1
|
Tarannum A, Arif Z, Mustafa M, Alam K, Moinuddin, Habib S. Albumin from sera of rheumatoid arthritis patients share multiple biochemical, biophysical and immunological properties with in vitro generated glyco-nitro-oxidized-albumin. J Biomol Struct Dyn 2025; 43:582-598. [PMID: 37982266 DOI: 10.1080/07391102.2023.2283153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
The purpose of the present study is to explore the effects of endogenous stressors on structure and function of rheumatoid arthritis (RA) patients' albumin. In contrast to glycated-albumin or nitro-oxidized-albumin, high titre antibodies against glyco-nitro-oxidized-albumin were found in the sera of RA patients. Also, compared to the other two modified forms of albumin, glyco-nitro-oxidized-albumin showed highest percent inhibition. Albumin isolated from RA patients' sera displayed hyperchromicity and quenching of tyrosine and tryptophan fluorescence. Fluorescence spectroscopy studies also revealed the presence of dityrosine and advanced glycation end products in RA patient's albumin. RA patients' albumin showed weaker binding with 1-anilinonaphthalene-8-sulfonic acid dye. Secondary structure alterations were demonstrated by circular dichroism and Fourier transform infrared spectroscopy. Biochemical investigations revealed substantial decline in the availability of free side chains of amino acid residues; increased carbonyls and decreased sulfhydryls in RA patients' albumin. The functional impairment in RA patients' albumin was revealed by their low binding with bilirubin and cobalt. Liquid chromatography mass spectrometry analysis revealed the presence of Nε-(carboxymethyl) lysine and 3-nitrotyrosine in RA patients' albumin. The amyloidogenic aggregation of RA patients' albumin was confirmed by Congo red absorption and thioflavin-T fluorescence assays. The morphology of the aggregates was visualized under scanning and transmission electron microscope. From the above findings, we inferred that endogenous stress in RA patients have modified albumin and produce structural/functional abnormalities. Also, the presence of anti-glyco-nitro-oxidized-albumin antibodies along with other clinical features may be used as biomarker for the diagnosis and assessment of treatment responses in RA patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhlas Tarannum
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Zarina Arif
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
2
|
Zaleski MH, Chase LS, Hood ED, Wang Z, Nong J, Espy CL, Zamora ME, Wu J, Morrell LJ, Muzykantov VR, Myerson JW, Brenner JS. Conjugation Chemistry Markedly Impacts Toxicity and Biodistribution of Targeted Nanoparticles, Mediated by Complement Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409945. [PMID: 39663706 DOI: 10.1002/adma.202409945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Conjugation chemistries are a major enabling technology for the development of drug delivery systems, from antibody-drug conjugates to antibody-targeted lipid nanoparticles inspired by the success of the COVID-19 vaccine. However, here it is shown that for antibody-targeted nanoparticles, the most popular conjugation chemistries directly participate in the activation of the complement cascade of plasma proteins. Their activation of complement leads to large changes in the biodistribution of nanoparticles (up to 140-fold increased uptake into phagocytes of the lungs) and multiple toxicities, including a 50% drop in platelet count. It is founded that the mechanism of complement activation varies dramatically between different conjugation chemistries. Dibenzocyclooctyne, a commonly used click-chemistry, caused aggregation of conjugated antibodies, but only on the surface of nanoparticles (not in bulk solution). By contrast, thiol-maleimide chemistry do not activate complement via its effects on antibodies, but rather because free maleimide bonded to albumin in plasma, and clustered albumin is then attacked by complement. Using these mechanistic insights, solutions are engineered that reduced the activation of complement for each class of conjugation chemistry. These results highlight that while conjugation chemistry is essential for the future of nanomedicine, it is not innocuous and must be designed with opsonins like complement in mind.
Collapse
Affiliation(s)
- Michael H Zaleski
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Liam S Chase
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Zhicheng Wang
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Jia Nong
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Carolann L Espy
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Marco E Zamora
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Jichuan Wu
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Lianne J Morrell
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, University of Pennsylvania, 421 Curie Blvd., 354 BRB II/III, Philadelphia, PA, 19104, USA
- Department of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Milef G, Ghazvini S, Prajapati I, Chen YC, Wang Y, Boroumand M. Particle formation in response to different protein formulations and containers: Insights from machine learning analysis of particle images. J Pharm Sci 2024; 113:3470-3478. [PMID: 39389538 DOI: 10.1016/j.xphs.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Subvisible particle count is a biotherapeutics stability indicator widely used by pharmaceutical industries. A variety of stresses that biotherapeutics are exposed to during development can impact particle morphology. By classifying particle morphological differences, stresses that have been applied to monoclonal antibodies (mAbs) can be identified. This study aims to evaluate common biotherapeutic drug storage and shipment conditions that are known to impact protein aggregation. Two different studies were conducted to capture particle images using micro-flow imaging and to classify particles using a convolutional neural network. The first study evaluated particles produced in response to agitation, heat, and freeze-thaw stresses in one mAb formulated in five different formulations. The second study evaluated particles from two common drug containers, a high-density polyethylene bottle and a glass vial, in six mAbs exposed solely to agitation stress. An extension of this study was also conducted to evaluate the impact of sequential stress exposure compared to exposure to one stress alone, on particle morphology. Overall, the convolutional neural network was able to classify particles belonging to a particular formulation or container. These studies indicate that storage and shipping stresses can impact particle morphology according to formulation composition and mAb.
Collapse
Affiliation(s)
- Gabriella Milef
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Saba Ghazvini
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Indira Prajapati
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yu-Chieh Chen
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yibo Wang
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mehdi Boroumand
- Data Science and Modeling, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
4
|
Cohen JR, Joubert MK, Tabassum S, Capili A, Carreon J, Xiang C, Prabhu S, Merlo A, Mytych D, Dolan DG, Kouda R. Experimental validation of a parenteral permitted daily exposure value for cleaning-induced degradants from recombinant therapeutic proteins with in vitro immunogenicity assays. J Pharm Sci 2024:S0022-3549(24)00490-8. [PMID: 39490658 DOI: 10.1016/j.xphs.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Multiproduct manufacturing of biotherapeutic proteins generate cleaning-induced protein degradants because of extreme pH and temperature conditions during the cleaning process. Cleaning Acceptance limits are calculated based on the maximum allowable carryover (MAC) assessment of the previously manufactured active pharmaceutical ingredient (API) - or drug product - based on the permitted daily exposure (PDE) of the previously manufactured API into the dose of subsequent product. In this study, we tested a previously determined PDE value for cleaning-induced protein degradants of 650 µg/dose. A bench-scale cleaning method was used to generate cleaning induced degradants from both a half-life extension (HLE) BiTE® molecule and a mAb product. For this investigation, degradants of HLE BiTE®-A and mAb-1 were characterized alone or after spiking of 650 µg of degradants of HLE BiTE®-A or 650 µg degradants of mAb-1, into mAb-1, respectively. These samples were characterized by endotoxin testing, size exclusion chromatography (SEC), light obscuration by HIAC, and micro-fluidic imaging (MFI). These results suggest that significant degradation of the molecule occurs because of the cleaning procedure, and it is no longer in the intact form or active state. The potential immogenic impact was assessed using a cell line assay to assess immune activation, and a human Peripheral Blood Mononuclear Cell (PBMC) assay to assess T cell activation, T cell proliferation, and cytokine release after 20 h and 7 days. Findings from the various in vitro cell-based immune activation assays suggest that the presence of 650 µg of carryover of degradants either alone or spiked into the same or a cross-product do not increase immunogenicity risk in cell-based assays - suggesting that the current PDE of 650 µg/dose for cleaning-induced degradant carryover does not have a risk of immunogenicity in patients.
Collapse
Affiliation(s)
- Joseph R Cohen
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States.
| | - Marisa K Joubert
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Syeda Tabassum
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Allyson Capili
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Julia Carreon
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Cathie Xiang
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Siddharth Prabhu
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Anthony Merlo
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States
| | - Dan Mytych
- The Department of Clinical Immunology, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - David G Dolan
- The Department of Environmental Health and Safety, Amgen Inc., Thousand Oaks, CA 91320, United States
| | - Ram Kouda
- The Department of Process Development, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, United States.
| |
Collapse
|
5
|
Nguyen GT, Le TT, Vu SDT, Nguyen TT, Le MTT, Pham VT, Nguyen HTT, Ho TT, Hoang HTT, Tran HX, Chu HH, Pham NB. A plant-based oligomeric CD2v extracellular domain antigen exhibits equivalent immunogenicity to the live attenuated vaccine ASFV-G-∆I177L. Med Microbiol Immunol 2024; 213:22. [PMID: 39412651 DOI: 10.1007/s00430-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a deadly, highly contagious disease in both domestic pigs and wild boar. With mortality up to 100%, the disease has been making a serious impact on the swine industry worldwide. Because no effective antiviral treatment has been observed, proactive prevention such as vaccination remains the key to controlling the outbreak. In the pursuit of expediting vaccine development, our current work has made the first report for heterologous production of the viral outer envelope glycoprotein CD2v extracellular domain (CD2v ED), a proposed promising vaccine antigen candidate in the "green" synthetic host Nicotiana benthamiana. Protein oligomerization strategies were implemented to increase the immunogenicity of the target antigen. Herein, the protein was expressed in oligomeric forms based on the C-terminally fused GCN4pII trimerization motif and GCN4pII_TP oligomerization motif. Quantitative western blot analysis showed significantly higher expression of trimeric CD2v ED_GCN4pII with a yield of about 12 mg/100 g of fresh weight, in comparison to oligomeric CD2v ED_GCN4pII_TP, revealing the former is the better choice for further studies. The results of purification and size determination by size exclusion chromatography (SEC) illustrated that CD2v ED_GCN4pII was successfully produced in stable oligomeric forms throughout the extraction, purification, and analysis process. Most importantly, purified CD2v ED_GCN4pII was demonstrated to induce both humoral and cellular immunity responses in mice to extents equivalent to those of the live attenuated vaccine ASFV-G-∆I177L, suggesting it as the potential subunit vaccine candidate for preventing ASFV.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thanh Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Son Duy Thai Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Tra Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - My Thi Tra Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Van Thi Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hien Thi Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hang Thi Thu Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company - NAVETCO, Ho Chi Minh City, Viet Nam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Jordan JS, Harper CC, Zhang F, Kofman E, Li M, Sathiyamoorthy K, Zaragoza JP, Fayadat-Dilman L, Williams ER. Charge Detection Mass Spectrometry Reveals Conformational Heterogeneity in Megadalton-Sized Monoclonal Antibody Aggregates. J Am Chem Soc 2024; 146:23297-23305. [PMID: 39110484 DOI: 10.1021/jacs.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Aggregation of protein-based therapeutics can occur during development, production, or storage and can lead to loss of efficacy and potential toxicity. Native mass spectrometry of a covalently linked pentameric monoclonal antibody complex with a mass of ∼800 kDa reveals several distinct conformations, smaller complexes, and abundant higher-order aggregates of the pentameric species. Charge detection mass spectrometry (CDMS) reveals individual oligomers up to the pentamer mAb trimer (15 individual mAb molecules; ∼2.4 MDa) whereas intermediate aggregates composed of 6-9 mAb molecules and aggregates larger than the pentameric dimer (1.6 MDa) were not detected/resolved by standard mass spectrometry, size exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), or by mass photometry. Conventional quadrupole time-of-flight mass spectrometry (QTOF MS), mass photometry, SEC, and CE-SDS did not resolve partially or more fully unfolded conformations of each oligomer that were readily identified using CDMS by their significantly higher extents of charging. Trends in the charge-state distributions of individual oligomers provides detailed insight into how the structures of compact and elongated mAb aggregates change as a function of aggregate size. These results demonstrate the advantages of CDMS for obtaining accurate masses and information about the conformations of large antibody aggregates despite extensive overlapping m/z values. These results open up the ability to investigate structural changes that occur in small, soluble oligomers during the earliest stages of aggregation for antibodies or other proteins.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Fan Zhang
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Mandy Li
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Jan Paulo Zaragoza
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., 213 E Grand Ave., South San Francisco, California 94080, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
8
|
Schlich M, D'Apice L, Lai F, Sinico C, Valenti D, Catalano F, Marotta R, Decuzzi P, Italiani P, Maria Fadda A. Boosting antigen-specific T cell activation with lipid-stabilized protein nanoaggregates. Int J Pharm 2024; 661:124404. [PMID: 38945464 DOI: 10.1016/j.ijpharm.2024.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Vaccines based on protein antigens have numerous advantages over inactivated pathogens, including easier manufacturing and improved safety. However, purified antigens are weakly immunogenic, as they lack the spatial organization and the associated 'danger signals' of the pathogen. Formulating vaccines as nanoparticles enhances the recognition by antigen presenting cells, boosting the cell-mediated immune response. This study describes a nano-precipitation method to obtain stable protein nanoaggregates with uniform size distribution without using covalent cross-linkers. Nanoaggregates were formed via microfluidic mixing of ovalbumin (OVA) and lipids in the presence of high methanol concentrations. A purification protocol was set up to separate the nanoaggregates from OVA and liposomes, obtained as byproducts of the mixing. The nanoaggregates were characterized in terms of morphology, ζ-potential and protein content, and their interaction with immune cells was assessed in vitro. Antigen-specific T cell activation was over 6-fold higher for nanoaggregates compared to OVA, due in part to the enhanced uptake by immune cells. Lastly, a two-dose immunization with nanoaggregates in mice induced a significant increase in OVA-specific CD8+ T splenocytes compared to soluble OVA. Overall, this work presents for the first time the microfluidic production of lipid-stabilized protein nanoaggregates and provides a proof-of-concept of their potential for vaccination.
Collapse
Affiliation(s)
- Michele Schlich
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy; Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, 16163 Genoa Italy.
| | - Luciana D'Apice
- National Research Council (CNR) - Institute of Biochemistry and Cell Biology (IBBC), 80131 Naples Italy
| | - Francesco Lai
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Chiara Sinico
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Donatella Valenti
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Federico Catalano
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Paola Italiani
- National Research Council (CNR) - Institute of Biochemistry and Cell Biology (IBBC), 80131 Naples Italy
| | - Anna Maria Fadda
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy.
| |
Collapse
|
9
|
Budyak IL, Huang L, Dukor RK. Higher Order Structure Characterization of Two Interdomain Disulfide Bond Variants of a Bispecific Monoclonal Antibody. J Pharm Sci 2024; 113:2651-2655. [PMID: 38750935 DOI: 10.1016/j.xphs.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
Characterization and understanding of protein higher order structure (HOS) is essential at all stages of biologics development. Here, two folding variants of a bispecific monoclonal antibody, the correctly folded form and an alternative configuration with reduced potency, were characterized by several HOS characterization techniques. Specifically, differential scanning calorimetry (DSC), circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), Raman and Raman optical activity (ROA) spectroscopy were used together to elucidate the impacts of disulfide bond scrambling in the fused scFv domains on the structure and thermal stability of the antibody. This study illustrates the importance of selecting appropriate biophysical characterization techniques based on the nature and magnitude of the HOS change.
Collapse
Affiliation(s)
- Ivan L Budyak
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States.
| | - Lihua Huang
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | | |
Collapse
|
10
|
Cancelarich NL, Arrulo M, Gugliotti ST, Barbosa EA, Moreira DC, Basso NG, Pérez LO, Teixeira C, Gomes P, de la Torre BG, Albericio F, Eaton P, Leite JRSA, Marani MM. First Bioprospecting Study of Skin Host-Defense Peptides in Odontophrynus americanus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1714-1724. [PMID: 38900961 DOI: 10.1021/acs.jnatprod.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The adaptation of amphibians to diverse environments is closely related to the characteristics of their skin. The complex glandular system of frog skin plays a pivotal role in enabling these animals to thrive in both aquatic and terrestrial habitats and consists of crucial functions such as respiration and water balance as well as serving as a defensive barrier due to the secretion of bioactive compounds. We herein report the first investigation on the skin secretion of Odontophrynus americanus, as a potential source of bioactive peptides and also as an indicator of its evolutionary adaptations to changing environments. Americanin-1 was isolated and identified as a neutral peptide exhibiting moderate antibacterial activity against E. coli. Its amphipathic sequence including 19 amino acids and showing a propensity for α-helix structure is discussed. Comparisons of the histomorphology of the skin of O. americanus with other previously documented species within the same genus revealed distinctive features in the Patagonian specimen, differing from conspecifics from other Argentine provinces. The presence of the Eberth-Katschenko layer, a prevalence of iridophores, and the existence of glycoconjugates in its serous glands suggest that the integument is adapted to retain skin moisture. This adaptation is consistent with the prevailing aridity of its native habitat.
Collapse
Affiliation(s)
- Natalia L Cancelarich
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Miriam Arrulo
- School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Eder A Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
- Laboratorio de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química-UnB, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Néstor G Basso
- Instituto de Diversidad y Evolución Austral (IDEAus), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Luis Orlando Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Gyros Protein Technologies, Inc., Tucson, Arizona 85714, United States
| | - Paula Gomes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Beatriz G de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Peter Eaton
- Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, United Kingdom
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| |
Collapse
|
11
|
Navarro R, Frago S, Hangiu O, Erce-Llamazares A, Lázaro-Gorines R, Morcillo MA, Rodriguez-Peralto JL, Sanz L, Compte M, Alvarez-Vallina L. Pharmacokinetics and safety of LEAD-452, an EGFR-specific 4-1BB-agonistic trimerbody in non-human primates. Toxicol Appl Pharmacol 2024; 487:116961. [PMID: 38740095 DOI: 10.1016/j.taap.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
LEAD-452 is a humanized bispecific EGFR-targeted 4-1BB-agonistic trimerbody with a unique trimeric configuration compared to other 4-1BB-specific antibodies that are currently in development. Indeed, enhanced tumor-specific costimulation and very remarkable safety and efficacy profiles have been observed in mouse models. Here, we conducted for the first time a preclinical pharmacokinetic and toxicity study in non-human primates (NHP) (Macaca fascicularis). LEAD-452 exhibits comparable binding affinity for human and macaque targets, indicating its pharmacological significance for safety testing across species. The NHP were administered LEAD-452 in a series of ascending doses, ranging from 0.1 mg/kg to 10 mg/kg, and repeated doses up to 20 mg/kg. The administration of LEAD-452 was found to be clinically well tolerated, with no major related adverse effects observed. Furthermore, there have been no reported cases of liver toxicity, thrombocytopenia, and neutropenia, which are commonly associated with treatments using conventional anti-4-1BB IgG-based antibodies. In addition, neither IgM nor IgG-based anti-drug antibodies were detected in serum samples from NHP during the study, regardless of the dose of LEAD-452 administered. These results support the clinical development of LEAD-452 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rocío Navarro
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Susana Frago
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain
| | - Oana Hangiu
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain; Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Rodrigo Lázaro-Gorines
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Miguel A Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - José L Rodriguez-Peralto
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain; Department of Pathology, Universidad Complutense, Madrid, Spain; Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Fundación para la Investigación Biomédica Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Tres Cantos, Madrid, Spain.
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain; Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain; H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
12
|
Blümel M, Cordoba-Rodriguez R, Carroll JA, Beardsley RL, Maggio F, Wylie D, Tsang V, Ehrick R, Francq BG, Pohl T, Taktak S, Spasoff A, Morrison A, Albarghouthi M. Patient-centric Comparability Assessment of Biopharmaceuticals. J Pharm Sci 2024; 113:1415-1425. [PMID: 38373591 DOI: 10.1016/j.xphs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
The comparability assessment of a biological product after implementing a manufacturing process change should involve a risk-based approach. Process changes may occur at any stage of the product lifecycle: early development, clinical manufacture for pivotal trials, or post-approval. The risk of the change to impact product quality varies. The design of the comparability assessment should be adapted accordingly. A working group reviewed and consolidated industry approaches to assess comparability of traditional protein-based biological products during clinical development and post-approval. The insights compiled in this review article encompass topics such as a risk-evaluation strategy, the design of comparability studies, definition of assessment criteria for comparability, holistic evaluation of data, and the regulatory submission strategy. These practices can be leveraged across the industry to help companies in design and execution of comparability assessments, and to inform discussions with global regulators.
Collapse
Affiliation(s)
- Markus Blümel
- Novartis Pharma AG, Biologics Analytical Development, Lichtstrasse 35, CH-4056 Basel, Switzerland.
| | - Ruth Cordoba-Rodriguez
- AstraZeneca, CMC Regulatory Affairs, 200 Orchard Ridge Drive, Gaithersburg, MD 20878, USA
| | - James A Carroll
- Pfizer Research and Development, Analytical R&D, 875 Chesterfield Parkway, St. Louis, MO 63017, USA
| | - Richard L Beardsley
- Genentech, (A Member of the Roche Group), Analytical Development and QC, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Frank Maggio
- Amgen Inc., 40 Technology Way, West Greenwich, RI 02817, USA
| | - David Wylie
- Merck, 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Valerie Tsang
- Biogen, Biologics Development, 5000 Davis Drive, RTP, NC 27709, USA
| | - Robin Ehrick
- AbbVie Inc., 1 N. Waukegan Rd., North Chicago, IL 60064, USA
| | - Bernard G Francq
- GSK, Vaccines CMC statistics, 89 Rue de l'Institut, 1330 Rixensart, Belgium
| | - Thomas Pohl
- Novartis Pharma AG, Biologics Analytical Development, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Sonia Taktak
- Pfizer Research and Development, Analytical R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Andrew Spasoff
- AstraZeneca, Development Quality Biologics, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Amy Morrison
- Biogen, Manufacturing Sciences, 5000 Davis Drive, RTP, NC 27709, USA
| | - Methal Albarghouthi
- AstraZeneca, Biopharmaceutical Development, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
13
|
Zheng L, Console G, Wang C, Whang K, Ting HP, Torres YM, Rude E, Smithson DC, Stella C, Bhargava AC. Development and Qualification of Analytical Methods to Support Low Concentration Drug Product in-use Studies. J Pharm Sci 2024; 113:604-615. [PMID: 37758160 DOI: 10.1016/j.xphs.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The emergence of highly potent therapeutics with low expected clinical doses creates a challenge for analytical characterization of simulated drug product in-use samples. The low expected protein concentration (often µg/mL) and highly charged and sub-optimal sample matrices like 0.9% saline or 5% dextrose make ensuring dose solution stability and characterizing product quality changes difficult. Health authority expectations require analysis of low concentration in-use samples to be completed with suitable assays to ensure little to no changes are occurring during drug product dose preparation and administration, thus ensuring patient safety. However, characterization of these samples for protein concentration, size variants, charge variants and potency often necessitates additional analytical method development to improve sensitivity and compatibility with in-use samples. Here we report the development and qualification of reliable in-use methods to characterize simulated in-use samples to assist during drug product development.
Collapse
Affiliation(s)
- Laura Zheng
- Protein Analytical Chemistry, Genentech Inc., United States
| | - Gary Console
- Protein Analytical Chemistry, Genentech Inc., United States
| | | | - Kevin Whang
- Biological Technologies, Genentech Inc., United States
| | - Hau-Ping Ting
- Pharmaceutical Development, Genentech Inc., United States
| | | | - Erina Rude
- Pharmaceutical Development, Genentech Inc., United States
| | | | - Cinzia Stella
- Protein Analytical Chemistry, Genentech Inc., United States
| | | |
Collapse
|
14
|
Martin MU, Frevert J, Tay CM. Complexing Protein-Free Botulinum Neurotoxin A Formulations: Implications of Excipients for Immunogenicity. Toxins (Basel) 2024; 16:101. [PMID: 38393178 PMCID: PMC10892905 DOI: 10.3390/toxins16020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The formation of neutralizing antibodies is a growing concern in the use of botulinum neurotoxin A (BoNT/A) as it may result in secondary treatment failure. Differences in the immunogenicity of BoNT/A formulations have been attributed to the presence of pharmacologically unnecessary bacterial components. Reportedly, the rate of antibody-mediated secondary non-response is lowest in complexing protein-free (CF) IncobotulinumtoxinA (INCO). Here, the published data and literature on the composition and properties of the three commercially available CF-BoNT/A formulations, namely, INCO, Coretox® (CORE), and DaxibotulinumtoxinA (DAXI), are reviewed to elucidate the implications for their potential immunogenicity. While all three BoNT/A formulations are free of complexing proteins and contain the core BoNT/A molecule as the active pharmaceutical ingredient, they differ in their production protocols and excipients, which may affect their immunogenicity. INCO contains only two immunologically inconspicuous excipients, namely, human serum albumin and sucrose, and has demonstrated low immunogenicity in daily practice and clinical studies for more than ten years. DAXI contains four excipients, namely, L-histidine, trehalosedihydrate, polysorbate 20, and the highly charged RTP004 peptide, of which the latter two may increase the immunogenicity of BoNT/A by introducing neo-epitopes. In early clinical studies with DAXI, antibodies against BoNT/A and RTP004 were found at low frequencies; however, the follow-up period was critically short, with a maximum of three injections. CORE contains four excipients: L-methionine, sucrose, NaCl, and polysorbate 20. Presently, no data are available on the immunogenicity of CORE in human beings. It remains to be seen whether all three CF BoNT/A formulations demonstrate the same low immunogenicity in patients over a long period of time.
Collapse
|
15
|
Moino C, Artusio F, Pisano R. Shear stress as a driver of degradation for protein-based therapeutics: More accomplice than culprit. Int J Pharm 2024; 650:123679. [PMID: 38065348 DOI: 10.1016/j.ijpharm.2023.123679] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024]
Abstract
Protein degradation is a major concern for protein-based therapeutics. It may alter the biological activity of the product and raise the potential for undesirable effects on the patients. Among the numerous drivers of protein degradation, shear stress has been the focus around which much work has revolved since the 1970s. In the pharmaceutical realm, the product is often processed through several unit operations, which include mixing, pumping, filtration, filling, and atomization. Nonetheless, the drug might be exposed to significant shear stresses, which might cooperatively contribute to product degradation, together with interfacial stress. This review presents fundamentals of shear stress about protein structure, followed by an overview of the drivers of product degradation. The impact of shear stress on protein stability in different unit operations is then presented, and recommendations for limiting the adverse effects on the biopharmaceutical formulations are outlined. Finally, several devices used to explore the effects of shear stress are discussed.
Collapse
Affiliation(s)
- Camilla Moino
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy
| | - Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca degli Abruzzi, Torino 10129, Italy.
| |
Collapse
|
16
|
Nabhan M, Meunier S, Le-Minh V, Robin B, de Bourayne M, Smadja C, Maillère B, Pallardy M, Turbica I. Infliximab aggregates produced in severe and mild elevated temperature stress conditions induce an extended specific CD4 T-cell response. Eur J Pharm Sci 2024; 192:106670. [PMID: 38070782 DOI: 10.1016/j.ejps.2023.106670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Aggregation has been widely described as a factor contributing to therapeutic antibody immunogenicity. Although production of high-affinity anti-drug antibodies depends on the activation of CD4 T lymphocytes, little is known about the T-cell response induced by antibody aggregates, especially for aggregates produced in mild conditions resulting from minor handling errors of vials. Large insoluble infliximab (IFX) aggregates produced in severe elevated temperature stress conditions have been previously shown to induce human monocyte-derived dendritic cell (moDC) maturation. We here showed that large IFX aggregates recruit in vitro a significantly higher number of CD4 T-cells compared to native IFX. Moreover, a larger array of T-cell epitopes encompassing the entire variable regions was evidenced compared to the native antibody. We then compared the responses of moDCs to different types of aggregates generated by submitting IFX to mild conditions of various times of incubation at an elevated temperature. Decreasing stress duration reduced aggregate size and quantity, and subsequently altered moDC activation. Of importance, IFX aggregates generated in mild conditions and not altering moDC phenotype generated an in vitro T-cell response with a higher frequency of CD4 T cells compared to native IFX. Moreover, cross-reactivity studies of aggregate-specific T cells showed that some T cells could recognize both native and aggregated IFX, while others responded only to IFX aggregates. Taken together, our results suggest that aggregation of antibodies in mild elevated temperature stress conditions is sufficient to alter moDC phenotype in a dose-dependent manner and to increase T-cell response.
Collapse
Affiliation(s)
- Myriam Nabhan
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 91 400 Orsay, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Sylvain Meunier
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Victor Le-Minh
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91 400 Orsay, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Baptiste Robin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91 400 Orsay, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Marie de Bourayne
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Claire Smadja
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91 400 Orsay, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Bernard Maillère
- Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, 91191 Gif-sur-Yvette, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 91 400 Orsay, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, 91 400 Orsay, France; Université Paris-Saclay, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LABEX LERMIT), 91400 Orsay, France.
| |
Collapse
|
17
|
Feng Y, Lee J, Yang L, Hilton MB, Morris K, Seaman S, Edupuganti VVSR, Hsu KS, Dower C, Yu G, So D, Bajgain P, Zhu Z, Dimitrov DS, Patel NL, Robinson CM, Difilippantonio S, Dyba M, Corbel A, Basuli F, Swenson RE, Kalen JD, Suthe SR, Hussain M, Italia JS, Souders CA, Gao L, Schnermann MJ, St Croix B. Engineering CD276/B7-H3-targeted antibody-drug conjugates with enhanced cancer-eradicating capability. Cell Rep 2023; 42:113503. [PMID: 38019654 PMCID: PMC10872261 DOI: 10.1016/j.celrep.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.
Collapse
Affiliation(s)
- Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | | | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Christopher Dower
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Nimit L Patel
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Christina M Robinson
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Marzena Dyba
- Biophysics Resource in the Center for Structural Biology, NCI, NIH, Frederick, MD, USA
| | - Amanda Corbel
- Invention Development Program, Technology Transfer Center, NCI, Frederick, MD 21701, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | | | | | | | - Ling Gao
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Martin J Schnermann
- Organic Synthesis Section, Chemical Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Oyama K, Nakakido M, Ohkuri T, Nakamura H, Tsumoto K, Ueda T. Enhancing thermal stability in the CH 2 domain to suppress aggregation through the introduction of simultaneous disulfide bonds in Pichia pastoris. Protein Sci 2023; 32:e4831. [PMID: 37924310 PMCID: PMC10680342 DOI: 10.1002/pro.4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Protein aggregations decrease production yields and impair the efficacy of therapeutics. The CH2 domain is a crucial part of the constant region of human IgG. But, it is also the least stable domain in IgG, which can result in antibody instability and aggregation problems. We created a novel mutant of the CH2 domain (T250C/L314C, mut10) by introducing a disulfide bond and expressed it using Pichia pastoris. The mut10 variant exhibited enhanced thermal stability, resistance to enzymatic degradation, and reduced aggregation in comparison to the original CH2 domain. However, it was less stable than mut20 (L242C/K334C), which is the variant prepared in a previous study (Gong et al., J. Biol. Chem., 2009). A more advanced mutant, mut25, was created by combining mut10 and mut20. Mut25 artificially contains two disulfide bonds. The new mutant, mut25, showed enhanced thermal stability, increased resistance to enzymatic digestion, and reduced aggregation in comparison to mut20. According to our knowledge, mut25 achieves an unprecedented level of stability among the humanized whole CH2 domains that have been reported so far. Mut25 has the potential to serve as a new platform for antibody therapeutics due to its ability to reduce immunogenicity by decreasing aggregation.
Collapse
Affiliation(s)
- Kosuke Oyama
- Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Nakakido
- Graduate School of EngineeringThe University of TokyoTokyoJapan
| | | | - Hitomi Nakamura
- Faculty of Pharmaceutical SciencesSojo UniversityKumamotoJapan
| | - Kouhei Tsumoto
- Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Tadashi Ueda
- Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
19
|
Fanthom TB, Wilson C, Gruber D, Bracewell DG. Solid-Solid Interfacial Contact of Tubing Walls Drives Therapeutic Protein Aggregation During Peristaltic Pumping. J Pharm Sci 2023; 112:3022-3034. [PMID: 37595747 DOI: 10.1016/j.xphs.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Peristaltic pumping during bioprocessing can cause therapeutic protein loss and aggregation during use. Due to the complexity of this apparatus, root-cause mechanisms behind protein loss have been long sought. We have developed new methodologies isolating various peristaltic pump mechanisms to determine their effect on monomer loss. Closed-loops of peristaltic tubing were used to investigate the effects of peristaltic pump parameters on temperature and monomer loss, whilst two mechanism isolation methodologies are used to isolate occlusion and lateral expansion-relaxation of peristaltic tubing. Heat generated during peristaltic pumping can cause heat-induced monomer loss and the extent of heat gain is dependent on pump speed and tubing type. Peristaltic pump speed was inversely related to the rate of monomer loss whereby reducing speed 2.0-fold increased loss rates by 2.0- to 5.0-fold. Occlusion is a parameter that describes the amount of tubing compression during pumping. Varying this to start the contacting of inner tubing walls is a threshold that caused an immediate 20-30% additional monomer loss and turbidity increase. During occlusion, expansion-relaxation of solid-liquid interfaces and solid-solid interface contact of tubing walls can occur simultaneously. Using two mechanisms isolation methods, the latter mechanism was found to be most destructive and a function of solid-solid contact area, where increasing the contact area 2.0-fold increased monomer loss by 1.6-fold. We establish that a form of solid-solid contact mechanism whereby the contact solid interfaces disrupt adsorbed protein films is the root-cause behind monomer loss and protein aggregation during peristaltic pumping.
Collapse
Affiliation(s)
- Thomas B Fanthom
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher Wilson
- Ipsen Biopharm, 9 Ash Road North, Wrexham Industrial Estate, Wales, LL13 9UF, UK
| | - David Gruber
- Ipsen Biopharm, 9 Ash Road North, Wrexham Industrial Estate, Wales, LL13 9UF, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Weidman J, Mathews L, Gokhale K. Quartz Crystal Microbalance as a Predictive Tool for Drug-Material of Construction Interactions in Intravenous Protein Drug Administration. J Pharm Sci 2023; 112:3154-3163. [PMID: 37597752 DOI: 10.1016/j.xphs.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
As a growing number of protein drug products are developed, formulation characterization is becoming important. An IgG drug product is tested at concentrations from 0.0001-0.1 mg/mL for adsorption behavior to polymer surfaces polyvinyl chloride (PVC) and polypropylene (PP) upon dilution in normal saline (NS) using quartz crystal microbalance with dissipation (QCM-D). The studies mimicked IgG antibody interaction during IV administration with polymeric surfaces within syringes, lines, and bags. Drug product was characterized with excipients, with focus on surfactant. Drug solutions were run over polymer-coated sensors to measure the adsorption behavior of the formulation with emphasis on the behavior of each of the formulation's components. Over 60 sensorgram data sets were correlated with assayed protein solution concentrations in mock NS-diluted infusions of drug product in the equivalent concentrations to QCM experiments to build a preliminary predictive model for determining fraction of drug and surfactant adsorbed and lost at the hydrophobic surface during administration. These results create a method for reliably and predictively estimating drug product adsorption behavior and protein drug dose loss on polymers at different protein drug concentrations.
Collapse
Affiliation(s)
- Joseph Weidman
- Janssen Pharmaceuticals, A Johnson & Johnson Company 1400 McKean Rd, Lower Gwynedd Township, PA 19002, USA.
| | - Ligi Mathews
- Janssen Pharmaceuticals, A Johnson & Johnson Company 335 Phoenixville Pike, Malvern, PA 19355, USA
| | - Kedar Gokhale
- Janssen Pharmaceuticals, A Johnson & Johnson Company 335 Phoenixville Pike, Malvern, PA 19355, USA
| |
Collapse
|
21
|
Guo Y, Li L, Huang S, Sun H, Shao Y, Li Z, Song F. Exploring Linker-Group-Guided Self-Assembly of Ultrathin 2D Supramolecular Nanosheets in Water for Synergistic Cancer Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54851-54862. [PMID: 37968254 DOI: 10.1021/acsami.3c13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Water is ubiquitous in natural systems where it builds an essential environment supporting biological supramolecular polymers to function, transport, and exchange. However, this extreme polar environment becomes a hindrance for the superhydrophobic functional π-conjugated molecules, causing significant negative impacts on regulating their aggregation pathways, structures, and properties of the subsequently assembled nanomaterials. It especially makes the self-assembly of ultrathin two-dimensional (2D) functional nanomaterials by π-conjugated molecules a grand challenge in water, although ultrathin 2D functional nanomaterials have exhibited unique and superior properties. Herein, we demonstrate the organic solvent-free self-assembly of one-molecule-thick 2D nanosheets based on exploring how side chain modifications rule the aggregation behaviors of π-conjugated macrocycles in water. Through an in-depth understanding of the roles of linking groups for side chains on affecting the aggregation behaviors of porphyrins in water, the regulation of molecular arrangement in the aggregated state (H- or J-type aggregation) was attained. Moreover, by arranging ionic porphyrins into 2D single layers through J-aggregation, the ultrathin nanosheets (thickness ≈ 2 nm) with excellent solubility and stability were self-assembled in pure water, which demonstrated both outstanding 1O2 generation and photothermal capability. The ultrathin nanosheets were further investigated as metal- and carrier-free nanodrugs for synergetic phototherapies of cancers both in vitro and in vivo, which are highly desirable by combining the advantages and avoiding the disadvantages of the single use of PDT or PTT.
Collapse
Affiliation(s)
- Yanhui Guo
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Lukun Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Han Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yutong Shao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Zhiliang Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
22
|
Kim M, Ma Y, Srinivasan C, O'Connor T, Telikepalli SN, Ripple DC, Lute S, Bhirde A. Morphologically-Directed Raman Spectroscopy as an Analytical Method for Subvisible Particle Characterization in Therapeutic Protein Product Quality. Sci Rep 2023; 13:20473. [PMID: 37993487 PMCID: PMC10665318 DOI: 10.1038/s41598-023-45720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Subvisible particles (SVPs) are a critical quality attribute of injectable therapeutic proteins (TPs) that needs to be controlled due to potential risks associated with drug product quality. The current compendial methods routinely used to analyze SVPs for lot release provide information on particle size and count. However, chemical identification of individual particles is also important to address root-cause analysis. Herein, we introduce Morphologically-Directed Raman Spectroscopy (MDRS) for SVP characterization of TPs. The following particles were used for method development: (1) polystyrene microspheres, a traditional standard used in industry; (2) photolithographic (SU-8); and (3) ethylene tetrafluoroethylene (ETFE) particles, candidate reference materials developed by NIST. In our study, MDRS rendered high-resolution images for the ETFE particles (> 90%) ranging from 19 to 100 μm in size, covering most of SVP range, and generated comparable morphology data to flow imaging microscopy. Our method was applied to characterize particles formed in stressed TPs and was able to chemically identify individual particles using Raman spectroscopy. MDRS was able to compare morphology and transparency properties of proteinaceous particles with reference materials. The data suggests MDRS may complement the current TPs SVP analysis system and product quality characterization workflow throughout development and commercial lifecycle.
Collapse
Affiliation(s)
- Minkyung Kim
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Youlong Ma
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Charudharshini Srinivasan
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas O'Connor
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Srivalli N Telikepalli
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Dean C Ripple
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Scott Lute
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Ashwinkumar Bhirde
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
23
|
Tian Z, Hu Q, Sun Z, Wang N, He H, Tang Z, Chen W. A Booster for Radiofrequency Ablation: Advanced Adjuvant Therapy via In Situ Nanovaccine Synergized with Anti-programmed Death Ligand 1 Immunotherapy for Systemically Constraining Hepatocellular Carcinoma. ACS NANO 2023; 17:19441-19458. [PMID: 37733578 DOI: 10.1021/acsnano.3c08064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for treating hepatocellular carcinoma (HCC), which could destroy tumors through hyperthermia and generate massive tumor-associated antigens (TAAs). However, residual malignant tissues or small satellite lesions are hard to eliminate, generally resulting in metastases and recurrence. Herein, an advanced in situ nanovaccine formed by layered double hydroxides carrying cGAMP (STING agonist) (LDHs-cGAMP) and adsorbed TAAs was designed to potentiate the RFA-induced antitumor immune response. As-prepared LDHs-cGAMP could effectively enter cancerous or immune cells, inducing a stronger type I interferon (IFN-I) response. After further adsorption of TAAs, nanovaccine generated sustained immune stimulation and efficiently promoted activation of dendritic cells (DCs). Notably, infiltrations of cytotoxic lymphocytes (CTLs) and activated DCs in tumor and lymph nodes were significantly enhanced after nanovaccine treatment, which distinctly inhibited primary, distant, and metastasis of liver cancer. Furthermore, such a nanovaccine strategy greatly changed the tumor immune microenvironment and promoted the response efficiency of anti-programmed death ligand 1 (αPD-L1) immunotherapy, significantly arresting the poorly immunogenic hepa1-6 liver cancer progression. These findings demonstrate the potential of nanovaccine as a booster for RFA in liver cancer therapy and provide a promising in situ cancer vaccination strategy.
Collapse
Affiliation(s)
- Zhou Tian
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Qitao Hu
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhouyi Sun
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Ning Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Huiling He
- Department of Ultrasonography, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Zhe Tang
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, HangZhou, Zhejiang 310000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
24
|
Crofts KF, Page CL, Swedik SM, Holbrook BC, Meyers AK, Zhu X, Parsonage D, Westcott MM, Alexander-Miller MA. An Analysis of Linker-Dependent Effects on the APC Activation and In Vivo Immunogenicity of an R848-Conjugated Influenza Vaccine. Vaccines (Basel) 2023; 11:1261. [PMID: 37515076 PMCID: PMC10383912 DOI: 10.3390/vaccines11071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Subunit or inactivated vaccines comprise the majority of vaccines used against viral and bacterial pathogens. However, compared to their live/attenuated counterparts, these vaccines often demonstrate reduced immunogenicity, requiring multiple boosters and or adjuvants to elicit protective immune responses. For this reason, studies of adjuvants and the mechanism through which they can improve inactivated vaccine responses are critical for the development of vaccines with increased efficacy. Studies have shown that the direct conjugation of adjuvant to antigen promotes vaccine immunogenicity, with the advantage of both the adjuvant and antigen targeting the same cell. Using this strategy of direct linkage, we developed an inactivated influenza A (IAV) vaccine that is directly conjugated with the Toll-like receptor 7/8 agonist resiquimod (R848) through a heterobifunctional crosslinker. Previously, we showed that this vaccine resulted in improved protection and viral clearance in newborn nonhuman primates compared to a non-adjuvanted vaccine. We subsequently discovered that the choice of linker used to conjugate R848 to the virus alters the stimulatory activity of the vaccine, promoting increased maturation and proinflammatory cytokine production from DC differentiated in vitro. With this knowledge, we explored how the choice of crosslinker impacts the stimulatory activity of these vaccines. We found that the linker choice alters signaling through the NF-κB pathway in human monocyte-derived dendritic cells (moDCs). Further, we extended our analyses to in vivo differentiated APC present in human peripheral blood, replicating the linker-dependent differences found in in vitro differentiated cells. Finally, we demonstrated in a mouse model that the choice of linker impacts the amount of IAV-specific IgG antibody produced in response to vaccination. These data enhance our understanding of conjugation approaches for improving vaccine immunogenicity.
Collapse
Affiliation(s)
- Kali F. Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Courtney L. Page
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Stephanie M. Swedik
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Beth C. Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Allison K. Meyers
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (K.F.C.); (C.L.P.); (S.M.S.); (B.C.H.); (A.K.M.); (X.Z.); (M.M.W.)
| |
Collapse
|
25
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
26
|
Rojekar S, Pallapati AR, Gimenez-Roig J, Korkmaz F, Sultana F, Sant D, Haeck C, Macdonald A, Kim SM, Rosen CJ, Barak O, Meseck M, Caminis J, Lizneva D, Yuen T, Zaidi M. Development and Biophysical Characterization of a Humanized FSH-Blocking Monoclonal Antibody Therapeutic Formulated at an Ultra-High Concentration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540323. [PMID: 37214886 PMCID: PMC10197643 DOI: 10.1101/2023.05.11.540323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the creation of a unique formulation for our first-in- class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, conformed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. Three rapid freeze-thaw cycles at -80°C/25°C or -80°C/37°C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (T m ) for formulated MS-Hu6 increased by >4.80°C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.
Collapse
|
27
|
Leandro P, Lino PR, Lopes R, Leandro J, Amaro MP, Sousa P, Vicente JB, Almeida AJ. Isothermal denaturation fluorimetry vs Differential scanning fluorimetry as tools for screening of stabilizers for protein freeze-drying: human phenylalanine hydroxylase as the case study. Eur J Pharm Biopharm 2023; 187:1-11. [PMID: 37011788 DOI: 10.1016/j.ejpb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The structural maintenance of therapeutic proteins during formulation and/or storage is a critical aspect, particularly for multi-domain and/or multimeric proteins which usually exhibit intrinsic structural dynamics leading to aggregation with concomitant loss-of-function. Protein freeze-drying is a widely used technique to preserve protein structure and function during storage. To minimize chemical/physical stresses occurring during this process, protein stabilizers are usually included, their effect being strongly dependent on the target protein. Therefore, they should be screened for on a time-consuming case-by-case basis. Herein, differential scanning fluorimetry (DSF) and isothermal denaturation fluorimetry (ITDF) were employed to screen, among different classes of freeze-drying additives, for the most effective stabilizer of the model protein human phenylalanine hydroxylase (hPAH). Correlation studies among retrieved DSF and ITDF parameters with recovered enzyme amount and activity indicated ITDF as the most appropriate screening method. Biochemical and biophysical characterization of hPAH freeze-dried with ITDF-selected stabilizers and a long-term storage study (12 months, 5 ± 3 °C) showed that the selected compounds prevented protein aggregation and preserved hPAH structural and functional properties throughout time storage. Our results provide a solid basis towards the choice of ITDF as a high-throughput screening step for the identification of protein freeze-drying protectors.
Collapse
Affiliation(s)
- Paula Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paulo R Lino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Raquel Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mariana P Amaro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paulo Sousa
- Sofarimex, Indústria Química e Farmacêutica SA, Av. das Indústrias, Alto de Colaride, 2735-521 Agualva, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República 2780-157 Oeiras, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
28
|
Hu Z, Mi W, Ye C, Zhao Y, Cavicchi RE, Hang H, Li H. Global Analysis of Aggregation Profiles of Three Kinds of Immuno-Oncology mAb Drug Products Using Flow Cytometry. Anal Chem 2023; 95:4768-4775. [PMID: 36862732 DOI: 10.1021/acs.analchem.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Accurately quantifying the protein particles in both subvisible (1-100 μm) and submicron (≤1 μm) ranges remains a prominent challenge in the development and manufacturing of protein drugs. Due to the limitation of the sensitivity, resolution, or quantification level of various measurement systems, some instruments may not provide count information, while others can only count particles in a limited size range. Moreover, the reported concentrations of protein particles commonly have significant discrepancies owing to different methodological dynamic ranges and the detection efficiency of these analytical tools. Therefore, it is extremely difficult to accurately and comparably quantify protein particles within the desired size range at one time. To develop an efficient protein aggregation measurement method that can span the entire range of interest, we established, in this study, a single particle-sizing/counting method based on our highly sensitive lab-built flow cytometry (FCM) system. The performance of this method was assessed, and its capability of identifying and counting microspheres between 0.2 and 25 μm was demonstrated. It was also used to characterize and quantify both subvisible and submicron particles in three kinds of top-selling immuno-oncology antibody drugs and their lab-produced counterparts. These assessment and measurement results suggest that there may be a role for an enhanced FCM system as an efficient investigative tool for characterizing and learning the molecular aggregation behavior, stability, or safety risk of protein products.
Collapse
Affiliation(s)
- Zhishang Hu
- National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Wei Mi
- National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Chen Ye
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yun Zhao
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Richard E Cavicchi
- Bioprocess Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Haiying Hang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Hongmei Li
- National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| |
Collapse
|
29
|
Sant D, Rojekar S, Gera S, Pallapati A, Gimenez-Roig J, Kuo TC, Padilla A, Korkmaz F, Cullen L, Chatterjee J, Shelly E, Meseck M, Miyashita S, Macdonald A, Sultana F, Barak O, Ryu V, Kim SM, Robinson C, Rosen CJ, Caminis J, Lizneva D, Haider S, Yuen T, Zaidi M. Optimizing a therapeutic humanized follicle-stimulating hormone-blocking antibody formulation by protein thermal shift assay. Ann N Y Acad Sci 2023; 1521:67-78. [PMID: 36628526 PMCID: PMC11658029 DOI: 10.1111/nyas.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biopharmaceutical products are formulated using several Food and Drug Administration (FDA) approved excipients within the inactive ingredient limit to maintain their storage stability and shelf life. Here, we have screened and optimized different sets of excipient combinations to yield a thermally stable formulation for the humanized follicle-stimulating hormone (FSH)-blocking antibody, MS-Hu6. We used a protein thermal shift assay in which rising temperatures resulted in the maximal unfolding of the protein at the melting temperature (Tm ). To determine the buffer and pH for a stable solution, four different buffers with a pH range from 3 to 8 were screened. This resulted in maximal Tm s at pH 5.62 for Fab in phosphate buffer and at pH 6.85 for Fc in histidine buffer. Upon testing a range of salt concentrations, MS-Hu6 was found to be more stable at lower concentrations, likely due to reduced hydrophobic effects. Molecular dynamics simulations revealed a higher root-mean-square deviation with 1 mM than with 100 mM salt, indicating enhanced stability, as noted experimentally. Among the stabilizers tested, Tween 20 was found to yield the highest Tm and reversed the salt effect. Among several polyols/sugars, trehalose and sucrose were found to produce higher thermal stabilities. Finally, binding of recombinant human FSH to MS-Hu6 in a final formulation (20 mM phosphate buffer, 1 mM NaCl, 0.001% w/v Tween 20, and 260 mM trehalose) resulted in a thermal shift (increase in Tm ) for the Fab, but expectedly not in the Fc domain. Given that we used a low dose of MS-Hu6 (1 μM), the next challenge would be to determine whether 100-fold higher, industry-standard concentrations are equally stable.
Collapse
Affiliation(s)
- Damini Sant
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Satish Rojekar
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Sakshi Gera
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Anusha Pallapati
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Judit Gimenez-Roig
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Tan-Chun Kuo
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Ashley Padilla
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Jiya Chatterjee
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Eleanor Shelly
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Marcia Meseck
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Farhath Sultana
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Orly Barak
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Cemre Robinson
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Scarborough, Maine 040774, USA
| | - John Caminis
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Shozeb Haider
- UCL Centre for Advanced Research Computing, School of Pharmacy, London, WC1N 1AX, UK
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology and Departments of Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| |
Collapse
|
30
|
Salami H, Wang S, Skomski D. Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations. J Pharm Sci 2023; 112:771-778. [PMID: 36240862 DOI: 10.1016/j.xphs.2022.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Imaging is commonly used as a characterization method in the pharmaceuticals industry, including for quantifying subvisible particles in solid and liquid formulations. Extracting information beyond particle size, such as classifying morphological subpopulations, requires some type of image analysis method. Suggested methods to classify particles have been based on pre-determined morphological features or use supervised training of convolutional neural networks to learn image representations in relation to ground truth labels. Complications arising from highly complex morphologies, unforeseen classes, and time-consuming preparation of ground truth labels, are some of the challenges faced by these methods. In this work, we evaluate the application of a self-supervised contrastive learning method in studying particle images from therapeutic solutions. Unlike with supervised training, this approach does not require ground truth labels and representations are learned by comparing particle images and their augmentations. This method provides a fast and easily implementable tool of coarse screening for morphological attribute assessment. Furthermore, our analysis shows that in cases with relatively balanced datasets, a small subset of an image dataset is sufficient to train a convolutional neural network encoder capable of extracting useful image representations. It is also demonstrated that particle classes typically observed in protein solutions administered by pre-filled syringes emerge as separated clusters in the encoder's embedding space, facilitating performing tasks such as training weakly-supervised classifiers or identifying the presence of new subpopulations.
Collapse
Affiliation(s)
- Hossein Salami
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Shubing Wang
- Department of Biometrics Research, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Daniel Skomski
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA.
| |
Collapse
|
31
|
Ibrahim M, Wallace I, Ghazvini S, Manetz S, Cordoba-Rodriguez R, Patel SM. Protein Aggregates in Inhaled Biologics: Challenges and Considerations. J Pharm Sci 2023; 112:1341-1344. [PMID: 36796636 PMCID: PMC9927828 DOI: 10.1016/j.xphs.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Pulmonary delivery is the main route of administration for treatment of local lung diseases. Recently, the interest in delivery of proteins through the pulmonary route for treatment of lung diseases has significantly increased, especially after Covid-19 pandemic. The development of an inhalable protein combines the challenges of inhaled as well as biologic products since protein stability may be compromised during manufacture or delivery. For instance, spray drying is the most common technology for manufacture of inhalable biological particles, however, it imposes shear and thermal stresses which may cause protein unfolding and aggregation post drying. Therefore, protein aggregation should be evaluated for inhaled biologics as it could impact the safety and/or efficacy of the product. While there is extensive knowledge and regulatory guidance on acceptable limits of particles, which inherently include insoluble protein aggregates, in injectable proteins, there is no comparable knowledge for inhaled ones. Moreover, the poor correlation between in vitro setup for analytical testing and the in vivo lung environment limits the predictability of protein aggregation post inhalation. Thus, the purpose of this article is to highlight the major challenges facing the development of inhaled proteins compared to parenteral ones, and to share future thoughts to resolve them.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Dosage Form Design & Development, Early-Stage Formulation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Ian Wallace
- Clinical Pharmacology & Safety Sciences, Respiratory & Immunology, Neuroscience, Vaccines & Immune Therapies Safety, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Saba Ghazvini
- Dosage Form Design & Development, Early-Stage Formulation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Scott Manetz
- Clinical Pharmacology & Safety Sciences, Respiratory & Immunology, Neuroscience, Vaccines & Immune Therapies Safety, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Ruth Cordoba-Rodriguez
- Regulatory Affairs, Chemistry, Manufacturing and Controls Regulatory Affairs, Oncology R&D, AstraZeneca, Gaithersburg, USA
| | - Sajal M. Patel
- Dosage Form Design & Development, Early-Stage Formulation Sciences, Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA,Corresponding author
| |
Collapse
|
32
|
Schuster J, Kamuju V, Mathaes R. Protein Stability After Administration: A Physiologic Consideration. J Pharm Sci 2023; 112:370-376. [PMID: 36202247 DOI: 10.1016/j.xphs.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Regulatory authorities and the scientific community have identified the need to monitor the in vivo stability of therapeutic proteins (TPs). Due to the unique physiologic conditions in patients, the stability of TPs after administration can deviate largely from their stability under drug product (DP) conditions. TPs can degrade at substantial rates once immersed in the in vivo milieu. Changes in protein stability upon administration to patients are critical as they can have implications on patient safety and clinical effectiveness of DPs. Physiologic conditions are challenging to simulate and require dedicated in vitro models for specific routes of administration. Advancements of in vitro models enable to simulate the exposure to physiologic conditions prior to resource demanding pre-clinical and clinical studies. This enables to evaluate the in vivo stability and thus may allow to improve the safety/efficacy profile of DPs. While in vitro-in vivo correlations are challenging, benchmarking DP candidates enables to identify liabilities and optimize molecules. The in vivo stability should be an integral part of holistic stability assessments during early development. Such assessments can accelerate development timelines and lead to more stable DPs for patients.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| |
Collapse
|
33
|
In vitro and in vivo immunogenicity assessment of protein aggregate characteristics. Int J Pharm 2023; 631:122490. [PMID: 36521637 DOI: 10.1016/j.ijpharm.2022.122490] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The immunogenicity risk of therapeutic protein aggregates has been extensively investigated over the past decades. While it is established that not all aggregates are equally immunogenic, the specific aggregate characteristics, which are most likely to induce an immune response, remain ambiguous. The aim of this study was to perform comprehensive in vitro and in vivo immunogenicity assessment of human insulin aggregates varying in size, structure and chemical modifications, while keeping other morphological characteristics constant. We found that flexible aggregates with highly altered secondary structure were most immunogenic in all setups, while compact aggregates with native-like structure were found to be immunogenic primarily in vivo. Moreover, sub-visible (1-100 µm) aggregates were found to be more immunogenic than sub-micron (0.1-1 µm) aggregates, while chemical modifications (deamidation, ethylation and covalent dimers) were not found to have any measurable impact on immunogenicity. The findings highlight the importance of utilizing aggregates varying in few characteristics for assessment of immunogenicity risk of specific morphological features and may provide a workflow for reliable particle analysis in biotherapeutics.
Collapse
|
34
|
Frolov AI, Chankeshwara SV, Abdulkarim Z, Ghiandoni GM. pIChemiSt ─ Free Tool for the Calculation of Isoelectric Points of Modified Peptides. J Chem Inf Model 2023; 63:187-196. [PMID: 36573842 PMCID: PMC9832473 DOI: 10.1021/acs.jcim.2c01261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isoelectric point (pI) is a fundamental physicochemical property of peptides and proteins. It is widely used to steer design away from low solubility and aggregation and guide peptide separation and purification. Experimental measurements of pI can be replaced by calculations knowing the ionizable groups of peptides and their corresponding pKa values. Different pKa sets are published in the literature for natural amino acids, however, they are insufficient to describe synthetically modified peptides, complex peptides of natural origin, and peptides conjugated with structures of other modalities. Noncanonical modifications (nCAAs) are ignored in the conventional sequence-based pI calculations, therefore producing large errors in their pI predictions. In this work, we describe a pI calculation method that uses the chemical structure as an input, automatically identifies ionizable groups of nCAAs and other fragments, and performs pKa predictions for them. The method is validated on a curated set of experimental measures on 29 modified and 119093 natural peptides, providing an improvement of R2 from 0.74 to 0.95 and 0.96 against the conventional sequence-based approach for modified peptides for the two studied pKa prediction tools, ACDlabs and pKaMatcher, correspondingly. The method is available in the form of an open source Python library at https://github.com/AstraZeneca/peptide-tools, which can be integrated into other proprietary and free software packages. We anticipate that the pI calculation tool may facilitate optimization and purification activities across various application domains of peptides, including the development of biopharmaceuticals.
Collapse
Affiliation(s)
- Andrey I. Frolov
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden,
| | - Sunay V. Chankeshwara
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Zeyed Abdulkarim
- Early
Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
35
|
Pedroza-Escobar D, Castillo-Maldonado I, González-Cortés T, Delgadillo-Guzmán D, Ruíz-Flores P, Cruz JHS, Espino-Silva PK, Flores-Loyola E, Ramirez-Moreno A, Avalos-Soto J, Téllez-López MÁ, Velázquez-Gauna SE, García-Garza R, Vertti RDAP, Torres-León C. Molecular Bases of Protein Antigenicity and Determinants of Immunogenicity, Anergy, and Mitogenicity. Protein Pept Lett 2023; 30:719-733. [PMID: 37691216 DOI: 10.2174/0929866530666230907093339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The immune system is able to recognize substances that originate from inside or outside the body and are potentially harmful. Foreign substances that bind to immune system components exhibit antigenicity and are defined as antigens. The antigens exhibiting immunogenicity can induce innate or adaptive immune responses and give rise to humoral or cell-mediated immunity. The antigens exhibiting mitogenicity can cross-link cell membrane receptors on B and T lymphocytes leading to cell proliferation. All antigens vary greatly in physicochemical features such as biochemical nature, structural complexity, molecular size, foreignness, solubility, and so on. OBJECTIVE Thus, this review aims to describe the molecular bases of protein-antigenicity and those molecular bases that lead to an immune response, lymphocyte proliferation, or unresponsiveness. CONCLUSION The epitopes of an antigen are located in surface areas; they are about 880-3,300 Da in size. They are protein, carbohydrate, or lipid in nature. Soluble antigens are smaller than 1 nm and are endocytosed less efficiently than particulate antigens. The more the structural complexity of an antigen increases, the more the antigenicity increases due to the number and variety of epitopes. The smallest immunogens are about 4,000-10,000 Da in size. The more phylogenetically distant immunogens are from the immunogen-recipient, the more immunogenicity increases. Antigens that are immunogens can trigger an innate or adaptive immune response. The innate response is induced by antigens that are pathogen-associated molecular patterns. Exogenous antigens, T Dependent or T Independent, induce humoral immunogenicity. TD protein-antigens require two epitopes, one sequential and one conformational to induce antibodies, whereas, TI non-protein-antigens require only one conformational epitope to induce low-affinity antibodies. Endogenous protein antigens require only one sequential epitope to induce cell-mediated immunogenicity.
Collapse
Affiliation(s)
- David Pedroza-Escobar
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Irais Castillo-Maldonado
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Tania González-Cortés
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Dealmy Delgadillo-Guzmán
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Pablo Ruíz-Flores
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Jorge Haro Santa Cruz
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Perla-Karina Espino-Silva
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Erika Flores-Loyola
- Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27276, Mexico
| | - Agustina Ramirez-Moreno
- Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27276, Mexico
| | - Joaquín Avalos-Soto
- Cuerpo Academico Farmacia y Productos Naturales, Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
| | - Miguel-Ángel Téllez-López
- Cuerpo Academico Farmacia y Productos Naturales, Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
| | | | - Rubén García-Garza
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | | | - Cristian Torres-León
- Centro de Investigacion y Jardin Etnobiologico, Universidad Autonoma de Coahuila, Viesca, Coahuila, 27480, Mexico
| |
Collapse
|
36
|
Alves de Souza SM, de Araújo TS, Ferretti GDDS, Kalume DE, Cordeiro Y, Almeida MDS, de Souza TLF. Novel Method for the Production, Purification, and Characterization of Recombinant Lunasin: Identification of Disulfide Cross-Linked Dimers. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Real-time imaging of monoclonal antibody film reconstitution after mechanical stress at the air-liquid interface by Brewster angle microscopy. Colloids Surf B Biointerfaces 2022; 218:112757. [DOI: 10.1016/j.colsurfb.2022.112757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
|
38
|
Nakayama T, Kobayashi K, Kameda T, Hase M, Hirano A. Protein's Protein Corona: Nanoscale Size Evolution of Human Immunoglobulin G Aggregates Induced by Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32937-32947. [PMID: 35822632 DOI: 10.1021/acsami.2c08271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles are readily coated by proteins in biological systems. The protein layers on the nanoparticles, which are called the protein corona, influence the biological impacts of the nanoparticles, including internalization into cells and cytotoxicity. This study expands the scope of the nanoparticle's protein corona for exogenous artificial nanoparticles to that for exogenous proteinaceous nanoparticles. Specifically, this study addresses the formation of protein coronas on nanoscale human antibody aggregates with a radius of approximately 20-40 nm, where the antibody aggregates were induced by a pH shift from low to neutral pH. The size of the human immunoglobulin G (hIgG) aggregates grew to approximately 25 times the original size in the presence of human serum albumin (HSA). This size evolution was ascribed to the association of the hIgG aggregates, which was triggered by the formation of the hIgG aggregate's protein corona, i.e., protein's protein corona, consisting of the adsorbed HSA molecules. Because hIgG aggregate association was significantly reduced by the addition of 30-150 mM NaCl, it was attributed to electrostatic attraction, which was supported by molecular dynamics (MD) simulations. Currently, the use of antibodies as biopharmaceuticals is concerning because of undesired immune responses caused by antibody aggregates that are typically generated by a pH shift during the antibody purification process. The present findings suggest that nanoscale antibody aggregates form protein coronas induced by HSA and the resulting nanoscale antibody-HSA complexes are stable in blood containing approximately 150 mM salt ions, at least in terms of the size evolution. Mechanistic insights into protein corona formation on nanoscale antibody aggregates are useful for understanding the unintentional biological impacts of antibody drugs.
Collapse
Affiliation(s)
- Tomohito Nakayama
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Muneaki Hase
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
39
|
Gibson K, Cooper-Shepherd DA, Pallister E, Inman SE, Jackson SE, Lindo V. Toward Rapid Aspartic Acid Isomer Localization in Therapeutic Peptides Using Cyclic Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1204-1212. [PMID: 35609180 PMCID: PMC9264384 DOI: 10.1021/jasms.2c00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is an increasing emphasis on the critical evaluation of interbatch purity and physical stability of therapeutic peptides. This is due to concerns over the impact that product- and process-related impurities may have on safety and efficacy of this class of drug. Aspartic acid isomerization to isoaspartic acid is a common isobaric impurity that can be very difficult to identify without first synthesizing isoAsp peptide standards for comparison by chromatography. As such, analytical tools that can determine if an Asp residue has isomerized, as well as the site of isomerization within the peptide sequence, are highly sought after. Ion mobility-mass spectrometry is a conformation-selective method that has developed rapidly in recent years particularly with the commercialization of traveling wave ion mobility instruments. This study employed a cyclic ion mobility (cIMS) mass spectrometry system to investigate the conformational characteristics of a therapeutic peptide and three synthetic isomeric forms, each with a single Asp residue isomerized to isoAsp. cIMS was able to not only show distinct conformational differences between each peptide but crucially, in conjunction with a simple workflow for comparing ion mobility data, it correctly located which Asp residue in each peptide had isomerized to isoAsp. This work highlights the value of cIMS as a potential screening tool in the analysis of therapeutic peptides prone to the formation of isoAsp impurities.
Collapse
Affiliation(s)
- Katherine Gibson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | | | - Edward Pallister
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Sophie E. Inman
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Sophie E. Jackson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Viv Lindo
- Analytical
Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| |
Collapse
|
40
|
Helbig C, Menzen T, Wuchner K, Hawe A. Imaging Flow Cytometry for Sizing and Counting of Subvisible Particles in Biotherapeutics. J Pharm Sci 2022; 111:2458-2470. [PMID: 35777484 DOI: 10.1016/j.xphs.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Imaging flow cytometry (IFC), a technique originally designed for cellular imaging, is featured by the parallel acquisition in brightfield (BF), fluorescence (FL), and side scattering channels. Introduced to the field of subvisible particle analysis in biopharmaceuticals roughly ten years ago, it has the potential to yield additional information, e.g., on particle origin. Here, we present an extensive, systematic development of masks for IFC image analysis to optimize the accuracy of size determination of polystyrene beads and pharmaceutically relevant particles (protein, silicone oil) in BF and FL channels. Based on the developed masks, particle sizing and counting by IFC are compared to flow imaging microscopy (FIM). Mask verification based on fluorescent polystyrene particles revealed good agreement between sizes obtained from IFC and FIM. In the evaluation of counting accuracy, IFC reported lower concentrations for polystyrene particle standards than FIM. For the analysis of fluorescently stained silicone oil and protein particles however, IFC FL imaging reported higher particle concentrations in the low micrometer size range. Overall, we identified IFC as suitable tool to generate supportive data for particle characterization purposes or trouble shooting activities, but not as routine quantitative technique, e.g., for subvisible particle analysis during drug product development or quality control.
Collapse
Affiliation(s)
- C Helbig
- Coriolis Pharma Research, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| | - T Menzen
- Coriolis Pharma Research, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - K Wuchner
- Janssen Research and Development, DPD&S Biotherapeutics Development, Hochstr. 201, 8200 Schaffhausen, Switzerland
| | - A Hawe
- Coriolis Pharma Research, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| |
Collapse
|
41
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
42
|
Gamage CLD, Weis DD, Walters BT. Identification of Agitation-induced Unfolding Events Causing Aggregation of Monoclonal Antibodies Using Hydrogen Exchange-Mass Spectrometry. J Pharm Sci 2022; 111:2210-2216. [DOI: 10.1016/j.xphs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
43
|
Sharma P, Raju B, Narendra G, Sapra B, Silakari O. Molecular Docking, Dynamics, and WaterSwap Analysis to Identify Anti-aggregating Agents of Insulin and IFN-β. Appl Biochem Biotechnol 2022; 194:3261-3279. [PMID: 35353318 DOI: 10.1007/s12010-022-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
There are several challenges in the development, and formulation of biologics, particularly concerning their physical stabilities. The self-assembly of peptides like human insulin and interferon beta (IFN-β) has potential to form aggregates in pharmaceutical formulation. Therefore, it is a significant problem in the manufacturing, storage, and delivery of insulin and IFN-β formulations. Amino acids as aggregation suppressing additives have been used to stabilize proteins during manufacturing and storage. Several changes to the B chain's C-terminus have been proposed in an attempt to improve insulin formulation. The core segments of the A and B chains (SLYQLENY and LVEALYLV) have recently been identified as sheet-forming areas, and their microcrystalline structures have been exploited to construct a high-resolution insulin amyloid fibril model. Here, we have chosen twenty-one amino acids to develop as additives in rendering the insulin and IFN-β aggregations. Thereafter, integrated molecular docking studies of single layer monomers of full-length insulin and IFN-β have been performed to identify structural elements (amino acids) that can act as disaggregating agents. The stability of the best-docked amino acid complexes was judged using molecular dynamics studies. Finally, phenylalanine was identified as a disaggregation agent for insulin, and lysine, tyrosine, phenylalanine, and tryptophan were identified as disaggregation agents for IFN-β from the molecular dynamics study. These findings may open a novel proposal to explore further in vitro studies to increase the stability of the insulin and IFN-β formulation.
Collapse
Affiliation(s)
- Priyanka Sharma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Bharti Sapra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
44
|
Hendricks R, Reese D, Fedesco M, Chinn M, Zhang J, Hutchinson M. Simplified strategy for developing purification processes for antibody-drug conjugates using cation-exchange chromatography in flow-through mode. J Chromatogr A 2022; 1666:462865. [DOI: 10.1016/j.chroma.2022.462865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
|
45
|
Deiringer N, Friess W. Proteins on the rack: Mechanistic studies on protein particle formation during peristaltic pumping. J Pharm Sci 2022; 111:1370-1378. [PMID: 35122831 DOI: 10.1016/j.xphs.2022.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
Abstract
Peristaltic pumping can cause protein particle formation. The expected causes were unfolding by heat in the pump head, oxidative stress by cavitation generated during roller movement, interfacial adsorption to the tubing wall and mechanical stress by stretching of the tubing itself. The pump head reached 28°C during experiments stayed well below the onset of the melting point of the proteins. Thus, heat may only be a relevant root cause for proteins containing domains with very low unfolding temperature. Analysis by terephthalic acid dosimetry and protein oxidation via RP-HPLC ruled out major induction of reactive hydroxyl radicals by pumping, indicating that cavitation does not play a significant role in particle generation. Addition of surfactants suppresses protein adsorption to the tubing wall and drastically reduced protein particle formation. This indicates that interfacial protein adsorption is a key element. Repeated stretching of tubing filled with protein solution led to the formation of protein particles, demonstrating that expansion and compression of the protein film on the tubing surface is the second key component for particle formation. Thus, protein particle generation during peristaltic pumping originates from the formation of a protein film on the tubing surface which gets stretched and compressed, leading to film fragments entering the bulk solution. This interplay of protein film formation and its rupture has been also observed at liquid/liquid or liquid/air interfaces.
Collapse
Affiliation(s)
- Natalie Deiringer
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
46
|
Leeman M, Castro Nilsson A, Nilsson L. Analysis of Proteins, Biologics, and Nanoparticles in Biological Fluids Using Asymmetrical Flow Field-Flow Fractionation. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.hv2689b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With the increasing interest in biopharmaceuticals such as proteins, antibodies, and nucleic acids, there is a corresponding increase in the need for characterizing such components. Much effort is spent on characterization in the early drug development phases as well as during formulation development and quality control. One parameter that is commonly investigated is the size distribution of the macromolecular components to deduce if there is aggregation or degradation occurring, if conformational changes occur, or if there are interactions with excipients. While the properties of the protein drug in the buffer system or in the pharmaceutical formulation are important, possibly even more interesting are the properties of the drug once it enters the body. Size characterization of macromolecules in biological fluids has traditionally been an area hampered by the complexity of the matrix. The large amount of indigenous components can interfere with commonly applied analytical techniques for size characterization. However, the separation technique asymmetrical flow field-flow fractionation (AF4) has recently shown increasing applicability for the characterization of components in blood plasma and serum. This article reviews some aspects of applying AF4 to plasma, serum, milk, and cerebrospinal fluid in the field of analysis and characterization of proteins, biologics, and nanoparticles in biological fluids.
Collapse
|
47
|
Schuster J, Kamuju V, Mathaes R. Fate of Antibody and Polysorbate Particles in a Human Serum Model. Eur J Pharm Biopharm 2021; 171:72-79. [PMID: 34920132 DOI: 10.1016/j.ejpb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (mAbs) and excipients can degrade owing to different stress factors they encounter during their life cycle or after administration in human body. This can result in the formation of aggregates and particulates. As particles can evoke an immune response in patients, it becomes increasingly important to monitor their fate after administration. In this study, we used a protein-free serum model to assess the fate of mAb and polysorbate (PS) particles under physiologic conditions. Commonly encountered stress conditions such as pH, temperature, extrusion, and shaking were chosen to generate mAb particles. Alkaline hydrolysis was used to generate PS particles. The fate of aggregates and particles was evaluated in serum and histidine buffer. We observed that depending on the nature of stress and the environment particles are subjected to, the fate of particles can differ substantially. The mAb aggregates generated by pH stress, showed reduction in HMWS from 26% to 6% over 14days in human serum filtrate. PS particles dissolved at 37°C but remained unaltered in Histidine at 5°C. Our results reinforce the need to track the fate of particles generated during drug product development upon exposure to physiologic conditions.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Vinay Kamuju
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
48
|
Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. J Pharm Sci 2021; 111:933-950. [PMID: 34919969 DOI: 10.1016/j.xphs.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.
Collapse
|
49
|
ATP and Tri-Polyphosphate (TPP) Suppress Protein Aggregate Growth by a Supercharging Mechanism. Biomedicines 2021; 9:biomedicines9111646. [PMID: 34829875 PMCID: PMC8616003 DOI: 10.3390/biomedicines9111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
A common strategy to increase aggregation resistance is through rational mutagenesis to supercharge proteins, which leads to high colloidal stability, but often has the undesirable effect of lowering conformational stability. We show this trade-off can be overcome by using small multivalent polyphosphate ions, adenosine triphosphate (ATP) and tripolyphosphate (TPP) as excipients. These ions are equally effective at suppressing aggregation of ovalbumin and bovine serum albumin (BSA) upon thermal stress as monitored by dynamic and static light scattering. Monomer loss kinetic studies, combined with measurements of native state protein–protein interactions and ζ-potentials, indicate the ions reduce aggregate growth by increasing the protein colloidal stability through binding and overcharging the protein. Out of three additional proteins studied, ribonuclease A (RNaseA), α-chymotrypsinogen (α-Cgn), and lysozyme, we only observed a reduction in aggregate growth for RNaseA, although overcharging by the poly-phosphate ions still occurs for lysozyme and α-Cgn. Because the salts do not alter protein conformational stability, using them as excipients could be a promising strategy for stabilizing biopharmaceuticals once the protein structural factors that determine whether multivalent ion binding will increase colloidal stability are better elucidated. Our findings also have biological implications. Recently, it has been proposed that ATP also plays an important role in maintaining intracellular biological condensates and preventing protein aggregation in densely packed cellular environments. We expect electrostatic interactions are a significant factor in determining the stabilizing ability of ATP towards maintaining proteins in non-dispersed states in vivo.
Collapse
|
50
|
Shibata H, Harazono A, Kiyoshi M, Ishii-Watabe A. Quantitative Evaluation of Insoluble Particulate Matters in Therapeutic Protein Injections Using Light Obscuration and Flow Imaging Methods. J Pharm Sci 2021; 111:648-654. [PMID: 34619153 DOI: 10.1016/j.xphs.2021.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
Flow imaging (FI) has emerged as a powerful tool to evaluate insoluble particles derived from protein aggregates as an orthogonal method to light obscuration (LO). However, few reports directly compare the FI and LO method in the size and number of protein particles in commercially available therapeutic protein injections. In this study, we measured the number of insoluble particles in several therapeutic protein injections using both FI and LO, and characterized these particles to compare the analytical performance of the methods. The particle counts measured using FI were much higher than those measured using LO, and the difference depended on the products or features of particles. Some products contained a large number of transparent and elongated particles, which could escape detection using LO. Our results also suggested that the LO method underestimates the size and number of silicone oil droplets in prefilled syringe products compared to the FI method. The count of particles ≥10 μm in size in one product measured using FI exceeded the criteria (6000 counts per container) defined in the compendial particulate matter test using the LO method. Thus precaution should be taken when setting the acceptance criteria of specification tests using the FI method.
Collapse
Affiliation(s)
- Hiroko Shibata
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa 210-9501, Japan.
| | - Akira Harazono
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Masato Kiyoshi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa 210-9501, Japan
| |
Collapse
|