1
|
Khawas S, Dhara TK, Sharma N. Efficacy of umbelliferone-loaded nanostructured lipid carrier in the management of bleomycin-induced idiopathic pulmonary fibrosis: experimental and network pharmacology insight. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03744-x. [PMID: 39718612 DOI: 10.1007/s00210-024-03744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe and progressive lung disorder with an average survival rate of 3 to 5 years. IPF presents a significant challenge in clinical management, necessitating novel therapeutic approaches. Nanostructured lipid carriers (NLCs) have proven to be promising vehicles for targeted drug delivery to the lung tissues. This research focuses on formulating and evaluating umbelliferone (UMB)-loaded NLCs for the treatment of IPF. UMB-NLC was formulated using the hot emulsion ultrasonication method and was characterized. The formulation was then tested for its efficacy in a bleomycin-induced IPF mice model. Leukocyte infiltration and interleukin-6 were estimated in the bronchoalveolar lavage fluid (BALF). Various antioxidant activities were also assessed for the formulation, followed by histopathological analysis. Furthermore, an in silico mechanistic approach using network pharmacology was carried out to obtain genes of interest. Particle size analysis revealed a mean size of 174.9 ± 3.66 nm for UMB-NLC, ideal for lung tissue targeting. Zeta potential measurements indicated good stability (-34.3 ± 1.35 mV) for long-term storage. Fourier transform infrared spectroscopy (FTIR) confirmed the successful encapsulation of UMB within the lipid matrix of NLCs. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) demonstrated the amorphous state of UMB-NLC, indicating enhanced solubility and bioavailability. Field emission scanning electron microscopy (FESEM) revealed uniform, spherical particles in the nanometer range. Drug entrapment efficiency (EE%) and loading capacity (DL%) were found to be 85.03 ± 2.36% and 17.01 ± 0.48%, respectively, indicating efficient drug incorporation. In vitro release study showed uniform sustained drug release over 48 h, indicating the potential for prolonged therapeutic effect. In vivo studies using UMB-NLC demonstrated significant improvements in bleomycin-induced IPF. A restoration in body weight and lung/body-weight (L/B) ratio was observed compared to disease controls. BALF analysis revealed reduced leukocyte infiltration and decreased inflammatory cytokine IL-6 levels (**p < 0.01). Biochemical assays showed enhanced antioxidant status and reduced oxidative stress in lung tissues. Hydroxyproline content (HPO, **p < 0.01), malondialdehyde (MDA, ***p < 0.001), and total protein content (**p < 0.01) were significantly reduced, while glutathione (GSH, ***p < 0.001), superoxide dismutase (SOD, **p < 0.01), and catalase (CAT, **p < 0.01) were elevated. Histopathological analysis confirmed the attenuation of lung fibrosis with maintained alveolar architecture and reduced fibrotic deposition. Furthermore, network pharmacology identified UMB targets and IPF-related genes with a Venn diagram, and cytoHubba analysis revealed key hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment demonstrated UMB's involvement in IPF-related pathways, highlighting its therapeutic potential. Therefore, UMB-NLC may exhibit promising therapeutic potential in the treatment of IPF, offering targeted drug delivery, enhanced bioavailability, and improved efficacy in alleviating pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Sayak Khawas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Tushar Kanti Dhara
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
2
|
Chen D, Song T, Liu Y, Wang Y, Qin B, Zhang Q, Hu W, Zhou X, Qi R. Effective Hydrogel Vascular Patch Dual-Loaded with Cycloastragenol Nanostructured Lipid Carriers and Doxycycline for Repairing Extravascular Injury in Abdominal Aortic Aneurysm. Adv Healthc Mater 2024:e2402497. [PMID: 39703126 DOI: 10.1002/adhm.202402497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Endovascular aneurysm repair (EVAR) plays a crucial role in the treatment of abdominal aortic aneurysm (AAA) in the clinic, but the aneurysm remains in the patient's body after surgery, continuing to pose a risk of progression. Cycloastragenol (CAG) is proven to be an effective anti-AAA drug, and its vascular protective effects can be further improved when the hydrophobic CAG is encapsulated into nano-sized formulations to enhance its bioavailability. In this context, this study developed an extravascular patch hydrogel loaded with CAG nanostructured lipid carriers and a hydrophilic drug of doxycycline hydrochloride (DOX). The extravascular patch delivered onto the mouse abdominal aortas can promote local permeation of hydrophilic/hydrophobic drugs at the vessel sites and provide effective vascular protection against AAA injury induced by elastase. This study introduces a novel and promising approach for AAA treatment, which can serve as a supplementary strategy after EVAR surgery.
Collapse
Affiliation(s)
- Du Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Tiantian Song
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Yi Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Qingyi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Weipeng Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiqiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling. NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
- School of Pharmacy / Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
3
|
Dhara TK, Khawas S, Sharma N. Lipid nanoparticles for pulmonary fibrosis: A comprehensive review. Pulm Pharmacol Ther 2024; 87:102319. [PMID: 39216596 DOI: 10.1016/j.pupt.2024.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive and irreversible ailment associated with the proliferation of fibroblast and accumulation of extracellular matrix (ECM) with gradual scarring of lung tissue. Despite several research studies, the treatments available are not efficient enough for the reversal of the disease and are constantly in progress. No drugs other than Pirfenidone and Nintedanib have been approved for the treatment of IPF, necessitating the exploration of novel therapeutic strategies. Recently, lipid-based nanoparticles (LNPs) have drawn more attention because of their potential to enhance the solubility of drugs, cross biological barriers of the lungs and specifically target lung fibrotic tissues, overcoming various challenges in treating IPF. LNPs offer a versatile platform to encapsulate a wide range of drugs, both hydrophilic and lipophilic, improving their bioavailability, allowing sustained release and reducing toxicity, which radiates their significant role in addressing the complexities of IPF. This review summarizes the pathogenesis and conventional treatment of idiopathic pulmonary fibrosis, along with their drawbacks. The review focuses on different types of lipid-based nanoparticles that have been tested in the treatment of idiopathic pulmonary fibrosis, including nanoemulsions, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, niosomes and lipid-polymer hybrid nanoparticles. The review also highlights the future prospects that can offer a potential approach for developing novel strategies to treat idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Tushar Kanti Dhara
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sayak Khawas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
4
|
Favas R, Almeida H, Peixoto AF, Ferreira D, Silva AC. Advances in Encapsulating Marine Bioactive Compounds Using Nanostructured Lipid Carriers (NLCs) and Solid Lipid Nanoparticles (SLNs) for Health Applications. Pharmaceutics 2024; 16:1517. [PMID: 39771497 PMCID: PMC11728729 DOI: 10.3390/pharmaceutics16121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
As life expectancy rises and modern lifestyles improve, there is an increasing focus on health, disease prevention, and enhancing physical appearance. Consumers are more aware of the benefits of natural ingredients in healthcare products while also being mindful of sustainability challenges. Consequently, marine bioactive compounds have gained popularity as ingredients in cosmetics and food supplements due to their diverse beneficial properties. Nonetheless, the use of some of these compounds is restricted by their low stability and poor aqueous solubility, necessitating solutions to overcome these limitations. In this context, lipid nanoparticles, such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have been investigated for their potential to protect and improve the absorption of molecules through various routes, including oral and cutaneous. Numerous studies have shown that nanoencapsulating these compounds and incorporating them into cosmetics and food supplements can be effective. However, this application remains unregulated at the global level and is not currently addressed by existing legislation. Additional in vivo studies in both animals and humans are necessary to fully assess safety concerns.
Collapse
Affiliation(s)
- Rita Favas
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, 4805-017 Guimarães, Portugal
| | - Andreia F. Peixoto
- LAQV-REQUIMTE (Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Domingos Ferreira
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana C. Silva
- UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
5
|
Kosti EM, Sotiropoulou H, Tsichlis I, Tsakiri M, Naziris N, Demetzos C. Impact of Pluronic F-127 on the Stability of Quercetin-Loaded Liposomes: Insights from DSC Preformulation Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5454. [PMID: 39597287 PMCID: PMC11595950 DOI: 10.3390/ma17225454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The aim of the present study is to evaluate the stability of DMPC:Pluronic F-127 and DPPC:Pluronic F-127 liposomes, both with and without incorporated quercetin. Quercetin belongs to the class of flavonoids and has shown antioxidant, antiviral, anti-inflammatory, anti-cancer, and antimicrobial activities. Dynamic light scattering, electrophoretic light scattering, and differential scanning calorimetry (DSC) were utilized to investigate the cooperative behavior between liposomal components and its effect on stability. All formulations were stored at 4 °C and 25 °C and studied over 42 days. Furthermore, the interaction of the final formulations with serum proteins was assessed to evaluate the potential of Pluronic F-127 as a stabilizer in these liposomal nanosystems. This study highlights the impact of DSC in preformulation evaluations by correlating thermal behavior with quercetin incorporation and variations in size and the polydispersity index. According to the results, quercetin increased the fluidity and stability of liposomal nanosystems, while Pluronic F-127 was not sufficient for effective steric stabilization. Additionally, DSC thermograms revealed the integration of Pluronic F-127 into lipid membranes and showed phase separation in the DMPC nanosystem. In conclusion, the results indicate that the DPPC:Pluronic F-127:quercetin nanosystem exhibited the desired physicochemical and thermotropic properties for the effective delivery of quercetin for pharmaceutical purposes.
Collapse
Affiliation(s)
| | | | | | | | | | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.-M.K.); (H.S.); (I.T.); (M.T.)
| |
Collapse
|
6
|
Chavan DD, Bhosale RR, Thorat VM, Yadav AR, Patil SV, Janugade BU, Patil SJ. Current Advances in Lipid-Based Drug Delivery Systems as Nanocarriers for the Management of Female Genital Tuberculosis. Cureus 2024; 16:e74452. [PMID: 39726465 PMCID: PMC11669736 DOI: 10.7759/cureus.74452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Female genital tuberculosis (FGTB) arises from Mycobacterium tuberculosis infection and can rarely be caused by Mycobacterium bovis or atypical mycobacteria. FGTB usually arises from tuberculosis (TB) that affects the lungs or other organs. The infection can enter the vaginal tract directly from abdominal TB or by hematogenous or lymphatic pathways. Menstrual dysfunction and infertility as a result of genital organ damage result from FGTB, which affects women's fallopian tubes, uterine endometrium, and ovaries. Consequently, FGTB remains a major worldwide health risk, posing challenges in its treatment due to the limited effectiveness of existing drugs and the resilient nature of the TB pathogen. Moreover, currently available antimicrobial drugs for FGTB suffer from inadequate bioavailability. Long treatment regimens are necessary because high doses often result in patient noncompliance and the emergence of drug-resistant strains of TB. Therefore, to improve TB therapy generally, especially FGTB, novel drug delivery techniques are essential. Because targeted drug delivery systems have the benefit of delivering higher drug concentrations directly to the infection site, fewer side effects have been reported. As a result, various lipid-based drug delivery systems as nanocarriers have been identified as successful antimicrobial drug delivery options, indicating their potential for treating FGTB.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshay R Yadav
- Department of Pharmaceutical Chemistry, Krishna Charitable Trust's Krishna College of Pharmacy, Karad, IND
| | - Sachinkumar V Patil
- Department of Pharmaceutics, Dr. Ashok Gujar Institute of Pharmacy, Karad, IND
| | - Bhagyesh U Janugade
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
7
|
Abu Elella MH, Al Khatib AO, Al-Obaidi H. Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review. Pharmaceutics 2024; 16:680. [PMID: 38794342 PMCID: PMC11125033 DOI: 10.3390/pharmaceutics16050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Lung diseases have received great attention in the past years because they contribute approximately one-third of the total global mortality. Pulmonary drug delivery is regarded as one of the most appealing routes to treat lung diseases. It addresses numerous drawbacks linked to traditional dosage forms. It presents notable features, such as, for example, a non-invasive route, localized lung drug delivery, low enzymatic activity, low drug degradation, higher patient compliance, and avoiding first-pass metabolism. Therefore, the pulmonary route is commonly explored for delivering drugs both locally and systemically. Inhalable nanocarrier powders, especially, lipid nanoparticle formulations, including solid-lipid and nanostructured-lipid nanocarriers, are attracting considerable interest in addressing respiratory diseases thanks to their significant advantages, including deep lung deposition, biocompatibility, biodegradability, mucoadhesion, and controlled drug released. Spray drying is a scalable, fast, and commercially viable technique to produce nanolipid powders. This review highlights the ideal criteria for inhalable spray-dried SLN and NLC powders for the pulmonary administration route. Additionally, the most promising inhalation devices, known as dry powder inhalers (DPIs) for the pulmonary delivery of nanolipid powder-based medications, and pulmonary applications of SLN and NLC powders for treating chronic lung conditions, are considered.
Collapse
Affiliation(s)
- Mahmoud H. Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| | - Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Hisham Al-Obaidi
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; (M.H.A.E.); (A.O.A.K.)
| |
Collapse
|
8
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
9
|
Ramadan SS, El Zaiat FA, Habashy EA, Montaser MM, Hassan HE, Tharwat SS, El-khadragy M, Abdel Moneim AE, Elshopakey GE, Akabawy AMA. Coenzyme Q10-Loaded Albumin Nanoparticles Protect against Redox Imbalance and Inflammatory, Apoptotic, and Histopathological Alterations in Mercuric Chloride-Induced Hepatorenal Toxicity in Rats. Biomedicines 2023; 11:3054. [PMID: 38002054 PMCID: PMC10669886 DOI: 10.3390/biomedicines11113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to mercuric chloride (HgCl2), either accidental or occupational, induces substantial liver and kidney damage. Coenzyme Q10 (CoQ10) is a natural antioxidant that also has anti-inflammatory and anti-apoptotic activities. Herein, our study aimed to investigate the possible protective effects of CoQ10 alone or loaded with albumin nanoparticles (CoQ10NPs) against HgCl2-induced hepatorenal toxicity in rats. Experimental animals received CoQ10 (10 mg/kg/oral) or CoQ10NPs (10 mg/kg/oral) and were injected intraperitoneally with HgCl2 (5 mg/kg; three times/week) for two weeks. The results indicated that CoQ10NP pretreatment caused a significant decrease in serum liver and kidney function markers. Moreover, lowered MDA and NO levels were associated with an increase in antioxidant enzyme activities (SOD, GPx, GR, and CAT), along with higher GSH contents, in both the liver and kidneys of intoxicated rats treated with CoQ10NPs. Moreover, HgCl2-intoxicated rats that received CoQ10NPs revealed a significant reduction in the hepatorenal levels of TNF-α, IL-1β, NF-κB, and TGF-β, as well as an increase in the hepatic level of the fibrotic marker (α-SMA). Notably, CoQ10NPs counteracted hepatorenal apoptosis by diminishing the levels of Bax and caspase-3 and boosting the level of Bcl-2. The hepatic and renal histopathological findings supported the abovementioned changes. In conclusion, these data suggest that CoQ10, alone or loaded with albumin nanoparticles, has great power in reversing the hepatic and renal tissue impairment induced by HgCl2 via the modulation of hepatorenal oxidative damage, inflammation, and apoptosis. Therefore, this study provides a valuable therapeutic agent (CoQ10NPs) for preventing and treating several HgCl2-induced hepatorenal disorders.
Collapse
Affiliation(s)
- Shimaa S. Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Farah A. El Zaiat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Engy A. Habashy
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mostafa M. Montaser
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Habeba E. Hassan
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shahinaz S. Tharwat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
10
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
11
|
Shete MB, Deshpande AS, Shende P. Enhancement of in-vitro anti-oral cancer activities of silymarin using dispersion of nanostructured lipid carrier in mucoadhesive in-situ gel. Int J Pharm 2023; 636:122860. [PMID: 36933584 DOI: 10.1016/j.ijpharm.2023.122860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Silymarin (SME) shows multiple therapeutic actions against several cancers, however, low aqueous solubility and poor bioavailability issues restrict its clinical use. In this study, SME was loaded in nanostructured lipid carriers (NLCs) and further incorporated in mucoadhesive in-situ gel (SME-NLCs-Plx/CP-ISG) for localized treatment of oral cancer. Using a 33 Box-Behnken design (BBD), an optimized SME-NLC formula was developed with the ratios of solid lipids, surfactant concentration, and sonication time as independent variables, while particle size (PS), polydispersity index (PDI), and % encapsulation efficiency (EE) as dependent variables, resulting in 315.5 ± 0.1 nm PS, 0.341 ± 0.01 PDI, and 71.05 ± 0.05 % EE. Structural studies confirmed the formation of SME-NLCs. SME-NLCs incorporated in-situ gel demonstrated a sustained release for SME, indicating enhanced retention on the buccal mucosal membrane. The in-situ gel containing SME-NLCs showed a marked decrease in IC50 value (24.90 ± 0.45 µM) than SME-NLCs (28.40 ± 0.89 µM) and plain SME (36.60 ± 0.26 µM). The studies demonstrated that Reactive oxygen species (ROS) generation potential and SME-NLCs-Plx/CP-ISG induced apoptosis at Sub-G0 phase owing to higher penetration of SME-NLCs led to higher inhibition against human KB oral cancer cells. Therefore, SME-NLCs-Plx/CP-ISG can be the alternative to chemotherapy and surgery with site-specific delivery of SME to oral cancer patients.
Collapse
Affiliation(s)
- Meghanath B Shete
- School of Pharmacy & Technology Management, SVKM's, NMIMS, Shirpur, Maharashtra, India; Department of Pharmaceutical Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra, India
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM's, NMIMS, Polepally SEZ, TSIIC Jadcherla, Hyderabad, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's, NMIMS, Vile-Parle (W), Mumbai, Maharashtra, India.
| |
Collapse
|
12
|
Suvarna V, Sawant N, Desai N. A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics. Crit Rev Ther Drug Carrier Syst 2023; 40:43-82. [PMID: 36734913 DOI: 10.1615/critrevtherdrugcarriersyst.2022041853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unmodified nanocarriers used in the chemotherapy of cancers and various infectious diseases exhibit prolonged blood circulation time, prevent enzymatic degradation and increase chemical stability of encapsulated therapeutics. However, off-target effect and lack of specificity associated with unmodified nanoparticles (NPs) limit their applications in the health care system. Mannose (Man) receptors with significant overexpression on antigen-presenting cells and macrophages are among the most admired targets for cancer and anti-infective therapeutics. Therefore, development of Man functionalized nanocarriers targeting Man receptors, for target specific drug delivery in the chemotherapy have been extensively studied. Present review expounds diverse Man-conjugated NPs with their potential for targeted drug delivery, improved biodistribution profiles and localization. Additionally, the review gives detailed account of the interactions of mannosylated NPs with various biological systems and their characterization not discussed in earlier published reports is discussed.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Niserga Sawant
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, Maharashtra, India
| | - Namita Desai
- Department of Pharmaceutics, C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai - 400049, Maharashtra, India
| |
Collapse
|
13
|
Patil TS, Gujarathi NA, Aher AA, Pachpande HE, Sharma C, Ojha S, Goyal SN, Agrawal YO. Recent Advancements in Topical Anti-Psoriatic Nanostructured Lipid Carrier-Based Drug Delivery. Int J Mol Sci 2023; 24:ijms24032978. [PMID: 36769305 PMCID: PMC9917581 DOI: 10.3390/ijms24032978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is linked with unusual differentiation and hyperproliferation of epidermal keratinocytes that significantly impair the quality of life (QoL) of patients. The present treatment options only provide symptomatic relief and are surrounded by various adverse effects. Recently, nanostructured lipid carriers (NLCs) have emerged as next-generation nanocarriers with better physicochemical characteristics. The current manuscript provides background information on psoriasis, its pathophysiology, existing treatment options, and its limitations. It highlights the advantages, rationale, and mechanism of the permeation of NLCs for the treatment of psoriasis. It further gives a detailed account of various NLC nanoformulations for the treatment of psoriasis. In addition, tabular information is provided on the most relevant patents on NLCs for treating psoriasis. Lastly, light is shed on regulatory considerations related to NLC-like nanoformulations. In the treatment of psoriasis, NLCs display a sustained release drug profile, an ability to incorporate both hydrophobic and hydrophilic drugs, an enhancement in skin hydration, penetrability, retention, and bioavailability of the drug, along with reduced staining potential as compared to conventional ointments, and decreased side effects of drug molecules. This affirms the bright future of NLC nanoformulations in the treatment of psoriasis. However, academic industry collaboration and more sound regulatory controls are required to commercialize the NLC nanoformulations for psoriasis treatment.
Collapse
Affiliation(s)
- Tulshidas S. Patil
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
- Correspondence: (T.S.P.); (Y.O.A.); Tel.: +91-2562-297802 (T.S.P. & Y.O.A.) or +91-2562-297805 (T.S.P. & Y.O.A.)
| | - Nayan A. Gujarathi
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Abhijeet A. Aher
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Hemal E. Pachpande
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Yogeeta O. Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
- Correspondence: (T.S.P.); (Y.O.A.); Tel.: +91-2562-297802 (T.S.P. & Y.O.A.) or +91-2562-297805 (T.S.P. & Y.O.A.)
| |
Collapse
|
14
|
Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022; 27:8293. [PMID: 36500388 PMCID: PMC9739299 DOI: 10.3390/molecules27238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.
Collapse
Affiliation(s)
- Mohsen G. Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Osama Abdelhakim Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Ali AS, Alrashedi MG, Ahmed OAA, Ibrahim IM. Pulmonary Delivery of Hydroxychloroquine Nanostructured Lipid Carrier as a Potential Treatment of COVID-19. Polymers (Basel) 2022; 14:polym14132616. [PMID: 35808662 PMCID: PMC9269041 DOI: 10.3390/polym14132616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2. Pneumonia is considered the most severe and long-term complication of COVID-19. Among other drugs, hydroxychloroquine (HCQ) was repurposed for the management of COVID-19; however, low efficacy and cardiac toxicity of the conventional dosage form limited its use in COVID-19. Therefore, utilizing nanotechnology, a pulmonary delivery system of HCQ was investigated to overcome these limitations. HCQ was formulated in nanostructured lipid carriers (HCQ-NLCs) using the hot emulsification–ultrasonication method. Furthermore, the prepared formulation was evaluated in vitro. Moreover, the efficacy was tested in vivo in a bleomycin-induced acute lung injury mice model. Intriguingly, nanoformulations were given by the intratracheal route for 6 days. HCQ-NLCs showed a mean particle size of 277 nm and a good drug release profile. Remarkably, acute lung injury induced by bleomycin was associated with a marked elevation of inflammatory markers and histological alterations in lung tissues. Astoundingly, all these changes were significantly attenuated with HCQ-NLCs. The pulmonary delivery of HCQ-NLCs likely provided adequate targeting to lung tissues. Nevertheless, there is hope that this novel strategy will eventually lead to the improved effectiveness and diminished probability of alarming adverse drug reactions.
Collapse
Affiliation(s)
- Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Mohsen Geza Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Osama Abdelhakim Aly Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Correspondence:
| |
Collapse
|
16
|
Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, Rajpoot K, Tekade RK. Current trends in theranostic nanomedicines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022; 20:101. [PMID: 35241085 PMCID: PMC8892824 DOI: 10.1186/s12951-022-01307-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Pulmonary drug delivery is a highly attractive topic for the treatment of infectious lung diseases. Drug delivery via the pulmonary route offers unique advantages of no first-pass effect and high bioavailability, which provides an important means to deliver therapeutics directly to lung lesions. Starting from the structural characteristics of the lungs and the biological barriers for achieving efficient delivery, we aim to review literatures in the past decade regarding the pulmonary delivery strategies used to treat infectious lung diseases. Hopefully, this review article offers new insights into the future development of therapeutic strategies against pulmonary infectious diseases from a delivery point of view.
Collapse
Affiliation(s)
- Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Development of novel lipid matrix for improved sustained release effect of a hydrophilic drug via response surface methodology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Falsafi SR, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-Nia S, Akbari-Alavijeh S, Shaddel R, Jafari SM. Lycopene nanodelivery systems; recent advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Buya AB, Witika BA, Bapolisi AM, Mwila C, Mukubwa GK, Memvanga PB, Makoni PA, Nkanga CI. Application of Lipid-Based Nanocarriers for Antitubercular Drug Delivery: A Review. Pharmaceutics 2021; 13:2041. [PMID: 34959323 PMCID: PMC8708335 DOI: 10.3390/pharmaceutics13122041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
The antimicrobial drugs currently used for the management of tuberculosis (TB) exhibit poor bioavailability that necessitates prolonged treatment regimens and high dosing frequency to achieve optimal therapeutic outcomes. In addition, these agents cause severe adverse effects, as well as having detrimental interactions with other drugs used in the treatment of comorbid conditions such as HIV/AIDS. The challenges associated with the current TB regimens contribute to low levels of patient adherence and, consequently, the development of multidrug-resistant TB strains. This has led to the urgent need to develop newer drug delivery systems to improve the treatment of TB. Targeted drug delivery systems provide higher drug concentrations at the infection site, thus leading to reduced incidences of adverse effects. Lipid-based nanocarriers have proven to be effective in improving the solubility and bioavailability of antimicrobials whilst decreasing the incidence of adverse effects through targeted delivery. The potential application of lipid-based carriers such as liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, nano and microemulsions, and self-emulsifying drug delivery systems for the treatment of TB is reviewed herein. The composition of the investigated lipid-based carriers, their characteristics, and their influence on bioavailability, toxicity, and sustained drug delivery are also discussed. Overall, lipid-based systems have shown great promise in anti-TB drug delivery applications. The summary of the reviewed data encourages future efforts to boost the translational development of lipid-based nanocarriers to improve TB therapy.
Collapse
Affiliation(s)
- Aristote B. Buya
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| | - Bwalya A. Witika
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa;
| | - Alain M. Bapolisi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo;
| | - Chiluba Mwila
- School of Health Sciences, Department of Pharmacy, University of Zambia, Lusaka 10101, Zambia;
| | - Grady K. Mukubwa
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| | - Patrick B. Memvanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo;
| | - Pedzisai A. Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Christian I. Nkanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| |
Collapse
|
21
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11:3060-3091. [PMID: 33977080 PMCID: PMC8102084 DOI: 10.1016/j.apsb.2021.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AEC II, alveolar type II epithelial cells
- AM, alveolar macrophages
- ARDS, acute respiratory distress syndrome
- Acute lung injury
- Acute respiratory distress syndrome
- Anti-inflammatory therapy
- BALF, bronchoalveolar lavage fluid
- BSA, bovine serum albumin
- CD, cyclodextrin
- CLP, cecal ligation and perforation
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, phosphatidylethanolamine
- DOTAP, 1-diolefin-3-trimethylaminopropane
- DOX, doxorubicin
- DPPC, dipalmitoylphosphatidylcholine
- Drug delivery
- ECM, extracellular matrix
- ELVIS, extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration
- EPCs, endothelial progenitor cells
- EPR, enhanced permeability and retention
- EVs, extracellular vesicles
- EphA2, ephrin type-A receptor 2
- Esbp, E-selectin-binding peptide
- FcgR, Fcγ receptor
- GNP, peptide-gold nanoparticle
- H2O2, hydrogen peroxide
- HO-1, heme oxygenase-1
- ICAM-1, intercellular adhesion molecule-1
- IKK, IκB kinase
- IL, interleukin
- LPS, lipopolysaccharide
- MERS, Middle East respiratory syndrome
- MPMVECs, mouse pulmonary microvascular endothelial cells
- MPO, myeloperoxidase
- MSC, mesenchymal stem cells
- NAC, N-acetylcysteine
- NE, neutrophil elastase
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor-κB
- Nanomedicine
- PC, phosphatidylcholine
- PCB, poly(carboxybetaine)
- PDA, polydopamine
- PDE4, phosphodiesterase 4
- PECAM-1, platelet-endothelial cell adhesion molecule
- PEG, poly(ethylene glycol)
- PEI, polyetherimide
- PEVs, platelet-derived extracellular vesicles
- PLGA, poly(lactic-co-glycolic acid)
- PS-PEG, poly(styrene-b-ethylene glycol)
- Pathophysiologic feature
- RBC, red blood cells
- RBD, receptor-binding domains
- ROS, reactive oxygen species
- S1PLyase, sphingosine-1-phosphate lyase
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC1, syndecan-1
- SORT, selective organ targeting
- SP, surfactant protein
- Se, selenium
- Siglec, sialic acid-binding immunoglobulin-like lectin
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- TPP, triphenylphosphonium cation
- Targeting strategy
- YSA, YSAYPDSVPMMS
- cRGD, cyclic arginine glycine-d-aspartic acid
- iNOS, inducible nitric oxide synthase
- rSPANb, anti-rat SP-A nanobody
- scFv, single chain variable fragments
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
24
|
Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Mofazzal Jahromi MA, Simon P, Karimi M, Hamblin MR. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J Control Release 2021; 336:354-374. [PMID: 34175366 PMCID: PMC8226031 DOI: 10.1016/j.jconrel.2021.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Alamdaran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Aref Bagherzadeh
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Perikles Simon
- Department of Sport Medicine, Disease Prevention and Rehabilitation, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Muraca GS, Soler-Arango J, Castro GR, Islan GA, Brelles-Mariño G. Improving ciprofloxacin antimicrobial activity through lipid nanoencapsulation or non-thermal plasma on Pseudomonas aeruginosa biofilms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Formulation and clinical perspectives of inhalation-based nanocarrier delivery: a new archetype in lung cancer treatment. Ther Deliv 2021; 12:397-418. [PMID: 33902294 DOI: 10.4155/tde-2020-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous research in targeted delivery and specific molecular inhibitors (gene delivery), cytotoxic drug delivery through inhalation has been seen as a core part in the treatment of the lung cancer. Inhalation delivery provides a high dose of the drug directly to the lungs without affecting other body organs, increasing the therapeutic ratio. This article reviews the research performed over the last several decades regarding inhalation delivery of various cancer therapeutics for the treatment of lung cancer. Nevertheless, pulmonary administration of nanocarrier-based cancer therapeutics for lung cancer therapy is still in its infancy and faces greater than expected challenges. This article focuses on the current inhalable nanocarrier-based drugs for lung cancer treatment.
Collapse
|
27
|
Apostolou M, Assi S, Fatokun AA, Khan I. The Effects of Solid and Liquid Lipids on the Physicochemical Properties of Nanostructured Lipid Carriers. J Pharm Sci 2021; 110:2859-2872. [PMID: 33901564 DOI: 10.1016/j.xphs.2021.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/19/2023]
Abstract
The aim of this work was to identify from a review of current literature the effects of lipids used in the development of Nanostructured Lipid Carriers (NLCs) on the physicochemical properties of the resulting formulation. The size of the solid lipid, affected by the molecular weight and the complexity of the structure, tends to affect the particle size of the final formulation proportionally; the higher the molecular weight and the more complex the molecular structure, the bigger the particle size of the NLCs. However, there is no straight correlation between the size and the structure of the liquid lipid and the particle size. Moreover, there seems to be a correlation of the solid to liquid lipid ratio which affects the particle size; there has been a trend of increasing particle size when more solid lipid was used. Regarding the entrapment efficiency, it is highly affected by the drug and its interaction with the lipids, as its solubility in the lipids needs to be high so the drug can stay entrapped within the lipid core. There was no direct correlation between the type of lipid used or the ratio and the zeta potential, which affects the stability of the NLCs.
Collapse
Affiliation(s)
- Maria Apostolou
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Sulaf Assi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Amos A Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom.
| |
Collapse
|
28
|
Xing Y, Lu P, Xue Z, Liang C, Zhang B, Kebebe D, Liu H, Liu Z. Nano-Strategies for Improving the Bioavailability of Inhaled Pharmaceutical Formulations. Mini Rev Med Chem 2021; 20:1258-1271. [PMID: 32386491 DOI: 10.2174/1389557520666200509235945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary pharmaceutical formulations are targeted for the treatment of respiratory diseases. However, their application is limited due to the physiological characteristics of the lungs, such as branching structure, mucociliary and macrophages, as well as certain properties of the drugs like particle size and solubility. Nano-formulations can ameliorate particle sizes and improve drug solubility to enhance bioavailability in the lungs. The nano-formulations for lungs reviewed in this article can be classified into nanocarriers, no-carrier-added nanosuspensions and polymer-drug conjugates. Compared with conventional inhalation preparations, these novel pulmonary pharmaceutical formulations have their own advantages, such as increasing drug solubility for better absorption and less inflammatory reaction caused by the aggregation of insoluble drugs; prolonging pulmonary retention time and reducing drug clearance; improving the patient compliance by avoiding multiple repeated administrations. This review will provide the reader with some background information for pulmonary drug delivery and give an overview of the existing literature about nano-formulations for pulmonary application to explore nano-strategies for improving the bioavailability of pulmonary pharmaceutical formulations.
Collapse
Affiliation(s)
- Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
29
|
Patil TS, Deshpande AS. Nanostructured lipid carrier-mediated lung targeted drug delivery system to enhance the safety and bioavailability of clofazimine. Drug Dev Ind Pharm 2021; 47:385-393. [PMID: 33646851 DOI: 10.1080/03639045.2021.1892743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tuberculosis (TB) disease is caused due to the infection of Mycobacterium tuberculosis bacilli which reside in alveolar macrophages (AMs). Clofazimine (CLF) has been reinstated clinically for the treatment of TB. However, major challenge of using CLF is its severe side-effects after oral administration. The present research was aimed to establish the safety and enhance the bioavailability of CLF by loading it into nanostructured lipid carriers (CLF-NLCs) and mannosylated NLCs (M-CLF-NLCs) to selectively target the drug toward AMs. The safety of CLF-NLCs and M-CLF-NLCs was evaluated by in vitro hemocompatibility studies, cell viability studies on macrophage J774 cell lines, and in vivo acute inhalation toxicity studies. The bioavailability was estimated by single-dose pharmacokinetics and biodistribution studies. Hemocompatibility studies showed normal RBCs count and least hemolysis of 0.23 ± 0.081% for M-CLF-NLCs treated group. Cell viability studies revealed greater safety of NLCs than CLF-drug dispersion in the concentration range of 2.5-25 μg/ml. In vivo acute toxicity studies revealed no physiological or behavioral changes and no mortality recorded over 14 days period. In pharmacokinetic studies, a maximum concentration of the drug (Cmax) of 35.44 ± 0.34 μg/g from M-CLF-NLCs after 48 h and longer residence time in lung tissues observed due to its sustained release and mannose receptor-mediated endocytosis. M-CLF-NLCs showed a maximum AUC0-∞ value of 2691.83 h μg/ml in lungs that indicated twofold greater bioavailability as compared to CLF-drug dispersion. Thus, mannosylated NLCs can be used as promising carriers for the safe and effective delivery of CLF via inhalation route for the management of TB disease.
Collapse
Affiliation(s)
- Tulshidas S Patil
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India.,School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, India
| | | |
Collapse
|
30
|
Lipid nanoparticles with improved biopharmaceutical attributes for tuberculosis treatment. Int J Pharm 2021; 596:120321. [PMID: 33539994 DOI: 10.1016/j.ijpharm.2021.120321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023]
Abstract
Tuberculosis is a topic of relevance worldwide because of the social and biological factors that triggered the disease and the economic burden on the health-care systems that imply its therapeutic treatment. Challenges to handle these issues include, among others, research on technological breakthroughs modifying the drug regimens to facilitate therapy adherence, avoid mycobacterium drug resistance, and minimize toxic side-effects. Lipid nanoparticles arise as a promising strategy in this respect as deduced from the reported scientific data. They are prepared from biodegradable and biocompatible starting materials and compared to the use of the free drugs, the entrapment of active molecules into the carriers might lead to both dose reduction and controlled delivery. Moreover, the target to the lung, the organ mainly affected by the disease, could be possible if the particle surface is modified. Although conclusive statements cannot be made considering the limited number of available research works, looking into what has been achieved up to now definitively encourages to continue investigations in this regard.
Collapse
|
31
|
Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, Ying LY, Wie LX, Chellian J, Mehta M, Satija S, Singh SK, Gulati M, Dureja H, Da Silva MW, Tambuwala MM, Gupta G, Paudel KR, Wadhwa R, Hansbro PM, Dua K. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev Res 2020; 81:419-436. [PMID: 32048757 DOI: 10.1002/ddr.21648] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/29/2022]
Abstract
Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
Collapse
Affiliation(s)
- Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim W Yee
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kong Y Xuan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishen Kunalan
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lim C Rou
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Leong S Jean
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee Y Ying
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Lee X Wie
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, County Londonderry, Northern Ireland, United Kingdom
| | - Gaurav Gupta
- School of Phamacy, Suresh Gyan Vihar University, Jaipur, India
| | - Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
32
|
Magalhães J, Pinheiro M, Drasler B, Septiadi D, Petri-Fink A, Santos SG, Rothen-Rutishauser B, Reis S. Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine (Lond) 2020; 15:259-271. [PMID: 31789097 DOI: 10.2217/nnm-2019-0256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Design nanostructured lipid carriers (NLC) to facilitate drug delivery to tuberculosis-infected areas, exploiting macrophage mannose receptors and assess their uptake in a 3D human lung model. Materials & methods: NLCs and mannosylated-NLCs were synthetized and characterized. Their uptake and biocompatibility were tested in a 3D human lung model. Results: The formulations have appropriate size (170–202 nm) and morphology for lung deposition. Cell membrane integrity was maintained and no significant pro-inflammatory cytokine (IL-1β, IL-8 and TNF-α) secretion or morphological changes were observed 24 h post nanoparticles exposure. NLCs and mannosylated NLCs were distributed in the apical side of the lung tissue, both in macrophages and in epithelial cells. Conclusion: NLCs are biocompatible carriers and can be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Joana Magalhães
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Portugal
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Susana G Santos
- Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
33
|
Patil TS, Deshpande AS. Mannosylated nanocarriers mediated site-specific drug delivery for the treatment of cancer and other infectious diseases: A state of the art review. J Control Release 2020; 320:239-252. [PMID: 31991156 DOI: 10.1016/j.jconrel.2020.01.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
The non-modified nanocarriers-based therapies for the treatment of cancer and other infectious diseases enhanced the chemical stability of therapeutically active agents, protected them from enzymatic degradation and extended their blood circulation time. However, the lack of specificity and off-target effects limit their applications. Mannose receptors overexpressed on antigen presenting cells such as dendritic cells and macrophages are one of the most desirable targets for treating cancer and other infectious diseases. Therefore, the development of mannosylated nanocarrier formulation is one of the most extensively explored approaches for targeting these mannose receptors. The present manuscript gives readers the background information on C-type lectin receptors followed by the roles, expression, and distribution of the mannose receptors. It further provides a detailed account of different mannosylated nanocarrier formulations. It also gives the tabular information on most relevant and recently granted patents on mannosylated systems. The overview of mannosylated nanocarrier formulations depicted site-specific targeting, enhanced pharmacokinetic/pharmacodynamic profiles, and improved transfection efficiency of the therapeutically active agents. This suggests the bright future ahead for mannosylated nanocarriers in the treatment of cancer and other infectious diseases. Nevertheless, the mechanism behind the enhanced immune response by mannosylated nanocarriers and their thorough clinical and preclinical evaluation need to explore further.
Collapse
Affiliation(s)
- Tulshidas S Patil
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India.
| |
Collapse
|
34
|
Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm 2019; 569:118595. [DOI: 10.1016/j.ijpharm.2019.118595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/23/2019] [Accepted: 08/03/2019] [Indexed: 12/17/2022]
|
35
|
Paclitaxel encapsulated in artesunate-phospholipid liposomes for combinatorial delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Rostamabadi H, Falsafi SR, Jafari SM. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J Control Release 2019; 298:38-67. [DOI: 10.1016/j.jconrel.2019.02.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
|
37
|
Xu H, Hua Y, Zhong J, Li X, Xu W, Cai Y, Mao Y, Lu X. Resveratrol Delivery by Albumin Nanoparticles Improved Neurological Function and Neuronal Damage in Transient Middle Cerebral Artery Occlusion Rats. Front Pharmacol 2018; 9:1403. [PMID: 30564121 PMCID: PMC6288361 DOI: 10.3389/fphar.2018.01403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023] Open
Abstract
Human serum albumin (HSA) is an intrinsic protein and important carrier that transports endogenous as well as exogenous substances. It is demonstrated in this study that the regional accumulation of albumin in the ischemia-reperfusion (I/R) brain may lead in the application of HSA based nanoparticles in the study of cerebral I/R injury. Resveratrol (RES) is potential in the treatment of cerebral I/R injury but is restricted for its water insolubility and short half-life in vivo. In our study, RES loaded HSA nanoparticles (RES-HSA-NPs) were prepared to facilitate the application of RES in protection from cerebral I/R injury. RES-HSA-NPs demonstrated spherical shape, a diameter about 100 nm, a highest RES encapsulation efficiency of 60.9 ± 5.07%, and controlled release pattern with the maximum release ratio of 50.2 ± 4.91% [in pH = 5.0 phosphate buffered saline (PBS)] and 26. 2 ± 2.73% (in pH = 7.4 PBS), respectively, after 90 h incubation at 37°C. After intravenous injection into transient middle cerebral artery occlusion (tMCAO) rats, RES-HSA-NPs improved neurological score and decreased infarct volume at 24 h after tMCAO in a dose dependent manner. A single dose of 20 mg/kg RES-HSA-NPs via tail vein improved neurological outcomes and decreased infarct volume at 24 and 72 h in tMCAO rats. I/R increased oxidative stress (indicated by products of lipid peroxidation, MDA) and neuronal apoptosis (indicated by yellow-brown TUNEL-positive cells), RES-HSA-NPs significantly attenuated oxidative stress and neuronal apoptosis. These results demonstrated the potential of RES-HSA-NPs in the therapy of cerebral I/R injury.
Collapse
Affiliation(s)
- Huae Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ye Hua
- Department of Neurology, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Zhong
- School of Foreign Languages, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyuan Cai
- Department of Geriatric Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Medical Image Science, Xuzhou Medical University, Xuzhou, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Patil TS, Deshpande AS. Innovative strategies in the diagnosis and treatment of tuberculosis: a patent review (2014–2017). Expert Opin Ther Pat 2018; 28:615-623. [DOI: 10.1080/13543776.2018.1508454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tulshidas S. Patil
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, India
| | | |
Collapse
|