1
|
Favarin FR, Forrati ÉM, Bassoto VA, da Silva Gündel S, Velho MC, Ledur CM, Verdi CM, Lemos JG, Sagrillo MR, Fagan SB, Gündel A, Copetti MV, Santos RCV, de Oliveira Fogaça A, Ourique AF. Ascorbic acid and ascorbyl palmitate-loaded liposomes: Development, characterization, stability evaluation, in vitro security profile, antimicrobial and antioxidant activities. Food Chem 2024; 460:140569. [PMID: 39083967 DOI: 10.1016/j.foodchem.2024.140569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
The objective of this work was to prepare and characterize liposomes containing co-encapsulated ascorbic acid (AA) and ascorbyl palmitate (AP), as well as to evaluate their stability, cytotoxicity, antioxidant, and antimicrobial activity. Through the pre-formulation studies, it was possible to improve the formulation, as leaving it more stable and with a greater antioxidant activity, resulting in a formulation designated LIP-AAP, with 161 nm vesicle size, 0.215 polydispersity index, -31.7 mV zeta potential, and pH of 3.34. Encapsulation efficiencies were 37% for AA and 79% for AP, and the content was 1 mg/mL for each compound. The optimized liposomes demonstrated stability under refrigeration for 60 days, significant antioxidant activity (31.4 μMol of TE/mL), and non-toxicity, but no antimicrobial effects against bacteria and fungi were observed. These findings confirm that the co-encapsulated liposomes are potent, stable antioxidants that maintain their physical and chemical properties under optimal storage conditions.
Collapse
Affiliation(s)
- Fernanda Reis Favarin
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Éricles Machado Forrati
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Vitória Almeida Bassoto
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Samanta da Silva Gündel
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Maiara Callegaro Velho
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristian Mafra Ledur
- Laboratory of Simulation and Modelling of Nanomaterials, Universidade Franciscana, Santa Maria, Brazil
| | - Camila Marina Verdi
- Oral Microbiology Research Laboratory, Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jéssica Gonçalves Lemos
- Department of Technology and Food Science, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Solange Binotto Fagan
- Laboratory of Simulation and Modelling of Nanomaterials, Universidade Franciscana, Santa Maria, Brazil
| | - André Gündel
- Department of Physics, Federal University of Pampa, Bagé, Rio Grande do Sul, Brazil
| | - Marina Venturini Copetti
- Department of Technology and Food Science, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roberto Christ Vianna Santos
- Oral Microbiology Research Laboratory, Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Aline Ferreira Ourique
- Laboratory of Nanotechnology, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Alhazzani K, Alrewily SQ, Alanzi AR, Aljerian K, Raish M, Hawwal MF, Alhossan A, Alanazi AZ. Therapeutic Effects of Liposomal Resveratrol in the Mitigation of Diabetic Nephropathy via Modulating Inflammatory Response, Oxidative Stress, and Apoptosis. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05092-1. [PMID: 39589702 DOI: 10.1007/s12010-024-05092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
An important factor in the development of diabetes and its associated consequences is prolonged chronic hyperglycemia, which weakens the antioxidant defense system and produces reactive oxygen species. Phytochemicals have been found to scavenge free radicals and exhibit antioxidant effects necessary to increase insulin sensitivity and reduce the development of diabetes-related complications. Current treatments for managing diabetes and diabetic nephropathy are often not very effective and come with several limitations and side effects. Resveratrol, for example, has shown therapeutic potential in mitigating kidney damage induced by high glucose levels, but its short bioavailability is a significant limitation. This accentuates the need for alternatives that not only improve the disease but also reduce the side effects associated with treatment. To enhance the therapeutic efficacy of resveratrol, we investigated the protective effects of liposomal resveratrol (LR) in a streptozotocin-induced diabetic rat model at doses of 20 and 40 mg/kg. We compared the impact of LR to that of resveratrol alone (at a dose of 40 mg/kg) on various parameters, including serum levels of biochemical markers, tissue levels of pro-inflammatory cytokines, nuclear transcription factor, oxidative stress indices, and apoptotic markers. LR, as a highly absorbable and metabolized form of resveratrol, has demonstrated beneficial effects in diabetic rats. Administered at both 20 mg/kg and 40 mg/kg dosages over a 5-week period, it demonstrated notable efficacy in alleviating inflammation. This was accomplished by diminishing the levels of pro-inflammatory mediators, TNF-α and IL-6, through the inhibition of NF-κB translocation. Additionally, LR influenced apoptotic markers, specifically caspase, BCL-2, and BAX. Furthermore, it enhanced the expression of key antioxidant enzymes such as catalase and glutathione peroxidase while significantly lowering malondialdehyde levels. These significant biochemical and immunological protective effects correlated with improved histological integrity and overall kidney architecture. Notably, resveratrol alone was not as effective as LR in restoring kidney function, highlighting its potential as a therapeutic candidate for the treatment of diabetic nephropathy. However, more in-depth studies are needed to explore its mechanism of action and improved bioavailability.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salah Q Alrewily
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alhossan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Parhizkary M, Jafari SM, Assadpour E, Enayati A, Kashiri M. Pea protein-coated nanoliposomal encapsulation of jujube phenolic extract with different stabilizers; characterization and in vitro release. Food Chem X 2024; 23:101771. [PMID: 39280214 PMCID: PMC11401102 DOI: 10.1016/j.fochx.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Jujube, a fruit rich in phenolic compounds, is renowned for its potential health benefits, including lowering blood pressure, and exhibiting anti-cancer, and anti-inflammatory effects, attributed to its potent antioxidant properties. However, the application of these phenolics in food products is limited by their instability and low concentration in plant tissues. This study investigates the nanoencapsulation of jujube extract (JE) using nanoliposomes (NLs) coated with pea protein isolate (PPI) to enhance stability and bioavailability. NLs were prepared via the ethanol injection method and optimized through comprehensive characterization, including dynamic light scattering, polydispersity index, and zeta potential. The encapsulated JE showed improved antioxidant activity and controlled release profiles in simulated gastric fluid and simulated intestinal fluid. This research highlights the potential of PPI-coated NLs in stabilizing and enhancing the bioactivity of jujube phenolics, providing a promising approach for their integration into functional foods.
Collapse
Affiliation(s)
- Maedeh Parhizkary
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Mahboobeh Kashiri
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
Javadi B, Farahmand A, Soltani-Gorde-Faramarzi S, Hesarinejad MA. Chitosan-coated nanoliposome: An approach for simultaneous encapsulation of caffeine and roselle-anthocyanin in beverages. Int J Biol Macromol 2024; 275:133469. [PMID: 38945345 DOI: 10.1016/j.ijbiomac.2024.133469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The objective of the present research was to develop chitosan-coated nanoliposomes using a modified heating method as a delivery system for simultaneous encapsulation of caffeine and roselle anthocyanin to fortify beverage. Response surface methodology was used to ascertain the optimized formulation, aiming to maximize the encapsulation efficiency, minimize the particle size, and maximize the zeta potential. The liposomes fabricated under the optimized conditions (lecithin to cholesterol ratio of 13 and wall to core ratio of 2.16) showed encapsulation efficiency values of 66.73 % for caffeine and 97.03 % for anthocyanin, with a size of 268.1 nm and a zeta potential of -39.11 mV. Fourier transform infrared spectroscopy confirmed the formation of hydrogen bonds between the polar sites of lecithin and the loaded core compounds. Thermal analysis suggested the successful encapsulation of the caffeine and anthocyanin. Transmission and scanning electron microscopy images confirmed a uniform spherical shape with a smooth surface. Fortifying the model beverage with the liposome and the chitosan-coated nanoliposome revealed higher values of encapsulation efficiency of anthocyanin (70.33 ± 3.11 %), caffeine (86.37 ± 2.17 %) and smaller size (280.5 ± 0.74 nm) of the chitosan-coated nanoliposomes at the end of 60the days. A hedonic sensory test of the fortified beverage with chitosan-coated nanoliposomes confirmed an improvement in the organoleptic properties of the beverage by masking its bitterness (receiving three more sensory scores in perceiving the bitterness intensity). Overall, our study indicates that the high potential of the chitosan-coated nanoliposomes for the simultaneous loading of the caffeine and anthocyanin, as well as their possible application in food and beverage formulations.
Collapse
Affiliation(s)
- Bahareh Javadi
- Research and development center, Abfam Govara Tejarat Shargh Co., Mashhad, Iran
| | - Atefeh Farahmand
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
5
|
Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, Srinivasan B. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38061-38082. [PMID: 38806984 DOI: 10.1007/s11356-024-33712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Sunscreens are essential in protecting the skin from harmful effects of ultraviolet radiation (UVR). These formulations, designed to absorb, block, or scatter UVR, offer vital protection against skin aging, sunburns, and the development of skin cancers like melanomas. However, some sunscreens, especially those containing organic/chemical compounds, can cause allergic reactions. To address this, researchers are extensively investigating formulations that incorporate plant extracts rich in polyphenols, such as flavonoids and carotenoids, which can be considered safer alternatives. Products derived from plants are commonly used in cosmetics to counteract skin aging due to their antioxidant activity that combat harmful free radicals. This review focuses on evaluating the advancements in chemical and natural sunscreens, exploring the integration of polyphenolic nanocarriers within sunscreen formulas, their interaction with UVR, and utilizing nanotechnology to enhance their effectiveness. An attempt has been made to highlight the concerns related to toxicity associated with their use and notable advancements in the regulatory aspects governing their utilization.
Collapse
Affiliation(s)
- Aswathi Raju Hegde
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India.
| | - Manisha Uday Kunder
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Megha Narayanaswamy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Shruthi Murugesan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Basavaraj Basappa Veerabhadraiah
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| |
Collapse
|
6
|
Hou J, Xiong W, Shao X, Long L, Chang Y, Chen G, Wang L, Wang Z, Huang Y. Liposomal Resveratrol Alleviates Platelet Storage Lesion via Antioxidation and the Physical Buffering Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45658-45667. [PMID: 37729093 DOI: 10.1021/acsami.3c09935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Platelet transfusion is essential in the treatment of platelet-related diseases and the prevention of bleeding in patients with surgical procedures. Platelet transfusion efficacy and shelf life are limited mainly by the development of platelet storage lesion (PSL). Mitigating PSL is the key to prolonging the platelet shelf life and reducing wastage. Excess intracellular reactive oxygen species (ROS) are one of the main factors causing PSL. In this study, we explored a nanomedicine strategy to improve the quality and functions of platelets in storage. Resveratrol (Res), a natural plant product, is known for its antioxidative effect. However, medical applications of Res are limited due to its low water solubility and stability. Therefore, we used a resveratrol-loaded liposomal system (Res-Lipo) to better utilize the antioxidant effect of the drug. This study aimed to evaluate the effect of Res-Lipo on platelet oxidative stress and alleviation of PSL during the storage time. Res-Lipo scavenged intracellular ROS and inhibited platelet apoptosis and activation during storage. Res-Lipo not only maintained mitochondrial function but also improved platelet aggregation in response to adenosine 5'-diphosphate. These results revealed that Res-Lipo ameliorated PSL and prolonged the platelet survival time in vivo. The strategy provides a potential method for extending the platelet storage time and might be considered a potential and safe additive to alleviate PSL.
Collapse
Affiliation(s)
- Jiazhen Hou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Xiong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Xinyue Shao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Ya Chang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guihua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Li Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhicheng Wang
- Department of Transfusion Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongzhuo Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
7
|
Li Y, Sun K, Chen S, Zhao J, Lei Y, Geng L. Nano-Resveratrol Liposome: Physicochemical Stability, In Vitro Release, and Cytotoxicity. Appl Biochem Biotechnol 2023; 195:5950-5965. [PMID: 36729296 DOI: 10.1007/s12010-023-04344-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/03/2023]
Abstract
Nano-resveratrol liposome (RES-LIP) was prepared by the thin film rotary-evaporated method combined with ultrasonication and characterized by transmission electron microscopy (TEM), zeta potential, dynamic light scattering (DLS), and Fourier-transform infrared (FT-IR). The physicochemical stability, in vitro release, antioxidant activity, and cytotoxicity of RES-LIP were studied. Data showed that RES-LIP was a spherical vesicle with a diameter of less than 100 nm, the zeta potential was - 60 mV and the encapsulation efficiency was 86.78%. The physicochemical stability of RES-LIP was determined by Ea, ΔG, ΔH, and ΔS, which suggested that the process of RES-LIP degradation was spontaneous and endothermic. The in vitro release of RES-LIP was pH-dependent, belonged to the Weibull model, and was non-Fick diffusion. The antioxidant activity of RES-LIP was stronger than free resveratrol. The MTT assay and flow cytometry results suggested that resveratrol decreased cytotoxicity after being encapsulated by liposome. The prepared RES-LIP had high encapsulation efficiency, was sustained-release, had low cytotoxicity, was pH-targeted, and had potential usage in food and medicine fields.
Collapse
Affiliation(s)
- Yayong Li
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, 050000, China
| | - Kaiyue Sun
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shenna Chen
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China
| | - Juan Zhao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhua Lei
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Lina Geng
- College of Chemistry and Material Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
8
|
Kishawy ATY, Ibrahim D, Roushdy EM, Moustafa A, Eldemery F, Hussein EM, Hassan FAM, Elazab ST, Elabbasy MT, Kanwal R, Kamel WM, Atteya MR, Zaglool AW. Impact of resveratrol-loaded liposomal nanocarriers on heat-stressed broiler chickens: Effects on performance, sirtuin expression, oxidative stress regulators, and muscle building factors. Front Vet Sci 2023; 10:1137896. [PMID: 37056226 PMCID: PMC10086338 DOI: 10.3389/fvets.2023.1137896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Climate change is considered to be the primary cause of heat stress (HS) in broiler chickens. Owing to the unique properties of extracted polyphenols, resveratrol-loaded liposomal nanoparticles (Resv-Lipo NPs) were first explored to mitigate the harmful effects of HS. The dietary role of Resv-Lipo NPs in heat-stressed birds was investigated based on their growth performance, antioxidative potential, and the expression of heat shock proteins, sirtuins, antioxidant, immune, and muscle-building related genes. A total of 250 1-day-old Ross 308 broiler chickens were divided into five experimental groups (5 replicates/group, 10 birds/replicate) for 42 days as follows: the control group was fed a basal diet and reared in thermoneutral conditions, and the other four HS groups were fed a basal diet supplemented with Resv-Lipo NPsI, II, and III at the levels of 0, 50, 100, and 150 mg/kg diet, respectively. The results indicated that supplementation with Resv-Lipo NP improved the growth rate of the HS group. The Resv-Lipo NP group showed the most significant improvement in body weight gain (p < 0.05) and FCR. Additionally, post-HS exposure, the groups that received Resv-Lipo NPs showed restored functions of the kidney and the liver as well as improvements in the lipid profile. The restoration occurred especially at higher levels in the Resv-Lipo NP group compared to the HS group. The elevated corticosterone and T3 and T4 hormone levels in the HS group returned to the normal range in the Resv-Lipo NPsIII group. Additionally, the HS groups supplemented with Resv-Lipo NPs showed an improvement in serum and muscle antioxidant biomarkers. The upregulation of the muscle and intestinal antioxidant-related genes (SOD, CAT, GSH-PX, NR-f2, and HO-1) and the muscle-building genes (myostatin, MyoD, and mTOR) was observed with increasing the level of Resv-Lipo NPs. Heat stress upregulated heat shock proteins (HSP) 70 and 90 gene expression, which was restored to normal levels in HS+Resv-Lipo NPsIII. Moreover, the expression of sirtuin 1, 3, and 7 (SIRT1, SIRT3, and SIRT7) genes was increased (p < 0.05) in the liver of the HS groups that received Resv-Lipo NPs in a dose-dependent manner. Notably, the upregulation of proinflammatory cytokines in the HS group was restored in the HS groups that received Resv-Lipo NPs. Supplementation with Resv-Lipo NPs can mitigate the harmful impact of HS and consequently improve the performance of broiler chickens.
Collapse
Affiliation(s)
- Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Elshimaa M. Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Elham M. Hussein
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fardos A. M. Hassan
- Department of Animal Wealth Development, Veterinary Economics, and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Tharwat Elabbasy
- Department of Public Health, College of Public Health and Health Informatics, Ha'il University, Ha'il, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Raheela Kanwal
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Walid M. Kamel
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha'il, Saudi Arabia
| | - Mohamed R. Atteya
- Department of Physical Therapy, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Asmaa W. Zaglool
- Department of Animal Wealth Development, Genetic, and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Structural degradation and uptake of resveratrol-encapsulated liposomes using an in vitro digestion combined with Caco-2 cell absorption model. Food Chem 2023; 403:133943. [DOI: 10.1016/j.foodchem.2022.133943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
|
10
|
Dos Santos Magnabosco AR, Quinova EID, de Melo MVV, da Silva Bastos PE, Santos TP, da Silva Júnior II, de Andrade ALC, Padilha RMO, da Silva JF, de Sá FB, Cadena MRS, Cadena PG. Testosterone nanoemulsion produced masculinized Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1449-1462. [PMID: 36480096 DOI: 10.1007/s10695-022-01156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The objective of this work was to develop a food additive for the sex reversal of Nile tilapia (Oreochromis niloticus) based on a simple oil in water (O/W) nanoemulsion with testosterone propionate for incorporation into commercial feed. Oil screening and evaluation of the organoleptic and physicochemical characteristics were carried out to determine the best formulation. A palatability test was also performed. Sex reversal test was assayed using 5 experimental groups: negative control - macerated feed without hormone; free testosterone - macerated feed with 60 mg/kg of testosterone propionate diluted in ethanol; and macerated feed with testosterone propionate nanoemulsion at a concentration of 30, 60, and 90 mg/kg. Stable nanoemulsions (size 76-210 nm) with testosterone propionate were produced. All nanoemulsion-added feed was palatable to tilapia. We obtained sex reversal values of ≈65, 75, and 72% in the groups of 30, 60, and 90 mg/kg, respectively. We can conclude that the nanoemulsion showed promising results; it is capable of inducing sex reversal in tilapia, is suitable as a commercial product, and has the potential to promote safety for rural staff and reduce the environmental impact of hormones.
Collapse
Affiliation(s)
- Amanda Rodrigues Dos Santos Magnabosco
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Ester Inácio Damião Quinova
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Matheus Victor Viana de Melo
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Paulo Eduardo da Silva Bastos
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Thamiris Pinheiro Santos
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n 50780-901, Recife, Pernambuco, Brazil
| | - Ivanildo Inácio da Silva Júnior
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - André Lucas Corrêa de Andrade
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n 50780-901, Recife, Pernambuco, Brazil
| | - Renata Meireles Oliveira Padilha
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Jadson Freitas da Silva
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Fabrício Bezerra de Sá
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Marília Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Pabyton Gonçalves Cadena
- Departamento de Morfologia E Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil.
- Laboratório de Ecofisiologia E Comportamento Animal (LECA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| |
Collapse
|
11
|
Budama-Kilinc Y, Gok B, Kecel-Gunduz S, Altuntas E. Development of nanoformulation for hyperpigmentation disorders: experimental evaluations, in vitro efficacy and in silico molecular docking studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
Shirur KS, Padya BS, Pandey A, Hegde MM, Narayan AI, Rao BSS, Bhat VG, Mutalik S. Development of Lipidic Nanoplatform for Intra-Oral Delivery of Chlorhexidine: Characterization, Biocompatibility, and Assessment of Depth of Penetration in Extracted Human Teeth. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3372. [PMID: 36234500 PMCID: PMC9565570 DOI: 10.3390/nano12193372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms are the major cause for the failure of root canal treatment, due to the penetration ability within the root anatomy. However, irrigation regimens have at times failed due to the biofilm mode of bacterial growth. Liposomes are vesicular structures of the phospholipids which might help in better penetration efficiency into dentinal tubules and in increasing the antibacterial efficacy. Methods: In the present work, chlorhexidine liposomes were formulated. Liposomal chlorhexidine was characterized by size, zeta potential, and cryo-electron microscope (Cryo-EM). Twenty-one single-rooted premolars were extracted and irrigated with liposomal chlorhexidine and 2% chlorhexidine solution to evaluate the depth of penetration. In vitro cytotoxicity study was performed for liposomal chlorhexidine on the L929 mouse fibroblast cell line. Results: The average particle size of liposomes ranged from 48 ± 4.52 nm to 223 ± 3.63 nm with a polydispersity index value of <0.4. Cryo-EM microscopic images showed spherical vesicular structures. Depth of penetration of liposomal chlorhexidine was higher in the coronal, middle, and apical thirds of roots compared with plain chlorhexidine in human extracted teeth when observed under the confocal laser scanning microscope. The pure drug exhibited a cytotoxic concentration at which 50% of the cells are dead after a drug exposure (IC50) value of 12.32 ± 3.65 µg/mL and 29.04 ± 2.14 µg/mL (on L929 and 3T3 cells, respectively) and liposomal chlorhexidine exhibited an IC50 value of 37.9 ± 1.05 µg/mL and 85.24 ± 3.22 µg/mL (on L929 and 3T3 cells, respectively). Discussion: Antimicrobial analysis showed a decrease in colony counts of bacteria when treated with liposomal chlorhexidine compared with 2% chlorhexidine solution. Nano-liposomal novel chlorhexidine was less cytotoxic when treated on mouse fibroblast L929 cells and more effective as an antimicrobial agent along with higher penetration ability.
Collapse
Affiliation(s)
- Krishnaraj Somyaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Manasa Manjunath Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Aparna I. Narayan
- Department of Prosthodontics and Crown and Bridge, Manipal College of Dental Sciences Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Varadaraj G. Bhat
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
13
|
Saleem Z, Rehman K, Hamid Akash MS. Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Curr Pharm Des 2022; 28:1632-1642. [DOI: 10.2174/1381612828666220705113514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Resveratrol (RSV) is known as a natural polyphenolic compound that is known for its therapeutic activities but has limited bioavailability. The aim of our study was to explore various drug-delivering methods that are being employed to achieve target-oriented delivery and therapeutic performance of RSV. To improve the bioavailability and pharmacokinetic properties of RSV, efforts are being made by producing efficient formulations accompanying efficient drug delivery strategies. Several clinical trial studies have been conducted on RSV isomers, and the majority of studies indicated that trans-RSV had better clinical potential and therapeutic effectiveness in various types of complications such as colorectal cancer, metabolic syndrome, hypertension, obesity, neurodegenerative diseases, diabetes, hepatic disease, cardiac disorders, and breast cancer. However, multiple research studies enable us to understand various strategies that can enhance the systemic availability and efficacy of topical RSV formulations. In this article, we emphasize the hurdles of RSV delivery processes. We summarized that for delivering liquid and solid microparticles of RSV, the micro-particulate system works efficiently. Another technique in which particles are enclosed by a coating is called microencapsulation. This technique reduces the degradation of pharmaceutical compounds. Similarly, the cyclodextrin system is mainly used for poorly soluble drugs. On the other hand, the vesicular system is another micro-particulate system that can encapsulate hydrophilic and hydrophobic drugs. However, the RSV nanosponge formulations have advanced nanodrug delivery systems also make it possible to use RSV for its antioxidant potential.
Collapse
Affiliation(s)
- Zonish Saleem
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | | |
Collapse
|
14
|
Taghizadeh MS, Niazi A, Moghadam A, Afsharifar A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS One 2022; 17:e0267961. [PMID: 35536789 PMCID: PMC9089900 DOI: 10.1371/journal.pone.0267961] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Natural compounds are proper tools for inhibiting cancer cell proliferation. Hence, the search for these ligands of overexpressed receptors in breast cancer has been a competitive challenge recently and opens new avenues for drug discovery. In this research, we have investigated molecular interactions between natural products and overexpressed receptors in breast cancer using molecular docking and dynamic simulation approaches followed by extraction of the best ligand from Citrus limetta and developing for nanoscale encapsulation composed of soy lecithin using a sonicator machine. The encapsulation process was confirmed by DLS and TEM analyses. Anticancer activity was also examined using MTT method. Among the investigated natural compounds, hesperidin was found to bind to specific targets with stronger binding energy. The molecular dynamics results indicated that the hesperidin-MCL-1 complex is very stable at 310.15 K for 200 ns. The RP-HPLC analysis revealed that the purity of extracted hesperidin was 98.8% with a yield of 1.72%. The results of DLS and TEM showed a strong interaction between hesperidin and lecithin with an entrapped efficiency of 92.02 ± 1.08%. Finally, the cytotoxicity effect of hesperidin was increased against the MDA-MB-231 cell line with an IC50 value of 62.93 μg/mL after encapsulation, whereas no significant effect against the MCF10A cell line. We showed for the first time that hesperidin is a flexible and strong ligand for the MCL-1 receptor. Also, it has the in vitro ability to kill the MDA-MB-231 cell lines without having a significant effect on the MCF10A cell lines. Therefore, hesperidin could be used as a food ingredient to generate functional foods.
Collapse
Affiliation(s)
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
15
|
Chopra H, Bibi S, Islam F, Ahmad SU, Olawale OA, Alhumaydhi FA, Marzouki R, Baig AA, Emran TB. Emerging Trends in the Delivery of Resveratrol by Nanostructures: Applications of Nanotechnology in Life Sciences. JOURNAL OF NANOMATERIALS 2022; 2022:1-17. [DOI: 10.1155/2022/3083728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Resveratrol (RES) is a stilbene group of natural polyphenolic compounds in trees, peanuts, and grapes. RES is revealed with anticancer, antioxidant, anti-inflammatory, and cardioprotective effects. Though it is proven with prominent therapeutic activity, low aqueous solubility, poor bioavailability, and short half-life had hindered its use to exploit the potential. Also, the first-pass metabolism and undergoing enterohepatic recirculation are obscure in the minds of researchers for their in vitro studies. Many approaches have been investigated and shown promising results in manipulating their physicochemical properties to break this barrier. Nanocarriers are one of them to reduce the first-pass metabolism and to overcome other hurdles. This article reviews and highlights such encapsulation technologies. Nanoencapsulated RES improves in vitro antioxidant effect, and this review also highlights the new strategies and the concept behind how resveratrol can be handled and implemented with better therapeutic efficacy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | | | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Riadh Marzouki
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
- Chemistry Department, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
16
|
Naumowicz M, Kusaczuk M, Zając M, Jabłońska-Trypuć A, Mikłosz A, Gál M, Worobiczuk M, Kotyńska J. The influence of the pH on the incorporation of caffeic acid into biomimetic membranes and cancer cells. Sci Rep 2022; 12:3692. [PMID: 35256690 PMCID: PMC8901767 DOI: 10.1038/s41598-022-07700-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/23/2022] [Indexed: 12/29/2022] Open
Abstract
Caffeic acid (CA) is a phenolic compound synthesized by all plant species. It constitutes the main hydroxycinnamic acid found in human diet and presents a variety of beneficial effects including anticancer activity. Current data suggests essential role of the interplay between anticancer drugs and the cell membrane. Given this, biophysical interactions between CA and cancer cells or biomimetic membranes were investigated. Glioblastoma cell line U118MG and colorectal adenocarcinoma cell line DLD-1, as well as lipid bilayers and liposomes, were used as in vitro models. Electrophoretic light scattering was used to assess the effect of CA on the surface charge of cancer cells and liposomal membranes. Electrochemical impedance spectroscopy was chosen to evaluate CA-dependent modulatory effect on the electrical capacitance and electrical resistance of the bilayers. Our results suggest that CA fulfills physicochemical criteria determining drug-like properties of chemical compounds, and may serve as a potential cytostatic agent in cancer treatment.
Collapse
|
17
|
Liposomes as Carriers for the Delivery of Efavirenz in Combination with Glutathione—An Approach to Combat Opportunistic Infections. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 35663347 PMCID: PMC9161618 DOI: 10.3390/app12031468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus (HIV)-infected individuals display an enhanced production of reactive oxygen species (ROS). This reduction of antioxidant capacity in host tissues has been related to the decrease in total levels of ROS scavengers such as glutathione (GSH). Prevention of opportunistic infections due to a weakened immune system is becoming a key strategy along with HIV elimination. Research in these directions is clearly warranted, especially a combination of antiretrovirals and antioxidants to ameliorate oxidative stress, improve intracellular uptake and target viral reservoirs. Hence, we aimed to formulate liposomes loaded with the antiretroviral drug efavirenz (EFA) in the presence of glutathione, as these carriers can be engineered to enhance the ability to reach the target reservoirs. The goal of the present work was to investigate the intracellular uptake of EFA-loaded liposome (with and without GSH) by human monocytic leukemia cells (THP-1 cells) and examine cell viability and ROS scavenging activity. Results obtained provided significant data as follows: (i) treatment with EFA and GSH combination could enhance the uptake and reduce cytotoxicity; (ii) encapsulation of EFA into liposomes increased its levels in the macrophages, which was further enhanced in the presence of GSH; (iii) delivery of EFA in the presence of GSH quenched the intracellular ROS, which was significantly higher when delivered via liposomes. Data revealed that a combination of EFA and GSH encompasses advantages; hence, GSH supplementation could be a safe and cost-effective treatment to slow the development of HIV infection and produce an immune-enhancing effect.
Collapse
|
18
|
Abu Hajleh MN, Abu-Huwaij R, Al-Samydai A, Al-Halaseh LK, Al-Dujaili EA. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects. J Cosmet Dermatol 2021; 20:3818-3828. [PMID: 34510691 DOI: 10.1111/jocd.14441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The qualified and paradigm jump in the formulation and production of cosmeceuticals refer in some way to the great revolution in nanotechnology. Nowadays, the industry of nano-formulated cosmeceuticals plays a significant and essential role in the evolution and growth of the pharmaceutical industries. This review manuscript focuses on the use of nanocarriers in delivering the cosmetic agents into the target area such as skin, hair, and nails. METHODS Many steps were performed in the preparation of this review including identification of different classes of nanocarriers for delivery of nanocosmeceuticals, literature survey of relevantstudies regarding the applications of nanotechnology in cosmeceuticals and their toxicological effects. RESULTS When nanoparticles introduced in the cosmetic industry, the quality and the elegance of the final products were raised significantly. Sadly, this revolution is accompanied by many health hazards as these tiny molecules can penetrate intact skin barriers and cause undesired effects. Cosmeceuticals with nanotechnology include sunscreens, hair cleansing products, nail products, and agents fighting fine lines. CONCLUSIONS The expansion and growth of the cosmetic industry and the introduction of nanotechnology in cosmeceuticals industry necessitates the urgent need for scientific research investigating their efficacy, safety profile and use.
Collapse
Affiliation(s)
- Maha N Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Rana Abu-Huwaij
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Lidia Kamal Al-Halaseh
- Department of Pharmaceutical Chemistry, Faculty of pharmacy, Mutah University, Al-Karak, Jordan
| | - Emad A Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| |
Collapse
|
19
|
Silva MD, Paris JL, Gama FM, Silva BFB, Sillankorva S. Sustained Release of a Streptococcus pneumoniae Endolysin from Liposomes for Potential Otitis Media Treatment. ACS Infect Dis 2021; 7:2127-2137. [PMID: 34167300 DOI: 10.1021/acsinfecdis.1c00108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Local delivery of antimicrobials for otitis media treatment would maximize therapeutic efficacy while minimizing side effects. However, drug transport across the tympanic membrane in the absence of a delivery system is challenging. In this study, the MSlys endolysin was encapsulated in deformable liposomes for a targeted treatment of S. pneumoniae, one of the most important causative agents of otitis media. MSlys was successfully encapsulated in liposomes composed of l-alpha-lecithin and sodium cholate (5:1) or l-alpha-lecithin and PEG2000 PE (10:1), with encapsulation efficiencies of about 35%. The PEGylated and sodium cholate liposomes showed, respectively, mean hydrodynamic diameters of 85 and 115 nm and polydispersity indices of 0.32 and 0.42, both being stable after storage at 4 °C for at least one year. Both liposomal formulations showed a sustained release of MSlys over 7 days. Cytotoxicity studies against fibroblast and keratinocyte cell lines revealed the biocompatible nature of both MSlys and MSlys-loaded liposomes. Additionally, the encapsulated MSlys showed prompt antipneumococcal activity against planktonic and biofilm S. pneumoniae, thus holding great potential for transtympanic treatment against S. pneumoniae otitis media.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB−Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Juan L. Paris
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | | | - Bruno F. B. Silva
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Sanna Sillankorva
- INL−International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
20
|
Acetylated Resveratrol and Oxyresveratrol Suppress UVB-Induced MMP-1 Expression in Human Dermal Fibroblasts. Antioxidants (Basel) 2021; 10:antiox10081252. [PMID: 34439500 PMCID: PMC8389240 DOI: 10.3390/antiox10081252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RES) and oxyresveratrol (OXYRES) are considered and utilized as active ingredients of anti-aging skin cosmetics. However, these compounds are susceptible to oxidative discoloration and unpleasant odor in solutions, limiting their use in cosmetics. Accordingly, RES and OXYRES were chemically modified to acetylated derivatives with enhanced stability, and their anti-aging effect on the skin and detailed molecular mechanism of their acetylated derivatives were investigated. Acetylated RES and OXYRES lost their acetyl group and exerted an inhibitory effect on H2O2-induced ROS levels in human dermal fibroblast (HDF) cells. In addition, RES, OXYRES, and their acetylated derivatives suppressed UVB-induced matrix metalloproteinase (MMP)-1 expression via inhibition of mitogen-activated protein kinases (MAPKs) and Akt/mTOR signaling pathways. Furthermore, RES, OXYRES, and their acetylated derivatives suppressed type I collagen in TPA-treated HDF cells. Collectively, these results suggest the beneficial effects and underlying molecular mechanisms of RES, OXYRES, and their acetylated derivatives for anti- skin aging applications.
Collapse
|
21
|
Omega-3- and Resveratrol-Loaded Lipid Nanosystems for Potential Use as Topical Formulations in Autoimmune, Inflammatory, and Cancerous Skin Diseases. Pharmaceutics 2021; 13:pharmaceutics13081202. [PMID: 34452163 PMCID: PMC8401194 DOI: 10.3390/pharmaceutics13081202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical–chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release–diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.
Collapse
|
22
|
Liposomes with Caffeic Acid: Morphological and Structural Characterisation, Their Properties and Stability in Time. Processes (Basel) 2021. [DOI: 10.3390/pr9060912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Medical and pharmaceutical research has shown that liposomes are very efficient in transporting drugs to targets. In this study, we prepared six liposome formulas, three in which we entrapped caffeic acid (CA), and three with only phospholipids and without CA. Determination of entrapment efficiency (EE) showed that regardless of the phospholipids used, the percentage of CA entrapment was up to 76%. The characterization of the liposomes was performed using Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), zeta potential and polydispersity and showed that about 75–99% of the liposomes had dimensions between 40 ± 0.55–500 ± 1.45 nm. The size and zeta potential of liposomes were influenced by the type of phospholipid used to obtain them. CA release from liposomes was performed using a six-cell Franz diffusion system, and it was observed that the release of entrapped CA occurs gradually, the highest amount occurring in the first eight hours (over 80%), after which the release is much reduced. Additionally, the time stability of the obtained liposomes was analysed using univariate and multivariate statistical analysis. Therefore, liposomes offer great potential in CA entrapment.
Collapse
|
23
|
Luo X, Wang D, Wang M, Deng S, Huang Y, Xia Z. Development of phospholipid complex loaded self-microemulsifying drug delivery system to improve the oral bioavailability of resveratrol. Nanomedicine (Lond) 2021; 16:721-739. [PMID: 33860675 DOI: 10.2217/nnm-2020-0422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this study was to develop a formulation that combines a phospholipid complex (PC) and self-microemulsifying drug delivery system (SMEDDS) to improve the bioavailability of poorly water-soluble resveratrol (RES), called RPC-SMEDDS. Methods: RES-PC (RPC) and RPC-SMEDDS were optimized by orthogonal experiment and central composite design, respectively. The characteristics and mechanism of intestinal absorption were studied by Ussing chamber model. The pharmacokinetics was evaluated in rats. Results: RES was the substrate of MRP2 and breast cancer resistance protein (BCRP) rather than P-gp. The prepared RPC-SMEDDS prevented the efflux mediated by MRP2 and BCRP and improved the bioavailability of RES. Conclusion: These results suggested that the combination system of PC and SMEDDS was a promising method to improve the oral bioavailability of RES.
Collapse
Affiliation(s)
- Xinxin Luo
- School of Chemistry & Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Dandan Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Suya Deng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yike Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
24
|
De S, Gopikrishna A, Keerthana V, Girigoswami A, Girigoswami K. An Overview of Nanoformulated Nutraceuticals and their Therapeutic Approaches. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200901120458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:
Economic development and vast changes in food habits have accelerated
the consumption of junk foods, which are the leading causes of several disorders that turn the majority
of the people to use various herbal formulations or drugs for preventing various lifestyle diseases.
Nutraceuticals are the borderline apparatus between nutrients and drugs that provide supplementation
of the particular nutrient with a favorable health effect.
Objective:
Various nutraceutical compounds like vitamins, spices, polyphenols, prebiotics, and probiotics
in the form of powders, tablets, and capsules are currently marketed globally. Among them,
previous literature have reported that polyphenols are the most promising compounds that have
been proven to treat various chronic diseases like cancer, hypertension, diabetes mellitus (DM), osteoporosis,
osteoarthritis, dyslipidemia, multiple sclerosis, congenital anomalies, Alzheimer’s disease,
etc. It is warranted to discuss the benefits of nanoformulations of nutraceuticals.
Methods:
We have searched PubMed using the keywords nutraceuticals, nanoformulations, therapeutic
approaches, bionanotechnology, and therapeutics. The relevant papers and classical papers
in this field were selected to write this review.
Results and Discussion:
The different classifications of nutraceuticals were described in this review.
The comparison between the different categories of nutraceuticals with their nanoformulated
forms was made, explaining the benefits of nanoformulations regarding stability, bioavailability,
enhanced anti-oxidant properties, etc. A glimpse of the drawbacks of nanoformulations was also included.
Conclusion:
The current review highlights an overview of various nanoformulated nutraceuticals
and their approach towards the treatment of multiple diseases.
Collapse
Affiliation(s)
- Shaoli De
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Agraharam Gopikrishna
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Vedhantham Keerthana
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Agnishwar Girigoswami
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| | - Koyeli Girigoswami
- Department of Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Chennai-603103, India
| |
Collapse
|
25
|
The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13040451. [PMID: 33810552 PMCID: PMC8066164 DOI: 10.3390/pharmaceutics13040451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.
Collapse
|
27
|
Encapsulation of Berberis vulgaris Anthocyanins into Nanoliposome Composed of Rapeseed Lecithin: A Comprehensive Study on Physicochemical Characteristics and Biocompatibility. Foods 2021; 10:foods10030492. [PMID: 33668998 PMCID: PMC7996549 DOI: 10.3390/foods10030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/02/2023] Open
Abstract
In the present study, nanoliposomes composed of rapeseed lecithin were used for the encapsulation of anthocyanin compounds (AC). The nanoliposomes were prepared using hydration and ultrasound combined method, and the effect of AC concentration (4.5, 6.75, 9% w/w) on the characteristics of nanoliposomes including particle size, polydispersity index (PDI), zeta potential, and the encapsulation efficiency (EE) of nanoliposomes with and without AC were studied. The results suggested the fabricated nanoliposomes had a size range of 141-196 nm, negative zeta potential and narrow particle size distribution. Further, the samples containing 9% extract had the maximum EE (43%). The results showed elevation of AC concentration resulted in increased particle size, PDI, EE, and surface charge of nanoparticles. The presence of AC extract led to diminished membrane fluidity through the hydrophobic interactions with the hydrocarbon chain of fatty acids. TEM images suggested that the nanoliposomes were nearly spherical and the AC caused their improved sphericity. Further, in vitro biocompatibility tests for human mesenchymal (MSC) and fibroblast (FBL) cells indicated nanoparticles were not toxic. Specifically, the best formulations with the maximum compatibility and bioavailability for MSC and FBL cells were AC-loaded nanoliposomes with concentrations of 0.5 mL/mg and 10.3 mL/µg and, respectively.
Collapse
|
28
|
Figueroa-Robles A, Antunes-Ricardo M, Guajardo-Flores D. Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. Int J Pharm 2021; 593:120125. [DOI: 10.1016/j.ijpharm.2020.120125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
|
29
|
Javed A, Hussain MB, Tahir A, Waheed M, Anwar A, Shariati MA, Plygun S, Laishevtcev A, Pasalar M. Pharmacological Applications of Phlorotannins: A Comprehensive Review. Curr Drug Discov Technol 2021; 18:282-292. [PMID: 32026778 DOI: 10.2174/1570163817666200206110243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Seaweeds, including marine brown algae, are traditional food sources in Asia. Phlorotannins, as the product of the polyketide pathway, are mainly found in brown algae. Different properties have been attributed to this group of marine products ranging from antiallergic to anticancer activity. Mechanism of action is not obvious for all these properties, but there are some explanations for such effects. OBJECTIVE The current study aimed to review the phlorotannins and to assess the beneficial uses in medicine. METHODS Different databases were explored with the exact terms "Phlorotannin", "Seaweed" and "Brown Algae". Data assembly was finalized by June 2019. The papers showing the effects of phlorotannins in medicine were gathered and evaluated for further assessment. RESULTS General physiological aspects of phlorotannins were firstly evaluated. Different arrays of pharmacological properties ranging from anti-diabetic activity to cancer treatment were found. The mechanism of action for some of these beneficiary properties has been confirmed through rigorous examinations, but there are some features with unknown mechanisms. CONCLUSION Phlorotannins are characterized as a multifunctional group of natural products. Potential antioxidant characteristics could be attributed to preventive and/or their curative role in various diseases.
Collapse
Affiliation(s)
- Ahsan Javed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Tahir
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Marwa Waheed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ahsan Anwar
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russian Federation
| | - Sergey Plygun
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russian Federation
| | - Alexey Laishevtcev
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russian Federation
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Liposomes-In-Hydrogel Delivery System Enhances the Potential of Resveratrol in Combating Vaginal Chlamydia Infection. Pharmaceutics 2020; 12:pharmaceutics12121203. [PMID: 33322392 PMCID: PMC7764002 DOI: 10.3390/pharmaceutics12121203] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infections and causes serious reproductive tract complications among women. The limitations of existing oral antibiotics and treatment of antimicrobial resistance require alternative treatment options. We are proposing, for the first time, the natural polyphenol resveratrol (RES) in an advanced delivery system comprising liposomes incorporated in chitosan hydrogel, for the localized treatment of C. trachomatis infection. Both free RES and RES liposomes-in-hydrogel inhibited the propagation of C. trachomatis in a concentration-dependent manner, assessed by the commonly used in vitro model comprising McCoy cells. However, for lower concentrations, the anti-chlamydial effect of RES was enhanced when incorporated into a liposomes-in-hydrogel delivery system, with inhibition of 78% and 94% for 1.5 and 3 µg/mL RES, respectively for RES liposomes-in-hydrogel, compared to 43% and 72%, respectively, for free RES. Furthermore, RES liposomes-in-hydrogel exhibited strong anti-inflammatory activity in vitro, in a concentration-dependent inhibition of nitric oxide production in the LPS-induced macrophages (RAW 264.7). The combination of a natural substance exhibiting multi-targeted pharmacological properties, and a delivery system that provides enhanced activity as well as applicability for vaginal administration, could be a promising option for the localized treatment of C. trachomatis infection.
Collapse
|
31
|
Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of -32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed higher internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine.
Collapse
|
32
|
When polyphenols meet lipids: Challenges in membrane biophysics and opportunities in epithelial lipidomics. Food Chem 2020; 333:127509. [DOI: 10.1016/j.foodchem.2020.127509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
|
33
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|
34
|
Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3545-3555. [PMID: 32903987 PMCID: PMC7447741 DOI: 10.1007/s13197-020-04360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Encapsulation in packaging of food ingredients is of great interest at micro and nano levels. It is a distinct process leading to the entrapping of one substance within another material. Lipid oriented encapsulation methods are currently considered as a superior choice for encapsulation of sensitive ingredients, focusing on foods and dietary supplements of hydrophobic and hydrophilic molecules along with bioactive compounds, food ingredients supplementary systems for therapeutic purpose. Liposome and nanoliposome techniques have been widely used in food industry in nutrient enrichment and supplements. It enhances the sensory attributes and shelf life of the food product and serves as an alternative to micro encapsulation. These lipid and water oriented systems have distinguished advantages and provide higher surface area in food processing, which increases product solubility, bioavailability and permits accurate targeting of the encapsulated material to a greater extent in food and nutraceutical production. This review article focuses on nanoliposome, its preparation techniques, advantages and application of nanoliposome in food and nutraceutical process.
Collapse
Affiliation(s)
- Thirukkumar Subramani
- Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625104 India
| | - Hemalatha Ganapathyswamy
- Department of Food Science and Nutrition, Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625104 India
| |
Collapse
|
35
|
Jagwani S, Jalalpure S, Dhamecha D, Jadhav K, Bohara R. Pharmacokinetic and Pharmacodynamic Evaluation of Resveratrol Loaded Cationic Liposomes for Targeting Hepatocellular Carcinoma. ACS Biomater Sci Eng 2020; 6:4969-4984. [PMID: 33455290 DOI: 10.1021/acsbiomaterials.0c00429] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The destructive nature of the disease makes it difficult for clinicians to manage the condition. Hence, there is an urgent need to find new alternatives for HCC, as the role of conventional cytotoxic drugs has reached a plateau to control HCC associated mortality. Antioxidant compounds of plant origin with potential anti-tumor effect have been recognized as alternate modes in cancer treatment and chemoprevention. Resveratrol (RS) is a model natural nonflavonoid drug known for its anti-cancer activity. However, its clinical application is limited due to its poor bioavailability. The current research work aims to formulate, optimize, and characterize RS loaded cationic liposomes (RLs) for specific delivery in HCC. The optimized liposomes formulation (RL5) was spherical with a vesicle size (VS) of 145.78 ± 9.9 nm, ζ potential (ZP) of 38.03 ± 9.12 mV, and encapsulation efficiency (EE) of 78.14 ± 8.04%. In vitro cytotoxicity studies in HepG2 cells demonstrated an improved anti-cancer activity of RL5 in comparison with free RS. These outcomes were supported by a cell uptake study in HepG2 cells, in which RL5 exhibited a higher uptake than free RS. Furthermore, confocal images of HepG2 cells after 3 and 5 h of incubation showed higher internalization of coumarin 6 (C6) loaded liposomes (CL) as compared to those of the free C6. Pharmacokinetic and pharmacodynamic (prophylactic and therapeutic treatment modalities) studies were performed in N-nitrosodiethylamine (NDEA-carcinogen) induced HCC in rats. Pharmacokinetic evaluation of RL5 demonstrated increased localization of RS in cancerous liver tissues by 3.2- and 2.2-fold increase in AUC and Cmax, respectively, when compared to those of the free RS group. A pharmacodynamic investigation revealed a significant reduction in hepatocyte nodules in RL5 treated animals when compared to those of free RS. Further, on treatment with RL5, HCC-bearing rats showed a significant decrease in the liver marker enzymes (alanine transaminase, alkaline phosphatase, aspartate transaminase, total bilirubin levels, γ-glutamyl transpeptidase, and α-fetoprotein), in comparison with that of the disease control group. Our findings were supported by histopathological analysis, and we were first to demonstrate that NDEA induced detrimental effect on rat livers was successfully reversed with the treatment of RL5 formulation. These results implied that delivery of RS loaded cationic liposomes substantially controlled the severity of HCC and that they can be considered as a promising nanocarrier in the management of HCC.
Collapse
Affiliation(s)
- Satveer Jagwani
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Sunil Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India.,Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Kiran Jadhav
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Line Bazar, Kasaba Bawada, Kolhapur, 416006, Maharashtra, India.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Upper New Castle, Galway, H91 W2TY, Ireland
| |
Collapse
|
36
|
Gugleva V, Zasheva S, Hristova M, Andonova V. Topical use of resveratrol: technological aspects. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e48472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resveratrol is a natural polyphenolic phytoalexin found in grapes, berry skins, roots of Japanese knotweed and is reputed as an excellent antioxidant, anti-inflammatory, neuro- and cardio- protective agent. Resveratrol has also beneficial effects in therapy of different skin conditions such as acne, exfoliative eczema, psoriasis and is known to provide a protection against ultraviolet radiation-mediated oxidative stress. However, its low oral bioavailability and short biological half- life compromise its beneficial therapeutic effects; therefore, its topical application is a practical approach in the treatment of various cutaneous disorders. Challenges associated with the development of topical resveratrol drug delivery systems and dosage forms include its low aqueous solubility as well as its poor UV-, pH- and temperature-dependent stability. The purpose of this article is to discuss the mechanism of action, therapeutic effect and physicochemical properties of resveratrol and to present recent technological approaches designed to improve its stability, bioavailability and therapeutic efficiency.
Collapse
|
37
|
Reis A, Perez-Gregorio R, Mateus N, de Freitas V. Interactions of dietary polyphenols with epithelial lipids: advances from membrane and cell models in the study of polyphenol absorption, transport and delivery to the epithelium. Crit Rev Food Sci Nutr 2020; 61:3007-3030. [PMID: 32654502 DOI: 10.1080/10408398.2020.1791794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Currently, diet-related diseases such as diabetes, obesity, hypertension, and cardiovascular diseases account for 70% of all global deaths. To counteract the rising prevalence of non-communicable diseases governments are investing in persuasive educational campaigns toward the ingestion of fresh fruits and vegetables. The intake of dietary polyphenols abundant in Mediterranean and Nordic-type diets holds great potential as nutritional strategies in the management of diet-related diseases. However, the successful implementation of healthy nutritional strategies relies on a pleasant sensory perception in the mouth able to persuade consumers to adopt polyphenol-rich diets and on a deeper understanding on the chemical modifications, that affect not only their chemical properties but also their physical interaction with epithelial lipids and in turn their permeability, location within the lipid bilayer, toxicity and biological activity, and fate during absorption at the gastro-intestinal epithelium, transport in circulation and delivery to the endothelium. In this paper, we review the current knowledge on the interactions between polyphenols and their metabolites with membrane lipids in artificial membranes and epithelial cell models (oral, stomach, gut and endothelium) and the findings from polyphenol-lipid interactions to physiological processes such as oral taste perception, gastrointestinal absorption and endothelial health. Finally, we discuss the limitations and challenges associated with the current experimental approaches in membrane and cell model studies and the potential of polyphenol-rich diets in the quest for personalized nutritional strategies ("personalized nutrition") to assist in the prevention, treatment, and management of non-communicable diseases in an increasingly aged population.
Collapse
Affiliation(s)
- Ana Reis
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rosa Perez-Gregorio
- Department Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| |
Collapse
|
38
|
Salman Ul Islam, Ahmed MB, Mazhar Ul-Islam, Shehzad A, Lee YS. Switching from Conventional to Nano-natural Phytochemicals to Prevent and Treat Cancers: Special Emphasis on Resveratrol. Curr Pharm Des 2020; 25:3620-3632. [PMID: 31605574 DOI: 10.2174/1381612825666191009161018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Natural phytochemicals and their derivatives have been used in medicine since prehistoric times. Natural phytochemicals have potential uses against various disorders, including cancers. However, due to low bioavailability, their success in clinical trials has not been reproduced. Nanotechnology has played a vital role in providing new directions for diagnosis, prevention, and treatment of different disorders, and of cancer in particular. Nanotechnology has demonstrated the capability to deliver conventional natural products with poor solubility or a short half-life to target specific sites in the body and regulate the release of drugs. Among the natural products, the phytoalexin resveratrol has demonstrated therapeutic effects, including antioxidant, antiinflammatory, and anti-proliferative effects, as well as the potential to inhibit the initiation and promotion of cancer. However, low water solubility and extensive first-pass metabolism lead to poor bioavailability of resveratrol, hindering its potential. Conventional dosage forms of resveratrol, such as tablets, capsules, dry powder, and injections, have met with limited success. Nanoformulations are now being investigated to improve the pharmacokinetic characteristics, as well as to enhance the bioavailability and targetability of resveratrol. OBJECTIVES This review details the therapeutic effectiveness, mode of action, and pharmacokinetic limitations of resveratrol, as well as discusses the successes and challenges of resveratrol nanoformulations. Modern nanotechnology techniques to enhance the encapsulation of resveratrol within nanoparticles and thereby enhance its therapeutic effects are emphasized. CONCLUSION To date, no resveratrol-based nanosystems are in clinical use, and this review would provide a new direction for further investigations on innovative nanodevices that could consolidate the anticancer potential of resveratrol.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad B Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Young S Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
39
|
Formulation of vitamin C encapsulation in marine phospholipids nanoliposomes: Characterization and stability evaluation during long term storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Kawish M, Elhissi A, Jabri T, Muhammad Iqbal K, Zahid H, Shah MR. Enhancement in Oral Absorption of Ceftriaxone by Highly Functionalized Magnetic Iron Oxide Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12060492. [PMID: 32481715 PMCID: PMC7355964 DOI: 10.3390/pharmaceutics12060492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
The present study aims at the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded N′-methacryloylisonicotinohydrazide (MIH)-functionalized magnetic nanoparticles (CFT-MIH-MNPs). Atomic force microscopy (AFM) and dynamic light scattering (DLS) showed that the developed CFT loaded MIH-MNPs are spherical, with a measured hydrodynamic size of 184.0 ± 2.7 nm and negative zeta potential values (–20.2 ± 0.4 mV). Fourier transformed infrared spectroscopic (FTIR) analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiency (EE) of 79.4% ±1.5%, and the drug was released gradually in vitro and showed prolonged in vitro stability using simulated gastrointestinal tract (GIT) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.4 ± 1.8 µg/mL in comparison with its control (2.0 ± 0.6 µg/mL). Overall, the developed CFT-MIH-MNPs formulation was promising for provision of high drug entrapment, gradual drug release and suitability for enhancing the oral delivery of CFT.
Collapse
Affiliation(s)
- Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health, and Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Tooba Jabri
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
| | - Kanwal Muhammad Iqbal
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
| | - Hina Zahid
- Faculty of Pharmaceutical Sciences Dow University of Health Sciences Karachi, Karachi 74200, Pakistan; or
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
- Correspondence: ; Tel.: +92-111-222-292 (ext. 233)
| |
Collapse
|
41
|
Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics (Basel) 2020; 9:antibiotics9050276. [PMID: 32466210 PMCID: PMC7277095 DOI: 10.3390/antibiotics9050276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
Collapse
|
42
|
Resveratrol Nanoparticles: A Promising Therapeutic Advancement over Native Resveratrol. Processes (Basel) 2020. [DOI: 10.3390/pr8040458] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the application of RES in in vivo conditions, encapsulation processes have been carried out using various nanoparticles that are made of biocompatible biomaterials, which are easily digested or metabolized, and RES is absorbed effectively. These biomaterials are non-toxic and are safe to be used as components in the biotherapeutics. They are made from naturally available by-products of food materials like zein or corn or components of the physiological system as with lipids. The versatility of the RES nanoparticles in their different materials, working range sizes, specificity in their targeting in various human diseases, and the mechanisms associated with them are discussed in this review.
Collapse
|
43
|
Jagwani S, Jalalpure S, Dhamecha D, Hua GS, Jadhav K. A Stability Indicating Reversed Phase HPLC Method for Estimation of trans-Resveratrol in Oral Capsules and Nanoliposomes. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/22297928.2019.1696227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Satveer Jagwani
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Sunil Jalalpure
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Dinesh Dhamecha
- Dr. Prabhakar Kore Basic Science Research Center, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| | - Gan Siew Hua
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Kiran Jadhav
- KLE College of Pharmacy, KLE Academy of Higher Education and Research, Nehru Nagar, Belagavi-590010, Karnataka, India
| |
Collapse
|
44
|
Rezaei Erami S, Raftani Amiri Z, Jafari SM. Nanoliposomal encapsulation of Bitter Gourd (Momordica charantia) fruit extract as a rich source of health-promoting bioactive compounds. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Cardia MC, Caddeo C, Lai F, Fadda AM, Sinico C, Luhmer M. 1H NMR study of the interaction of trans-resveratrol with soybean phosphatidylcholine liposomes. Sci Rep 2019; 9:17736. [PMID: 31780702 PMCID: PMC6883048 DOI: 10.1038/s41598-019-54199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023] Open
Abstract
Resveratrol (RSV) is a well-known natural derivative with a wide range of biological and pharmacological activities. Despite of these demonstrated properties, it exhibits low both aqueous solubility and chemical stability and therefore low bioavailability. Consequently, the major concern of the technological research is to exploit delivery systems able to overcome bioavailability problems. In the recent past liposomes have been successfully studied for these purposes. In this paper, 1H-NMR spectroscopy, Nuclear Overhauser Spectroscopy (NOESY) as well as Paramagnetic Relaxation Enhancements (PRE) experiments have been carried out to quantitatively investigate the incorporation of resveratrol, at both the liposome preparation stage and by preformed liposomes, also with the aim to characterize resveratrol- soybean phosphatidylcholine (P90G) lipid bilayer interactions. Overall results of 1H NMR spectroscopy analysis suggest that RSV is located nearby the phosphocholine headgroups and also provide quantitative data on the incorporation of RSV (5% w/w), which corresponds to a 150-fold increase with respect to the solubility of RSV in water. Beside, considering that the same level of RSV incorporation was obtained via spontaneous uptake by preformed P90G liposomes, it can be concluded that RSV easily diffuses through the lipid bilayer.
Collapse
Affiliation(s)
- Maria Cristina Cardia
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124, Cagliari, Italy
| | - Carla Caddeo
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124, Cagliari, Italy
| | - Francesco Lai
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124, Cagliari, Italy
| | - Anna Maria Fadda
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124, Cagliari, Italy
| | - Chiara Sinico
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Michel Luhmer
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/08, 1050, Brussels, Belgium.
| |
Collapse
|
46
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. Unravelling the insulin-like growth factor I-mediated photoprotection of the skin. Cytokine Growth Factor Rev 2019; 52:45-55. [PMID: 31767341 DOI: 10.1016/j.cytogfr.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Chronic exposure of human skin to solar ultraviolet radiation (UVR) induces a range of biological reactions which may directly or indirectly lead to the development of skin cancer. In order to overcome these damaging effects of UVR and to reduce photodamage, the skin's endogenous defence system functions in concert with the various exogenous photoprotectors. Growth factors, particularly insulin-like growth factor-I (IGF-I), produced within the body as a result of cellular interaction in response to UVR demonstrates photoprotective properties in human skin. This review summarises the impact of UVR-induced photolesions on human skin, discusses various endogenous as well as exogenous approaches of photoprotection described to date and explains how IGF-I mediates UVR photoprotective responses at the cellular and mitochondrial level. Further, we describe the current interventions using growth factors and propose how the knowledge of the IGF-I photoprotection signalling cascades may direct the development of improved UVR protection and remedial strategies.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Institute of Medical Biology, A⁎STAR, Singapore
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
47
|
Torres S, González-Ramírez M, Gavilán J, Paz C, Palfner G, Arnold N, Fuentealba J, Becerra J, Pérez C, Cabrera-Pardo JR. Exposure to UV-B Radiation Leads to Increased Deposition of Cell Wall-Associated Xerocomic Acid in Cultures of Serpula himantioides. Appl Environ Microbiol 2019; 85:e00870-19. [PMID: 31285193 PMCID: PMC6715839 DOI: 10.1128/aem.00870-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022] Open
Abstract
Many fungi are thought to have developed morphological and physiological adaptations to cope with exposure to UV-B radiation, but in most species, such responses and their protective effects have not been explored. Here, we study the adaptive response to UV-B radiation in the widespread, saprotrophic fungus Serpula himantioides, frequently found colonizing coniferous wood in nature. We report the morphological and chemical responses of S. himantioides to controlled intensities of UV-B radiation, under in vitro culture conditions. Ultraviolet radiation induced a decrease in the growth rate of S. himantioides but did not cause gross morphological changes. Instead, we observed accumulation of pigments near the cell wall with increasing intensities of UV-B radiation. Nuclear magnetic resonance (NMR) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses revealed that xerocomic acid was the main pigment present, both before and after UV-B exposure, increasing from 7 mg/liter to 15 mg/liter after exposure. We show that xerocomic acid is a photoprotective metabolite with strong antioxidant abilities, as evidenced by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt], and oxygen radical absorbance capacity (ORAC) assays. Finally, we assessed the capacity of xerocomic acid as a photoprotective agent on HEK293 cells and observed better photoprotective properties than those of β-carotene. Xerocomic acid is therefore a promising natural product for development as a UV-protective ingredient in cosmetic and pharmaceutical products.IMPORTANCE Our study shows the morphological and chemical responses of S. himantioides to controlled doses of UV-B radiation under in vitro culture conditions. We found that increased biosynthesis of xerocomic acid was the main strategy adopted by S. himantioides against UV-B radiation. Xerocomic acid showed strong antioxidant and photoprotective abilities, which has not previously been reported. Our results indicate that upon UV-B exposure, S. himantioides decreases its hyphal growth rate and uses this energy instead to increase the biosynthesis of xerocomic acid, which is allocated near the cell wall. This metabolic switch likely allows xerocomic acid to efficiently defend S. himantioides from UV radiation through its antioxidant and photoprotective properties. The findings further suggest that xerocomic acid is a promising candidate for development as a cosmetic ingredient to protect against UV radiation and should therefore be investigated in depth in the near future both in vitro and in vivo.
Collapse
Affiliation(s)
- Solange Torres
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mariela González-Ramírez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Goetz Palfner
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Becerra
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Claudia Pérez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jaime R Cabrera-Pardo
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Departamento de Química, Facultad de Ciencias, Universidad del Bio-Bio, Concepción, Chile
| |
Collapse
|
48
|
Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf B Biointerfaces 2019; 180:127-140. [DOI: 10.1016/j.colsurfb.2019.04.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 01/05/2023]
|
49
|
Zhang L, Zhu K, Zeng H, Zhang J, Pu Y, Wang Z, Zhang T, Wang B. Resveratrol solid lipid nanoparticles to trigger credible inhibition of doxorubicin cardiotoxicity. Int J Nanomedicine 2019; 14:6061-6071. [PMID: 31534336 PMCID: PMC6681569 DOI: 10.2147/ijn.s211130] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is clinically employed to treat cancers especially for breast cancer and lung cancer. But its clinical applications are limited by the dose-dependent cardiac toxicity. Resveratrol (Res), a polyphenolic antitoxin, has been proved to be capable of improving the cardiomyocyte calcium cycling by up-regulating SIRT-1-mediated deacetylation to inhibit DOX-induced cardiotoxicity. Purpose: The objective of this study was to develop a solid lipid nanoparticle (SLN) loaded with Res to trigger inhibition of DOX-induced cardiotoxicity. Methods: Res-SLN was prepared by emulsification-diffusion method followed by sonication and optimized using central composite design/response surface method. The Res-SLN was further evaluated by dynamic light scattering, transmission electron microscopy for morphology and high performance liquid chromatography for drug loading and release profile. And the Res distribution in vivo was determined on rats while the effect of inhibit DOX-induced cardiotoxicity was investigated on mice. Results: Res-SLN with homogeneous particle size of 271.13 nm was successfully formulated and optimized. The prepared Res-SLN showed stable under storage and sustained release profile, improving the poor solubility of Res. Heart rate, ejection fractions and fractional shortening of Res-SLN treating mice were found higher than those on mice with cardiac toxicity induced by single high-dose intraperitoneal injection of DOX. And the degree of myocardial ultrastructural lesions on mice was also observed. Conclusion: Res-SLN has a certain therapeutic effect for protecting the myocardium and reducing DOX-induced cardiotoxicity in mice.
Collapse
Affiliation(s)
- Lili Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kexin Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hairong Zeng
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiaxin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhicheng Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Arch Dermatol Res 2019; 311:577-588. [PMID: 31115657 DOI: 10.1007/s00403-019-01930-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/01/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023]
Abstract
The grape seed extract (GSE) and its main active polyphenol, resveratrol (RES), have shown considerable antioxidant activities, besides possessed protective and therapeutic effects against various skin complications. This paper discusses the favorable effects of RES, GSE and their nanoformulations for dermatological approaches, with specific emphasis on clinical interventions. In this manner, electronic databases including PubMed, Science Direct and Google Scholar were searched. Data were collected from 1980 up to February 2019. The search terms included "Vitis vinifera", "grape", "resveratrol", "skin", "dermatology", and "nanoformulation". To increase the skin permeability of GSE and RES, several innovative nanoformulation such as liposomes, niosomes, solid-lipid nanoparticles, nanostructured lipid carriers, and lipid-core nanocapsule has been evaluated. According to our extensive searches, both RES and GSE have beneficial impacts on skin disorders such as chloasma, acne vulgaris, skin aging, as well as wound and facial redness. More clinical studies with nanoformulation approaches are recommended to achieve conclusive outcomes regarding the efficacy of RES and GSE in the management of skin diseases.
Collapse
|