1
|
Choudhary R, Kumar P, Shukla SK, Bhagat A, Anal JMH, Kour G, Ahmed Z. Synthesis and potential anti-inflammatory response of indole and amide derivatives of ursolic acid in LPS-induced RAW 264.7 cells and systemic inflammation mice model: Insights into iNOS, COX2 and NF-κB. Bioorg Chem 2025; 155:108091. [PMID: 39755101 DOI: 10.1016/j.bioorg.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential. This modification resulted in the synthesis of a series of compounds which were investigated for their anti-inflammatory potential both in-vitro and in animal models in comparison to UA. In RAW 264.7 cells, UA and its derivatives were non-cytotoxic up to 10 µM. The derivative UA-1 exhibited a significantly lower IC50 (2.2 ± 0.4 µM) for NO inhibition compared to UA (17.5 ± 2.0 µM). Molecular docking showed strong interactions of UA-1 with TNF-α and NF-κB. UA-1 significantly reduced LPS-induced pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in RAW 264.7 macrophages with the inhibition levels of 74.2 ± 2.1 % for TNF-α, 55.9 ± 3.7 % for IL-6 and 59.7 ± 4.2 % for IL-1β at 5.0 µM, respectively and reactive oxygen species while upregulating anti-inflammatory cytokine, IL-10. It also downregulated iNOS, COX-2, p-NF-κB p65, and p-IκBα at both mRNA and protein levels. In LPS-induced systemic inflammation mice model, UA-1 significantly lowered NO, TNF-α, IL-6, IL-1β and serum biochemical parameters, reduced tissue damage, and exhibited improved aqueous solubility and moderate lipophilicity. Overall, UA-1 demonstrated superior anti-inflammatory potential, improved solubility, and better therapeutic potential compared to UA.
Collapse
Affiliation(s)
- Rupali Choudhary
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket K Shukla
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jasha Momo H Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Gurleen Kour
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Sovar A, Patrick MD, Annamalai RT. Substrate curvature influences cytoskeletal rearrangement and modulates macrophage phenotype. Front Immunol 2025; 15:1478464. [PMID: 39835126 PMCID: PMC11743265 DOI: 10.3389/fimmu.2024.1478464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored. This study investigates how substrate curvature impacts macrophage cytoskeletal dynamics, gene expression, and immunophenotype through mechanosensitive pathways. Methods Gelatin-based microgels with tunable surface curvatures were fabricated via water-in-oil emulsification and crosslinked with genipin. Microgels were sorted into three size ranges, yielding high (40-50 µm), intermediate (150-250 µm), and low (350-400 µm) curvature profiles. Macrophages were seeded onto these microgels, and cytoskeletal dynamics were examined using confocal microscopy, SEM, and actin-specific staining. Gene expression of pro- and anti-inflammatory markers was quantified using qPCR. The role of actin polymerization was assessed using Latrunculin-A (Lat-A) treatment. Results Macrophages adhered effectively to both high- and low-curvature microgels, displaying curvature-dependent morphological changes. Confocal imaging revealed that macrophages on low-curvature microgels exhibited significantly higher F-actin density than those on high-curvature microgels. Correspondingly, qPCR analysis showed upregulation of pro-inflammatory markers (e.g., Tnf, Nos2) in high-curvature conditions, while anti-inflammatory markers (e.g., Arg1) were elevated in low-curvature conditions. Lat-A treatment reduced F-actin density and modulated gene expression patterns, confirming the cytoskeletal regulation of macrophage phenotype. Discussion These findings demonstrate that substrate curvature influences macrophage behavior by modulating cytoskeletal dynamics and associated immunophenotypic markers through actin-mediated transcriptional pathways. By controlling curvature, therapeutic biomaterials may direct immune responses, offering a new avenue for treating inflammatory diseases. This mechanobiological approach presents a promising strategy for precision immunomodulation in regenerative medicine.
Collapse
Affiliation(s)
- Austin Sovar
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Matthew D. Patrick
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Sovar A, Patrick M, Annamalai RT. Substrate Curvature Influences Cytoskeletal Rearrangement and Modulates Macrophage Phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607593. [PMID: 39211272 PMCID: PMC11361075 DOI: 10.1101/2024.08.12.607593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammation serves as a critical defense mechanism against pathogens and tissue damage but can lead to chronic diseases, such as cardiovascular disease and diabetes, when dysregulated. Macrophages play a pivotal role in orchestrating inflammatory responses, transitioning from pro-inflammatory M1 to anti-inflammatory M2 phenotypes to resolve inflammation and promote tissue repair. Current approaches to modulate macrophage phenotype predominantly rely on biochemical cues, which may induce systemic side effects. Given the mechanosensitivity of macrophages, this study investigates biophysical cues, specifically substrate curvature, as a localized strategy to regulate macrophage phenotype and minimize systemic repercussions. We hypothesized that substrate curvature influences macrophage immunophenotype by modulating F-actin polymerization. To test this hypothesis, we fabricated spherical microgels with tunable curvatures and characterized their biophysical properties. Our findings indicate that macrophages adhere to microgel surfaces irrespective of curvature, but the curvature significantly alters F-actin dynamics. Furthermore, manipulating cytoskeletal dynamics via selective actin inhibition partially reversed curvature-induced changes in macrophage phenotype. These results underscore the pivotal role of substrate curvature in modulating macrophage behavior and immunophenotype. Overall, our study demonstrates that substrate curvature significantly influences macrophage cytoskeletal dynamics and resulting immunophenotype. This simple approach can be utilized as a localized immunomodulatory treatment for inflammatory diseases.
Collapse
|
5
|
Markov PA, Sokolov AS, Artemyeva IA, Gilmutdinova IR, Fesyun AD, Eremin PS. Collagen hydrogel protects intestinal epithelial cells from indomethacin-induced damage: results of an in vitro experiment. BULLETIN OF REHABILITATION MEDICINE 2024; 23:25-33. [DOI: 10.38025/2078-1962-2024-23-2-25-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
INTRODUCTION. Indomethacin is a derivative of indoleacetic acid and has anti-inflammatory, analgesic and antipyretic effects. However, the results of numerous studies show that indomethacin, like many other nonsteroidal anti-inflammatory drugs (NSAIDs), have an inhibitory effect on the viability and functional activity of enterocytes. In this regard, the search for new ways to reduce the severity of side effects from the use of NSAIDs remains relevant. One of these approaches may be to enrich patients’ diets with non-drug biologically active compounds, including proteins. However, the effect of dietary proteins and biologically active peptides on NSAID-induced damage to the wall of the small intestine and stomach has not been sufficiently studied.
AIM. To evaluate the ability of a collagen-containing dietary supplement to protect human duodenal epithelial cells (HuTu-80 line) from indomethacin-induced damage.
MATERIALS AND METHODS. The composite collagen-containing hydrogel was provided by «FIRST ALIVE COLLAGEN» LLC (Russia) and is a registered dietary supplement. The work used a commercial culture of human skin fibroblast cells and human duodenal epithelial cells (line HuTu-80). The viability of intestinal cells and fibroblasts was assessed using light and fluorescence microscopy and flow cytometry methods.
RESULTS AND DISCUSSION. It has been established that indomethacin inhibits cell growth, causes apoptosis and death of enterocytes, and also leads to the accumulation of cells in the S-phase, which indicates a disruption in the regulation of the cell cycle. It was revealed that collagen hydrogel prevents cell death caused by indomethacin and reduces the number of apoptotic cells in the population. The protective effect of collagen hydrogel is characterized by normalization of the cell cycle of enterocytes and restoration of their growth and proliferative activity.
CONCLUSION. Thus, collagen hydrogel, in vitro, is able to reduce the pathogenic effect of indomethacin on human intestinal epithelial cells. The protective effect of collagen hydrogel is characterized by maintaining viability, inhibiting apoptotic processes, and maintaining cell cycle stability. The results obtained indicate the prospects of using a dietary supplement based on a composite collagen hydrogel as a prophylactic agent to reduce the risk of NSAID-associated gastrointestinal diseases. However, to confirm the therapeutic effectiveness of the dietary supplement, further research is necessary, both using experimental animal modeling of NSAID-associated diseases of the human gastrointestinal tract, and clinical studies.
Collapse
Affiliation(s)
- Pavel A. Markov
- National Medical Research Center for Rehabilitation and Balneology
| | | | | | | | | | - Petr S. Eremin
- National Medical Research Center for Rehabilitation and Balneology
| |
Collapse
|
6
|
Yurdem A, Aslan M, Aral H, Levent A. First electrochemical investigation and determination of non-steroidal anti-inflammatory drug etofenamate using disposable pencil graphite electrode with voltammetric techniques. Anal Chim Acta 2024; 1299:342377. [PMID: 38499410 DOI: 10.1016/j.aca.2024.342377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
In this study, the electrochemical properties of etofenamate, an active ingredient belonging to the non-steroidal anti-inflammatory drug group, were investigated using cyclic voltammetry (CV) and square wave voltammetry (SW) techniques on a disposable pencil graphite electrode (PGE). With the CV technique, reversible voltammetric waves of around +0.470 V and irreversible voltammetric waves of around +1.02 V were produced on the PGE. An environmentally friendly, selective and highly sensitive SW voltammetric method was developed using disposable PGE. This voltammetric method gave very good analytical working range on PGE in PBS (pH = 3.0) medium at concentrations ranging from 0.017 μM to 0.306 μM. The LOD value of this analytical method in PBS (pH = 3.0) medium was calculated as 0.0011 μM (0.406 μg L-1). The developed voltammetric method was successfully applied to urine and drug samples. The results of the voltammetric method were compared with the results of the spectrophotometric method. The results were found to be compatible with each other.
Collapse
Affiliation(s)
- Aysel Yurdem
- Department of Chemistry, Faculty of Arts and Sciences, Batman University, Batman, Turkey
| | - Mehmet Aslan
- Department of Chemistry, Faculty of Arts and Sciences, Batman University, Batman, Turkey
| | - Hayriye Aral
- Department of Chemistry and Chemical Processing Technology, Technical Sciences Vocational School, Batman University, Batman, Turkey
| | - Abdulkadir Levent
- Department of Chemistry, Faculty of Arts and Sciences, Batman University, Batman, Turkey.
| |
Collapse
|
7
|
Yurdem A, Aslan M, Aral H, Levent A. First electrochemical investigation and determination of non-steroidal anti-inflammatory drug etofenamate using disposable pencil graphite electrode with voltammetric techniques. Anal Chim Acta 2024; 1299:342377. [DOI: https:/doi.org/10.1016/j.aca.2024.342377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
|
8
|
Liu Y, Xin Y, Wang X, Zhang X, Xu Y, Cheng X, Gao S, Huo L. CuCo 2O 4 nanoneedle arrays growth on carbon cloth as a non-enzymatic electrochemical sensor with low detection limit ketoprofen recognition. Mikrochim Acta 2024; 191:218. [PMID: 38530416 DOI: 10.1007/s00604-024-06299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
An electrochemical sensor for detecting ketoprofen was constructed by in-situ grown copper cobaltate (CuCo2O4) nanoneedle arrays on a carbon cloth (CC) substrate. The resulting porous nanoneedle arrays not only expose numerous electrochemically active sites but also significantly enhance the electrochemical apparent active area and current transmission efficiency. By leveraging its electrochemical properties, the sensor achieves an impressive detection limit for ketoprofen of 0.7 pM, with a linear range spanning from 2 pM ~ 2 µM. Furthermore, the sensor exhibits remarkable reproducibility, anti-interference capabilities, and stability. Notably, the developed sensor also performed ketoprofen detection on real samples (including drug formulations and wastewater) and demonstrated excellent recognition ability. These exceptional performances can be attributed to the direct growth of CuCo2O4 nanoneedle arrays on the CC substrate, which facilitates a robust electrical connection, provides abundant electrocatalytic active sites, and expands the apparent active area. Consequently, these improvements contribute to the efficient trace detection capabilities of the ketoprofen sensor.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Yuying Xin
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xianfa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| | - Yingming Xu
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Xiaoli Cheng
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
9
|
Nascimento ALCS, Martins ICB, Spósito L, Morais-Silva G, Duarte JL, Rades T, Chorilli M. Indomethacin-omeprazole as therapeutic hybrids? Salt and co-amorphous systems enhancing physicochemical and pharmacological properties. Int J Pharm 2024; 653:123857. [PMID: 38281693 DOI: 10.1016/j.ijpharm.2024.123857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Multidrug therapeutic hybrids constitute a promising proposal to overcome problems associated with traditional formulations containing physical mixtures of drugs, potentially improving pharmacological and pharmaceutical performance. Indomethacin (IND) is a non-selective non-steroidal anti-inflammatory drug (NSAIDs) that acts by inhibiting normal processes of homeostasis, causing a series of side effects, such as gastrointestinal symptoms. Proton pump inhibitors, such as omeprazole (OME), have been used to treat such gastrointestinal tract symptoms. In this work, two new multidrug therapeutic hybrids were prepared (an IND:OME salt and an IND:OME co-amorphous system) by ball mill grinding crystalline IND and OME under different conditions, i.e., liquid assisted grinding (LAG) with ethanol and dry grinding, respectively. The crystalline salt returned to a neutral state co-amorphous system when submitted to ball mill grinding in the absence of solvent (dry grinding), but the reverse process (LAG of the IND:OME co-amorphous system) showed partial decomposition of OME. The IND:OME co-amorphous system showed a higher physical stability than the neat IND and OME amorphous materials (with an amorphous stability longer than 100 days, compared to 4 and 16 h for the neat amorphous drugs, respectively, when stored at dry conditions at room temperature). Furthermore, OME presented a higher chemical stability in solution when dissolved from a salt form than from the pure crystalline form. The dissolution studies showed a dissolution enhancement for IND in both salt (1.8-fold after 8 h of dissolution) and co-amorphous (2.5-fold after 8 h of dissolution) forms. Anti-inflammatory activity using a mice paw oedema model showed an increase of the pharmacological response to IND at a lower dose (∼5mg/kg) for both IND:OME salt (2.8-fold) and IND:OME co-amorphous system (3.2-fold) after 6 h, when compared to the positive control group (IND, administered at 10 mg/kg). Additionally, the anti-inflammatory activity of both salt and co-amorphous form was faster than for the crystalline IND. Finally, an indomethacin-induced gastric ulceration assay in mice resulted in a higher mucosal protection at the same dose (40 mg/kg) for both IND:OME salt and IND:OME co-amorphous system when compared with crystalline OME.
Collapse
Affiliation(s)
- A L C S Nascimento
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Department of Drugs and Medicines, School of Pharmaceutical Sciences (UNESP), Araraquara-São Paulo, Brazil.
| | - I C B Martins
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - L Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences (UNESP), Araraquara-São Paulo, Brazil
| | - G Morais-Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences (UNESP), Araraquara-São Paulo, Brazil
| | - J L Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences (UNESP), Araraquara-São Paulo, Brazil
| | - T Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - M Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences (UNESP), Araraquara-São Paulo, Brazil
| |
Collapse
|
10
|
Tian Y, Chen L, He M, Du H, Qiu X, Lai X, Bao S, Jiang W, Ren J, Zhang A. Repurposing Disulfiram to Combat Acute Respiratory Distress Syndrome with Targeted Delivery by LET-Functionalized Nanoplatforms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12244-12262. [PMID: 38421312 DOI: 10.1021/acsami.3c17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious respiratory condition characterized by a damaged pulmonary endothelial barrier that causes protein-rich lung edema, an influx of proinflammatory cells, and treatment-resistant hypoxemia. Damage to pulmonary endothelial cells and inflammation are pivotal in ARDS development with a key role played by endothelial cell pyroptosis. Disulfiram (DSF), a drug that has long been used to treat alcohol addiction, has recently been identified as a potent inhibitor of gasdermin D (GSDMD)-induced pore formation and can thus prevent pyroptosis and inflammatory cytokine release. These findings indicate that DSF is a promising treatment for inflammatory disorders. However, addressing the challenge posed by its intrinsic physicochemical properties, which hinder intravenous administration, and effective delivery to pulmonary vascular endothelial cells are crucial. Herein, we used biocompatible liposomes incorporating a lung endothelial cell-targeted peptide (CGSPGWVRC) to produce DSF-loaded nanoparticles (DTP-LET@DSF NPs) for targeted delivery and reactive oxygen species-responsive release facilitated by the inclusion of thioketal (TK) within the liposomal structure. After intravenous administration, DTP-LET@DSF NPs exhibited excellent cytocompatibility and minor systemic toxicity, effectively inhibited pyroptosis, mitigated lipopolysaccharide (LPS)-induced ARDS, and prevented cytokine storms resulting from excessive immune reactions in ARDS mice. This study presents a straightforward nanoplatform for ARDS treatment that potentially paves the way for the clinical use of this nanomedicine.
Collapse
Affiliation(s)
- Yu Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ming He
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Hu Du
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xinwu Lai
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Suya Bao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Weixi Jiang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - An Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
11
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
12
|
Wang J, Tan J, Hu Q, Mao S, Chen H, Luo W, Feng X. Novel oxicam nonsteroidal compound XK01 attenuates inflammation by suppressing the NF-κB and MAPK pathway in RAW264.7 macrophages. Heliyon 2024; 10:e24004. [PMID: 38312593 PMCID: PMC10835217 DOI: 10.1016/j.heliyon.2024.e24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Traditional non-steroidal anti-inflammatory drugs (NSAIDs) show serious adverse effects during clinical use, which limits their usage. Oxicams (e.g., piroxicam, meloxicam) are widely used as NSAIDs. However, selectivity to cyclooxygenase (COX) 2 may cause cardiovascular problems considering the long-term use of the drugs. Therefore, it is important to develop new non-steroidal compounds as anti-inflammatory drugs. In the present study, we evaluated the anti-inflammatory activity of a newly developed nonsteroidal drug XK01. Our data showed that XK01 reduced the contents of nitric oxide (NO) and reactive oxygen species (ROS)and inhibited the transcription levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated mouse RAW264.7 macrophages. XK01 showed no significant inhibitory effect on COX-1, but inhibited the expression of COX-2. At molecular level, XK01 prevented the translocation of p65 protein from the cytoplasm to the nucleus and inhibited the phosphorylation of p65, IκB, and MAPKs proteins. And high concentration of XK01 also inhibited the phosphorylation of JNK, p38 and ERK, showing stronger effect than that of meloxicam. In addition, the anti-inflammatory activity of XK01 was further validated in Xylene-induced mouse ear swelling model. Thus, this study verified that XK01 inhibits the expression of inflammatory mediators and COX-2, and exhibits potential anti-inflammatory effects via suppressing the NF-κB and MAPK pathway.
Collapse
Affiliation(s)
- Jixiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Jiawang Tan
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Qianmei Hu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Siyu Mao
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Hongting Chen
- College of Letters & Science, University of California, Berkeley, CA, 94720, USA
| | - Weiyi Luo
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Xing Feng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| |
Collapse
|
13
|
Saeed K, Rafiq M, Khalid M, Hussain A, Siddique F, Hanif M, Hussain S, Mahmood K, Ameer N, Ahmed MM, Ali Khan M, Yaqub M, Jabeen M. Synthesis, characterization, computational assay and anti-inflammatory activity of thiosemicarbazone derivatives: Highly potent and efficacious for COX inhibitors. Int Immunopharmacol 2024; 126:111259. [PMID: 37992446 DOI: 10.1016/j.intimp.2023.111259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.
Collapse
Affiliation(s)
- Kinza Saeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Rafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Saghir Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehreen Jabeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
14
|
Babbar R, Kaur A, Vanya, Arora R, Gupta JK, Wal P, Tripathi AK, Koparde AA, Goyal P, Ramniwas S, Gulati M, Behl T. Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Curr Pharm Des 2024; 30:1880-1893. [PMID: 38818920 DOI: 10.2174/0113816128299615240513174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arpanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh 209305, India
| | | | - Akshada Amit Koparde
- Department of Pharmaceutical Chemistry, Krishna Vishwa Vidyapeeth, Krishna Institute of Pharmacy, Malkapur, Karad 415110, Maharashtra, India
| | - Pradeep Goyal
- Department of Pharmacology, Saraswati College of Pharmacy, Gharuan, Mohali, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India
- ARCCIM, Faculty of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| |
Collapse
|
15
|
Xu J, Tang K, Ju Z. Synthesis and anti-inflammatory activity of novel firocoxib analogues with balanced COX inhibition. Chem Biol Drug Des 2024; 103:e14437. [PMID: 38230782 DOI: 10.1111/cbdd.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
The adverse effects caused by nonselective and selective cyclooxygenase-2 (COX-2) inhibitors remain a challenge for current anti-inflammatory medications. A balanced inhibition of COX-1/-2 represents a promising strategy for the development of novel COX-2 inhibitors. In this study, we present the design and synthesis of a novel series of firocoxib analogues incorporating an amide bond to facilitate essential hydrogen bonding with amino residues in COX-2. The synthesized analogs were evaluated for their inhibitory activity against both COX-1 and COX-2 enzymes. Among them, compound 9d demonstrated potent and balanced inhibition. Inhibition of COX enzymes by 9d in lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages resulted in the suppression of the NF-κB signaling pathway to reduced expression of pro-inflammatory factors such as inducible nitric oxide synthase (iNOS), COX-2, nitric oxide (NO), and reactive oxygen species (ROS). The remarkable in vitro anti-inflammatory activity exhibited by 9d positions it as a promising candidate for further development as a novel lead compound for inflammation treatment.
Collapse
Affiliation(s)
- Junde Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Keshuang Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
16
|
Salama MA, Alabiad MA, Saleh AA. Impact of resveratrol and zinc on biomarkers of oxidative stress induced by Trichinella spiralis infection. J Helminthol 2023; 97:e100. [PMID: 38099459 DOI: 10.1017/s0022149x23000810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Trichinellosis is a re-emerging worldwide foodborne zoonosis. Oxidative stress is one of the most common detrimental effects caused by trichinellosis. In addition, Trichinella infection poses an infinite and major challenge to the host's immune system. Resistance and side effects limit the efficiency of the existing anti-trichinella medication. Given that concern, this work aimed to investigate the anti-helminthic, antioxidant, anti-inflammatory and immunomodulatory effects of resveratrol and zinc during both phases of Trichinella spiralis infection. Sixty-four Swiss albino mice were divided into four equal groups: non-infected control, infected control, infected and treated with resveratrol, and infected and treated with zinc. Animals were sacrificed on the 7th and 35th days post-infection for intestinal and muscular phase assessments. Drug efficacy was assessed by biochemical, parasitological, histopathological, immunological, and immunohistochemical assays. Resveratrol and zinc can be promising antiparasitic, antioxidant, anti-inflammatory, and immunomodulatory agents, as evidenced by the significant decrease in parasite burden, the significant improvement of liver and kidney function parameters, the increase in total antioxidant capacity (TAC), the reduction of malondialdehyde (MDA) level, the increase in nuclear factor (erythroid-derived 2)-like-2 factor expression, and the improvement in histopathological findings. Moreover, both drugs enhanced the immune system and restored the disturbed immune balance by increasing the interleukin 12 (IL-12) level. In conclusion, resveratrol and zinc provide protection for the host against oxidative harm and the detrimental effects produced by the host's defense response during Trichinella spiralis infection, making them promising natural alternatives for the treatment of trichinellosis.
Collapse
Affiliation(s)
- M A Salama
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
| | - M A Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - A A Saleh
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
17
|
Elgendy DI, Othman AA, Eid MM, El-Kowrany SI, Sallam FA, Mohamed DA, Zineldeen DH. The impact of β-glucan on the therapeutic outcome of experimental Trichinella spiralis infection. Parasitol Res 2023; 122:2807-2818. [PMID: 37737322 PMCID: PMC10667415 DOI: 10.1007/s00436-023-07964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
Collapse
Affiliation(s)
- Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Mohamed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fersan A Sallam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Mohamed
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa H Zineldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- College of Medicine, Sulaiman AlRajhi University, 51942, Albukairiyah, Saudi Arabia
| |
Collapse
|
18
|
Marko M, Pawliczak R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders-Atopic Dermatitis and Psoriasis: A Review. Antioxidants (Basel) 2023; 12:1954. [PMID: 38001807 PMCID: PMC10669798 DOI: 10.3390/antiox12111954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Atopic dermatitis (AD) and psoriasis are inflammatory skin diseases whose prevalence has increased worldwide in recent decades. These disorders contribute to patients' decreased quality of life (QoL) and constitute a socioeconomic burden. New therapeutic options for AD and psoriasis based on natural compounds are being investigated. These include resveratrol (3,5,40-trihydroxystilbene) and its derivatives, which are produced by many plant species, including grapevines. Resveratrol has gained interest since the term "French Paradox", which refers to improved cardiovascular outcomes despite a high-fat diet in the French population, was introduced. Resveratrol and its derivatives have demonstrated various health benefits. In addition to anti-cancer, anti-aging, and antibacterial effects, there are also anti-inflammatory and antioxidant effects that can affect the molecular pathways of inflammatory skin disorders. A comprehensive understanding of these mechanisms may help develop new therapies. Numerous in vivo and in vitro studies have been conducted on the therapeutic properties of natural compounds. However, regarding resveratrol and its derivatives in treating AD and psoriasis, there are still many unexplained mechanisms and a need for clinical trials. Considering this, in this review, we discuss and summarize the most critical research on resveratrol and its derivatives in animal and cell models mimicking AD and psoriasis.
Collapse
Affiliation(s)
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Medicine, Division of Biomedical Science, Medical University of Lodz, 7/9 Zeligowskiego St., 90-752 Lodz, Poland
| |
Collapse
|
19
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
20
|
Puricelli C, Gigliotti CL, Stoppa I, Sacchetti S, Pantham D, Scomparin A, Rolla R, Pizzimenti S, Dianzani U, Boggio E, Sutti S. Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics 2023; 15:1772. [PMID: 37376219 DOI: 10.3390/pharmaceutics15061772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
21
|
Ma Z, Han X, Yang Y, Fu A, Li G. Design and synthesis of 2,6-dihalogenated stilbene derivatives as potential anti-inflammatory and antitumor agents. Fitoterapia 2023; 167:105493. [PMID: 37023931 DOI: 10.1016/j.fitote.2023.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
In present study, three series of 2,6-dihalogenated stilbene derivatives were designed, synthesized, and assayed for anti-inflammatory and cytotoxic activities. All 62 compounds showed potential anti-inflammatory activity in zebrafish model in vivo, and the installation of halogens and pyridines led to significant improved effects. Among them, DHS2u and DHS3u with the substitution of pyridine showed more higher effects than positive drug indomethacin at 20 μM with inhibitory rate of 94.59% and 90.54%, respectively. Besides, DHS3g bearing 2,5-dimethoxy exhibited potent cytotoxic activity against K562 cells with IC50 values 3.12 μM along with a suitable selectivity on normal cell viability. These results showed that 2,6-dihalogenated stilbenes could serve as a bright starting point for the further development as anti-inflammatory and antitumor agents.
Collapse
Affiliation(s)
- Zongchen Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiao Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yanan Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Anran Fu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Rostamkalaei SS, Iman M, Ataee R, Bahari Z. The effects of Lavandula angustifolia essential oil on analgesic effects and percutaneous absorption of naproxen sodium gel; an in vivo and in vitro study. Clin Exp Pharmacol Physiol 2023; 50:298-306. [PMID: 36573522 DOI: 10.1111/1440-1681.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/03/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
The percutaneous bioavailability of naproxen is low and several technologies have been utilized to overcome the problem. Although, some studies have reported the permeation-enhancing properties of natural essential oils, no research has reflected the effectiveness of Lavandula angustifolia essential oil (LAEO) on increasing the percutaneous absorption of naproxen sodium from a topical gel. Therefore, the present study was designed to investigate whether LAEO increased the percutaneous absorption and the analgesic effects of naproxen sodium topical gel. In the present study, naproxen topical gel was formulated using carbopol 940 (a gelling agent) and several vehicles such as PEG 400, ethanol, and water and the properties of gels were measured. Percutaneous absorption-enhancing properties of LAEO were measured too. Based on our data, the essential oil-containing formulation of naproxen represented greater penetration into (222.19 ± 24.87 vs. 107.65 ± 6.38 μg/cm2 ), and also across (22.07 ± 4.42 vs. 13.14 ± 2.87 μg/cm2 ) skin layers compared to the naproxen gel. Additionally, a significant analgesic property was observed in the naproxen topical gel containing 0.5% essential oil during both first and late phases of formalin test, as well as the late phase of tail-flick test. It could be concluded that LAEO significantly enhanced naproxen percutaneous absorption and also its analgesic effects.
Collapse
Affiliation(s)
- Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| | - Maryam Iman
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramin Ataee
- Department of Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Chen Y, Qin D, Zou J, Li X, Guo XD, Tang Y, Liu C, Chen W, Kong N, Zhang CY, Tao W. Living Leukocyte-Based Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207787. [PMID: 36317596 DOI: 10.1002/adma.202207787] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/10/2022] [Indexed: 05/17/2023]
Abstract
Leukocytes play a vital role in immune responses, including defending against invasive pathogens, reconstructing impaired tissue, and maintaining immune homeostasis. When the immune system is activated in vivo, leukocytes accomplish a series of orderly and complex regulatory processes. While cancer and inflammation-related diseases like sepsis are critical medical difficulties plaguing humankind around the world, leukocytes have been shown to largely gather at the focal site, and significantly contribute to inflammation and cancer progression. Therefore, the living leukocyte-based drug delivery systems have attracted considerable attention in recent years due to the innate and specific targeting effect, low immunogenicity, improved therapeutic efficacy, and low reverse effect. In this review, the recent advances in the development of living leukocyte-based drug delivery systems including macrophages, neutrophils, and lymphocytes as promising treatment strategies for cancer and inflammation-related diseases are introduced. The advantages, current challenges, and limitations of these delivery systems are also discussed, as well as perspectives on the future development of precision and targeted therapy in the clinics are provided. Collectively, it is expected that such kind of living cell-based drug delivery system is promising to improve or even revolutionize the treatments of cancers and inflammation-related diseases in the clinics.
Collapse
Affiliation(s)
- Yaxin Chen
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhua Zou
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau (SAR), 519020, China
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaobin Li
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, 311121, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 440300, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
24
|
Yu Q, Zou J, Yu C, Peng G, Fan G, Wang L, Chen S, Lu L, Wang Z. Nitrogen Doped Porous Biochar/β-CD-MOFs Heterostructures: Bi-Functional Material for Highly Sensitive Electrochemical Detection and Removal of Acetaminophen. Molecules 2023; 28:2437. [PMID: 36985408 PMCID: PMC10054116 DOI: 10.3390/molecules28062437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Acetaminophen (AC) is one of the most common over-the-counter drugs, and its pollutant in groundwater has attracted more attention due to its serious risk to human health. Currently, the research on AC is mainly focused on its detection, but few are concerned about its removal. In this work, for the first time, nitrogen-doped Soulangeana sepals derived biochar/β-cyclodextrin-Metal-organic frameworks (N-SC/β-CD-MOFs) composite was proposed for the simultaneous efficient removal and detection of AC. N-SC/β-CD-MOFs combined the properties of host-guest recognition of β-CD-MOFs and porous structure, high porosity, and large surface area of N-SC. Their synergies endowed N-SC/β-CD-MOFs with a high adsorption capacity toward AC, which was up to 66.43 mg/g. The adsorption type of AC on the surface of N-SC/β-CD-MOFs conformed to the Langmuir adsorption model, and the study of the adsorption mechanism showed that AC adsorption on N-SC was mainly achieved through hydrogen bonding. In addition, the high conductivity, large specific surface area and abundant active sites of N-SC/β-CD-MOFs were of great significance to the high-performance detection of AC. Accordingly, the sensor prepared with N-SC/β-CD-MOFs presented a wide linear range (1.0-30.0 μM) and a low limit of detection of 0.3 nM (S/N = 3). These excellent performances demonstrate that N-SC/β-CD-MOFs could act as an efficient dual-functional material for the detection and removal of AC.
Collapse
Affiliation(s)
- Qi Yu
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Zou
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenxiao Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guanwei Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Fan
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Linyu Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shangxing Chen
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zongde Wang
- East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
25
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
26
|
Mohapatra A, Park IK. Recent Advances in ROS-Scavenging Metallic Nanozymes for Anti-Inflammatory Diseases: A Review. Chonnam Med J 2023; 59:13-23. [PMID: 36794252 PMCID: PMC9900225 DOI: 10.4068/cmj.2023.59.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress and dysregulated inflammatory responses are the hallmarks of inflammatory disorders, which are key contributors to high mortality rates and impose a substantial economic burden on society. Reactive oxygen species (ROS) are vital signaling molecules that promote the development of inflammatory disorders. The existing mainstream therapeutic approaches, including steroid and non-steroidal anti-inflammatory drugs, and proinflammatory cytokine inhibitors with anti-leucocyte inhibitors, are not efficient at curing the adverse effects of severe inflammation. Moreover, they have serious side effects. Metallic nanozymes (MNZs) mimic the endogenous enzymatic process and are promising candidates for the treatment of ROS-associated inflammatory disorders. Owing to the existing level of development of these metallic nanozymes, they are efficient at scavenging excess ROS and can resolve the drawbacks of traditional therapies. This review summarizes the context of ROS during inflammation and provides an overview of recent advances in metallic nanozymes as therapeutic agents. Furthermore, the challenges associated with MNZs and an outline for future to promote the clinical translation of MNZs are discussed. Our review of this expanding multidisciplinary field will benefit the current research and clinical application of metallic-nanozyme-based ROS scavenging in inflammatory disease treatment.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
27
|
Dadwal V, Gupta M. Recent developments in citrus bioflavonoid encapsulation to reinforce controlled antioxidant delivery and generate therapeutic uses: Review. Crit Rev Food Sci Nutr 2023; 63:1187-1207. [PMID: 34378460 DOI: 10.1080/10408398.2021.1961676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Citrus fruits contain numerous antioxidative biomolecules including phenolic acids, flavonols, flavanones, polymethoxyflavones (PMFs), and their derivatives. Previous in vitro and in vivo studies thoroughly investigated the antioxidant and therapeutic potential of bioflavonoids extracted from different citrus varieties and fruit fractions. Major bioflavonoids such as hesperidin, naringin, naringenin, and PMFs, had restricted their incorporation into food and health products due to their poor solubility, chemical stability and bioavailability. Considering these limitations, modern encapsulation methodologies such as hydrogelation, liposomal interactions, emulsifications, and nanoparticles have been designed to shield bioflavonoids with improved target distribution for therapeutic enhancements. The size, durability, and binding efficiency of bioflavonoid-loaded encapsulates were acquired by the optimized chemical and instrumental parameters such as solubility, gelation, dispersion, extrusion, and drying. Bioflavonoid-enriched encapsulates have been also proven to be effective against cancer, inflammation, neurodegeneration, and various other illnesses. However, in the future, newer natural binding agents with higher binding capacity might accelerate the encapsulating potential, controlled release, and enhanced bioavailability of citrus bioflavonoids. Overall, these modern encapsulation systems are currently leading to a new era of diet-based medicine, as demand for citrus fruit-based nutritional supplements and edibles grows.
Collapse
Affiliation(s)
- Vikas Dadwal
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahesh Gupta
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
28
|
Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv 2022; 29:1934-1950. [PMID: 35757855 PMCID: PMC9246099 DOI: 10.1080/10717544.2022.2089295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease, with the features of recurrent chronic inflammation of synovial tissue, destruction of cartilage, and bone erosion, which further affects joints tissue, organs, and systems, and eventually leads to irreversible joint deformities and body dysfunction. Therapeutic drugs for rheumatoid arthritis mainly reduce inflammation through regulating inflammatory factors. Transdermal administration is gradually being applied to the treatment of rheumatoid arthritis, which can allow the drug to overcome the skin stratum corneum barrier, reduce gastrointestinal side effects, and avoid the first-pass effect, thus improving bioavailability and relieving inflammation. This paper reviewed the latest research progress of transdermal drug delivery in the treatment of rheumatoid arthritis, and discussed in detail the dosage forms such as gel (microemulsion gel, nanoemulsion gel, nanomicelle gel, sanaplastic nano-vesiclegel, ethosomal gel, transfersomal gel, nanoparticles gel), patch, drug microneedles, nanostructured lipid carrier, transfersomes, lyotropic liquid crystal, and drug loaded electrospinning nanofibers, which provide inspiration for the rich dosage forms of transdermal drug delivery systems for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhaoju Gao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shushu Chao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wenjuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
29
|
Imran B, Din FU, Ali Z, Fatima A, Khan MW, Kim DW, Malik M, Sohail S, Batool S, Jawad M, Shabbir K, Zeb A, Khan BA. Statistically designed dexibuprofen loaded solid lipid nanoparticles for enhanced oral bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Preparation, Characterization and Pharmacokinetics of Tolfenamic Acid-Loaded Solid Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14091929. [PMID: 36145677 PMCID: PMC9503184 DOI: 10.3390/pharmaceutics14091929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
The clinical use of nonsteroidal anti-inflammatory drugs is limited by their poor water solubility, unstable absorption, and low bioavailability. Solid lipid nanoparticles (SLNs) exhibit high biocompatibility and the ability to improve the bioavailability of drugs with low water solubility. Therefore, in this study, a tolfenamic acid solid lipid nanoparticle (TA-SLN) suspension was prepared by a hot melt–emulsification ultrasonication method to improve the sustained release and bioavailability of TA. The encapsulation efficiency (EE), loading capacity (LC), particle size, polydispersity index (PDI), and zeta potential of the TA-SLN suspension were 82.50 ± 0.63%, 25.13 ± 0.28%, 492 ± 6.51 nm, 0.309 ± 0.02 and −21.7 ± 0.51 mV, respectively. The TA-SLN suspension was characterized by dynamic light scattering (DLS), fluorescence microscopy (FM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) spectroscopy. The TA-SLN suspension showed improved sustained drug release in vitro compared with the commercially available TA injection. After intramuscular administration to pigs (4 mg/kg), the TA-SLN suspension displayed increases in the pharmacokinetic parameters Tmax, T1/2, and MRT0–∞ by 4.39-, 3.78-, and 3.78-fold, respectively, compared with TA injection, and showed a relative bioavailability of 185.33%. Thus, this prepared solid lipid nanosuspension is a promising new formulation.
Collapse
|
31
|
Novel 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity. Bioorg Chem 2022; 129:106147. [PMID: 36126607 DOI: 10.1016/j.bioorg.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
A novel series of 5,6-diphenyl-1,2,4-triazine-3-thiol derivatives were designed, synthesized, and screened for their inhibitory potential against COX-2 and 5-LOX enzymes. The compounds from the series have shown moderate to excellent inhibitory potential against both targets. Compound 6k showed the inhibitions against COX-2 (IC50 = 0.33 ± 0.02 μM) and 5-LOX inhibition (IC50 = 4.90 ± 0.22 μM) which was better than the standard celecoxib (IC50 = 1.81 ± 0.13 μM) for COX-2 and zileuton (IC50 = 15.04 ± 0.18 μM) for 5-LOX respectively. Further investigation on the selected derivative 6k in rat paw edema models revealed significant anti-inflammatory efficacy. Compound 6k has also shown negligible ulcerogenic liability as compared to indomethacin. Moreover, in vivo biochemical analysis also established the compound's antioxidant properties. Compounds 6c and 6k were also observed to be devoid of cardiotoxicity post-myocardial infarction in rats. The molecular docking and dynamics simulation studies of the most active derivative 6k affirmed their consentient binding interactions with COX-2 specific ravine and cleft of 5-LOX.
Collapse
|
32
|
Gaikwad SS, Akalade NV, Salunkhe KS. Nanogel Development and its Application in Transdermal Drug Delivery System. CURRENT NANOMEDICINE 2022; 12:126-136. [DOI: 10.2174/2468187312666220630152606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2025]
Abstract
Background:Nanogels are hydrophilic polymer networks that range in size from 20 to 200 nanometers. Polymer is used to make nanogels, which can be obtained from natural or manu-factured sources. Nanogels can deliver peptides, antigens, carbohydrates, oligonucleotides, proteins, and genes, among other things. These nanogels also provide inorganic materials, such as silver na-noparticles and quantum dots. Both solid and liquid nanogels have the same properties. These nanogels penetrate the stratum corneum more effectively than conventional gels. Dermatology and cosmetology have both experimented with nanoscale technology.Objective:The medication can penetrate the stratum corneum through a variety of routes. One of the ways lipids can infiltrate the skin membrane is through the transcellular route. Cream, gel, oint-ment, lotion, thin-film, and foams are among the topical preparations used. Nanogels are catego-rised into two types: those that respond to stimuli and those that cross-link. For the manufacture of nanogels, numerous polymers of synthetic, natural, or semisynthetic origin are commonly em-ployed. Nanoprecipitation, emulsion polymerization, and dispersion polymerization are all ways to make these nanogels. These nanogels are rarely released by diffusion mechanism employing the Fick’s law.Conclusions:The nano gel is a new advanced technology that allows to improve drug molecule pen-etration in the stratum corneum. If poorly soluble and permeable medications are administered through this nanogel technology, their solubility and permeability will be improved.
Collapse
Affiliation(s)
- Sachin S. Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Maharashtra 423603, India
| | - Nisarga V. Akalade
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Maharashtra 423603, India
| | - Kishor S. Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Maharashtra 423603, India
| |
Collapse
|
33
|
Ye J, Gong M, Song J, Chen S, Meng Q, Shi R, Zhang L, Xue J. Integrating Inflammation-Responsive Prodrug with Electrospun Nanofibers for Anti-Inflammation Application. Pharmaceutics 2022; 14:pharmaceutics14061273. [PMID: 35745845 PMCID: PMC9229020 DOI: 10.3390/pharmaceutics14061273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation plays a side effect on tissue regeneration, greatly inhibiting the repair or regeneration of tissues. Conventional local delivery of anti-inflammation drugs through physical encapsulation into carriers face the challenges of uncontrolled release. The construction of an inflammation-responsive prodrug to release anti-inflammation drugs depending on the occurrence of inflammation to regulate chronic inflammation is of high need. Here, we construct nanofiber-based scaffolds to regulate the inflammation response of chronic inflammation during tissue regeneration. An inflammation-sensitive prodrug is synthesized by free radical polymerization of the indomethacin-containing precursor, which is prepared by the esterification of N-(2-hydroxyethyl) acrylamide with the anti-inflammation drug indomethacin. Then, anti-inflammation scaffolds are constructed by loading the prodrug in poly(ε-caprolactone)/gelatin electrospun nanofibers. Cholesterol esterase, mimicking the inflammation environment, is adopted to catalyze the hydrolysis of the ester bonds, both in the prodrug and the nanofibers matrix, leading to the generation of indomethacin and the subsequent release to the surrounding. In contrast, only a minor amount of the drug is released from the scaffold, just based on the mechanism of hydrolysis in the absence of cholesterol esterase. Furthermore, the inflammation-responsive nanofiber scaffold can effectively inhibit the cytokines secreted from RAW264.7 macrophage cells induced by lipopolysaccharide in vitro studies, highlighting the great potential of these electrospun nanofiber scaffolds to be applied for regulating the chronic inflammation in tissue regeneration.
Collapse
Affiliation(s)
- Jingjing Ye
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinghan Meng
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Rui Shi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; (J.Y.); (M.G.); (J.S.); (S.C.)
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (R.S.); (L.Z.); (J.X.)
| |
Collapse
|
34
|
Long-term anti-inflammatory effects of injectable celecoxib nanoparticle hydrogels for Achilles tendon regeneration. Acta Biomater 2022; 144:183-194. [PMID: 35331938 DOI: 10.1016/j.actbio.2022.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
Abstract
The treatment of chronic Achilles tendonitis (AT) often requires prolonged therapy and invasive therapeutic methods such as surgery or therapeutic endoscopy. To prevent the progression of chronic AT, excessive inflammation must be alleviated at an early stage. Corticosteroids or nonsteroidal anti-inflammatory drugs are generally prescribed to control inflammation; however, the high doses and long therapeutic periods required may lead to serious side effects. Herein, a local injectable poly(organophosphazene) (PPZ) - celecoxib (CXB) nanoparticle (PCNP) hydrogel system with long-term anti-inflammatory effects was developed for the treatment of tendonitis. The amphiphilic structure and thermosensitive mechanical properties of PPZ means that the hydrophobic CXB can be easily incorporated into the hydrophobic core to form PCNP at 4 °C. Following the injection of PCNP into the AT, PCNP hydrogel formed at body temperature and induced long-term local anti-inflammatory effects via sustained release of the PCNP. The therapeutic effects of the injectable PCNP system can alleviate excessive inflammation during the early stages of tissue damage and boost tissue regeneration. This study suggests that PCNP has significant potential as a long-term anti-inflammatory agent through sustained nonsteroidal anti-inflammatory drugs (NSAIDs) delivery and tissue regeneration boosting. STATEMENT OF SIGNIFICANCE: In the treatment of Achilles tendinitis, a long-term anti-inflammatory effect is needed to alleviate excessive inflammation and induce regeneration of the damaged Achilles tendon. Injectable poly(organophosphazene)(PPZ)-celecoxib(CXB) nanoparticles (PCNP) generated a long-term, localized-anti-inflammatory effect in the injected region, which successfully induced the expression of anti-inflammatory cytokines and suppressed pro-inflammatory cytokines, while the PCNPs degraded completely. Accordingly, regeneration of the damaged Achilles tendon was achieved through the long-term anti-inflammatory effect induced by a single PCNP injection. The PCNP system therefore has great potential in long-term NSAIDs delivery for various tissue engineering applications.
Collapse
|
35
|
El Masri S, Ruellan S, Zakhour M, Auezova L, Fourmentin S. Cyclodextrin-based low melting mixtures as a solubilizing vehicle: Application to non-steroidal anti-inflammatory drugs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Spray-dried indomethacin-loaded polymeric micelles for the improvement of intestinal drug release and permeability. Eur J Pharm Sci 2022; 174:106200. [DOI: 10.1016/j.ejps.2022.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/24/2023]
|
37
|
Albumin-hyaluronic acid colloidal nanocarriers: Effect of human and bovine serum albumin for intestinal ibuprofen release enhancement. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Fang H, Sha Y, Yang L, Jiang J, Yin L, Li J, Li B, Klumperman B, Zhong Z, Meng F. Macrophage-Targeted Hydroxychloroquine Nanotherapeutics for Rheumatoid Arthritis Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8824-8837. [PMID: 35156814 DOI: 10.1021/acsami.1c23429] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with unclear pathogenesis. Hydroxychloroquine (HCQ), despite its moderate anti-RA efficacy, is among the few clinical drugs used for RA therapy. Macrophages reportedly play a vital role in RA. Here, we designed and explored macrophage-targeted HCQ nanotherapeutics based on mannose-functionalized polymersomes (MP-HCQ) for RA therapy. Notably, MP-HCQ exhibited favorable properties of less than 50 nm size, glutathione-accelerated HCQ release, and M1 phenotype macrophage (M1M) targetability, leading to repolarization of macrophages to anti-inflammatory M2 phenotype (M2M), reduced secretion of pro-inflammatory cytokines (IL-6), and upregulation of anti-inflammatory cytokines (IL-10). The therapeutic studies in the zymosan-induced RA (ZIA) mouse model showed marked accumulation of MP-HCQ in the inflammation sites, ameliorated symptoms of RA joints, significantly reduced IL-6, TNF-α, and IL-1β, and increased IL-10 and TGF-β compared with free HCQ. The analyses of RA joints disclosed greatly amplified M2M and declined mature DCs, CD4+ T cells, and CD8+ T cells. In accordance, MP-HCQ significantly reduced the damage of RA joints, cartilages, and bones compared to free HCQ and non-targeted controls. Macrophage-targeted HCQ nanotherapeutics therefore appears as a highly potent treatment for RA.
Collapse
Affiliation(s)
- Hanghang Fang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Jingjing Jiang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jiaying Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Bin Li
- Orthopedic Institute, Soochow University, Suzhou 215007, PR China
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
39
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
40
|
Chen YC, Moseson DE, Richard CA, Swinney MR, Horava SD, Oucherif KA, Cox AL, Hawkins ED, Li Y, DeNeve DF, Lomeo J, Zhu A, Lyle LT, Munson EJ, Taylor LS, Park K, Yeo Y. Development of hot-melt extruded drug/polymer matrices for sustained delivery of meloxicam. J Control Release 2022; 342:189-200. [PMID: 34990702 DOI: 10.1016/j.jconrel.2021.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/02/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
For effective resolution of regional subacute inflammation and prevention of biofouling formation, we have developed a polymeric implant that can release meloxicam, a selective cyclooxygenase (COX)-2 inhibitor, in a sustained manner. Meloxicam-loaded polymer matrices were produced by hot-melt extrusion, with commercially available biocompatible polymers, poly(ε-caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), and poly(ethylene vinyl acetate) (EVA). PLGA and EVA had a limited control over the drug release rate partly due to the acidic microenvironment and hydrophobicity, respectively. PCL allowed for sustained release of meloxicam over two weeks and was used as a carrier of meloxicam. Solid-state and image analyses indicated that the PCL matrices encapsulated meloxicam in crystalline clusters, which dissolved in aqueous medium and generated pores for subsequent drug release. The subcutaneously implanted meloxicam-loaded PCL matrices in rats showed pharmacokinetic profiles consistent with their in vitro release kinetics, where higher drug loading led to faster drug release. This study finds that the choice of polymer platform is crucial to continuous release of meloxicam and the drug release rate can be controlled by the amount of drug loaded in the polymer matrices.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Dana E Moseson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Coralie A Richard
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Monica R Swinney
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA 02142, USA
| | - Sarena D Horava
- Eli Lilly and Company, 450 Kendall Street, Cambridge, MA 02142, USA
| | | | - Amy L Cox
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Eric D Hawkins
- Eli Lilly and Company, 893 Delaware Street, Indianapolis, IN 46225, USA
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Daniel F DeNeve
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Joshua Lomeo
- DigiM Solution LLC, 67 South Bedford Street, West Burlington, MA 01803, USA
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, West Burlington, MA 01803, USA
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Eric J Munson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Kinam Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
41
|
de Barros Fernandes H, Ciriaco SL, Filgueiras LA, Costa Barros I, Menezes Carvalho AL, Lins Rolim HM, Nele de Souza M, Costa da Silva Pinto JC, Mendes AN, de Cássia Meneses Oliveira R. Gastroprotective effect of α-terpineol-loaded polymethyl methacrylate particles on gastric injury model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Wu D, Bai X, Lee P, Yang Y, Windsor J, Qian J. A systematic review of NSAIDs treatment for acute pancreatitis in animal studies and clinical trials. Clin Res Hepatol Gastroenterol 2021; 44S:100002. [PMID: 33602483 DOI: 10.1016/j.clirex.2019.100002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently given to patients with acute pancreatitis (AP) for controlling pain, but their efficacy in treating AP, particularly in reducing systemic complications, remains unclear. AIM The aim of our study was to evaluate the efficacy of NSAIDs in treating AP and its systematic complications. METHODS Two independent reviewers screened articles from MEDLINE, Embase and Cochrane and scored the quality of each study according to the CAMARADES 10-item quality checklist or the Jadad scale. Five endpoints were chosen to evaluate the effect of NSAIDs in animal studies: amylase and lipase levels, proinflammatory cytokines, oxidative damage, histopathological changes, and mortality rate. Meanwhile, in clinical studies, endpoints, such as proinflammatory cytokines, pain relief, systematic complications, mortality, and adverse events were used. RESULTS A total of 36 studies out of 17,845 were identified and included. Of these 36 studies, only 5 were clinical trials involving 580 patients, and the remaining 31 were animal studies with 1623 rats or mice. 24 studies focused on the treatment of AP with NSAIDs and 12 on AP-associated systematic complications. Both preclinical and clinical studies showed that NSAIDs may have beneficial effects against AP-related injuries. 9 of the 14 preclinical studies stated that NSAIDs reduced the serum amylase level significantly, and 6 of 7 showed that NSAIDs lowered the lipase level markedly. 17 experimental studies all demonstrated that NSAIDs reduced the inflammation. Histopathological examinations indicated that NSAIDs significantly improved the histopathological damages. Similarly, clinical evidence showed that NSAIDs are effective in suppressing proinflammatory cytokines, relieving pain, ameliorating systematic complications and reducing mortality. In the included 5 clinical studies, serious adverse events associated with NSAIDs were rarely reported. CONCLUSION This systematic review shows that NSAIDs are a potential treatment for AP-related injuries based on the current preclinical and clinical evidences.
Collapse
Affiliation(s)
- Dong Wu
- Department of Gastroenterology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoyin Bai
- Department of Gastroenterology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Peter Lee
- Division of Gastroenterology, Department of Medicine, Hospital of the University of Pennsylvania, PA, USA
| | - Yingyun Yang
- Department of Gastroenterology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - John Windsor
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Park Road, Auckland, New Zealand
| | - Jiaming Qian
- Department of Gastroenterology, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Feng S, Sui M, Wang D, Ritzoulis C, Farag MA, Shao P. Pectin-zein based stigmasterol nanodispersions ameliorate dextran sulfate sodium-induced colitis in mice. Food Funct 2021; 12:11656-11670. [PMID: 34726217 DOI: 10.1039/d1fo02493k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Due to the insolubility of phytosterols in both water and oil, their application in the medicine and health and food industries is limited. In this study, zein and pectin were selected as wall materials of phytosterol nanoparticles to enhance the solubility and bioactivity of phytosterols. The colitis-inhibitory effects of zein-based stigmasterol nanodispersions (ZNs) and zein/pectin-based stigmasterol nanodispersions (ZPNs) were investigated in the sodium dextran sulfate (DSS)-induced colitis mouse model. The results showed that ZPNs' therapeutic effect was better than that of ZNs. According to electron microscopy observation, pectin adsorbed on the surface of zein appeared to form an elastic network structure, which increased the stability of stigmasterol nanodispersions. ZPNs not only relieved the adverse physiological symptoms of colitis in mice, but additionally prevented colonic length shortening and reduced fecal hemoglobin content. Immunohistochemical analysis showed that ZPNs could alleviate colitis by inhibiting the NF-κB signaling pathway involved in the expression of inflammatory factors TNF-α, IL-6, IL-1β, CSF-1 and coenzyme COX-2. This study suggests that supplement of nano-embedded stigmasterol based on zein and pectin has a positive therapeutic effect on alleviating colitis in mice. Such activities of nano-embedded stigmasterol in humans remain to be investigated.
Collapse
Affiliation(s)
- Simin Feng
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China
| | - Minghui Sui
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Dan Wang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Central Macedonia, 54453, The Hellenic Republic
| | - Mohamed A Farag
- Department of Chemistry, School of Science & Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China
| |
Collapse
|
44
|
Kalambate PK, Noiphung J, Rodthongkum N, Larpant N, Thirabowonkitphithan P, Rojanarata T, Hasan M, Huang Y, Laiwattanapaisal W. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Sustained Intra-Articular Release and Biocompatibility of Tacrolimus (FK506) Loaded Monospheres Composed of [PDLA-PEG 1000]- b-[PLLA] Multi-Block Copolymers in Healthy Horse Joints. Pharmaceutics 2021; 13:pharmaceutics13091438. [PMID: 34575514 PMCID: PMC8465142 DOI: 10.3390/pharmaceutics13091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increasing interest in controlled release systems for local therapy in the treatment of human and equine joint diseases, aiming for optimal intra-articular concentrations with no systemic side effects. In this study, the intra-articular tolerability and suitability for local and sustained release of tacrolimus (FK506) from monospheres composed of [PDLA-PEG1000]-b-PLLA multiblock copolymers were investigated. Unloaded and tacrolimus-loaded (18.4 mg tacrolimus/joint) monospheres were injected into the joints of six healthy horses, with saline and hyaluronic acid (HA) in the contralateral joints as controls. Blood and synovial fluid were analysed for the tacrolimus concentration and biomarkers for inflammation and cartilage metabolism. After an initial burst release, sustained intra-articular tacrolimus concentrations (>20 ng/mL) were observed during the 42 days follow-up. Whole-blood tacrolimus levels were below the detectable level (<0.5 ng/mL). A transient inflammatory reaction was observed for all substances, evidenced by increases of the synovial fluid white blood cell count and total protein. Prostaglandin and glycosaminoglycan release were increased in joints injected with unloaded monospheres, which was mitigated by tacrolimus. Both tacrolimus-loaded monospheres and HA transiently increased the concentration of collagen II cleavage products (C2C). A histologic evaluation of the joints at the endpoint showed no pathological changes in any of the conditions. Together, these results indicate the good biocompatibility of intra-articular applied tacrolimus-loaded monospheres combined with prolonged local drug release while minimising the risk of systemic side effects. Further evaluation in a clinical setting is needed to determine if tacrolimus-loaded monospheres can be beneficial in the treatment of inflammatory joint diseases in humans and animals.
Collapse
|
46
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
47
|
Carletto B, Koga AY, Novatski A, Mainardes RM, Lipinski LC, Farago PV. Ursolic acid-loaded lipid-core nanocapsules reduce damage caused by estrogen deficiency in wound healing. Colloids Surf B Biointerfaces 2021; 203:111720. [PMID: 33819820 DOI: 10.1016/j.colsurfb.2021.111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The skin aging process in women is accelerated due to decreases in serum estrogen levels triggered by the menopause process. Hence, poly(L-lactic acid) lipid-core nanocapsules containing ursolic acid (NPLA-UA) were developed using the interfacial deposition of the preformed polymer methodology as a strategy to reduce damages to the healing process caused by hormonal deficiency in ovariectomized rats. The colloidal suspensions of nanocapsules presented adequate size and morphology (254 and 375 nm), negative zeta potential (-31 and -37 mV), high encapsulation efficiency (99.89 %), and amorphous character. The analyses performed in an in vivo healing trial showed that the treatment with NPLA-UA resulted in faster wound retraction with less inflammatory response. In addition, the angiogenic process was stimulated increased synthesis of dermal collagen occurred. Ursolic acid-loaded, lipid-core nanocapsules are suitable for treating skin changes triggered by decreased estrogen in menopause.
Collapse
Affiliation(s)
- Bruna Carletto
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil.
| | - Adriana Yuriko Koga
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| | - Andressa Novatski
- Department of Physics, State University of Ponta Grossa, Paraná, Brazil
| | | | | | - Paulo Vitor Farago
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Paraná, Brazil
| |
Collapse
|
48
|
Thapa R, Sai K, Saha D, Kushwaha D, Aswal V, Ghosh Moulick R, Bose S, Bhattaharya J. Synthesis and characterization of a nanoemulsion system for solubility enhancement of poorly water soluble non-steroidal anti-inflammatory drugs. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Mazaleuskaya LL, Muzykantov VR, FitzGerald GA. Nanotherapeutic-directed approaches to analgesia. Trends Pharmacol Sci 2021; 42:527-550. [PMID: 33883067 DOI: 10.1016/j.tips.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
The ongoing opioid crisis highlighted the need for non-steroidal anti-inflammatory drugs (NSAIDs), nonaddictive analgesics against pain, fever, and inflammation. However, NSAIDs may cause gastrointestinal and cardiovascular adverse effects. To avoid systemic toxicity and deliver drugs to diseased tissues, nanotechnology methods of NSAID encapsulation have been reported and some have reached clinical development. Currently, 57 micro- and nanodrugs are approved by the US FDA. Already approved nanoanalgesics have revealed superior efficacy or reduced toxicity compared with placebo or lower doses of systemically administered active comparators. In this review, the evidence for approval of the marketed nanodrugs will be discussed, with a focus on therapies for pain and inflammation. Nanomedicine remains an attractive field for the development of targeted analgesics.
Collapse
Affiliation(s)
- Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics, The Department of Systems Pharmacology and Translational Therapeutics, and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Institute for Translational Medicine and Therapeutics, The Department of Systems Pharmacology and Translational Therapeutics, and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, The Department of Systems Pharmacology and Translational Therapeutics, and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Zhao M, Yao J, Meng X, Cui Y, Zhu T, Sun F, Li Y, Teng L. Polyketal Nanoparticles Co-Loaded With miR-124 and Ketoprofen for Treatment of Rheumatoid Arthritis. J Pharm Sci 2021; 110:2233-2240. [PMID: 33516754 DOI: 10.1016/j.xphs.2021.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Ketoprofen, a non-steroidal anti-inflammatory drug, can effectively relieve pain associated with arthritis, and microRNA-124 (miR-124) can inhibit the progression of the disease. In this study, poly (cyclohexane-1,4-diylacetone dimethylene ketal) (PCADK) nanoparticles (NPs) co-loaded with ketoprofen and miR-124 were successfully prepared using an emulsified solvent evaporation method. The co-loaded NPs exhibited a mean particle diameter of 160 nm. The acid sensitivity of the NPs was determined through in vitro release experiments. An adjuvant-induced arthritis rat model of arthritis was established for evaluating the pharmacodynamics of the NPs through clinical scoring and degree of swelling. The PCADK NPs exhibited more potent pharmacodynamic effects owing to the acid-sensitive properties of the carrier materials, compared with Poly (lactic-co-glycolic acid) (PLGA) NPs. Furthermore, PCADK co-loaded NPs exhibited superior anti-inflammatory effects compared to NPs loaded with either miR-124 or ketoprofen alone. In conclusion, co-delivery of ketoprofen and miR-124 through NPs is a promising strategy for the treatment of arthritis.
Collapse
Affiliation(s)
- Menghui Zhao
- School of Life Sciences, Jilin University, Changchun, China
| | - Jiaqi Yao
- School of Life Sciences, Jilin University, Changchun, China
| | - Xiangxue Meng
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Tianyu Zhu
- School of Life Sciences, Jilin University, Changchun, China
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|