro and in situ antifungal activity of (14) selected essential oils (EOS), namely clove, thyme, red thyme, litsea, eucalyptus, niaouli, fennel, anise, cumin, basil, rosemary, sage, bergamot mint, and marjoram, by vapor contact against the growth of two strains of Penicillium commune (KMi-183 and KMi-402). Furthermore, to exclude the negative effect of EOs on the lactic acid bacteria (LABs) (Streptococcus spp.) on cheeses, their influence was monitored. Next, the sensory evaluation of cheese treated by EOs was evaluated. The results show that litsea and clove EOs were the most effective in the vapor phase against both tested strains. These EOs were characterized by the highest amount of α- (40.00%) and β-Citral (34.35%) in litsea and eugenol (85.23%) in clove. The antitoxicogenic activity of less effective (in growth inhibition) EOs on cyclopiazonic acid (CPA) production by the tested strains was also observed. The growth of Streptococcus spp. (ranging from 8.11 to 9.69 log CFU/g) was not affected by the EOs in treated cheese. Even though the evaluators recognized some EOs in sensory evaluation by the triangle test, they did not have a negative effect on the taste and smell of the treated cheeses and were evaluated as edible. The antifungal activity of EOs against several types of microscopic fungi and their effect on the sensory properties of treated foods needs to be further tested to achieve the most effective protection of foods from their direct contaminants.
Collapse
Affiliation(s)
- Miroslava Hlebová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Denisa Foltinová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Dominika Vešelényiová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Juraj Medo
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Zuzana Šramková
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Dana Tančinová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| | - Michaela Mrkvová
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Lukáš Hleba
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
10
|
Shanbehzadeh F, Saei-Dehkordi SS, Semnani D. Fabrication and characterization of electrospun nanofibrous mats of polycaprolactone/gelatin containing ZnO nanoparticles and cumin essential oil and their anti-staphylococcal potency in white cheese. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Rafeeq M, Bilal RM, Alagawany M, Batool F, Yameen K, Farag MR, Ali S, Elnesr SS, El-Shall NA. The use of some herbal plants as effective alternatives to antibiotic growth enhancers in poultry nutrition. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Majid Rafeeq
- Center for Advanced Studies in Vaccinology and Biotechnology University of Balochistan, Quetta, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fiza Batool
- Faculty of Agriculture, Department of Forestry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif Yameen
- Department of Poultry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Sher Ali
- Faculty of Animal Production & Technology, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfna, Egypt
| |
Collapse
|
12
|
Chaudhari AK, Singh VK, Das S, Kujur A, Deepika, Dubey NK. Unveiling the cellular and molecular mode of action of Melaleuca cajuputi Powell. essential oil against aflatoxigenic strains of Aspergillus flavus isolated from stored maize samples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101716] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Wang X, Huang M, Peng Y, Yang W, Shi J. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Prasad J, Das S, Maurya A, Jain SK, Dwivedy AK. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B 1 contamination in food system. Int J Biol Macromol 2022; 205:240-252. [PMID: 35182563 DOI: 10.1016/j.ijbiomac.2022.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022]
Abstract
The present investigation aimed to synthesize Cymbopogon nardus essential oil impregnated chitosan nanoemulsion (Ne-CNEO) and its practical efficacy as novel green delivery system for protection of Syzygium cumini seeds against broad range storage fungi, aflatoxin B1 (AFB1) secretion and lipid peroxidation. Chemical characterization of CNEO revealed citral (62.73%) as major component. Successful impregnation of CNEO inside chitosan nanoemulsion was confirmed through SEM, AFM and FTIR analyses. In vitro release study showed biphasic release profile with initial burst followed by sustained release of CNEO from chitosan nanomatrix. Ne-CNEO exhibited enhancement in in vitro antifungal, antiaflatoxigenic (0.16 μL/mL) and antioxidant activity over CNEO. The antifungal and antiaflatoxigenic mechanism of action of Ne-CNEO was associated with inhibition of ergosterol biosynthesis, increased leakage of cellular contents, and impairment in cellular methylglyoxal biosynthesis. In silico modeling validated interaction of citral with Ver-1 and Omt-A proteins, confirming the molecular action for inhibition of AFB1 production. In situ investigation suggested remarkable protection of S. cumini seeds against fungal inhabitation, AFB1 production and lipid peroxidation without affecting organoleptic attributes. Furthermore, higher mammalian non-toxicity strengthens the application of Ne-CNEO as safe nano-green and smart preservative in place of adversely affecting synthetic preservatives in emerging food, agriculture and pharmaceutical industries.
Collapse
Affiliation(s)
- Jitendra Prasad
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shreyans Kumar Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
16
|
Zhang JW, Wang D, Zhang Z, Lu XX, Du YS, Zheng YU, Du SS. Chemical Composition and Insecticidal Properties of Essential Oil Obtained from Artemesia songarica Schrenk. J Food Prot 2022; 85:686-692. [PMID: 35051268 DOI: 10.4315/jfp-21-313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Artemisia songarica Schrenk is a dominant sand fixation plant growing in the People's Republic of China. At present, there are rare studies on the chemical composition and biological activity of A. songarica. The chemical composition of the original oil was analyzed by gas chromatography-mass spectrometry, and 16 compounds were determined. The main compounds were bisabolol oxide II (28.7%), nerolidol (18.6%), bisabolol (12.9%), bisaboloxide A (10.0%), and spathulenol (6.0%). The contact toxicity and repellent activity of A. songarica essential oil and four selected compounds (bisabolol, geranyl butyrate, nerolidol, and santalol) were assessed against Tribolium castaneum Herbst and Liposcelis bostrychophila Badonnel. Bioassays showed that the crude essential oil exhibited strong insecticide and repellent activities against both pests. Santalol possessed the strongest contact toxicity (50% lethal dose [LD50] = 1.29 μg per adult) against T. castaneum. Nerolidol, santalol, and geranyl butyrate showed fair contact activity against L. bostrychophila. In particular, geranyl butyrate exhibited outstanding activity (LD50 = 11.53 μg/cm2). In addition, all of the four compounds did not detect a difference between compounds and the positive control (P > 0.05) against two pests at five tested concentrations. These results indicated that A. songarica and its selected compounds could be used as prospective insecticidal and repellent agents for further development and use. HIGHLIGHTS
Collapse
Affiliation(s)
- Jia-Wei Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| | - Dan Wang
- Department of Biomedical Science, Beijing City University, No. 269 North 4th Ring Middle Road, Haidian District, Beijing 100083, People's Republic of China
| | - Zhe Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| | - Xin-Xin Lu
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| | - Yue-Shen Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| | - Y U Zheng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China
| |
Collapse
|
17
|
Evaluation of Modified Atmosphere Packaging in Combination with Active Packaging to Increase Shelf Life of High-in Beta-Glucan Gluten Free Cake. Foods 2022; 11:foods11060872. [PMID: 35327294 PMCID: PMC8948960 DOI: 10.3390/foods11060872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Modified atmosphere packaging and active packaging were combined to prolong the shelf life and quality of the clean label, gluten-free (GF), yeast-leavened cakes enriched in oat fiber preparation. Star anise, cinnamon bark, and clove essential oils were used as emitters of active substances. The following concentrations of gases were chosen: 0% CO2/100%/N2 (MAP1), 60% CO2/40% N2 (MAP2), and approx. 78% N2/21% O2/0.04% CO2 (ATM). Microbiological and physicochemical analyses were conducted. GF cakes were stored for 14 days (analysis in 0, 7, and 14 days). The results showed a decrease in moisture content and lightness of crumb and an increase in hardness. EOs significantly (p ≤ 0.05) slowed down the growth of microorganisms regardless of the type of gas mixture. However, the best bacteriostatic effect was in MAP2. The content of beta-glucan did not change throughout the storage time. Generally, the best results were obtained with the combination of MAP and active packaging—60% of CO2 and 40% of N2—where cinnamon or clove essential oils were used.
Collapse
|
18
|
Ayub MA, Hanif MA, Blanchfield J, Zubair M, Abid MA, Saleh MT. Chemical composition and antimicrobial activity of Boswellia serrata oleo-gum-resin essential oil extracted by superheated steam. Nat Prod Res 2022:1-6. [PMID: 35200079 DOI: 10.1080/14786419.2022.2044327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Oleo-gum-resin is a complex mixture of essential oils, polysaccharides, and resin acids. The objectives of the present study were to evaluate the variation in chemical components and antimicrobial activity of essential oils extracted by superheated steam at various temperatures. The optimum essential oil yield was obtained at the highest superheated steam temperature (210 °C). In total, twenty-one compounds were quantified by GC-MS with α-pinene as the major compound, followed by α-thujene, trans-verbenol, β-thujone, p-cymene, m-cymene, and sabinene. Antimicrobial activity was performed by disc diffusion, resazurin microtitre-plate and micro-dilution broth susceptibility assays in which essential oil extracted at 150 °C and 180 °C revealed the highest antibacterial and antifungal activity, respectively. It is concluded that superheated steam is an effective method for the isolation of essential oil from oleo-gum-resin that improves the recovery of essential oil as well as antimicrobial activity.
Collapse
Affiliation(s)
- Muhammad Adnan Ayub
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Asif Hanif
- Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture Faisalabad, Pakistan
| | - Joanne Blanchfield
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Muhammad Zubair
- Department of Chemistry, Faculty of Science, University of Gujrat, Gujrat City, Pakistan
| | | | | |
Collapse
|
19
|
Ma Y, Wang Z, Wang Y, Zhang S. Molecular insight into the interactions between starch and cuminaldehyde using relaxation and 2D solid-state NMR spectroscopy. Carbohydr Polym 2022; 278:118932. [PMID: 34973750 DOI: 10.1016/j.carbpol.2021.118932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
The interaction between cuminaldehyde and starch mainly governed the effect of further handling on food applications of cuminaldehyde. However, little information is available about the interactions of these components. We utilized relaxation and heteronuclear correlation (HETCOR) solid-state NMR spectroscopy to investigate the interaction between cuminaldehyde and porous starch at molecular level. We found that the interactions occurred mainly through hydrogen bonds. Cuminaldehyde molecules were restricted by starch, which resulted in the limitation of their movements and the longer 1H T1 relaxation time. Furthermore, the well resolved correlated peaks in 2D 1H-13C HETCOR spectrum confirmed the formation of hydrogen bonds. The oxygen atoms at hydroxyl-2,3 of starch were the binding sites, which combined with hydrogens of cuminaldehyde. This present work not only afford a new approach to obtain a molecular understanding of interactions, but also expanded the application of solid-state NMR to investigation of the interaction on functional components.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yuxia Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
20
|
Jafarzadeh S, Abdolmalek K, Javanmardi F, Hadidi M, Mousavi Khaneghah A. Recent advances in plant‐based compounds for mitigation of mycotoxin contamination in food products: current status, challenges, and perspectives. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering Edith Cowan University Joondalup WA 6027 Australia
| | - Khadije Abdolmalek
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Hadidi
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
21
|
Qu C, Li Z, Wang X. UHPLC-HRMS-Based Untargeted Lipidomics Reveal Mechanism of Antifungal Activity of Carvacrol against Aspergillus flavus. Foods 2021; 11:foods11010093. [PMID: 35010219 PMCID: PMC8750229 DOI: 10.3390/foods11010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 01/13/2023] Open
Abstract
Aspergillus flavus is a common contaminant in grain, oil and their products. Its metabolite aflatoxin B1 (AFB1) has been proved to be highly carcinogenic. Therefore, it is of great importance to find possible antifungal substances to inhibit the growth and toxin production of Aspergillus flavus. Carvacrol (CV) was reported as a potent antifungal monoterpene derived from plants. In this paper, the antifungal effects and mechanism of CV on Aspergillus flavus were investigated. CV was shown good inhibition on the growth of Aspergillus flavus and the production of AFB1. CV used in concentrations ranging from 0, 50, 100 and 200 μg/mL inhibited the germination of spores, mycelia growth and AFB1 production dose-dependently. To explore the antifungal mechanism of CV on Aspergillus flavus, we also detected the ergosterol content of Aspergillus flavus mycelia, employed Scanning Electron Microscopy (SEM) to observe mycelia morphology and utilized Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) to explore the lipidome profiles of Aspergillus flavus. The results showed that the production of ergosterol of mycelia was reduced as the CV treatment concentration increased. SEM photographs demonstrated a rough surface and a reduction in the thickness of hyphae in Aspergillus flavus treated with CV (200 µg/mL). In positive ion mode, 21 lipids of Aspergillus flavus mycelium were downregulated, and 11 lipids were upregulated after treatment with 200-µg/mL CV. In negative ion mode, nine lipids of Aspergillus flavus mycelium were downregulated, and seven lipids upregulated after treatment with 200-µg/mL CV. In addition, the analysis of different lipid metabolic pathways between the control and 200-µg/mL CV-treated groups demonstrated that glycerophospholipid metabolism was the most enriched pathway related to CV treatment.
Collapse
Affiliation(s)
- Chenling Qu
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| | - Zhuozhen Li
- Grain and Oil Storage Department, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Correspondence: (C.Q.); (X.W.); Tel.: +86-18623717762 (C.Q.); +86-2786812943 (X.W.)
| |
Collapse
|
22
|
Zheljazkov VD, Jeliazkova EA, Astatkie T. Allelopathic Effects of Essential Oils on Seed Germination of Barley and Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122728. [PMID: 34961198 PMCID: PMC8708003 DOI: 10.3390/plants10122728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In this study, we evaluated the allelopathic effects of essential oils (EOs) from six different plant species, namely, lavender (Lavandula angustifolia), hyssop (Hyssopus officinalis), English thyme (Thymus vulgaris), lovage (Levisticum officinale), costmary (Chrysanthemum balsamita), and cumin (Cuminum cyminum), on seed germination and seedling growth of barley (Hordeum vulgare) and wheat (Triticum aestivum). The main constituents of the EOs of L. angustifolia were 47.0% linalool acetate and 28.4% linalool; H. officinalis' main constituents were 39.8% cis-pinocamphone, 9.8% trans-pinocamphone, 11.4% β-pinene, and 7.5% β-phellandrene; T. vulgaris' were 38.2% para-cymene, 25.6% thymol, and 13.6% γ-terpinene; L. officinale's were 64.8% α-terpinyl acetate and 14.7% β-phellandrene; C. balsamita's were 43.7% camphor, 32.4% trans-thujone, and 11.6% camphene; C. cyminum's were 49.6% cumin aldehyde, 10.4% para-cymene, 11.6% α-terpinen-7-al, and 9.1% β-pinene. All six EOs exhibited an allelopathic effect and suppressed the seed germination and seedling development of wheat and barley; however, the concentrations that exhibited a suppressing effect were different among the plants. C. cyminum EO completely suppressed both barley and wheat germination at 10-, 30-, and 90-µL application rates, making it the most effective treatment among the tested EOs. C. balsamita's and H. officinalis' EOs at 30 and 90 µL application rates completely suppressed barley and wheat radicles per seed, radicle length (mm), seedling height (mm), and germination (%). L. angustifolia's EOs at 30- and 90-µL and T. vulgaris' EO at 90 µL application rates also completely suppressed barley and wheat radicles per seed, radicle length (mm), seedling height (mm), and germination (%). C. balsamita's, H. officinalis', L. angustifolia's, and T. vulgaris' EOs at a 10 µL application rate reduced barley radicle length, seedling height, and % germination relative to the control. Wheat seed germination % was completely suppressed by the application of L. angustifolia's and T. vulgaris' EOs at 30 and 90 µL, while T. vulgaris' EO at 10 µL rate reduced the germination relative to the control. Interestingly, C. balsamita and H. officinalis at 10 µL did not reduce wheat germination; however, they did reduce the number of radicles per seed, radicle length (mm), seedling height (mm), germination (%), and vigor index. Furthermore, L. officinale's EO reduced the measured indices (radicles per seed, radicle length, seedling height, and vigor index) at the 10, 30, and 90 µL application rates relative to the non-treated control; however, none of the application rates of L. officinale's EO had a suppression effect on wheat germination. This study demonstrated the allelopathic effects of the EOs of six different herbal plant species on seed germination of barley and winter wheat. The results can be utilized in the development of commercial products for controlling pre-harvest sprouting of wheat and barley. Further research is needed to verify the results under field conditions.
Collapse
Affiliation(s)
- Valtcho D. Zheljazkov
- Crop and Soil Science Department, Oregon State University, Corvallis, OR 97331, USA;
| | | | - Tess Astatkie
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| |
Collapse
|
23
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
24
|
Method Validation and Evaluation of Safrole Persistence in Cowpea Beans Using Headspace Solid-Phase Microextraction and Gas Chromatography. Molecules 2021; 26:molecules26226914. [PMID: 34834007 PMCID: PMC8618816 DOI: 10.3390/molecules26226914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Bioinsecticides are regarded as important alternatives for controlling agricultural pests. However, few studies have determined the persistence of these compounds in stored grains. This study aimed at optimizing and validating a fast and effective method for extraction and quantification of residues of safrole (the main component of Piper hispidinervum essential oil) in cowpea beans. It also sought to assess the persistence of this substance in the grains treated by contact and fumigation. The proposed method used headspace solid-phase microextraction (HS-SPME) and gas chromatography with a flame ionization detector (GC/FID). Factors such as temperature, extraction time and type of fiber were assessed to maximize the performance of the extraction technique. The performance of the method was appraised via the parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy. The LOD and LOQ of safrole were 0.0057 and 0.019 μg kg−1, respectively and the determination coefficient (R2) was >0.99. The relative recovery ranged from 99.26 to 104.85, with a coefficient of variation <15%. The validated method was applied to assess the persistence of safrole residue in grains, where concentrations ranged from 1.095 to 0.052 µg kg−1 (contact) and from 2.16 to 0.12 µg kg −1 (fumigation). The levels measured up from the fifth day represented less than 1% of the initial concentration, proving that safrole have low persistence in cowpea beans, thus being safe for bioinsecticide use. Thus, this work is relevant not only for the extraction method developed, but also for the possible use of a natural insecticide in pest management in stored grains.
Collapse
|
25
|
Cuminaldehyde in cumin essential oils prevents the growth and aflatoxin B1 biosynthesis of Aspergillus flavus in peanuts. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107985] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Střelková T, Nemes B, Kovács A, Novotný D, Božik M, Klouček P. Inhibition of Fungal Strains Isolated from Cereal Grains via Vapor Phase of Essential Oils. Molecules 2021; 26:1313. [PMID: 33804452 PMCID: PMC7957489 DOI: 10.3390/molecules26051313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Fungal contamination in stored food grains is a global concern and affects food economics and human and animal health. It is clear that there is a need to develop new technologies with improved performances that are also eco-friendly in nature. Due to the bioactivity of essential oils (EOs) in the vapor phase, their low toxicity for humans, and their biodegradability and antifungal properties, EOs could be a suitable solution. In this study, we explored the potential of thyme, oregano, lemongrass, clove, and cajeput EOs in the vapor phase. For 17 days, inhibitory activity was assessed against five strains of postharvest pathogens-Aspergillus spp., Fusarium s. l. spp., and Penicilliumochrochloron-isolated from cereal grains. A modified disc volatilization method was used, which is more effective in comparison to traditional screening methods. Three concentrations were tested (250, 125, and 62.5 μL/L). The two highest concentrations resulted in complete inhibition of fungal growth; however, even 62.5 μL/L showed a significant antifungal effect. The efficiency of EOs followed this order: thyme > oregano > lemongrass > clove > cajeput. From our findings, it appears that the use of EOs vapors is a better option not only for laboratory experiments, but for subsequent practice.
Collapse
Affiliation(s)
- Tereza Střelková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (T.S.); (B.N.); (A.K.); (M.B.)
| | - Bence Nemes
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (T.S.); (B.N.); (A.K.); (M.B.)
| | - Anett Kovács
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (T.S.); (B.N.); (A.K.); (M.B.)
| | - David Novotný
- Department of Ecology and Diagnostics of Fungal Pathogens, Crop Research Institute, Drnovská 507/73, 16106 Prague, Czech Republic;
| | - Matěj Božik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (T.S.); (B.N.); (A.K.); (M.B.)
| | - Pavel Klouček
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (T.S.); (B.N.); (A.K.); (M.B.)
| |
Collapse
|
27
|
Isolation and identification of fungi found in contaminated fermented milk and antifungal activity of vanillin. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Upadhyay N, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. Int J Biol Macromol 2021; 171:480-490. [PMID: 33428956 DOI: 10.1016/j.ijbiomac.2021.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 μL/mL and 0.75 μL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 μL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.
Collapse
Affiliation(s)
- Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
29
|
Al-Harrasi MMA, Al-Sadi AM, Al-Sabahi JN, Al-Farsi K, Waly MI, Velazhahan R. Essential oils of Heliotropium bacciferum, Ocimum dhofarense and Zataria multiflora exhibit aflatoxin B1 detoxification potential. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1991006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Majida Mohammed Ali Al-Harrasi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Jamal Nasser Al-Sabahi
- Central Analytical Laboratory, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | | | - Mostafa Ibrahim Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
30
|
Pan Y, Deng Z, Shahidi F. Natural bioactive substances for the control of food-borne viruses and contaminants in food. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [PMCID: PMC7700915 DOI: 10.1186/s43014-020-00040-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Food-borne viruses and contaminants, as an important global food safety problem, are caused by chemical, microbiological, zoonotic, and other risk factors that represent a health hazard. Natural bioactive substances, originating from plants, animals, or microorganisms, might offer the possibility of preventing and controlling food-borne diseases. In this contribution, the common bioactive substances such as polyphenols, essential oils, proteins, and polysaccharides which are effective in the prevention and treatment of food-borne viruses and contaminants are discussed. Meanwhile, the preventive effects of natural bioactive substances and the possible mechanisms involved in food protection are discussed and detailed. The application and potential effects of natural bioactive substances in the adjuvant treatment for food-borne diseases is also described.
Graphical abstract
Collapse
|
31
|
Pinto L, Bonifacio MA, De Giglio E, Cometa S, Logrieco AF, Baruzzi F. Unravelling the Antifungal Effect of Red Thyme Oil ( Thymus vulgaris L.) Compounds in Vapor Phase. Molecules 2020; 25:E4761. [PMID: 33081360 PMCID: PMC7587587 DOI: 10.3390/molecules25204761] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022] Open
Abstract
The aim of this work was to evaluate the antifungal activity in vapor phase of thymol, p-cymene, and γ-terpinene, the red thyme essential oil compounds (RTOCs). The Minimum Inhibitory Concentration (MIC) of RTOCs was determined against postharvest spoilage fungi of the genera Botrytis, Penicillium, Alternaria, and Monilinia, by measuring the reduction of the fungal biomass after exposure for 72 h at 25 °C. Thymol showed the lowest MIC (7.0 µg/L), followed by γ-terpinene (28.4 µg/L) and p-cymene (40.0 µg/L). In the case of P. digitatum ITEM 9569, resistant to commercial RTO, a better evaluation of interactions among RTOCs was performed using the checkerboard assay and the calculation of the Fractional Inhibitory Concentration Index (FICI). During incubation, changes in the RTOCs concentration were measured by GC-MS analysis. A synergistic effect between thymol (0.013 ± 0.003 L/L) and γ-terpinene (0.990 ± 0.030 L/L) (FICI = 0.50) in binary combinations, and between p-cymene (0.700 ± 0.010 L/L) and γ-terpinene (0.290 ± 0.010 L/L) in presence of thymol (0.008 ± 0.001 L/L) (FICI = 0.19), in ternary combinations was found. The synergistic effect against the strain P. digitatum ITEM 9569 suggests that different combinations among RTOCs could be defined to control fungal strains causing different food spoilage phenomena.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (F.B.)
| | | | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona, 4, 70126 Bari, Italy; (M.A.B.); (E.D.G.)
| | | | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (F.B.)
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy; (A.F.L.); (F.B.)
| |
Collapse
|
32
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
33
|
Ren JJ, Zhang D, Hou PX, Wu H. Effects of Horseradish Oil and Eight Isothiocyanates Vapour Treatment on Postharvest Disease Control and Their Efficacy as Preservatives of Mature Green Tomato. PLANT DISEASE 2020; 104:2688-2695. [PMID: 32729797 DOI: 10.1094/pdis-03-20-0498-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study evaluated the potential of horseradish (Armoracia rusticana) oil (ARO) and eight isothiocyanates (propyl ITC [ProITC], isopropyl ITC [IsoproITC], n-butyl ITC [n-BuITC], 3-butenyl ITC [3-BeITC], phenyl ITC [PhITC], benzyl ITC [BzITC], 2-phenylethyl ITC [PhEITC], and allyl ITC [AITC]) as preservatives and antifungal agents for postharvest tomato disease control. Results showed that ARO and eight ITCs demonstrated antifungal activities against Botrytis cinerea, Alternaria alternata, Rhizopus stolonifer, and Geotrichum candidum, which can cause the decay of mature green tomato during storage. Allyl-ITC (AITC) had the lowest EC50 values of mycelia growth suppression, with 0.18, 0.44, 0.29, and 0.43 μg/ml air for B. cinerea, A. alternata, R. stolonifer, and G. candidum, respectively. ARO, 2-PhEITC, BzITC, and AITC exhibited better efficacy as preservatives of mature green tomato than other ITCs on the basis of some parameters, such as low decay rate, slow reduction in weight loss, slight change in hardness, slow decrease in acidity, and total soluble solid content of treated tomatoes. GC-MS revealed that 2-PhEITC (77.78%) and AITC (15.87%) were the major components of ARO. These results can be used as a basis to develop preservative products composed of ITCs.
Collapse
Affiliation(s)
- Jing-Jing Ren
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Pu-Xing Hou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hua Wu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Belasli A, Ben Miri Y, Aboudaou M, Aït Ouahioune L, Montañes L, Ariño A, Djenane D. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel ( Laurus nobilis L.): Potential use as wheat preservative. Food Sci Nutr 2020; 8:4717-4729. [PMID: 32994933 PMCID: PMC7500775 DOI: 10.1002/fsn3.1650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) are widely used in the food industry as natural food preservatives to extend product shelf life and as flavoring agents. The aim of this work was to study the chemical profile of the EO from laurel (Laurus nobilis) and its antifungal, antitoxigenic, and antioxidant activities. The extractive yield of the EO from Algerian laurel was 1.13% being 1,8-cineole the most dominant compound (35.5%) by gas chromatography-mass spectrometry analysis. The values of minimum inhibitory concentration and minimum fungicidal concentration (MFC) against Aspergillus flavus were 1.75 and 2 mg/ml, respectively. The production of aflatoxin B1 was inhibited by EO concentrations between 0.25 mg/ml (15% decrease) and 1.50 mg/ml (86% decrease), and it was totally inhibited at the MFC value. The EO showed a wide antifungal spectrum against other species in a dose-dependent manner. In a food-model study, the L. nobilis EO showed remarkable efficacy in fumigated wheat grains, providing from 51.5% to 76.7% protection against A. flavus during 6-month storage. The L. nobilis EO showed good free radical scavenging activity by DPPH assay (IC50 value of 602 μg/ml) and moderate antioxidant activity in the β-carotene bleaching assay (46% inhibition of linoleic acid oxidation). The conclusions of this study justify future research for the application of EO from laurel as a natural preservative to improve food safety and extend shelf life by controlling spoilage and toxigenic molds as well as oxidative damage.
Collapse
Affiliation(s)
- Azem Belasli
- Laboratoire de Qualité et Sécurité des Aliments Département Technologie Alimentaire Université Mouloud MAMMERI de Tizi-Ouzou Tizi-Ouzou Algeria
| | - Yamina Ben Miri
- Laboratoire de Qualité et Sécurité des Aliments Département Technologie Alimentaire Université Mouloud MAMMERI de Tizi-Ouzou Tizi-Ouzou Algeria
| | - Malek Aboudaou
- Département Recherche & Développement ISO 9 International Isser Algeria
| | - Lidia Aït Ouahioune
- Laboratoire de Qualité et Sécurité des Aliments Département Technologie Alimentaire Université Mouloud MAMMERI de Tizi-Ouzou Tizi-Ouzou Algeria
| | | | - Agustín Ariño
- Facultad de Veterinaria Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Zaragoza Spain
| | - Djamel Djenane
- Laboratoire de Qualité et Sécurité des Aliments Département Technologie Alimentaire Université Mouloud MAMMERI de Tizi-Ouzou Tizi-Ouzou Algeria
| |
Collapse
|
35
|
Brandão RM, Ferreira VRF, Batista LR, Alves E, Lira NDA, Bellete BS, Scolforo JRS, Cardoso MDG. Antifungal and antimycotoxigenic effect of the essential oil of
Eremanthus erythropappus
on three different
Aspergillus
species. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | - Luís Roberto Batista
- Departamento de Ciência dos Alimentos Universidade Federal de Lavras (UFLA) Lavras Brazil
| | - Eduardo Alves
- Departamento de Fitopatologia Universidade Federal de Lavras (UFLA) Lavras Brazil
| | | | | | | | | |
Collapse
|
36
|
Ghasemi G, Fattahi M, Alirezalu A. A new source of oxygenated monoterpenes with phytotoxic activity: essential oil of Cuminum Cyminum L. from Iran. Nat Prod Res 2020; 34:843-846. [DOI: 10.1080/14786419.2018.1501686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ghader Ghasemi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Fattahi
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abolfazl Alirezalu
- Department of Horticulture, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
37
|
Gong A, Sun G, Zhao Z, Liao Y, Zhang J. Staphylococcus saprophyticus L-38 produces volatile 3,3-dimethyl-1,2-epoxybutane with strong inhibitory activity against Aspergillus flavus germination and aflatoxin production. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Controlling proliferation and aflatoxin production by Aspergillus flavus is a pressing challenge for global food safety and security. Marine bacterium Staphylococcus saprophyticus strain L-38 showed excellent antifungal activity toward A. flavus in vitro and in vivo. In sealed, non-contact confrontation assays, L-38 completely inhibited conidial germination and mycelial growth of A. flavus through the production of volatile organic compounds (VOCs). Gas chromatography-mass spectrometry identified 3,3-dimethyl-1,2-epoxybutane (3-DE) as the most abundant VOC (32.61% of total peak area, 78% matching). Exposure of A. flavus cultures to synthetic 3-DE similarly demonstrated strong inhibition of growth. Moreover, culture of L-38 in a sealed chamber with maize or peanuts artificially inoculated with A. flavus, at high water activity, resulted in significant inhibition of A. flavus germination and aflatoxin biosynthesis. Scanning electron microscopy of these samples revealed severe damage to conidial cells and hyphae compared to samples not exposed to L-38. L-38 also showed broad and effective antifungal activity toward eight other phytopathogenic fungi including Aspergillus niger, Fusarium verticillioides, Fusarium graminearum, Sclerotinia sclerotiorum, Rhizoctonia solani, Alternaria alternata, Monilinia fructicola, and Botrytis cinerea. This work introduces S. saprophyticus L-38 as a potential biocontrol agent and demonstrates the efficacy of the volatile 3-DE in the control of A. flavus and other destructive plant pathogens for post-harvest food safety.
Collapse
Affiliation(s)
- A.D. Gong
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China P.R
- College of Life Science, Xinyang Normal University, Xinyang 464000, China P.R
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China P.R
| | - G.J. Sun
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China P.R
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China P.R
| | - Z.Y. Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai 200031, China P.R
| | - Y.C. Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China P.R
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China P.R
| | - J.B. Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China P.R
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China P.R
| |
Collapse
|
38
|
Encapsulated Cumin Seed Essential Oil-Loaded Active Papers: Characterization and Evaluation of the Effect on Quality Attributes of Beef Hamburger. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02418-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Tavakolipour H, Kalbasi‐Ashtari A, Mokhtarian M. Effects of coating pistachio kernels with mixtures of whey protein and selected herbal plant extracts on growth inhibition of
Aspergillus flavus
and prevention of aflatoxin during storage. J Food Saf 2019. [DOI: 10.1111/jfs.12711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamid Tavakolipour
- Department of Food EngineeringSabzevar Branch, Islamic Azad University Sabzevar Iran
| | - Ahmad Kalbasi‐Ashtari
- Food Science and Engineering DepartmentCollege of Agricultural Engineering and Technology, University of Tehran Karaj Iran
| | - Mohsen Mokhtarian
- Young Researchers and Elite Club, Roudhen BranchIslamic Azad University Roudehen Iran
| |
Collapse
|
40
|
Tian F, Lee SY, Chun HS. Comparison of the Antifungal and Antiaflatoxigenic Potential of Liquid and Vapor Phase of Thymus vulgaris Essential Oil against Aspergillus flavus. J Food Prot 2019; 82:2044-2048. [PMID: 31697178 DOI: 10.4315/0362-028x.jfp-19-016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antifungal and antiaflatoxigenic activity of Thymus vulgaris essential oil (EO) against Aspergillus flavus was evaluated over a range of concentrations in vapor- and liquid-phase contact tests. Total reduction in mycelial growth in the vapor- and liquid-phase tests was detected at EO concentrations of 20 and 400 μg/mL, respectively. Treatment with 10 μg/mL EO reduced aflatoxin production by 97.0 and 56.4% in the vapor- and liquid-phase tests, respectively. Greater inhibition of the expression of both fungal development-related genes (brlA, abaA, and wetA) and aflatoxin biosynthesis-related genes (aflR, aflD, and aflK) was also observed in the vapor-phase test. A substantial reduction in aflatoxin production was also observed in brown rice (72.7%) and white rice (18.0%). Our results indicate that the way this EO contacts fungal cells significantly affects its antifungal activity and that T. vulgaris EO in vapor phase might be a good strategy to control fungal contamination.
Collapse
Affiliation(s)
- Fei Tian
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea (ORCID: https://orcid.org/0000-0003-2522-4847 [H.S.C.])
| | - Sang Yoo Lee
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea (ORCID: https://orcid.org/0000-0003-2522-4847 [H.S.C.])
| | - Hyang Sook Chun
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea (ORCID: https://orcid.org/0000-0003-2522-4847 [H.S.C.])
| |
Collapse
|
41
|
Gong AD, Dong FY, Hu MJ, Kong XW, Wei FF, Gong SJ, Zhang YM, Zhang JB, Wu AB, Liao YC. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106718] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Yassein AS, El‐Said AHM, El‐Dawy EGA. Biocontrol of toxigenic
Aspergillus
strains isolated from baby foods by essential oils. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Asmaa S. Yassein
- Botany and Microbiology Department Faculty of Science South Valley University Qena Egypt
| | - Ahmed H. M. El‐Said
- Botany and Microbiology Department Faculty of Science South Valley University Qena Egypt
| | - Eman G. A. El‐Dawy
- Botany and Microbiology Department Faculty of Science South Valley University Qena Egypt
| |
Collapse
|
43
|
Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019; 24:molecules24203713. [PMID: 31619024 PMCID: PMC6832927 DOI: 10.3390/molecules24203713] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
The current rise in invasive fungal infections due to the increase in immunosuppressive therapies is a real concern. Moreover, the emergence of resistant strains induces therapeutic failures. In light of these issues, new classes of antifungals are anticipated. Therefore, the plant kingdom represents an immense potential of natural resources to exploit for these purposes. The aim of this review is to provide information about the antifungal effect of some important essential oils, and to describe the advances made in determining the mechanism of action more precisely. Finally, the issues of toxicity and resistance of fungi to essential oils will be discussed.
Collapse
|
44
|
Dhanamjayulu P, Boga RB, Mehta A. Inhibition of aflatoxin B1 biosynthesis and down regulation of aflR and aflB genes in presence of benzimidazole derivatives without impairing the growth of Aspergillus flavus. Toxicon 2019; 170:60-67. [PMID: 31541640 DOI: 10.1016/j.toxicon.2019.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Aflatoxins are mutagenic secondary metabolites produced by certain ubiquitous saprophytic fungi. These contaminate agricultural crops and pose a serious health threat to humans and livestock all over the world. Benzimidazole and its derivatives are biologically active heterocyclic compounds known for their fungicidal activity. In the present study, second and sixth position substituted benzimidazole derivatives are tested for their antifungal and anti-aflatoxigenic activity. Aflatoxigenic strain of Aspergillus flavus cultured in Yeast extract sucrose (YES) medium as well as in rice in the presence and absence of test compounds. 2-(2-Furyl) benzimidazole (FBD) showed complete inhibition of fungal growth at 50 μg/mL. However, the polar derivatives of FBD viz. 6-NFBD, 6-AFBD, 6-CAFBD, and 6-CFBD did not impair the fungal growth but effectively inhibited aflatoxin B1 biosynthesis. Significant down-regulation of aflR gene involved in regulation and aflB structural gene for aflatoxin B1 biosynthesis was observed in presence of 6-NFBD. These benzimidazole derivatives also showed good anti-aflatoxigenic activity in rice, though the IC50 concentrations in rice were comparatively higher than those in YES medium. This study summarizes the most notable structure-activity relationship (SAR) of 2-(2-Furyl) benzimidazoles for anti-aflatoxigenic and anti-fungal activities. These molecules can be further studied for their applications in industrial fermentation processes vulnerable to mold growth and subsequent aflatoxin B1 synthesis like koji fermentation, cheese production, etc.
Collapse
Affiliation(s)
- P Dhanamjayulu
- Department of Integrative Biology, School of Bio sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | - Alka Mehta
- Department of Integrative Biology, School of Bio sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
45
|
Wang D, Zhang J, Jia X, Xin L, Zhai H. Antifungal Effects and Potential Mechanism of Essential Oils on Collelotrichum gloeosporioides In Vitro and In Vivo. Molecules 2019; 24:molecules24183386. [PMID: 31540346 PMCID: PMC6766912 DOI: 10.3390/molecules24183386] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
The development of natural essential oil as an alternative to synthetic chemicals in the control of postharvest decay is currently in the spotlight. In the present study, the efficacy of seven essential oils in suppressing Collelotrichum gloeosporioides identified from sweet cherry was evaluated in vitro and clove oil was proved to be the most promising inhibitor. Thus, the antifungal properties and potential mechanisms of clove oil in vitro and in vivo by fumigation and contact treatments were intensively investigated. For C. gloeosporioides, the minimal inhibitory concentrations (MIC) of clove oil in air and contact phase were 80 and 300 μL/L in vitro testing, respectively. Based on the radial growth of C. gloeosporioides mycelium in medium, the fumgitoxic ability of essential oil was observed in a dose-dependent manner, which was not as dramatic as that under in vivo conditions. Furthermore, scanning electron microscopy and transmission electron microscopy of C. gloeosporioides exposed to clove oil exhibited obviously deleterious morphological and ultrastructural alterations confirming the disruption of fungal cell wall and endomembrane system, which resulted in increasing in permeability and causing the loss of intracellular constituents. In future, essential oils, combined with nano-emulsification approaches, could be good candidates as safe and effective antifungal agents for fungal spoilage of fresh commodities.
Collapse
Affiliation(s)
- Dan Wang
- Shandong Institute of Pomology, Tai'an 271000, Shandong, China.
| | - Jing Zhang
- Shandong Institute of Pomology, Tai'an 271000, Shandong, China.
| | - Xiaoman Jia
- Shandong Institute of Pomology, Tai'an 271000, Shandong, China.
| | - Li Xin
- Shandong Institute of Pomology, Tai'an 271000, Shandong, China.
| | - Hao Zhai
- Shandong Institute of Pomology, Tai'an 271000, Shandong, China.
| |
Collapse
|
46
|
Wang L, Hu W, Deng J, Liu X, Zhou J, Li X. Antibacterial activity of Litsea cubeba essential oil and its mechanism against Botrytis cinerea. RSC Adv 2019; 9:28987-28995. [PMID: 35528448 PMCID: PMC9071840 DOI: 10.1039/c9ra05338g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022] Open
Abstract
Litsea cubeba essential oil (LCEO) extracted from the fruit of the Litsea tree is a broad-spectrum bacteriostatic agent that has been used to treat ailments for thousands of years in China. The objective of our study was to assess the inhibitory effect of LCEO on Botrytis cinerea, a fungus that causes the putrification of fruits and vegetables. After being treated with 1.0% LCEO, the electrical conductivity of the fungal cells increased, and the contents of soluble reducing sugars and proteins slowly increased over treatment time. After being treated for 48 h with 1.0% LCEO, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images clearly showed damage to hyphae cells when compared with the normal growth of the control groups. Additional studies showed that the ergosterol content in the cell membrane significantly decreased with an increase in the LCEO concentration, and the electrophoretic bands of the proteins assayed using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis method significantly changed at different LCEO concentrations. LCEO damaged the cell membrane and changed the cell membrane permeability, leading to the changes in some components in the cytoplasm, such as soluble reducing sugars, proteins, and ergosterol. In general, the antimicrobial activity of LCEO is attributable to a unique pathway and involves a series of events both on the surface and within the cytoplasm of the fungal cell.
Collapse
Affiliation(s)
- Liqun Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 Hunan China
| | - Wei Hu
- College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 Hunan China
| | - Jiao Deng
- College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 Hunan China
| | - Xin Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 Hunan China
| | - Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 Hunan China
- Insititute of Natural Product Research and Development, Central South University of Forestry and Technology Changsha 410004 Hunan China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology Changsha 410004 Hunan China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China Changsha 410004 Hunan China
- Insititute of Natural Product Research and Development, Central South University of Forestry and Technology Changsha 410004 Hunan China
| |
Collapse
|
47
|
Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, Dubey NK. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25414-25431. [PMID: 31313235 DOI: 10.1007/s11356-019-05932-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Fungal and mycotoxin contamination of stored food items is of utmost concern throughout the world due to their hazardous effects on mammalian systems. Most of the synthetic chemicals used as preservatives have often been realised to be toxic to humans and also cause adverse environmental effects. In this respect, use of different plant products especially essential oils (EOs) and their bioactive compounds has been recognized as a green strategy and safer alternatives to grey synthetic chemicals in view of their long traditional use. The current nanoencapsulation technology has strengthened the prospective of EOs and their bioactive compounds in food preservation by enhancing their bioactivity and mitigating other problems regarding their large-scale application. Although, the antimicrobial potential of EOs and their bioactive compounds has been reviewed time to time by different food microbiologists, but very less is known about their mode of action. Based on these backgrounds, the present article provides an account on the antifungal and antimycotoxigenic mode of action of EOs as well as their bioactive compounds. In addition, the article also deals with the application of currently used nanoencapsulation approach to improve the stability and efficacy of EOs and their bioactive compounds against mycotoxigenic fungi causing deterioration of stored food items so as to recommend their large-scale application for safe preservation and enhancement of shelf life of food items during storage.
Collapse
Affiliation(s)
- Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
48
|
Zhang T, Dong M, Zhao J, Zhang X, Mei X. Synthesis and antifungal activity of novel pyrazolines and isoxazolines derived from cuminaldehyde. JOURNAL OF PESTICIDE SCIENCE 2019; 44:181-185. [PMID: 31530976 PMCID: PMC6718356 DOI: 10.1584/jpestics.d19-028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/15/2019] [Indexed: 06/01/2023]
Abstract
Two series of novel cuminaldehyde derivatives containing pyrazoline and isoxazoline moieties have been designed and synthesized. All of the compounds were characterized via 1H-NMR,13C-NMR, and HRMS. The antifungal activities were evaluated against six plant-pathogenic fungi. 3-(2-Fluorophenyl)-5-(4-isopropylphenyl) isoxazoline (2d) and 1-acetyl-3-(2-fluorophenyl)-5-(4-isopropylphenyl)-2-pyrazoline (3d) displayed higher antifungal activities than commercial fungicides against Sclerotinia sclerotiorum, Physalospora piricola and Pyricularia oryzae. The title compounds (2d and 3d) with strong antifungal activities are worth being further evaluated in vivo and in the field.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, P.R. China
| | - Mengya Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jianjiang Zhao
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, P.R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, P.R. China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
49
|
Ben Miri Y, Djenane D. Evaluation of Protective Impact of Algerian <I>Cuminum cyminum </I>L. and <I>Coriandrum sativum</I> L. Essential Oils on <I>Aspergillus flavus </I>Growth and Aflatoxin B<SUB>1</SUB> Production. Pak J Biol Sci 2019; 21:67-77. [PMID: 30221882 DOI: 10.3923/pjbs.2018.67.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. The aim of this investigation was to evaluate the inhibition of growth Aspergillus flavus E73 (A. flavus E73) and AFB1 production by Cuminum cyminum L. (C. cyminum L.) and Coriandrum sativum L. (C. sativum L.) essential oils (EOs) as well their antioxidant and phytotoxicity activities. METHODOLOGY The C. cyminum L. and C. sativum L. EOs were extracted by hydrodistillation. The chemical profile of EOs was identified by GC-MS, antifungal activity was assessed by poisoned food technique and in term Minimal Inhibitory Concentration (MIC) and minimal fungicidal concentration (MFC) and antiaflatoxin effect by broth medium. The antioxidant activity of EOs was determined by DPPH free radical scavenging assay, β-carotene bleaching test and total phenolic content by Folin-Ciocalteu. Phytotoxicity of C. cyminum L. and C. sativum L. EOs were determined for varieties of wheat. The results were analyzed by analysis of variance (one way ANOVA). RESULTS The GS/MS analysis showed that the major components of C. cyminum L. EO were cuminaldehyde (65.98%), o-cymene (18.40%) and C. sativum L. EO was mainly consisted of linalool (78.86%). The results showed that both the EOs could inhibit the growth of A. flavus E73 in the range of 24.27-84.90% for C. cyminum and 15.09-65.00% for C. sativum. During antiaflatoxin investigation, the oils exhibited noticeable inhibition on dry mycelium weight and synthesis of AFB1 by A. flavus E73. EOs of C. cyminum L. and C. sativum L. revealed complete inhibition of AFB1 at 1.25 and 1.5 mg mL-1, respectively. EOs exhibited inhibitory influence against some fungi. The IC50 values of C. cyminum L. and C. sativum L. EOs were 494.93 and 756.43 μg mL-1, respectively, while, β-carotene/linoleic acid bleaching was 47.68 and 29.29% , respectively. Total phenolic content of C. cyminum L. and C. sativum L. were 10.66 and 6.2 μg mg-1. Additionally, the EOs were non-phytotoxic on the two verities of wheat seeds. CONCLUSION The C. cyminum L. and C. sativum L EOs could be good alternative to protect foods.
Collapse
|
50
|
Gong AD, Wu NN, Kong XW, Zhang YM, Hu MJ, Gong SJ, Dong FY, Wang JH, Zhao ZY, Liao YC. Inhibitory Effect of Volatiles Emitted From Alcaligenes faecalis N1-4 on Aspergillus flavus and Aflatoxins in Storage. Front Microbiol 2019; 10:1419. [PMID: 31293550 PMCID: PMC6603156 DOI: 10.3389/fmicb.2019.01419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
Controlling aflatoxigenic Aspergillus flavus and aflatoxins (AFs) in grains and food during storage is a great challenge to humans worldwide. Alcaligenes faecalis N1-4 isolated from tea rhizosphere soil can produce abundant antifungal volatiles, and greatly inhibited the growth of A. flavus in un-contacted face-to-face dual culture testing. Gas chromatography tandem mass spectrometry revealed that dimethyl disulfide (DMDS) and methyl isovalerate (MI) were two abundant compounds in the volatile profiles of N1-4. DMDS was found to have the highest relative abundance (69.90%, to the total peak area) in N1-4, which prevented the conidia germination and mycelial growth of A. flavus at 50 and 100 μL/L, respectively. The effective concentration for MI against A. flavus is 200 μL/L. Additionally, Real-time quantitative PCR analysis proved that the expression of 12 important genes in aflatoxin biosynthesis pathway was reduced by these volatiles, and eight genes were down regulated by 4.39 to 32.25-folds compared to control treatment with significant differences. And the A. flavus infection and AFs contamination in groundnut, maize, rice and soybean of high water activity were completely inhibited by volatiles from N1-4 in storage. Scanning electron microscope further proved that A. flavus conidia inoculated on peanuts surface were severely damaged by volatiles from N1-4. Furthermore, strain N1-4 showed broad and antifungal activity to other six important plant pathogens including Fusarium graminearum, F. equiseti, Alternaria alternata, Botrytis cinerea, Aspergillus niger, and Colletotrichum graminicola. Thus, A. faecalis N1-4 and volatile DMDS and MI may have potential to be used as biocontrol agents to control A. flavus and AFs during storage.
Collapse
Affiliation(s)
- An-Dong Gong
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan-Nan Wu
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xian-Wei Kong
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yi-Mei Zhang
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Meng-Jun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Shuang-Jun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fei-Yan Dong
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jian-Hua Wang
- Institute for Agri-Food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhi-Yong Zhao
- Institute for Agri-Food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-Products (Shanghai), Ministry of Agriculture, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu-Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|