1
|
Wang W, Li J, Qi W, Chen Y, Tian M, Wu C, Zhang Y, Yu Y, Han S, Han X, Duan L, Zhang W. Drug repurposing for hard-to-treat human alveolar echinococcosis: pyronaridine and beyond. Parasitology 2024:1-8. [PMID: 39508157 DOI: 10.1017/s0031182024001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Human alveolar echinococcosis is a hard-to-treat and largely untreated parasitic disease with high associated health care costs. The current antiparasitic treatment for alveolar echinococcosis relies exclusively on albendazole, which does not act parasiticidally and can induce severe adverse effects. Alternative, and most importantly, improved treatment options are urgently required. A drug repurposing strategy identified the approved antimalarial pyronaridine as a promising candidate against Echinococcus multilocularis infections. Following a 30-day oral regimen (80 mg kg−1 day−1), pyronaridine achieved an excellent therapeutic outcome in a clinically relevant hepatic alveolar echinococcosis murine model, showing a significant reduction in both metacestode size (72.0%) and counts (85.2%) compared to unmedicated infected mice, which revealed significantly more potent anti-echinococcal potency than albendazole treatment at an equal dose (metacestode size: 42.3%; counts: 4.1%). The strong parasiticidal activity of pyronaridine was further confirmed by the destructive damage to metacestode tissues observed morphologically. In addition, a screening campaign combined with computational similarity searching against an approved drug library led to the identification of pirenzepine, a gastric acid-inhibiting drug, exhibiting potent parasiticidal activity against protoscoleces and in vitro cultured small cysts, which warranted further in vivo investigation as a promising anti-echinococcal lead compound. Pyronaridine has a known drug profile and a long track record of safety, and its repurposing could translate rapidly to clinical use for human patients with alveolar echinococcosis as an alternative or salvage treatment.
Collapse
Affiliation(s)
- Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ying Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yingfang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shuai Han
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Xiumin Han
- Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Liping Duan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Autier B, Robert-Gangneux F, Dion S. Chemotherapy for the treatment of alveolar echinococcosis: Where are we? Parasite 2024; 31:56. [PMID: 39311470 PMCID: PMC11418394 DOI: 10.1051/parasite/2024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Alveolar echinococcosis (AE) is a severe liver disease due to infection with the Echinococcus multilocularis larval stage, called the metacestode. Management of AE is based on benzimidazole chemotherapy (albendazole or mebendazole), associated with surgery when possible. Benzimidazoles are the only compounds recommended for the treatment of AE; however, these are parasitostatic, which means that the parasite can resume growth when treatment is interrupted. Also, benzimidazoles can cause liver dysfunction which may prevent their use. Numerous drugs have been reported to have in vitro activity against E. multilocularis, but few had satisfactory in vivo activity, and none were clearly more effective than benzimidazoles. These drugs belong to various therapeutic categories including anti-infective agents (e.g. amphotericin B, mefloquine, pentamidine derivatives), anti-neoplastic compounds (e.g. imatinib, nilotinib, bortezomib), plant-extracted compounds (e.g. thymol, crocin, carvacrol) and others (e.g. metformin, verapamil, thiaclopride). These treatments are generally of limited interest due to their toxicity, their unfavorable pharmacokinetics, or the scarcity of studies involving humans. Apart from benzimidazoles, only amphotericin B, mefloquine and nitazoxanide have been reported to be used for human AE treatment, with unsatisfactory results. Few studies have aimed at developing innovative strategies for AE drug therapy, such as vectorization of drugs using nanoparticles. Altogether, this review emphasizes the urgent need for new therapeutic strategies in AE management, for which there is currently no curative chemotherapy.
Collapse
Affiliation(s)
- Brice Autier
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085 Rennes France
| | - Florence Robert-Gangneux
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085 Rennes France
| | - Sarah Dion
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085 Rennes France
| |
Collapse
|
3
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Glucuronidation of tizoxanide, an active metabolite of nitazoxanide, in liver and small intestine: Species differences in humans, monkeys, dogs, rats, and mice and responsible UDP-glucuronosyltransferase isoforms in humans. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109962. [PMID: 38889874 DOI: 10.1016/j.cbpc.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Yoko Mori
- Division of Environmental Chemistry, Ntional Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
4
|
Zhou Z, Huayu M, Mu Y, Tang F, Ge RL. Ubenimex combined with Albendazole for the treatment of Echinococcus multilocularis-induced alveolar echinococcosis in mice. Front Vet Sci 2024; 11:1320308. [PMID: 38585297 PMCID: PMC10995866 DOI: 10.3389/fvets.2024.1320308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis-Leucine aminopeptidase (EM-LAP) could inhibit the growth and invasion of E. multilocularis in host liver, and Ubenimex, a broad-spectrum inhibitor of LAP, could also inhibit E. multilocularis invasion but had a limited effect on the growth and development of E. multilocularis. Methods In this study, the therapeutic effect of Ubenimex combined with Albendazole on AE was evaluated. Mice were intraperitoneally injected with protoscoleces and imaging examination was performed at week 8 and week 16 to detect cyst change. During this period, mice were intraperitoneally injected with Ubenimex and intragastrically administered with Albendazole suspension. At last, the therapeutic effect was evaluated by morphological and pathological examination and liver function. Results The results revealed that the combined treatment could inhibit the growth and infiltration of cysts in BALB/c mice infected with E. multilocularis protoscoleces. The weight, number, invasion and fibrosis of cysts were reduced in mice treated with Ubenimex in combination with Albendazole. The same effect was achieved by the single Ubenimex treatment because of its inhibitory effect on LAP activity, but it was less effective in inhibiting the growth of cysts. The levels of ALT, AST, TBIL, DBIL, ALP, and γ-GT were reduced after the combined treatment, indicating that treatment with both Ubenimex and Albendazole could alleviate liver damage. Discussion This study suggests that the combined treatment with Ubenimex and Albendazole could be a potential therapeutic strategy for E. multilocularis infections.
Collapse
Affiliation(s)
- Zhen Zhou
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Meiduo Huayu
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Yalin Mu
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Feng Tang
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine of Qinghai University, Xining, Qinghai, China
- Key Laboratory of High Altitude Medicine in Qinghai Provincial, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
5
|
Samia HR, aicha D, Meriem M, Rabah Y, Imene S, Bousaad H, Chafia T, Ahsene B, Jean G, Saâdia M. Treatment of protoscoleces with gamma radiation: potential immunoprotective effect against experimental murine echinococcosis. Parasite Immunol 2022; 44:e12944. [DOI: 10.1111/pim.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Hadj Rabia Samia
- Department of Nuclear Applications Nuclear Research Center, B.P.43 Sebala‐Draria Algeria
- Laboratory of Biology and Animal Physiology, ENS Kouba Algiers Algeria
| | - Debib aicha
- Laboratory of Management and Valorization of Agricultural and Aquatic Ecosystems (LMVAAE) Morsli Abdallah Tipaza University Center Algeria
| | - Mezaguer Meriem
- Department of ionizing radiation dosimetry Nuclear Research Center, 2bd Frantz Fanon Algiers Algeria
| | - Yefsah Rabah
- Department of Irradiation Technology Nuclear Research Center, 2bd Frantz Fanon Algiers Algeria
| | - Soufli Imene
- Laboratory of Cellular and Molecular Biology Faculty of Biological Science University of Sciences and technology Houari Boumediene, USTHB, PB 32 El‐Alia Algiers Algeria
| | - Hamrioui Bousaad
- Laboratory of Parasitology, Mustapha Bacha Hospital Algiers Algeria
| | - Touil‐Boukoffa Chafia
- Laboratory of Cellular and Molecular Biology Faculty of Biological Science University of Sciences and technology Houari Boumediene, USTHB, PB 32 El‐Alia Algiers Algeria
| | - Baz Ahsene
- Laboratory of Biology and Animal Physiology, ENS Kouba Algiers Algeria
| | - Giaimis Jean
- UMR Qualisud‐Faculty of Pharmacy University of Montpellier I Montpellier France
| | - Mameri Saâdia
- Laboratory of Anatomopathology Mustapha Bacha Hospital Algiers Algeria
| |
Collapse
|
6
|
Xin Q, Lv W, Xu Y, Luo Y, Zhao C, Wang B, Yuan M, Li H, Song X, Jing T. 2-Deoxy-D-glucose and combined 2-Deoxy-D-glucose/albendazole exhibit therapeutic efficacy against Echinococcus granulosus protoscoleces and experimental alveolar echinococcosis. PLoS Negl Trop Dis 2022; 16:e0010618. [PMID: 35849619 PMCID: PMC9333451 DOI: 10.1371/journal.pntd.0010618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
2-Deoxy-D-glucose (2-DG) is a glucose analog used as a promising anticancer agent. It exerts its effects by inhibiting the glycolytic energy metabolism to deplete cells of energy. The larval stage of Echinococcus relies on glycolysis for energy production. Therefore, in this study, we investigated the in vitro and in vivo efficacy of 2-DG against the larval stage of Echinococcus granulosus and E. multilocularis. 2-DG exhibited significant time- and dose-dependent effects against in vitro cultured E. granulosus protoscoleces and E. multilocularis metacestodes. A daily oral administration of 500 mg/kg 2-DG in E. multilocularis-infected mice effectively reduced the weight of metacestodes. Notably, the combination treatment, either 2-DG (500 mg/kg/day) + albendazole (ABZ) (200 mg/kg/day) or 2-DG (500 mg/kg/day) + half-dose of ABZ (100 mg/kg/day), exhibited a potent therapeutic effect against E. multilocularis, significantly promoting the reduction of metacestodes weight compared with the administration of 2-DG or ABZ alone. Furthermore, the combination significantly promoted apoptosis of the cells of metacestodes and inhibited glycolysis in metacestodes, compared with the administration of 2-DG or ABZ alone. In conclusion, 2-DG exerts an effective activity against the larval stage of Echinococcus. Thus, it may be a promising anti-Echinococcus drug, and its combination with ABZ may provide a new strategy for the treatment of echinococcosis in humans. Echinococcosis is a serious but neglected helminthic zoonosis caused by the larval stage of Echinococcus granulosus and E. multilocularis. At present, clinical pharmacotherapy of echinococcosis, such as albendazole (ABZ) and mebendazole, has limited effectiveness. Thus, the development of novel therapeutic drugs for human echinococcosis is urgently needed. 2-Deoxy-D-glucose (2-DG) is a glucose analog used as a promising anticancer agent, and it exerts its effects by inhibiting the glycolytic energy metabolism to deplete cells of energy. Echinococcus in the host depends on glycolysis for energy production and glycolysis intermediates for other metabolic processes. Therefore, in this study, we investigated the efficacy of 2-DG against Echinococcus. 2-DG exerted an effective in vitro and in vivo activity against E. granulosus protoscoleces and E. multilocularis metacestodes, and the combination of this drug with ABZ further improved the therapeutic effect. Therefore, 2-DG can be developed as a promising anti-Echinococcus drug, and its combination with ABZ may provide a new strategy for the treatment of human echinococcosis in the future.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- * E-mail: (QX); (TJ)
| | - Wei Lv
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yunxi Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yumei Luo
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Caifang Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bichen Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Miaomiao Yuan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huanping Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoxia Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Jing
- Department of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- * E-mail: (QX); (TJ)
| |
Collapse
|
7
|
Salvage Therapy for Alveolar Echinococcosis—A Case Series. Pathogens 2022; 11:pathogens11030333. [PMID: 35335657 PMCID: PMC8949663 DOI: 10.3390/pathogens11030333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Benzimidazoles are the only approved drugs for the treatment of inoperable human alveolar echinococcosis but may be limited due to intolerance or, rarely, ineffectiveness. A medical second-line or salvage therapy is not available, though it is urgently needed. We report long-term follow-up data from 14 patients who underwent salvage therapy with repurposed drugs with cumulatively 53.25 patient-years. Treatment response was evaluated by both clinical outcome and image studies, preferably PET/CT. Eleven patients received amphotericin B, and 70% of evaluable cases showed some positive treatment response, but side effects often limited therapy. Five patients received nitazoxanide, of which two showed clear progression but one achieved a lasting stable disease. One patient was treated with mefloquine combination therapy in advanced disease, and overall, a positive treatment response could not be assessed. Furthermore, we report on one patient receiving pembrolizumab for a concomitant malignancy, which did not result in a reduction of echinococcal manifestation. In summary, current options of salvage therapy can sometimes induce persistent disease control, although with potentially significant side effects and high treatment costs, and mortality remains high. No clear recommendation for a salvage therapy can be given; treatment remains highly experimental, and non-pharmaceutical interventions have to be considered.
Collapse
|
8
|
Wang S, Ma Y, Wang W, Dai Y, Sun H, Li J, Wang S, Li F. Status and prospect of novel treatment options toward alveolar and cystic echinococcosis. Acta Trop 2022; 226:106252. [PMID: 34808118 DOI: 10.1016/j.actatropica.2021.106252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are the two most important global parasitic infectious diseases caused by species of Echinococcus granulosus and E. multilocularis, respectively. Although numerous trials have been performed in search of novel therapeutic options to curb the neglected zoonosis, no other nonsurgical options are currently available to replace the licensed anti echinococcal drugs albendazole (ABZ) and mebendazole (MBZ). A safer and more effective treatment plan for echinococcosis is therefore urgently needed to compensate for this therapeutic shortfall. Here, we present a review of the literature for state-of-the-art valuable anti-parasitic compounds and novel strategies that have proved effective against CE and AE, which includes details about the pharmaceutical type, practical approach, experimental plan, model application and protoscolecidal effects in vivo and in vitro. The content includes the current application of traditional clinical chemicals, the preparation of new compounds with various drug loadings, repurposing findings, combined programs, the prospects for Chinese herbal medicines, non-drug administrations and the exploration of target inhibitors based on open-source information for parasitic genes. Next the conventional experimental projects and pharmacodynamic evaluation methods are systematically summarized and evaluated. The demands to optimize the construction of the echinococcosis model and improve the dynamic monitoring method in vivo are also discussed given the shortcomings of in vivo models and monitoring methods.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibo Ma
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Weishan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yi Dai
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haohao Sun
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jing Li
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
The combination of carvacrol and albendazole enhanced the efficacy of monotherapy in experimental alveolar echinococcosis. Acta Trop 2022; 225:106198. [PMID: 34688631 DOI: 10.1016/j.actatropica.2021.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022]
Abstract
Alveolar echinococcosis is a helminthic zoonosis caused by the larval stage of Echinococcus multilocularis. When surgical resection of the parasite is not feasible, pharmacological treatment with albendazole is the only option. Due to the difficulties in achieving the success of treatment, it is necessary to find new drugs to improve the treatment of this disease. In the present work, the efficacy of carvacrol alone or combined with albendazole was evaluated against E. multilocularis metacestodes. The association of carvacrol with albendazole produced a greater in vitro effect than the compounds incubated separately. The most effective treatment was the combination of 10 μg/ml of carvacrol and 1 μg/ml of albendazole. In the clinical efficacy study, treatment of infected mice with carvacrol (40 mg/kg) and albendazole (25 mg/kg) reduced the weight of metacestodes by 29 % and 50 %, respectively; while the combination of drugs had an efficacy of 83 %. These results coincided with the tissue damage observed at the ultrastructural level. In conclusion, carvacrol and albendazole combination enhanced the efficacy of monotherapy. This strategy would allow to improve the efficacy of the treatment without increasing the doses of albendazole or lengthen the treatment period, reducing the occurrence of adverse effects.
Collapse
|
10
|
Brumpt É, Liu W, Graeter T, Calame P, Rong S, Jiang Y, Li W, Bao H, Delabrousse É. Kodama-XUUB: an informative classification for alveolar echinococcosis hepatic lesions on magnetic resonance imaging. Parasite 2021; 28:66. [PMID: 34569927 PMCID: PMC8475500 DOI: 10.1051/parasite/2021062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: To propose a modification of the Kodama classification to classify type III lesions of alveolar echinococcosis (AE) that do not have microcysts. Materials and Methods: 200 magnetic resonance imaging (MRI) images of AE liver lesions from four endemic regions of the world were classified according to Kodama, distinguishing within type III those with microcysts from those without. Each center included 50 MRIs of patients with unoperated AA liver lesions. The first 50 cases were classified by a first reader in the presence of four second-line readers from each region. Then each second-line reader classified his or her 50 cases. Results: In all centers, type III lesions were predominant: 58% of the total lesions and 23% of them were without microcysts. The average age of the patients was 47 years. In China, the patients were on average younger and the lesions larger. German patients had more lesions within the liver. Type I and II lesions, synonymous with earlier diagnosis, were more common in Europe. Conclusion: The Kodama classification needed to be modified because of the existence of a significant proportion of unclassifiable lesions. This is especially true since the presence of microcysts is an informative element of parasite activity. Therefore, this study proposes a Kodama-XUUB classification with type IIIa lesions having microcysts and type IIIb lesions not having microcysts.
Collapse
Affiliation(s)
- Éléonore Brumpt
- University Bourgogne Franche-Comté (UFC) and Besançon University Hospital, WHO Collaborating Centre on Prevention and Treatment of Human Echinococcosis/National French Reference Centre for Echinococcosis, UMR 6249 CNRS-UFC Chrono-environment, 25030 Besançon, France - Department of Anatomy, University of Franche-Comté, 25000 Besançon, France - Nanomedicine Laboratory, INSERM EA 4662, University of Franche-Comté, 25000 Besançon, France
| | - Wenya Liu
- Xinjiang Medical University, First Affiliated Hospital, WHO Collaborating Centre on Prevention and Care Management of Echinococcosis, 830000 Urumqi, Xinjiang Uyghur Autonomous Region, PR China
| | - Tilmann Graeter
- Ulm University Hospital, Department of Diagnostic and Interventional Radiology, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Paul Calame
- University Bourgogne Franche-Comté (UFC) and Besançon University Hospital, WHO Collaborating Centre on Prevention and Treatment of Human Echinococcosis/National French Reference Centre for Echinococcosis, UMR 6249 CNRS-UFC Chrono-environment, 25030 Besançon, France - Nanomedicine Laboratory, INSERM EA 4662, University of Franche-Comté, 25000 Besançon, France
| | - Shi Rong
- Ulm University Hospital, Department of Diagnostic and Interventional Radiology, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Yi Jiang
- Xinjiang Medical University, First Affiliated Hospital, WHO Collaborating Centre on Prevention and Care Management of Echinococcosis, 830000 Urumqi, Xinjiang Uyghur Autonomous Region, PR China
| | - Weixia Li
- Qinghai University, Qinghai University First Affiliated Hospital, 810001 Xining, Qinghai Province, PR China
| | - Haihua Bao
- Qinghai University, Qinghai University First Affiliated Hospital, 810001 Xining, Qinghai Province, PR China
| | - Éric Delabrousse
- University Bourgogne Franche-Comté (UFC) and Besançon University Hospital, WHO Collaborating Centre on Prevention and Treatment of Human Echinococcosis/National French Reference Centre for Echinococcosis, UMR 6249 CNRS-UFC Chrono-environment, 25030 Besançon, France - Nanomedicine Laboratory, INSERM EA 4662, University of Franche-Comté, 25000 Besançon, France
| | | |
Collapse
|
11
|
Theurillat R, Stirnimann G, Wenker C, Hoby S, Thormann W. Aspects of albendazole metabolism in western lowland gorillas (
Gorilla gorilla gorilla
) compared to humans and other species assessed by HPLC, LC‐MS, and chiral electrokinetic chromatography. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Regula Theurillat
- Clinical Pharmacology Laboratory Institute for Infectious Diseases University of Bern Bern Switzerland
| | - Guido Stirnimann
- University Clinic for Visceral Surgery and Medicine University Hospital Inselspital and University of Bern Bern Switzerland
| | | | | | - Wolfgang Thormann
- Clinical Pharmacology Laboratory Institute for Infectious Diseases University of Bern Bern Switzerland
| |
Collapse
|
12
|
Efficacy of novel albendazole salt formulations against secondary cystic echinococcosis in experimentally infected mice. Parasitology 2020; 147:1425-1432. [PMID: 32729453 DOI: 10.1017/s0031182020001225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we evaluated the efficacy, expressed as a mean weight decrease of the whole echinococcal cyst mass, of novel benzimidazole salt formulations in a murine Echinococcus granulosus infection model. BALB/c mice were intraperitoneally infected with protoscoleces of E. granulosus (genotype G1). At 9 months post-infection, treatment with albendazole (ABZ), ricobendazole (RBZ) salt formulations, and RBZ enantiomer salts (R)-(+)-RBZ-Na and (S)-(-)-RBZ-Na formulations were initiated. Drugs were orally applied by gavage at 10 mg kg-1 body weight per day during 30 days. Experimental treatments with benzimidazole sodium salts resulted in a significant reduction of the weight of cysts compared to conventional ABZ treatment, except for the (S)-(-)-RBZ-Na enantiomer formulation. Scanning electron microscopy and histological inspection revealed that treatments impacted not only the structural integrity of the parasite tissue in the germinal layer, but also induced alterations in the laminated layer. Overall, these results demonstrate the improved efficacy of benzimidazole salt formulations compared to conventional ABZ treatment in experimental murine cystic echinococcosis.
Collapse
|
13
|
In Vitro and In Vivo Efficacy of DNA Damage Repair Inhibitor Veliparib in Combination with Artesunate against Echinococcus granulosus. DISEASE MARKERS 2020; 2020:8259820. [PMID: 32714467 PMCID: PMC7355356 DOI: 10.1155/2020/8259820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 12/28/2022]
Abstract
Cystic echinococcosis (CE), caused by the cestode Echinococcus granulosus, is a worldwide chronic zoonosis. Albendazole (ABZ) and mebendazole are effective against CE, but a high dosage in a long-term period is usually required. In this study, we evaluate the effects of DNA damage repair inhibitor (i.e., Veliparib) in combination with artesunate (AS) on hydatid cysts. For the in vitro assay, protoscoleces of E. granulosus (E.g PSCs) were incubated with low AS (AS-L, 65 μM), moderate AS (AS-M, 130 μM), and high AS (AS-H, 325 μM), AS-L/M/H+Veliparib (10 μM), and ABZ (25 μM), respectively. The AS-H+Veliparib group showed the maximal protoscolicidal effects. Ultrastructural change revealed that germinal layer (GL) cells were reduced, and lipid droplets appeared. AS could induce DNA injuries in PSCs. The 8-OHdG was expressed in the PSCs and GL of the cysts in mice, especially in the presence of Veliparib. The most severe DNA damages were observed in the AS-H+Veliparib group. Meanwhile, the expression of ribosomal protein S9 (RPS9) gene in the AS-H+Veliparib group was significantly lower than that in the AS-H group. The in vivo chemotherapeutic effects of AS-L (50 mg/kg), AS-H (200 mg/kg), and AS-H+Veliparib (25 mg/kg) were assessed in experimentally infected mice. Upon 6 weeks of oral administration, ultrasonography was used to monitor the volume change of vesicles. Maximum potentiation was seen on day 15 with values (versus AS) of 34 (P < 0.05) for AS-H + Veliparib. It led to the reduction of cyst weight (55.40%) compared with the model group (P < 0.01), which was better than AS alone (52.84%) and ABZ-treated mice (55.35%). Analysis of cysts collected from AS-H+Veliparib-treated mice by transmission electron microscopy revealed a drug-induced structural destruction. The structural integrity of the germinal layer was lost, and the majority of the microtriches disappeared. In conclusion, our study demonstrates that AS or AS in combination with Veliparib is effective for treating CE, especially the combination group. On this basis, AS represented promising drug candidates in anti-CE chemotherapy.
Collapse
|
14
|
Cattaneo L, Manciulli T, Cretu CM, Giordani MT, Angheben A, Bartoloni A, Zammarchi L, Bartalesi F, Richter J, Chiodini P, Godbole G, Junghanss T, Stojkovic M, Sammarchi L, Dore R, Vercelli A, Benazzo F, Cuzzocrea F, Tamarozzi F, Brunetti E. Cystic Echinococcosis of the Bone: A European Multicenter Study. Am J Trop Med Hyg 2020; 100:617-621. [PMID: 30693857 DOI: 10.4269/ajtmh.18-0758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cystic echinococcosis (CE) is a zoonosis caused by the larval stage of the tapeworm Echinococcus granulosus. In humans, the infection induces the formation of parasitic cysts mostly in the liver and lungs, but virtually any organ can be affected. CE of the bone is one of the rarest forms of the disease, yet it is also extremely debilitating for patients and hard to manage for clinicians. Unlike abdominal CE, there is currently no expert consensus on the management of bone CE. In this study, we conducted a survey of the clinical records of seven European referral centers for the management of patients with CE and retrieved data on the clinical management of 32 patients with a diagnosis of bone CE. Our survey confirmed that the patients endured chronic debilitating disease with a high rate of complications (84%). We also found that diagnostic approaches were highly heterogeneous. Surgery was extensively used to treat these patients, as well as albendazole, occasionally combined with praziquantel or nitaxozanide. Treatment was curative only for two patients, with one requiring amputation of the involved bone. Our survey highlights the need to conduct systematic studies on bone CE, both retrospectively and prospectively.
Collapse
Affiliation(s)
- Letizia Cattaneo
- Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Pavia, Italy
| | - Tommaso Manciulli
- PhD School of Experimental Medicine, University of Pavia, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Pavia, Italy
| | - Carmen-Michaela Cretu
- Parasitology Department, Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Andrea Angheben
- Centre for Tropical Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
| | - Alessandro Bartoloni
- Infectious and Tropical Diseases Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Lorenzo Zammarchi
- Infectious and Tropical Diseases Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Filippo Bartalesi
- Infectious and Tropical Diseases Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Joachim Richter
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin, Berlin, Germany
| | - Peter Chiodini
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
| | - Gauri Godbole
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
| | - Thomas Junghanss
- Section of Clinical Tropical Medicine, University Hospital, Heidelberg, Germany
| | - Marija Stojkovic
- Section of Clinical Tropical Medicine, University Hospital, Heidelberg, Germany
| | - Luigi Sammarchi
- Division of Radiology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Roberto Dore
- Department of Radiology, Istituti Clinici di Pavia e Vigevano, University Hospital, Pavia, Italy
| | - Alessandro Vercelli
- Department of Radiology, Istituti Clinici di Pavia e Vigevano, University Hospital, Pavia, Italy
| | - Francesco Benazzo
- Division of Orthopedics and Traumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Pavia, Italy
| | - Fabrizio Cuzzocrea
- Division of Orthopedics and Traumatology, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesca Tamarozzi
- Centre for Tropical Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore-Don Calabria Hospital, Verona, Italy
| | - Enrico Brunetti
- Unit of Infectious and Tropical Diseases, IRCCS San Matteo Hospital Foundation, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Science, University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
Hemphill A, Rufener R, Ritler D, Dick L, Lundström‐Stadelmann B. Drug Discovery and Development for the Treatment of Echinococcosis, Caused by the Tapeworms
Echinococcus granulosus
and
Echinococcus multilocularis. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2019:253-287. [DOI: 10.1002/9783527808656.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Novozhilov AV, Movsisyan MO, Grigoriev SE, Magolina OV, Kleimenova NS. [Combined left hemihepatectomy for multiple organ alveococcosis]. Khirurgiia (Mosk) 2019:52-57. [PMID: 31532167 DOI: 10.17116/hirurgia201909152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advanced multiple organ parasitic invasion is reported in the article. A thorough assessment of pathological process, surgical anatomy and preoperative examination resulted radical surgery despite multiple organ disease. Surgical procedure included extended left-sided hemihepatectomy, atypical resection of S6liver segment and pancreas, removal of themediastinal parasite with partial excision of parietal pleura and pericardium.
Collapse
Affiliation(s)
- A V Novozhilov
- Irkutsk Regional Clinical Hospital, Irkutsk, Russia;,Irkutsk State Medical University, Irkutsk, Russia
| | | | - S E Grigoriev
- Irkutsk Regional Clinical Hospital, Irkutsk, Russia;,Irkutsk State Medical University, Irkutsk, Russia
| | - O V Magolina
- Irkutsk Regional Clinical Hospital, Irkutsk, Russia
| | | |
Collapse
|
17
|
Drug repurposing for the treatment of alveolar echinococcosis: in vitro and in vivo effects of silica nanoparticles modified with dichlorophen. Parasitology 2019; 146:1620-1630. [DOI: 10.1017/s0031182019001057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractAlveolar echinococcosis is a neglected parasitic zoonosis caused by the metacestode Echinococcus multilocularis, which grows as a malignant tumour-like infection in the liver of humans. Albendazole (ABZ) is the antiparasitic drug of choice for the treatment of the disease. However, its effectiveness is low, due to its poor absorption from the gastro-intestinal tract. It is also parasitostatic and in some cases produces side-effects. Therefore, an alternative to the treatment of this severe human disease is necessary. In this context, the repositioning of drugs combined with nanotechnology to improve the bioavailability of drugs emerges as a useful, fast and inexpensive tool for the treatment of neglected diseases. The in vitro and in vivo efficacy of dichlorophen (DCP), an antiparasitic agent for intestinal parasites, and silica nanoparticles modified with DCP (NP-DCP) was evaluated against E. multilocularis larval stage. Both formulations showed a time and dose-dependent in vitro effect against protoscoleces. The NP-DCP had a greater in vitro efficacy than the drug alone or ABZ. In vivo studies demonstrated that the NP-DCP (4 mg kg−1) had similar efficacy to ABZ (25 mg kg−1) and greater activity than the free DCP. Therefore, the repurposing of DCP combined with silica nanoparticles could be an alternative for the treatment of echinococcosis.
Collapse
|
18
|
Lundström-Stadelmann B, Rufener R, Ritler D, Zurbriggen R, Hemphill A. The importance of being parasiticidal… an update on drug development for the treatment of alveolar echinococcosis. Food Waterborne Parasitol 2019; 15:e00040. [PMID: 32095613 PMCID: PMC7034016 DOI: 10.1016/j.fawpar.2019.e00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
The lethal disease alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical treatment of AE relies on albendazole and mebendazole, with the caveat that these compounds are not parasiticidal. Drugs have to be taken for a prolonged period of time, often life-long, which can cause adverse effects and reduces the patients' quality of life. In some individuals, benzimidazoles are inactive or cause toxicity, leading to treatment discontinuation. Alternatives to benzimidazoles are urgently needed. Over the recent years, in vivo and in vitro models for low-to-medium throughput drug discovery against AE have been set in place. In vitro drug tests include the phosphoglucose-isomerase (PGI) assay to measure physical damage induced to metacestodes, and viability assays to assess parasiticidal activity against metacestodes and stem cells. In vitro models are also employed for studies on mechanisms of action. In vivo models are thus far based on rodents, mainly mice, and benefits could be gained in future by comparative approaches in naturally infected dogs or captive monkeys. For the identification of novel drugs against AE, a rare disease with a low expected market return, drug-repurposing is the most promising strategy. A variety of chemically synthesized compounds as well as natural products have been analyzed with respect to in vitro and/or in vivo activities against AE. We here review and discuss the most active of these compounds including anti-infective compounds (benzimidazoles, nitazoxanide, amphotericin B, itraconazole, clarithromycin, DB1127, and buparvaquone), the anti-infective anti-malarials (artemisinin, ozonids, mefloquine, and MMV665807) and anti-cancer drugs (isoflavones, 2-methoxyestradiol, methotrexate, navelbine, vincristine, kinase inhibitors, metallo-organic ruthenium complexes, bortezomib, and taxanes). Taking into account the efficacy as well as the potential availability for patients, the most promising candidates are new formulations of benzimidazoles and mefloquine. Future drug-repurposing approaches should also target the energy metabolism of E. multilocularis, in particular the understudied malate dismutation pathway, as this offers an essential target in the parasite, which is not present in mammals. Benzimidazoles are used to treat AE, but new drugs are needed. New drugs against AE can be identified by drug repurposing. Drugs against other infectious diseases and cancer can be repurposed against AE. Most promising are new formulations of benzimidazoles and mefloquine. Future approaches should include targeting the energy metabolism of the parasite.
Collapse
Affiliation(s)
- Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Raphael Zurbriggen
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| |
Collapse
|
19
|
Monge-Maillo B, Olmedo Samperio M, Pérez-Molina JA, Norman F, Mejía CR, Tojeiro SC, López-Vélez R. Osseous cystic echinococcosis: A case series study at a referral unit in Spain. PLoS Negl Trop Dis 2019; 13:e0007006. [PMID: 30779741 PMCID: PMC6396934 DOI: 10.1371/journal.pntd.0007006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/01/2019] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
Background Cystic echinococcosis (CE) is present in all continents, except for the Antarctica. Characteristically, CE lesions are found in the liver and the lungs, but virtually any part of the body may be affected (the spleen, kidneys, heart, central nervous system, bones, among others). It is estimated that the incidence of bone involvement in CE is 0.5% to 4%. Methodology A retrospective study was performed of patients with osseous CE treated at the National Reference Unit of Tropical Diseases of the Ramon y Cajal Hospital, Madrid, Spain, between 1989 and December 2017. Epidemiological, clinical, diagnostic and therapeutic data of patients with long-term follow-up were collected. Main findings During the study period, of the 104 patients with CE, 27 exhibited bone involvement (26%). The bones most frequently affected were the spine, followed by the ribs, pelvis, femur, tibia and the scapula. The most common symptom was pain followed by medullar syndrome and pathologic fracture. In total, 81.5% of patients underwent surgery for osseous CE at least once. As many as 96% received albendazol either in (mostly long-term) monotherapy or in combination with praziquantel. Conclusions The diagnosis and management of osseous CE is challenging. In many cases osseous CE should be considered a chronic disease and should be managed on a case-by-case basis. Lifelong follow-up should be performed for potential recurrence and sequels. Echinococcosis occurs in humans as a result of infection by a cestodes of the genus Echinococcus. One of the species, E. granulosus, causes cystic echinococcosis (CE) in humans worldwide. In the lifecycle there is a definitive host (generally dogs) which host this parasites at the small bowel. From there, ground is shed with the eggs of the parasite through feces and the intermediate host (usually a sheep or other herbivores get infected). Humans act as an incidental intermediate host when they become infected through the consumption of water or food contaminated with Echinococcus eggs. Once the egg has been ingested, it penetrates the intestinal mucosa and through the circulatory system finds an anatomical site forming a cystic lesion (hydatid or hydatid cyst). Characteristically, CE are found in the liver and the lungs, but virtually any part of the body may be affected. Incidence of osseous CE is low, its diagnosis and management is challenging and there is little information published. In this study we report our experience at a referral unit during nearly 30 years in the management of a series of patients with osseous CE. Such information may be useful for other physicians when treating osseous CE.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- * E-mail: (BMM); (RLV)
| | - María Olmedo Samperio
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
| | - José Antonio Pérez-Molina
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
| | - Francesca Norman
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
| | - Carla Ruth Mejía
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
| | - Sandra Chamorro Tojeiro
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
| | - Rogelio López-Vélez
- National Referral Unit of Tropical Diseases, Infectious Diseases Department, Ramón y Cajal University Hospital, IRICYS, Madrid, Spain
- * E-mail: (BMM); (RLV)
| |
Collapse
|
20
|
Rufener R, Dick L, D'Ascoli L, Ritler D, Hizem A, Wells TNC, Hemphill A, Lundström-Stadelmann B. Repurposing of an old drug: In vitro and in vivo efficacies of buparvaquone against Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2018; 8:440-450. [PMID: 30396011 PMCID: PMC6216040 DOI: 10.1016/j.ijpddr.2018.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the lethal disease alveolar echinococcosis. Current chemotherapeutic treatment options are based on benzimidazoles (albendazole and mebendazole), which are insufficient and hence alternative drugs are needed. In this study, we screened the 400 compounds of the Medicines for Malaria Venture (MMV) Pathogen Box against E. multilocularis metacestodes. For the screen, we employed the phosphoglucose isomerase (PGI) assay which assesses drug-induced damage on metacestodes, and identified ten new compounds with activity against the parasite. The anti-theilerial drug MMV689480 (buparvaquone) and MMV671636 (ELQ-400) were the most promising compounds, with an IC50 of 2.87 μM and 0.02 μM respectively against in vitro cultured E. multilocularis metacestodes. Both drugs suggested a therapeutic window based on their cytotoxicity against mammalian cells. Transmission electron microscopy revealed that treatment with buparvaquone impaired parasite mitochondria early on and additional tests showed that buparvaquone had a reduced activity under anaerobic conditions. Furthermore, we established a system to assess mitochondrial respiration in isolated E. multilocularis cells in real time using the Seahorse XFp Analyzer and demonstrated inhibition of the cytochrome bc1 complex by buparvaquone. Mice with secondary alveolar echinococcosis were treated with buparvaquone (100 mg/kg per dose, three doses per week, four weeks of treatment), but the drug failed to reduce the parasite burden in vivo. Future studies will reveal whether improved formulations of buparvaquone could increase its effectivity.
Collapse
Affiliation(s)
- Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Luca Dick
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Laura D'Ascoli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Amani Hizem
- Laboratory of Medical and Molecular Parasitology-Mycology, LR 12ES08, Department of Clinical Biology B, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - Timothy N C Wells
- Medicines for Malaria Venture (MMV), Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.
| |
Collapse
|
21
|
Lam NS, Long X, Su XZ, Lu F. Artemisinin and its derivatives in treating helminthic infections beyond schistosomiasis. Pharmacol Res 2018; 133:77-100. [DOI: 10.1016/j.phrs.2018.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
|
22
|
Wang W, Li J, Yao J, Wang T, Li S, Zheng X, Duan L, Zhang W. In vitro and in vivo efficacies of novel carbazole aminoalcohols in the treatment of cystic echinococcosis. J Antimicrob Chemother 2018; 72:3122-3130. [PMID: 28981899 DOI: 10.1093/jac/dkx250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Objectives Cystic echinococcosis (CE), caused by the cestode Echinococcus granulosus, is a worldwide chronic zoonosis. Current chemotherapeutic options are limited to albendazole and mebendazole, which only exert parasitostatic effects and have to be administered at high dosages for long periods. In an effort to find alternative treatment options, the in vitro and in vivo efficacies of novel carbazole aminoalcohols were evaluated. Methods Carbazole aminoalcohols were tested against E. granulosus protoscoleces in vitro and metacestodes ex vivo. The in vivo chemotherapeutic effect of representative compounds was assessed in experimentally infected mice. Oral and intravenous pharmacokinetic profiles were determined in mice. Results The carbazole aminoalcohols exhibited potent protoscolicidal activity with LC50 values ranging from 18.2 to 34.3 μM. Among them, compounds 2 and 24 killed all ex vivo cultured metacestodes at concentrations of 34.3 and 30.6 μM. In vivo studies showed that oral administration of compounds 2 and 24 (25 mg/kg/day) for 30 days led to reductions of 68.4% and 54.3% in parasite weight compared with the untreated group (both groups: P < 0.001). Compound 2 (25 mg/kg/day) and compound 24 (50 mg/kg/day) induced significantly higher cyst mortality rates in comparison with that of the albendazole group (both groups: P < 0.01). Analysis of cysts collected from compound 2- or 24-treated mice by transmission electron microscopy revealed a drug-induced structural destruction. The structural integrity of the germinal layer was lost, and the majority of the microtriches disappeared. Pharmacokinetic profiling of compounds 2 and 24 revealed low clearance and decent oral bioavailability (>70%). Conclusions Our study identifies carbazole aminoalcohols as a class of novel anti-CE agents. Compounds 2 and 24 represent promising drug candidates in anti-CE chemotherapy.
Collapse
Affiliation(s)
- Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China.,ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Junmin Yao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Tian Wang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Xueting Zheng
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Liping Duan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis, and Filariasis, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai 200025, China
| | - Wenbao Zhang
- State Key Laboratory Incubation Base of Xinjiang Major Diseases Research, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
23
|
Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets. PLoS Negl Trop Dis 2018; 12:e0006422. [PMID: 29677189 PMCID: PMC5931691 DOI: 10.1371/journal.pntd.0006422] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/02/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
Human cystic and alveolar echinococcosis are helmintic zoonotic diseases caused by infections with the larval stages of the cestode parasites Echinococcus granulosus and E. multilocularis, respectively. Both diseases are progressive and chronic, and often fatal if left unattended for E. multilocularis. As a treatment approach, chemotherapy against these orphan and neglected diseases has been available for more than 40 years. However, drug options were limited to the benzimidazoles albendazole and mebendazole, the only chemical compounds currently licensed for treatment in humans. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed, including the identification, development, and assessment of novel compound classes and drug targets. Here is presented a thorough overview of the range of compounds that have been tested against E. granulosus and E. multilocularis in recent years, including in vitro and in vivo data on their mode of action, dosage, administration regimen, therapeutic outcomes, and associated clinical symptoms. Drugs covered included albendazole, mebendazole, and other members of the benzimidazole family and their derivatives, including improved formulations and combined therapies with other biocidal agents. Chemically synthetized molecules previously known to be effective against other infectious and non-infectious conditions such as anti-virals, antibiotics, anti-parasites, anti-mycotics, and anti-neoplastics are addressed. In view of their increasing relevance, natural occurring compounds derived from plant and fungal extracts are also discussed. Special attention has been paid to the recent application of genomic science on drug discovery and clinical medicine, particularly through the identification of small inhibitor molecules tackling key metabolic enzymes or signalling pathways. Human cystic and alveolar echinococcosis (CE and AE), caused by the larval stages of the helminths Echinococcus granulosus and E. multilocularis, respectively, are progressive and chronic diseases affecting more than 1 million people worldwide. Both are considered orphan and neglected diseases by the World Health Organization. As a treatment approach, chemotherapy is limited to the use of benzimidazoles, drugs that stop parasite growth but do not kill the parasite. To compensate this therapeutic shortfall, new treatment alternatives are urgently needed. Here, we present the state-of-the-art regarding the alternative compounds and new formulations of benzimidazoles assayed against these diseases until now. Some of these new and modified compounds, either alone or in combination, could represent a step forward in the treatment of CE and AE. Unfortunately, few compounds have reached clinical trials stage in humans and, when assayed, the design of these studies has not allowed evidence-based conclusions. Thus, there is still an urgent need for defining new compounds or improved formulations of those already assayed, and also for a careful design of clinical protocols that could lead to the draw of a broad international consensus on the use of a defined drug, or a combination of drugs, for the effective treatment of CE and AE.
Collapse
|
24
|
Monge-Maillo B, Chamorro Tojeiro S, López-Vélez R. Management of osseous cystic echinococcosis. Expert Rev Anti Infect Ther 2017; 15:1075-1082. [PMID: 29110551 DOI: 10.1080/14787210.2017.1401466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Osseous cystic echinococcosis (CE) is one of the most complicated and devastating conditions caused by Echinococcus granulosus. Its management is difficult and there is scant literature about it. Areas covered: A literature review was performed to provide an update on its diagnosis, treatment and follow-up. Expert commentary: In most cases diagnosis of osseous CE can only be confirmed by surgery. Osseous CE should be managed by experienced physicians and addressed as a chronic disease with therapies must be aimed at controlling the disease and its sequels or complications, rather than with a curative intent.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- a National Referral Unit for Tropical Diseases. Infectious Diseases Department , Ramón y Cajal University Hospital, IRICYS , Madrid , Spain
| | - Sandra Chamorro Tojeiro
- a National Referral Unit for Tropical Diseases. Infectious Diseases Department , Ramón y Cajal University Hospital, IRICYS , Madrid , Spain
| | - Rogelio López-Vélez
- a National Referral Unit for Tropical Diseases. Infectious Diseases Department , Ramón y Cajal University Hospital, IRICYS , Madrid , Spain
| |
Collapse
|
25
|
Ritler D, Rufener R, Sager H, Bouvier J, Hemphill A, Lundström-Stadelmann B. Development of a movement-based in vitro screening assay for the identification of new anti-cestodal compounds. PLoS Negl Trop Dis 2017; 11:e0005618. [PMID: 28520724 PMCID: PMC5448807 DOI: 10.1371/journal.pntd.0005618] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/30/2017] [Accepted: 05/02/2017] [Indexed: 11/18/2022] Open
Abstract
Intestinal cestodes are infecting millions of people and livestock worldwide, but treatment is mainly based on one drug: praziquantel. The identification of new anti-cestodal compounds is hampered by the lack of suitable screening assays. It is difficult, or even impossible, to evaluate drugs against adult cestodes in vitro due to the fact that these parasites cannot be cultured in microwell plates, and adult and larval stages in most cases represent different organisms in terms of size, morphology, and metabolic requirements. We here present an in vitro-drug screening assay based on Echinococcus multilocularis protoscoleces, which represent precursors of the scolex (hence the anterior part) of the adult tapeworm. This movement-based assay can serve as a model for an adult cestode screen. Protoscoleces are produced in large numbers in Mongolian gerbils and mice, their movement is measured and quantified by image analysis, and active compounds are directly assessed in terms of morphological effects. The use of the 384-well format minimizes the amount of parasites and compounds needed and allows rapid screening of a large number of chemicals. Standard drugs showed the expected dose-dependent effect on movement and morphology of the protoscoleces. Interestingly, praziquantel inhibited movement only partially within 12 h of treatment (at concentrations as high as 100 ppm) and did thus not act parasiticidal, which was also confirmed by trypan blue staining. Enantiomers of praziquantel showed a clear difference in their minimal inhibitory concentration in the motility assay and (R)-(-)-praziquantel was 185 times more active than (S)-(-)-praziquantel. One compound named MMV665807, which was obtained from the open access MMV (Medicines for Malaria Venture) Malaria box, strongly impaired motility and viability of protoscoleces. Corresponding morphological alterations were visualized by scanning electron microscopy, and demonstrated that this compound exhibits a mode of action clearly distinct from praziquantel. Thus, MMV665807 represents an interesting lead for further evaluation. Tapeworms (cestodes) are a medically important group of helminths that infect humans and animals all around the globe. The clinical signs caused by intestinal infection with adult cestodes are mostly mild, in contrast to the more severe disease symptoms inflicted by infection with the tissue-dwelling larval stages of the same species. Praziquantel is the main drug in use against intestinal cestode infections. Development of resistance and treatment failures have been reported in trematodes, and are expected to become a problem in the future also in the case of cestode infections. Therefore, new treatment options against intestinal helminths are needed. To date, there is no in vitro-based whole-organism screening assay available that allows screening of candidate drugs with potential activity against adult cestodes. We established and characterized of a screening assay in 384-well format, which serves as a model for adult stage parasites by using Echinococcus multilocularis protoscoleces and their loss of motility as a read-out. This novel assay showed that drugs with known activity against adult cestodes inhibited motility of protoscoleces. The movement-based assay identified MMV665807 as a novel compound with profound activity against protoscoleces, and potentially also adult cestodes. Light- and electron microscopical assessments of protoscoleces treated with praziquantel and MMV665807 point towards different modes of action of the two drugs.
Collapse
Affiliation(s)
- Dominic Ritler
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | |
Collapse
|
26
|
Loos JA, Dávila VA, Rodrígues CR, Petrigh R, Zoppi JA, Crocenzi FA, Cumino AC. Metformin exhibits preventive and therapeutic efficacy against experimental cystic echinococcosis. PLoS Negl Trop Dis 2017; 11:e0005370. [PMID: 28182659 PMCID: PMC5321462 DOI: 10.1371/journal.pntd.0005370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/22/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022] Open
Abstract
Metformin (Met) is an anti-hyperglycemic and potential anti-cancer agent which may exert its anti-proliferative effects via the induction of energetic stress. In this study we investigated the in vitro and in vivo efficacy of Met against the larval stage of Echinococcus granulosus. Metformin showed significant dose- and time-dependent killing effects on in vitro cultured protoscoleces and metacestodes. Notably, the combination of Met together with the minimum effective concentration of ABZSO had a synergistic effect after days 3 and 12 on metacestodes and protoscoleces, respectively. Oral administration of Met (50 mg/kg/day) in E. granulosus-infected mice was highly effective in reducing the weight and number of parasite cysts, yet its combination with the lowest recommended dose of ABZ (5 mg/kg/day) was even more effective. Coincidentally, intracystic Met accumulation was higher in animals treated with both drugs compared to those administered Met alone. Furthermore, the safe plant-derived drug Met exhibited remarkable chemopreventive properties against secondary hydatidosis in mice. In conclusion, based on our experimental data, Met emerges as a promising anti-echinococcal drug as it has proven to efficiently inhibit the development and growth of the E. granulosus larval stage and its combination with ABZ may improve the current anti-parasitic therapy.
Collapse
Affiliation(s)
- Julia A. Loos
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria A. Dávila
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian R. Rodrígues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata, Argentina
| | - Romina Petrigh
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge A. Zoppi
- Servicio de Patología, Hospital Privado de Comunidad (HPC), Córdoba 4545, Nivel 3, Mar del Plata, Argentina
| | - Fernando A. Crocenzi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Fisiología Experimental (IFISE), Universidad Nacional de Rosario (UNR), Suipacha 570, Rosario, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, Mar del Plata, Argentina
- * E-mail: (ACC)
| |
Collapse
|
27
|
Effect of nitazoxanide on albendazole pharmacokinetics in cerebrospinal fluid and plasma in rats. Saudi Pharm J 2016; 25:413-418. [PMID: 28344497 PMCID: PMC5357096 DOI: 10.1016/j.jsps.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 09/24/2016] [Indexed: 11/29/2022] Open
Abstract
Background: Although albendazole is the drug-of-choice for the treatment of neurocysticercosis, its efficacy is limited due to its low bioavailability. An alternative for optimizing pharmacological treatment is through drug combinations. In vitro studies have shown that nitazoxanide and tizoxanide (the active metabolite of nitazoxanide) exhibit cysticidal activity and that the combination of tizoxanide with albendazole sulfoxide (the active metabolite of albendazole) produced an additive effect. Objectives: (1) To assess the concentration profile of tizoxanide in plasma and in cerebrospinal fluid; and (2) to evaluate the influence of nitazoxanide on the pharmacokinetics of albendazole in plasma and in cerebrospinal fluid. Methods: Two different studies were conducted. In study 1, 10 male Sprague-Dawley rats received a single oral dose of 7.5 mg/kg of nitazoxanide and serial blood and cerebrospinal fluid samples were collected over a period of 4 h. In study 2, 38 healthy male Sprague-Dawley rats were randomly divided into two groups: one of these received a single dose of albendazole (15 mg/kg) and, in the other group, albendazole (15 mg/kg) was co-administered with nitazoxanide (7.5 mg/kg). Plasma and cerebrospinal fluid samples were collected from 0 to 16 h after administration. Albendazole sulfoxide and tizoxanide levels were assayed by using HPLC or LC/MS techniques. Results: In study 1, tizoxanide reached a maximum plasma concentration of 244.42 ± 31.98 ng/mL at 0.25 h; however, in cerebrospinal fluid, this could be detected only at 0.5 h, and levels were below the quantification limit (10 ng/mL). These data indicate low permeation of tizoxanide into the blood brain barrier. In study 2, Cmax, the area under the curve, and the mean residence time of albendazole sulfoxide in plasma and cerebrospinal fluid were not affected by co-administration with nitazoxanide. Conclusion: The results of the present study indicate that in rats at the applied doses, tizoxanide does not permeate into the cerebrospinal fluid. Furthermore, nitazoxanide does not appear to alter significantly the pharmacokinetics of albendazole in plasma or in cerebrospinal fluid.
Collapse
|
28
|
Liu J, Liu Q, Yang C, Sun Y, Zhang Y, Huang P, Zhou J, Liu Q, Chu L, Huang F, Deng L, Dong A, Liu J. cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10726-10736. [PMID: 27058429 DOI: 10.1021/acsami.6b01501] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Finding a smart cancer drug delivery carrier with long blood circulation, enhanced cancer targeting, and quick drug release in tumors is critical for efficient cancer chemotherapy. Herein, we design a cRGD-polycarboxybetaine methacrylate-b-polybenzimidazole methacrylate (cRGD-PCB-b-PBBMZ) copolymer to self-assemble into smart drug-loaded nanoparticles (cRGD-PCM NPs) which can target αvβ3 integrin overexpressed cancer tissue by cRGD peptide unit and release drug quickly in cancer cells by protonation of benzimidazole groups. The outer PCB layer can resist protein adhesion, and there are only about 10% of proteins in mouse serum adhered to the surface of PCM NPs. With the pKa value of 5.08 of the benzimidazole units, DOX can be released from NPs in pH 5.0 PBS. cRGD-PCM NPs can bring more DOX into HepG2 cells than nontargeting PCM NPs, and there has high DOX release rate in HepG2 cells because of the protonation of benzimidazole groups in endosome and lysosome. MTT assay verifies that higher cellular uptake of DOX causes higher cytotoxicity. Furthermore, the results of ex vivo imaging studies confirm that cRGD-PCM/DOX NPs can successfully deliver DOX into tumor tissue from the injection site. Therefore, the multifunctional cRGD-PCM NPs show great potential as novel nanocarriers for targeting cancer chemotherapy.
Collapse
Affiliation(s)
- Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | | | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Yu Sun
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Pingsheng Huang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| |
Collapse
|
29
|
Rolle AM, Soboslay PT, Reischl G, Hoffmann WH, Pichler BJ, Wiehr S. Evaluation of the Metabolic Activity of Echinococcus multilocularis in Rodents Using Positron Emission Tomography Tracers. Mol Imaging Biol 2016; 17:512-20. [PMID: 25561014 DOI: 10.1007/s11307-014-0815-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE 2-Deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) has been used as a standard clinical positron emission tomography (PET) tracer for the follow-up of the rare but life-threatening parasitic disease alveolar echinococcosis (AE). Given that the disease is endemic in many countries in the northern hemisphere and the diagnosis is still challenging, the aim of our study was to evaluate further clinically relevant PET tracers as possible diagnostic tools for AE in vitro and in vivo. PROCEDURES Various clinically used PET tracers were evaluated in vitro and assessed in an in vivo AE animal model based on PET/magnetic resonance (MR) measurements. RESULTS In vitro binding assays displayed high uptake of [(18)F]FDG in a cell suspension of E. multilocularis tissue, whereas 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) and [(11)C]choline were found to be taken up strongly by E. multilocularis vesicles. [(18)F]FDG and [(18)F]FLT displayed an elevated uptake in vivo, which appeared as several foci throughout the parasite tissue as opposed to [(18)F]fluoro-azomycinarabinofuranoside ([(18)F]FAZA) and [(11)C]choline. CONCLUSIONS Our data clearly demonstrate that the clinically applied PET tracer [(18)F]FDG is useful for the diagnosis and disease staging of AE but also has drawbacks in the assessment of currently inactive or metabolically weak parasitic lesions. The different tested PET tracers do not show the potential for the replacement or supplementation of current diagnostic strategies. Hence, there is still the need for novel diagnostic tools.
Collapse
Affiliation(s)
- Anna-Maria Rolle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Röntgenweg 13, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Abulaihaiti M, Wu XW, Qiao L, Lv HL, Zhang HW, Aduwayi N, Wang YJ, Wang XC, Peng XY. Efficacy of Albendazole-Chitosan Microsphere-based Treatment for Alveolar Echinococcosis in Mice. PLoS Negl Trop Dis 2015; 9:e0003950. [PMID: 26352932 PMCID: PMC4564103 DOI: 10.1371/journal.pntd.0003950] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/03/2015] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the pharmacology and anti-parasitic efficacy of albendazole–chitosan microspheres (ABZ-CS-MPs) for established intraperitoneal infections of Echinococcus multilocularis metacestodes in an experimental murine model. Male outbred Kunming mice infected with E. multilocularis Metacestodes were administered with three ABZ formulations, namely, ABZ-CS-MPs, Liposome–Albendazole (L-ABZ), and albendazole tablet (ABZ-T). Each of the ABZ formulations was given orally at three different doses of 37.5, 75, and 150mg/kg, three times a week for 12 weeks postinfection. After administering the drugs, we monitored the pharmacological performance and anti-parasitic efficacy of ABZ-CS-MPs compared with L-ABZ, and ABZ-T treated mice. ABZ-CS-MPs reduced the weight of tissues containing E. multilocularis metacestodes most effectively compared with the ABZ-T group and untreated controls. Metacestode grown was Highly suppressed during treatment with ABZ-CS-MPs. Significantly higher plasma levels of ABZ metabolites were measured in mice treated with ABZ-CS-MPs or L-ABZ compared with ABZ-T. In particular, enhanced ABZ-sulfoxide concentration profiles were observed in the mice given 150mg/kg of ABZ-CS-MPs, but not in the mice treated with L-ABZ. Histological examination showed that damages caused disorganization of both the germinal and laminated layers of liver hyatid cysts, demolishing their characteristic structures after treatment with ABZ-CS-MPs or L-ABZ. Over time, ABZ-CS-MPs treatment induced a shift from Th2-dominant to Th1-dominant immune response. CS-MPs As a new carrier exhibited improved absorption and increased bioavailability of ABZ in the treatment of E. multilocularis infections in mice. Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis and is a rare but life-threatening disease. Albendazole is the most frequently used anti-parasitic drugs in patients infected with AE. However, ABZ has only limited water solubility, and small differences in drug solubility may have a major influence on their absorption and resultant pharmacokinetic behavior. Chitosan microspheres as a new carrier increased ABZ absorption and bioavailability. The anti-parasitic efficacy of albendazole–chitosan microspheres (ABZ-CS-MPs) in mice infected with Echinococcus multilocularis was assessed. ABZ-loaded CS-MPs exhibited improved absorption and increased bioavailability in the treatment of E. multilocularis infections in mice compared with those treated with liposome–albendazole and albendazole tablet. ABZ-CS-MPs are in solid form that can be manufactured in capsules or tablets, which can be easily delivered to those in need, particularly those who are nomadic. Therefore, given the merits of low cost, portability, and simple manufacturing, ABZ-CS-MPs are a promising drug to treat alveolar echinococcosis.
Collapse
Affiliation(s)
- Maitiseyiti Abulaihaiti
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xiang-Wei Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Qiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hai-Long Lv
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hong-Wei Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Nasrul Aduwayi
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan-Jie Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xin-Chun Wang
- Department of Pharmacy, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- * E-mail: (XCW); (XYP)
| | - Xin-Yu Peng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- * E-mail: (XCW); (XYP)
| |
Collapse
|
31
|
Combined flubendazole-nitazoxanide treatment of cystic echinococcosis: Pharmacokinetic and efficacy assessment in mice. Acta Trop 2015; 148:89-96. [PMID: 25917712 DOI: 10.1016/j.actatropica.2015.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/08/2015] [Accepted: 04/19/2015] [Indexed: 11/20/2022]
Abstract
The current chemotherapy of cystic echinococcosis (CE) is mainly based on the use of albendazole, and the results have been shown to be highly variable. Thus, new and more efficient treatment options are urgently needed. The goals of the current study were: a) to compare the ex vivo activity of flubendazole (FLBZ) and nitazoxanide (NTZ), given either separately or co-administered, against Echinococcus granulosus protoscoleces and cysts, b) to characterize the plasma disposition kinetics of FLBZ administered alone or combined with NTZ in mice; (c) to compare the in vivo activity of FLBZ and NTZ (either each alone or as a combined treatment) against secondary CE developed in mice. Ex vivo drug activity study: E. granulosus protoscoleces and cysts were incubated either with FLBZ, NTZ, or the FLBZ-NTZ combination. Protoscoleces and cyst viability was monitored by the methylene blue exclusion test and scanning electron microscopy (SEM). Pharmacokinetic study: Balb/C mice received FLBZ (5 mg/kg) orally either alone or co-administered with NTZ (100 mg/kg). Blood samples were collected up to 12 h post treatment and plasma analyzed for FLBZ/metabolites by HPLC. Clinical Efficacy study: following secondary infection, meaning i.p. injection of 1500 E. granulosus protoscoleces/animal (n=40), the both drugs were administered by intragastric inoculation on a daily basis for a period of 25 days. Balb/C mice received FLBZ (5 mg/kg, twice a day) alone, NTZ (100 mg/kg, once daily) alone or a combination of both molecules (FLBZ, 5mg/kg twice a day and NTZ, 100 mg/kg, once daily). Ten untreated animals were used as a control. All animals were killed and the weight of the cysts collected from each animal was recorded. The presence of NTZ did not markedly affect the FLBZ kinetic parameters in mice. FLBZ alone or combined with NTZ induced a reduction (P<0.05) of cyst weight in comparison to the untreated control and NTZ-treated treated mice. The data obtained here indicate that NTZ did not affect hydatid cyst development in mice. Conversely, FLBZ shows an excellent efficacy against CE.
Collapse
|
32
|
Albani CM, Pensel PE, Elissondo N, Gambino G, Elissondo MC. In vivo activity of albendazole in combination with thymol against Echinococcus multilocularis. Vet Parasitol 2015; 212:193-9. [PMID: 26190130 DOI: 10.1016/j.vetpar.2015.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 01/01/2023]
Abstract
Human alveolar echinococcosis (AE) is caused by the fox tapeworm Echinococcus multilocularis and is usually lethal if left untreated. The current strategy for treating human AE is surgical resection of the parasite mass complemented by chemotherapy with benzimidazole compounds. However, reliable chemotherapeutic alternatives have not yet been developed stimulating the research of new treatment strategies such as the use of medicinal plants. The aim of the current study was to investigate the efficacy of the combination albendazole (ABZ)+thymol on mice infected with E. multilocularis metacestodes. For this purpose, mice infected with parasite material were treated daily for 20 days with ABZ (5 mg/kg), thymol (40 mg/kg) or ABZ (5 mg/kg)+thymol (40 mg/kg) or left untreated as controls. After mice were euthanized, cysts were removed from the peritoneal cavity and the treatment efficacy was evaluated by the mean cysts weight, viability of protoscoleces and ultrastructural changes of cysts and protoscoleces. The application of thymol or the combination of ABZ+thymol resulted in a significant reduction of the cysts weight compared to untreated mice. We also found that although ABZ and thymol had a scolicidal effect, the combination of the two compounds had a considerably stronger effect showing a reduction in the protoscoleces viability of 62%. These results were also corroborated by optical microscopy, SEM and TEM. Protoscoleces recovered from ABZ or thymol treated mice showed alterations as contraction of the soma region, rostellar disorganization and presence of blebs in the tegument. However both drugs when combined lead to a total loss of the typical morphology of protoscoleces. All cysts removed from control mice appeared intact and no change in ultrastructure was detected. In contrast, cysts developed in mice treated with ABZ revealed changes in the germinal layer as reduction in cell number, while the treatment with thymol or the ABZ+thymol combination predominantly showed presence of cell debris. On the other hand, no differences were found in alkaline phosphatase (AP), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities between control and treated mice, indicating the lack of toxicity of the different drug treatments during the experiment. Because combined ABZ+thymol treatment exhibited higher treatment efficiency compared with the drugs applied separately against murine experimental alveolar echinococcosis, we propose it would be a useful option for the treatment of human AE.
Collapse
Affiliation(s)
- Clara María Albani
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia Eugenia Pensel
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Elissondo
- Laboratorio de Análisis Clínicos Santisteban, 7000 Tandil, Buenos Aires, Argentina
| | - Guillermo Gambino
- Laboratorio de Análisis Clínicos Santisteban, 7000 Tandil, Buenos Aires, Argentina
| | - María Celina Elissondo
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, 7600 Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
33
|
Liu C, Zhang H, Yin J, Hu W. In vivo and in vitro efficacies of mebendazole, mefloquine and nitazoxanide against cyst echinococcosis. Parasitol Res 2015; 114:2213-22. [PMID: 25773183 DOI: 10.1007/s00436-015-4412-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
Echinococcus granulosus is a cestode parasite. The metacestode stage causes cystic echinococcosis (CE) mainly in the human liver and lung. Current chemotherapy against CE is based on mebendazole and albendazole. However, benzimidazoles result in a low cure rate or are ineffective in many patients; therefore, novel compounds for the treatment of this disease have been studied. Mefloquine was reported to be dramatically effective on cultured Echinococcus multilocularis metacestodes in vitro. And, nitazoxanide has a prominent protoscolicidal effect. However, these compounds have no impact on the growth of cysts harbored in mice. In this study, we investigated the in vitro and in vivo efficacy of mebendazole, mefloquine, and nitazoxanide against E. granulosus protoscoleces, germinal cells, and infected mice. The effect of mebendazole on protoscoleces and germinal cell was proved to be dose-dependent in vitro. And, a reduction of the cyst weight was also the found after oral application of mebendazole to infected mice. Mefloquine (5 and 10 μg/ml) caused death within 24 h of protoscoleces and germinal cells in vitro, whereas a lower concentration of 1 μg/ml was ineffective. In mice infected with E. granulosus, oral mefloquine (200 and 400 mg/kg twice weekly for 2 weeks) showed no reduction in parasite weight. Without affecting the viability of germinal cells and the growth of hydatid cysts, nitazoxanide only showed protoscolicidal effects in infected mice. In conclusion, mebendazole, mefloquine, and nitazoxanide showed various effects on E. granulosus under different conditions. These drugs could be useful to some extent in the treatment of CE.
Collapse
Affiliation(s)
- Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, China
| | | | | | | |
Collapse
|
34
|
Hemphill A, Stadelmann B, Rufener R, Spiliotis M, Boubaker G, Müller J, Müller N, Gorgas D, Gottstein B. Treatment of echinococcosis: albendazole and mebendazole--what else? ACTA ACUST UNITED AC 2014; 21:70. [PMID: 25526545 PMCID: PMC4271654 DOI: 10.1051/parasite/2014073] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/11/2014] [Indexed: 01/14/2023]
Abstract
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
Collapse
Affiliation(s)
- Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Britta Stadelmann
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Reto Rufener
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Markus Spiliotis
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Ghalia Boubaker
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Daniela Gorgas
- Department of Clinical Veterinary Medicine, Clinical Radiology, Bremgartenstrasse 109a, 3012 Berne, Switzerland
| | - Bruno Gottstein
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| |
Collapse
|
35
|
Palomares-Alonso F, Palencia Hernández G, Rojas-Tomé IS, Jung-Cook H, Pinzón-Estrada E. Murine cysticercosis model: influence of the infection time and the time of treatment on the cysticidal efficacy of albendazole and praziquantel. Exp Parasitol 2014; 149:1-6. [PMID: 25500213 DOI: 10.1016/j.exppara.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/15/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
In the search of new alternatives for neurocysticercosis treatment, Taenia crassiceps ORF strain cysticerci have been used instead of T. solium for in vitro studies. Up to date, the main criteria for the use of the murine cysticercosis model for drug efficacy evaluation have not been assessed. The aim of the present study was to evaluate the influence of two of the main variables related to the in vivo efficacy: the length of drug treatment and the starting time of treatment after experimental infection, using albendazole (ABZ) and praziquantel (PZQ) as test drugs. Additionally, the relationship between the number of cysts and the parasite weight was assessed. For the study, female BALB/c mice were experimentally infected with T. crassiceps cysts. Three different post-infection periods (10, 20 and 30 days) and three different lengths of treatment with ABZ or PZQ (10, 20 and 30 days) were selected. The efficacy of each treatment was evaluated by comparison with a control group. Our results show that for in vivo efficacy studies, the best time to start the drug treatment is 10 days post-infection and that a minimum of 20 days of treatment is required when ABZ or PZQ are used as positive control. Moreover, in this model the parasite weight can be used as a rapid tool to measure the in vivo drug activity.
Collapse
Affiliation(s)
- Francisca Palomares-Alonso
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, México D.F. 14269, México
| | | | - Irma Susana Rojas-Tomé
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, México D.F. 14269, México
| | - Helgi Jung-Cook
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, México D.F. 14269, México; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México D.F. 04510, México.
| | - Enrique Pinzón-Estrada
- Facultad de Medicina, Departamento de Bioterio, Universidad Nacional Autónoma de México, México D.F. 04510, México
| |
Collapse
|
36
|
Panic G, Duthaler U, Speich B, Keiser J. Repurposing drugs for the treatment and control of helminth infections. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:185-200. [PMID: 25516827 PMCID: PMC4266803 DOI: 10.1016/j.ijpddr.2014.07.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/04/2014] [Accepted: 07/13/2014] [Indexed: 01/01/2023]
Abstract
Drug repurposing continues to be the central drug discovery strategy for helminths. Most repurposed drugs come from veterinary medicine and known drug classes. Only a handful of drugs have advanced clinically. More collaborations and funding are needed to advance discoveries to the market.
Helminth infections are responsible for a considerable public health burden, yet the current drug armamentarium is small. Given the high cost of drug discovery and development, the high failure rates and the long duration to develop novel treatments, drug repurposing circumvents these obstacles by finding new uses for compounds other than those they were initially intended to treat. In the present review, we summarize in vivo and clinical trial findings testing clinical candidates and marketed drugs against schistosomes, food-borne trematodes, soil-transmitted helminths, Strongyloides stercoralis, the major human filariases lymphatic filariasis and onchocerciasis, taeniasis, neurocysticercosis and echinococcosis. While expanding the applications of broad-spectrum or veterinary anthelmintics continues to fuel alternative treatment options, antimalarials, antibiotics, antiprotozoals and anticancer agents appear to be producing fruitful results as well. The trematodes and nematodes continue to be most investigated, while cestodal drug discovery will need to be accelerated. The most clinically advanced drug candidates include the artemisinins and mefloquine against schistosomiasis, tribendimidine against liver flukes, oxantel pamoate against trichuriasis, and doxycycline against filariasis. Preclinical studies indicate a handful of promising future candidates, and are beginning to elucidate the broad-spectrum activity of some currently used anthelmintics. Challenges and opportunities are further discussed.
Collapse
Affiliation(s)
| | | | | | - Jennifer Keiser
- Corresponding author. Address: Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland. Tel.: +41 61 284 8218; fax: +41 61 284 8105.
| |
Collapse
|
37
|
Activities of fenbendazole in comparison with albendazole against Echinococcus multilocularis metacestodes in vitro and in a murine infection model. Int J Antimicrob Agents 2014; 43:335-42. [PMID: 24646943 DOI: 10.1016/j.ijantimicag.2014.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022]
Abstract
The current chemotherapeutic treatment of alveolar echinococcosis (AE) in humans is based on albendazole and/or mebendazole. However, the costs of treatment, life-long consumption of drugs, parasitostatic rather than parasiticidal activity of chemotherapy, and high recurrence rates after treatment interruption warrant more efficient treatment options. Experimental treatment of mice infected with Echinococcus multilocularis metacestodes with fenbendazole revealed similar efficacy to albendazole. Inspection of parasite tissue from infected and benzimidazole-treated mice by transmission electron microscopy (TEM) demonstrated drug-induced alterations within the germinal layer of the parasites, and most notably an almost complete absence of microtriches. On the other hand, upon in vitro exposure of metacestodes to benzimidazoles, no phosphoglucose isomerase activity could be detected in medium supernatants during treatment with any of these drugs, indicating that in vitro treatment did not severely affect the viability of metacestode tissue. Corresponding TEM analysis also revealed a dramatic shortening/retraction of microtriches as a hallmark of benzimidazole action, and as a consequence separation of the acellular laminated layer from the cellular germinal layer. Since TEM did not reveal any microtubule-based structures within Echinococcus microtriches, this effect cannot be explained by the previously described mechanism of action of benzimidazoles targeting β-tubulin, thus benzimidazoles must interact with additional targets that have not been yet identified. In addition, these results indicate the potential usefulness of fenbendazole for the chemotherapy of AE.
Collapse
|
38
|
|
39
|
Ahmadnia S, Moazeni M, Mohammadi-Samani S, Oryan A. In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. Exp Parasitol 2013; 135:314-9. [DOI: 10.1016/j.exppara.2013.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/14/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
|
40
|
Tappe D, Müller A, Frosch M, Stich A. Limitations of amphotericin B and nitazoxanide in the treatment of alveolar echinococcosis. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 103:177-81. [DOI: 10.1179/136485909x385036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Subcutaneous infection model facilitates treatment assessment of secondary Alveolar echinococcosis in mice. PLoS Negl Trop Dis 2013; 7:e2235. [PMID: 23717701 PMCID: PMC3662659 DOI: 10.1371/journal.pntd.0002235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
Alveolar echinococcosis (AE) in humans is a parasitic disease characterized by severe damage to the liver and occasionally other organs. AE is caused by infection with the metacestode (larval) stage of the fox tapeworm Echinococcus multilocularis, usually infecting small rodents as natural intermediate hosts. Conventionally, human AE is chemotherapeutically treated with mebendazole or albendazole. There is, however still the need for improved chemotherapeutical options. Primary in vivo studies on drugs of interest are commonly performed in small laboratory animals such as mice and Mongolian jirds, and in most cases, a secondary infection model is used, whereby E. multilocularis metacestodes are directly injected into the peritoneal cavity or into the liver. Disadvantages of this methodological approach include risk of injury to organs during the inoculation and, most notably, a limitation in the macroscopic (visible) assessment of treatment efficacy. Thus, in order to monitor the efficacy of chemotherapeutical treatment, animals have to be euthanized and the parasite tissue dissected. In the present study, mice were infected with E. multilocularis metacestodes through the subcutaneous route and were then subjected to chemotherapy employing albendazole. Serological responses to infection were comparatively assessed in mice infected by the conventional intraperitoneal route. We demonstrate that the subcutaneous infection model for secondary AE facilitates the assessment of the progress of infection and drug treatment in the live animal. Alveolar echinococcosis is a disease which affects humans and inflicts severe damage to the liver and other organs. It is caused by a parasite whose definitive host is the fox. Despite being a relatively rare disease, an increasing number of new cases has been reported in central and eastern European countries more recently. The current therapy in human AE patients consists of benzimidazoles. The treatment has to be taken on a daily basis for very long periods of time, or even lifelong. New options are currently being searched for, mainly based on compounds that show efficacy in experimental animal infection models. The infection is commonly done by injecting parasites directly into the peritoneal cavity of the animals, with risk of damage to the surrounding organs. The efficacy of applied treatments can only be evaluated at the end of the studies by dissection of the animals. In this study we show that the subcutaneous infection model can be applied for drug treatment trials and enables the direct monitoring of treatment effects during the entire study period.
Collapse
|
42
|
In vitro efficacy of triclabendazole and clorsulon against the larval stage of Echinococcus multilocularis. Parasitol Res 2013; 112:1655-60. [PMID: 23455934 DOI: 10.1007/s00436-013-3321-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/24/2013] [Indexed: 01/27/2023]
Abstract
Alveolar echinococcosis (AE) caused by the cestode Echinococcus multilocularis (E. multilocularis) is endemic in wide areas of the Northern hemisphere. Untreated AE progresses and leads to death in more than 90% of cases. Until the advent of benzimidazoles, no antihelminthic drugs were available to cure AE. Benzimidazoles have greatly improved the prognosis of patients with AE. However, benzimidazoles have only a parasitostatic effect on E. multilocularis. Albendazole (ABZ) must sometimes be withdrawn because of adverse events. Alternative drugs are urgently needed. The antihelminthic triclabendazole (TCZ) and clorsulon (CLS) are more effective than ABZ to cure infections by the liver flukes Fasciola spp. The efficacy of TCZ and CLS was investigated on an in vitro culture of E. multilocularis larval tissue. E. multilocularis vesicles were evaluated for their morphology before and after adding TCZ, TCZ sulfoxide (TCZSX) and CLS to the larval tissue culture. TCZ at the concentrations of 20 μg/ml culture solution led to maximum vesicle damage within 12 days and of 25 μg/ml within 13 days, and TCZSX at the concentrations of 20 μg/ml within 20 days and of 25 μg/ml within 14 days. Contrary, CLS added at 5, 10 and 15 μg/ml to culture solution did not lead to any vesicle damage. TCZ is a promising further candidate drug for the treatment of AE.
Collapse
|
43
|
Lv H, Jiang Y, Liao M, Sun H, Zhang S, Peng X. In vitro and in vivo treatments of Echinococcus granulosus with Huaier aqueous extract and albendazole liposome. Parasitol Res 2012; 112:193-8. [PMID: 23001550 DOI: 10.1007/s00436-012-3125-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 09/12/2012] [Indexed: 01/23/2023]
Abstract
The aim of this study was to investigate the in vitro and in vivo efficacies of chemotherapy employing albendazole liposome (L-ABZ), Huaier aqueous extract, and a Huaier aqueous extract/L-ABZ combination against Echinococcus granulosus. Protoscolices of E. granulosus were incubated in vitro with the two drugs, either separately or in combination, at the following final concentrations: 2 mg/mL Huaier aqueous extract, 10 μg/mL L-ABZ, and 2 mg/mL Huaier aqueous extract + 10 μg/mL L-ABZ. Huaier aqueous extract and L-ABZ displayed slower protoscolicidal activity when applied separately than when used in combination. The maximum protoscolicidal effect was found with the combination Huaier aqueous extract + L-ABZ. Despite the low Huaier aqueous extract + L-ABZ concentrations used, protoscolex viability dropped rapidly. In vivo studies were performed on mice injected with protoscolices of E. granulosus. Huaier aqueous extract and L-ABZ were administered three times a week for a period of 4 months by the oral route. Huaier aqueous extract in E. granulosus-infected mice was effective. Combined application of both drugs did increase the treatment efficacy. In conclusion, the outcomes obtained clearly demonstrated that in vitro and in vivo treatment with Huaier aqueous extract and L-ABZ is effective against E. granulosus.
Collapse
Affiliation(s)
- Hailong Lv
- The Hepatic Surgery Center, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | | | | | | | | | | |
Collapse
|
44
|
Tritten L, Silbereisen A, Keiser J. Nitazoxanide: In vitro and in vivo drug effects against Trichuris muris and Ancylostoma ceylanicum, alone or in combination. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:98-105. [PMID: 24533270 DOI: 10.1016/j.ijpddr.2012.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 11/25/2022]
Abstract
Soil-transmitted helminths cause more than 1 billion human infections globally, mostly in the poorest regions of the world. Control relies essentially on a limited panel of four drugs, and drug resistance might be inescapable. Nitazoxanide, an anti-infective drug, has been shown to exert anthelmintic activity in human clinical trials. In the present work, nitazoxanide was tested alone or combined with commercialized anthelmintics on Trichuris muris, a whipworm mouse model, and Ancylostoma ceylanicum, a hookworm hamster model, in vitro and in vivo. IC50s of ⩽1 and 12.87 μg/ml were achieved with nitazoxanide on T. muris third-stage larvae (L3) and adult worms in vitro, respectively. An IC50 of ⩽1 μg/ml was obtained exposing A. ceylanicum adults worms to nitazoxanide, whereas A. ceylanicum L3 were not affected. Using scanning electron microscopy, the tegument of adult T. muris appeared unchanged following nitazoxanide treatment, whereas swellings were seen on the tegument of the anterior region of half of the A. ceylanicum specimen analyzed. Synergism was observed in vitro when nitazoxanide was combined with levamisole or ivermectin on T. muris adult worms, and when combined with levamisole, pyrantel pamoate, or ivermectin on A. ceylanicum adult worms. In T. muris-infected mice, oral nitazoxanide achieved worm burden reductions of 56.09% and 17.37% following a single dose of 100 mg/kg and three doses of 50 mg/kg, respectively. None of the tested drug combinations displayed activity on T. muris in vivo. In A. ceylanicum-infected hamsters, no effect was observed for oral nitazoxanide alone, and none of the tested combinations reached the threshold for additive effect. In conclusion, nitazoxanide failed to demonstrate promising activity against T. muris and A. ceylanicum in vivo, regardless whether tested as monotherapy or combined with standard drugs. Reasons for the discrepancy of these findings compared to results obtained in clinical trials remain to be elucidated.
Collapse
Affiliation(s)
- Lucienne Tritten
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Angelika Silbereisen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Debache K, Guionaud C, Kropf C, Boykin D, Stephens CE, Hemphill A. Experimental treatment of Neospora caninum-infected mice with the arylimidamide DB750 and the thiazolide nitazoxanide. Exp Parasitol 2011; 129:95-100. [DOI: 10.1016/j.exppara.2011.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/03/2011] [Accepted: 07/08/2011] [Indexed: 11/16/2022]
|
46
|
An insect growth inhibitor – lufenuron – enhances albendazole activity against hydatid cyst. Vet Parasitol 2011; 181:341-4. [DOI: 10.1016/j.vetpar.2011.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/21/2022]
|
47
|
In vitro efficacy of dicationic compounds and mefloquine enantiomers against Echinococcus multilocularis metacestodes. Antimicrob Agents Chemother 2011; 55:4866-72. [PMID: 21768518 DOI: 10.1128/aac.00478-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The current chemotherapy of alveolar echinococcosis (AE) is based on benzimidazoles such as albendazole and has been shown to be parasitostatic rather than parasiticidal, requiring lifelong duration. Thus, new and more efficient treatment options are urgently needed. By employing a recently validated assay based on the release of functional phosphoglucose isomerase (PGI) from dying parasites, the activities of 26 dicationic compounds and of the (+)- and (-)-erythro-enantiomers of mefloquine were investigated. Initial screening of compounds was performed at 40 μM, and those compounds exhibiting considerable antiparasitic activities were also assessed at lower concentrations. Of the dicationic drugs, DB1127 (a diguanidino compound) with activities comparable to nitazoxanide was further studied. The activity of DB1127 was dose dependent and led to severe structural alterations, as visualized by electron microscopy. The (+)- and (-)-erythro-enantiomers of mefloquine showed similar dose-dependent effects, although higher concentrations of these compounds than of DB1127 were required for metacestode damage. In conclusion, of the drugs investigated here, the diguanidino compound DB1127 represents the most promising compound for further study in appropriate in vivo models for Echinococcus multilocularis infection.
Collapse
|
48
|
Pérez-Molina JA, Díaz-Menéndez M, Gallego JI, Norman F, Monge-Maillo B, Ayala AP, López-Vélez R. Evaluation of nitazoxanide for the treatment of disseminated cystic echinococcosis: report of five cases and literature review. Am J Trop Med Hyg 2011; 84:351-6. [PMID: 21292913 DOI: 10.4269/ajtmh.2011.10-0513] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We aimed to evaluate the effectiveness of nitazoxanide in disseminated cystic echinococcosis (DCE) that failed to respond to surgical and antiparasitic therapy. We report on seven patients (five of them with bony involvement): two cases from the literature and five patients who were included in a compassionate trial of nitazoxanide therapy in our hospital. Median follow-up time until nitazoxanide therapy was 12 years and all patients had received prior medical treatment and extensive surgery. Nitazoxanide (500 mg/12 h) in combination with albendazole, with/without praziquantel, was administered for 3-24 months. Three patients improved: one with muscle involvement (clinico-radiological response), one with lung involvement (radiological response), and another with soft tissue and bony involvement (clinico-radiological response of soft tissue cysts). There was one discontinuation after 15 days of starting therapy. Nitazoxanide combination therapy could have a role in the treatment of DCE when there is no bony involvement. Long-term safety profile seems to be favorable.
Collapse
Affiliation(s)
- José A Pérez-Molina
- Tropical Medicine, Infectious Diseases Department, Hospital Ramón y Cajal, IRICYS, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
49
|
Küster T, Stadelmann B, Hermann C, Scholl S, Keiser J, Hemphill A. In vitro and in vivo efficacies of mefloquine-based treatment against alveolar echinococcosis. Antimicrob Agents Chemother 2011; 55:713-21. [PMID: 21135182 PMCID: PMC3028781 DOI: 10.1128/aac.01392-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 11/24/2010] [Indexed: 11/20/2022] Open
Abstract
Alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis and causes severe disease in the human liver, and occasionally in other organs, that is fatal when treatment is unsuccessful. The present chemotherapy against AE is based on mebendazole and albendazole. Albendazole treatment has been found to be ineffective in some instances, is parasitostatic rather than parasiticidal, and usually involves the lifelong uptake of large doses of drugs. Thus, new treatment options are urgently needed. In this study we investigated the in vitro and in vivo efficacy of mefloquine against E. multilocularis metacestodes. Treatment using mefloquine (20 μM) against in vitro cultures of metacestodes resulted in rapid and complete detachment of large parts of the germinal layer from the inner surface of the laminated layer within a few hours. The in vitro activity of mefloquine was dependent on the dosage. In vitro culture of metacestodes in the presence of 24 μM mefloquine for a period of 10 days was parasiticidal, as determined by murine bioassays, while treatment with 12 μM was not. Oral application of mefloquine (25 mg/kg of body weight administered twice a week for a period of 8 weeks) in E. multilocularis-infected mice was ineffective in achieving any reduction of parasite weight, whereas treatment with albendazole (200 mg/kg/day) was highly effective. However, when the same mefloquine dosage was applied intraperitoneally, the reduction in parasite weight was similar to the reduction seen with oral albendazole application. Combined application of both drugs did not increase the treatment efficacy. In conclusion, mefloquine represents an interesting drug candidate for the treatment of AE, and these results should be followed up in appropriate in vivo studies.
Collapse
Affiliation(s)
- Tatiana Küster
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Human alveolar echinococcosis is caused by the larval stage of Echinococcus multilocularis, occurring in at least 42 countries of the northern hemisphere. Recent studies in Europe and Asia have shown that the endemic area of E. multilocularis is larger than previously known and the parasite has regionally expanded from rural to urban areas. Diagnosis of alveolar echinococcosis is supported by results from imaging studies, histopathology and/or nucleic acid detection, and serology. The present review summarizes current understanding of clinical features, knowledge on appropriate treatment, and discusses ways to improve standards of care. RECENT FINDINGS High prevalences of this deadly disease have been discovered in surveys in parts of China. Clinical manifestations, diagnostic tools and the burden of disease were described, and are based on high case numbers. In Europe, excellent tools have been introduced, which improve disease management. Long-term observations in Switzerland provide an optimistic view, as the infection can be well controlled, if patients are cared for in specialized centres. An expert consensus summarizes the current recommendation for diagnosis and treatment of alveolar echinococcosis by the Informal Working Group on Echinococcosis of the WHO. SUMMARY Diagnosis and treatment of alveolar echinococcosis remains a challenge for clinicians. The updated WHO-recommendations aim to support decisions on diagnosis and treatment of alveolar echinococcosis. Anti-infective therapy is the backbone of treatment; surgery should be restricted to patients at an early stage of the disease. For the majority of cases continuous chemoprophylaxis with benzimidazoles is cost-effective and leads to a good quality of life for patients with this chronic disease.
Collapse
|