1
|
Choe JY, Jones HP. Methods for Modeling Early Life Stress in Rodents. Methods Mol Biol 2025; 2868:205-219. [PMID: 39546232 DOI: 10.1007/978-1-0716-4200-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Animal models of early life stress/adversity (ELS) have provided a foundation from which our understanding of the psychoneuroimmunology of childhood trauma has expanded over recent decades. Rodent models are a cornerstone of the ELS literature with many studies utilizing paradigms based on early life separation/deprivation protocols and manipulating the cage environment. However, no animal model is perfect. In particular, the lack of standardization across ELS models has led to inconsistent results and raised questions regarding the translational value of common preclinical models. In this chapter, we present an overview of the history of ELS rodent models and discuss considerations relevant to the ongoing efforts to both improve existing models and generate novel paradigms to meet the evolving needs of molecular- and mechanism-based ELS research.
Collapse
Affiliation(s)
- Jamie Y Choe
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Institute for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Peterson R, Crawford RB, Blevins LK, Kaminski NE, Clark AJ, Malinczak CA. Four-Week GLP Immunotoxicity Assessment of Lactoferrin Alpha Produced by Komagataella phaffii in Sprague-Dawley Rats. Int J Toxicol 2024:10915818241299344. [PMID: 39537148 DOI: 10.1177/10915818241299344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral toxicity and toxicokinetic properties of human lactoferrin (LF) alpha produced in Komagataella phaffii (effera™) were investigated in adult Sprague-Dawley rats over a 28-day period under good laboratory practice conditions. Main study dosing used groups of 10 rats/sex/dose, and a secondary study evaluating toxicokinetic parameters used 6 rats/sex/dose. The vehicle control group received sodium citrate buffer, test groups received daily doses of 200, 600, and 2000 mg of effera™ per kg body weight, and the comparative control group received 2000 mg bovine LF (bLF)/kg body weight per day. T-cell-dependent antibody response against keyhole limpet hemocyanin and immunophenotyping of the spleen were performed as measures of immunotoxicity. Clinical observations, body weight, hematology, coagulation, clinical chemistry, urinalysis, immunotoxicity, gross necropsy, and histopathology were assessed. Toxicokinetic parameters were analyzed as an indication of LF bioavailability, and anti-LF antibody assays were conducted to detect antibodies produced against LF to measure immunogenicity. No treatment related toxicologically significant changes were observed. Based on the absence of toxicologically relevant changes, effera™ is well tolerated in rats at doses up to 2000 mg rhLF/kg/day, an amount ∼400 times that of the estimated daily intake at the 90th percentile proposed for human adult use.
Collapse
|
3
|
Smiley CE, Pate BS, Bouknight SJ, Harrington EN, Jasnow AM, Wood SK. The functional role of locus coeruleus microglia in the female stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575076. [PMID: 38260568 PMCID: PMC10802589 DOI: 10.1101/2024.01.10.575076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neuropsychiatric disorders that result from stress exposure are highly associated with central inflammation. Our previous work established that females selectively exhibit heightened proinflammatory cytokine production within the noradrenergic locus coeruleus (LC) along with a hypervigilant behavioral phenotype in response to witnessing social stress, and ablation of microglia using pharmacological techniques prevents this behavioral response. These studies were designed to further investigate the impact of stress-induced neuroimmune signaling on the long-term behavioral and neuronal consequences of social stress exposure in females using chemogenetics. We first characterized the use of an AAV-CD68-Gi-DREADD virus targeted to microglia within the LC and confirmed viral transduction, selectivity, and efficacy. Clozapine-n-oxide (CNO) was used for the suppression of microglial reactivity during acute and chronic exposure to vicarious/witness social defeat in female rats. Chemogenetic-mediated inhibition of microglial reactivity during stress blunted the neuroimmune response to stress and prevented both acute and long-term hypervigilant behavioral responses. Further, a history of microglial suppression during stress prevented the heightened LC activity typically observed in response to stress cues. These studies are among the first to use a chemogenetic approach to inhibit microglia within the female brain in vivo and establish LC inflammation as a key mechanism underlying the behavioral and neuronal responses to social stress in females.
Collapse
Affiliation(s)
- Cora E. Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Brittany S. Pate
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- University of South Carolina, Department of Exercise Science, Columbia, SC 29209
| | - Samantha J. Bouknight
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Evelynn N. Harrington
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| | - Aaron M. Jasnow
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
| | - Susan K. Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209
- WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209
| |
Collapse
|
4
|
Jeon BJ, Kwon DH, Gim GM, Kim HK, Lee JH, Jang G. Stable long-term germline transmission of GFP transgenic rat via PiggyBac transposon mediated gene transfer. BMC Vet Res 2024; 20:275. [PMID: 38918814 PMCID: PMC11201299 DOI: 10.1186/s12917-024-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.
Collapse
Affiliation(s)
- Beom-Jin Jeon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | | | - Hee-Kyoung Kim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- K-BIO KIURI Center, Seoul National University, Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- LARTBio Incorp, Gyeonggi-Do, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea.
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
5
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.560950. [PMID: 37873308 PMCID: PMC10592974 DOI: 10.1101/2023.10.05.560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K. Beaver
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R. Mugnier
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Stucki AO, Sauer UG, Allen DG, Kleinstreuer NC, Perron MM, Yozzo KL, Lowit AB, Clippinger AJ. Differences in the anatomy and physiology of the human and rat respiratory tracts and impact on toxicological assessments. Regul Toxicol Pharmacol 2024; 150:105648. [PMID: 38772524 PMCID: PMC11198871 DOI: 10.1016/j.yrtph.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Inhalation is a critical route through which substances can exert adverse effects in humans; therefore, it is important to characterize the potential effects that inhaled substances may have on the human respiratory tract by using fit for purpose, reliable, and human relevant testing tools. In regulatory toxicology testing, rats have primarily been used to assess the effects of inhaled substances as they-being mammals-share similarities in structure and function of the respiratory tract with humans. However, questions about inter-species differences impacting the predictability of human effects have surfaced. Disparities in macroscopic anatomy, microscopic anatomy, or physiology, such as breathing mode (e.g., nose-only versus oronasal breathing), airway structure (e.g., complexity of the nasal turbinates), cell types and location within the respiratory tract, and local metabolism may impact inhalation toxicity testing results. This review shows that these key differences describe uncertainty in the use of rat data to predict human effects and supports an opportunity to harness modern toxicology tools and a detailed understanding of the human respiratory tract to develop testing approaches grounded in human biology. Ultimately, as the regulatory purpose is protecting human health, there is a need for testing approaches based on human biology and mechanisms of toxicity.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - David G Allen
- International Collaboration on Cosmetics Safety (ICCS), Mount Royal, NJ, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences, NC, USA
| | - Monique M Perron
- US Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Krystle L Yozzo
- US Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Anna B Lowit
- US Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | | |
Collapse
|
8
|
Libby AE, Solt CM, Jackman MR, Sherk VD, Foright RM, Johnson GC, Nguyen TT, Breit MJ, Hulett N, Rudolph MC, Roberson PA, Wellberg EA, Jambal P, Scalzo RL, Higgins J, Kumar TR, Wierman ME, Pan Z, Shankar K, Klemm DJ, Moreau KL, Kohrt WM, MacLean PS. Effects of follicle-stimulating hormone on energy balance and tissue metabolic health after loss of ovarian function. Am J Physiol Endocrinol Metab 2024; 326:E626-E639. [PMID: 38536037 PMCID: PMC11208003 DOI: 10.1152/ajpendo.00400.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Andrew E Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia M Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, United States
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Campus, Kansas City, Kansas, United States
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina Nguyen
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew J Breit
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nicholas Hulett
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Paul A Roberson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Elizabeth A Wellberg
- Stephenson Cancer Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janine Higgins
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhaoxing Pan
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Dwight J Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
9
|
de Kermenguy F, Benzazon N, Maury P, Vauclin R, M'hamdi M, Cifliku V, Limkin E, Diallo I, Morel D, Milewski C, Clémenson C, Mondini M, Deutsch E, Robert C. LymphoDose: a lymphocyte dose estimation framework-application to brain radiotherapy. Phys Med Biol 2024; 69:105009. [PMID: 38593817 DOI: 10.1088/1361-6560/ad3c8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Objective. Severe radiation-induced lymphopenia occurs in 40% of patients treated for primary brain tumors and is an independent risk factor of poor survival outcomes. We developed anin-silicoframework that estimates the radiation doses received by lymphocytes during volumetric modulated arc therapy brain irradiation.Approach. We implemented a simulation consisting of two interconnected compartmental models describing the slow recirculation of lymphocytes between lymphoid organs (M1) and the bloodstream (M2). We used dosimetry data from 33 patients treated with chemo-radiation for glioblastoma to compare three cases of the model, corresponding to different physical and biological scenarios: (H1) lymphocytes circulation only in the bloodstream i.e. circulation inM2only; (H2) lymphocytes recirculation between lymphoid organs i.e. circulation inM1andM2interconnected; (H3) lymphocytes recirculation between lymphoid organs and deep-learning computed out-of-field (OOF) dose to head and neck (H&N) lymphoid structures. A sensitivity analysis of the model's parameters was also performed.Main results. For H1, H2 and H3 cases respectively, the irradiated fraction of lymphocytes was 99.8 ± 0.7%, 40.4 ± 10.2% et 97.6 ± 2.5%, and the average dose to irradiated pool was 309.9 ± 74.7 mGy, 52.6 ± 21.1 mGy and 265.6 ± 48.5 mGy. The recirculation process considered in the H2 case implied that irradiated lymphocytes were irradiated in the field only 1.58 ± 0.91 times on average after treatment. The OOF irradiation of H&N lymphoid structures considered in H3 was an important contribution to lymphocytes dose. In all cases, the estimated doses are low compared with lymphocytes radiosensitivity, and other mechanisms could explain high prevalence of RIL in patients with brain tumors.Significance. Our framework is the first to take into account OOF doses and recirculation in lymphocyte dose assessment during brain irradiation. Our results demonstrate the need to clarify the indirect effects of irradiation on lymphopenia, in order to potentiate the combination of radio-immunotherapy or the abscopal effect.
Collapse
Affiliation(s)
- François de Kermenguy
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Nathan Benzazon
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Pauline Maury
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
- Gustave Roussy, Département de radiothérapie, F-94800, Villejuif, France
| | | | - Meissane M'hamdi
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Vjona Cifliku
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Elaine Limkin
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
- Gustave Roussy, Département de radiothérapie, F-94800, Villejuif, France
| | - Ibrahima Diallo
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Daphné Morel
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Candice Milewski
- Gustave Roussy, Département de radiothérapie, F-94800, Villejuif, France
| | - Céline Clémenson
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Michele Mondini
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
| | - Eric Deutsch
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
- Gustave Roussy, Département de radiothérapie, F-94800, Villejuif, France
| | - Charlotte Robert
- Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, F-94800, Villejuif, France
- Gustave Roussy, Département de radiothérapie, F-94800, Villejuif, France
| |
Collapse
|
10
|
Sernoskie SC, Bonneil É, Thibault P, Jee A, Uetrecht J. Involvement of Extracellular Vesicles in the Proinflammatory Response to Clozapine: Implications for Clozapine-Induced Agranulocytosis. J Pharmacol Exp Ther 2024; 388:827-845. [PMID: 38262745 DOI: 10.1124/jpet.123.001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024] Open
Abstract
Most idiosyncratic drug reactions (IDRs) appear to be immune-mediated, but mechanistic events preceding severe reaction onset remain poorly defined. Damage-associated molecular patterns (DAMPs) may contribute to both innate and adaptive immune phases of IDRs, and changes in extracellular vesicle (EV) cargo have been detected post-exposure to several IDR-associated drugs. To explore the hypothesis that EVs are also a source of DAMPs in the induction of the immune response preceding drug-induced agranulocytosis, the proteome and immunogenicity of clozapine- (agranulocytosis-associated drug) and olanzapine- (non-agranulocytosis-associated drug) exposed EVs were compared in two preclinical models: THP-1 macrophages and Sprague-Dawley rats. Compared with olanzapine, clozapine induced a greater increase in the concentration of EVs enriched from both cell culture media and rat serum. Moreover, treatment of drug-naïve THP-1 cells with clozapine-exposed EVs induced an inflammasome-dependent response, supporting a potential role for EVs in immune activation. Proteomic and bioinformatic analyses demonstrated an increased number of differentially expressed proteins with clozapine that were enriched in pathways related to inflammation, myeloid cell chemotaxis, wounding, transforming growth factor-β signaling, and negative regulation of stimuli response. These data indicate that, although clozapine and olanzapine exposure both alter the protein cargo of EVs, clozapine-exposed EVs carry mediators that exhibit significantly greater immunogenicity. Ultimately, this supports the working hypothesis that drugs associated with a risk of IDRs induce cell stress, release of proinflammatory mediators, and early immune activation that precedes severe reaction onset. Further studies characterizing EVs may elucidate biomarkers that predict IDR risk during development of drug candidates. SIGNIFICANCE STATEMENT: This work demonstrates that clozapine, an idiosyncratic drug-induced agranulocytosis (IDIAG)-associated drug, but not olanzapine, a safer structural analogue, induces an acute proinflammatory response and increases extracellular vesicle (EV) release in two preclinical models. Moreover, clozapine-exposed EVs are more immunogenic, as measured by their ability to activate inflammasomes, and contain more differentially expressed proteins, highlighting a novel role for EVs during the early immune response to clozapine and enhancing our mechanistic understanding of IDIAG and other idiosyncratic reactions.
Collapse
Affiliation(s)
- Samantha Christine Sernoskie
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Éric Bonneil
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Pierre Thibault
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Alison Jee
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| | - Jack Uetrecht
- Departments of Pharmaceutical Sciences, Faculty of Pharmacy (S.C.S., J.U.) and Pharmacology and Toxicology, Temerty Faculty of Medicine (A.J., J.U.), University of Toronto, Toronto, Ontario; and Institute for Research in Immunology and Cancer (É.B., P.T.) and Department of Chemistry (P.T.), University of Montreal, Montreal, Quebec
| |
Collapse
|
11
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin M, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567085. [PMID: 38014050 PMCID: PMC10680727 DOI: 10.1101/2023.11.14.567085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Despite the critical role of the cardiovascular system, our understanding of its cellular and transcriptional diversity remains limited. We therefore sought to characterize the cellular composition, phenotypes, molecular pathways, and communication networks between cell types at the tissue and sub-tissue level across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We obtained high quality tissue samples under controlled conditions that reveal a level of cellular detail so far inaccessible in human studies. Methods and Results We performed single nucleus RNA-sequencing in 78 samples in 10 distinct regions including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins (PV), which produced an aggregate map of 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, including a number of rare cell types such as PV cardiomyocytes and non-myelinating Schwann cells (NMSCs), and unique groups of vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and fibroblasts (FBs), which gave rise to a detailed cell type distribution across tissues. We demonstrated differences in the cellular composition across different cardiac regions and tissue-specific differences in transcription for each cell type, highlighting the molecular diversity and complex tissue architecture of the cardiovascular system. Specifically, we observed great transcriptional heterogeneities among ECs and FBs. Importantly, several cell subtypes had a unique regional localization such as a subtype of VSMCs enriched in the large vasculature. We found the cellular makeup of PV tissue is closer to heart tissue than to the large arteries. We further explored the ligand-receptor repertoire across cell clusters and tissues, and observed tissue-enriched cellular communication networks, including heightened Nppa - Npr1/2/3 signaling in the sinoatrial node. Conclusions Through a large single nucleus sequencing effort encompassing over 500,000 nuclei, we broadened our understanding of cellular transcription in the healthy cardiovascular system. The existence of tissue-restricted cellular phenotypes suggests regional regulation of cardiovascular physiology. The overall conservation in gene expression and molecular pathways across rat and human cell types, together with our detailed transcriptional characterization of each cell type, offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Stephen J. Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Amelia W. Hall
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Mark Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | - Kayla J. Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, 02142
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA 02142
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA 02215
| | - Mark E. Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
| | | | - Patrick T. Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA, USA 02142
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA 02114
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA 02114
| |
Collapse
|
12
|
Emmerson JT, Do Carmo S, Liu Y, Shalhoub A, Liu A, Bonomo Q, Malcolm JC, Breuillaud L, Cuello AC. Progressive human-like tauopathy with downstream neurodegeneration and neurovascular compromise in a transgenic rat model. Neurobiol Dis 2023; 184:106227. [PMID: 37454780 DOI: 10.1016/j.nbd.2023.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.
Collapse
Affiliation(s)
- Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Yingying Liu
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Ali Shalhoub
- Department of Biochemistry, McGill University, Montreal H3A 0C7, Canada
| | - Ai Liu
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Quentin Bonomo
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Janice C Malcolm
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Lionel Breuillaud
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada; Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada; Department of Pharmacology, Oxford University, Oxford OX13QT, UK.
| |
Collapse
|
13
|
Li YT, Kuo DP, Tseng P, Chen YC, Cheng SJ, Wu CW, Hsieh LC, Chiang YH, Chung HW, Lui YW, Chen CY. Thalamocortical Coherence Predicts Persistent Postconcussive Symptoms. Prog Neurobiol 2023; 226:102464. [PMID: 37169275 DOI: 10.1016/j.pneurobio.2023.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
The pathogenetic mechanism of persistent post-concussive symptoms (PCS) following concussion remains unclear. Thalamic damage is known to play a role in PCS prolongation while the evidence and biomarkers that trigger persistent PCS have never been elucidated. We collected longitudinal neuroimaging and behavior data from patients and rodents after concussion, complemented with rodents' histological staining data, to unravel the early biomarkers of persistent PCS. Diffusion tensor imaging (DTI) were acquired to investigated the thalamic damage, while quantitative thalamocortical coherence was derived through resting-state functional MRI for evaluating thalamocortical functioning and predicting long-term behavioral outcome. Patients with prolonged symptoms showed abnormal DTI-derived indices at the boundaries of bilateral thalami (peri-thalamic regions). Both patients and rats with persistent symptoms demonstrated enhanced thalamocortical coherence between different thalamocortical circuits, which disrupted thalamocortical multifunctionality. In rodents, the persistent DTI abnormalities were validated in thalamic reticular nucleus (TRN) through immunohistochemistry, and correlated with enhanced thalamocortical coherence. Strong predictive power of these coherence biomarkers for long-term PCS was also validated using another patient cohort. Postconcussive events may begin with persistent TRN injury, followed by disrupted thalamocortical coherence and prolonged PCS. Functional MRI-based coherence measures can be surrogate biomarkers for early prediction of long-term PCS.
Collapse
Affiliation(s)
- Yi-Tien Li
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Duen-Pang Kuo
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Philip Tseng
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan; Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Chieh Chen
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sho-Jen Cheng
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei 11031, Taiwan; Brain and Consciousness Research Center, Shuang-Ho Hospital, Taipei Medical University, New Taipei 23561, Taiwan
| | - Li-Chun Hsieh
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Hsiao Chiang
- Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electrics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Yvonne W Lui
- Department of Radiology, NYU Langone Health, New York University School of Medicine, New York, NY, 10016, USA; Department of Radiology, NYU Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Cheng-Yu Chen
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
14
|
Lu D, Evangelou AV, Shankar K, Dewji FI, Lin J, Levison SW. Neuroprotective effect of lipopolysaccharides in a dual-hit rat pup model of preterm hypoxia-ischemia. Neurosci Lett 2023; 795:137033. [PMID: 36574812 PMCID: PMC9852086 DOI: 10.1016/j.neulet.2022.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
The combination of lipopolysaccharide (LPS) and hypoxia-ischemia (HI) has been used to model the brain injury sustained by sick pre-term infants in order to study the pathological conditions of diffuse white matter injury, which is a major cause of preterm morbidity. Prior studies have shown that the timing and dose of LPS administration will determine whether the injury is reduced or exacerbated. Here we show that administering a single injection of LPS (0.1 mg/kg) to postnatal-day-2 rat pups 14 h before inducing HI effectively protects the brain from HI-associated damage. We show that the LPS-treated HI rat pups have significantly less histopathology compared to the saline-treated HI rat pups. Apoptotic deaths were dramatically curtailed in both the neocortex and white matter when evaluated at 2 days of recovery. Microglial activation was reduced when the percentage of CD68+/Iba1+ cells was quantified in the neocortex of the LPS-treated vs the saline-treated HI rat pups. One mechanism through which LPS pre-treatment appears to be preventing injury is through the AKT-endothelial nitric oxide synthase (eNOS) pathway as LPS induced an increase in both the expression and phosphorylation of eNOS. Altogether these data show that the neocortex, as well as the white matter sustain damage after HI at this timepoint in forebrain development and that acutely activating the immune system can protect the brain from brain injury.
Collapse
Affiliation(s)
- Da Lu
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Krithika Shankar
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Fatemah Iman Dewji
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Jie Lin
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Steven W Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
15
|
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4 + and CD8 + regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 2023; 21:8. [PMID: 36635667 PMCID: PMC9837914 DOI: 10.1186/s12915-022-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.
Collapse
Affiliation(s)
- Séverine Ménoret
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France ,grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Séverine Remy
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Victor Gourain
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France
| | - Céline Sérazin
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Claire Usal
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Aude Guiffes
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Vanessa Chenouard
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Malika Gantier
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jeremie Poschmann
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Carole Guillonneau
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Ignacio Anegon
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| |
Collapse
|
16
|
Adusei KM, Ngo TB, Alfonso AL, Lokwani R, DeStefano S, Karkanitsa M, Spathies J, Goldman SM, Dearth CL, Sadtler KN. Development of a High-Color Flow Cytometry Panel for Immunologic Analysis of Tissue Injury and Reconstruction in a Rat Model. Cells Tissues Organs 2023; 212:84-95. [PMID: 35462366 DOI: 10.1159/000524682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
The rat model is an important resource in biomedical research due to its similarities to the human immune system and its use for functional studies. However, because of the preponderance of mouse models in foundational and mechanistic immunological studies, there is a relative lack of diverse, commercially available flow cytometry antibodies for immunological profiling in the rat model. Available antibodies are often conjugated to common fluorophores with similar peak emission wavelengths, making them hard to distinguish on conventional flow cytometers and restricting more comprehensive immune analysis. This can become a limitation when designing immunological studies in rat injury models to investigate the immune response to tissue injury. In addition, this lack of available antibodies limits the number of studies that can be done on the immune populations in lymphoid organs in other research areas. To address this critical unmet need, we designed a spectral flow cytometry panel for rat models. Spectral cytometry distinguishes between different fluorophores by capturing their full emission spectra instead of their peak emission wavelengths. This flow cytometry panel includes 24 distinct immune cell markers to analyze the innate and adaptive immune response. Importantly, this panel identifies different immune phenotypes, including tolerogenic, Type 1, and Type 2 immune responses. We show that this panel can identify unique immune populations and phenotypes in a rat muscle trauma model. We further validated that the panel can identify distinct adaptive and innate immune populations and their unique phenotypes in lymphoid organs. This panel expands the scope of previous rat panels providing a tool for scientists to examine the immune system in homeostasis and injury while pairing mechanistic immunological studies with functional studies.
Collapse
Affiliation(s)
- Kenneth M Adusei
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Tran B Ngo
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea L Alfonso
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi Lokwani
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina DeStefano
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Karkanitsa
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacquelyn Spathies
- Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Bioengineering and Physical Sciences Shared Resource, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma & Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma & Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kaitlyn N Sadtler
- Section on Immunoengineering, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.,Biomedical Engineering and Technology Acceleration (BETA) Center, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Kimber I, Woeffen N, Sondenheimer K. Bisphenol A, T H17 cells, and allergy: a commentary. J Immunotoxicol 2022; 19:93-99. [PMID: 36070621 DOI: 10.1080/1547691x.2022.2113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is a continuing interest in whether Bisphenol A (BPA) is able to cause adverse health effects through interaction with elements of the immune system. That interest has been fuelled further by the recent publication of a draft opinion on BPA prepared by the European Food Safety Authority (EFSA) Panel on Food Contact Materials, Enzymes and Processing Aids (CEP). This draft opinion judged effects on the immune system to be the most sensitive health outcome, and identified BPA-induced changes in the frequency of T-helper (TH)-17 cells in the spleens of mice as being the critical effect based on an association of these cells with inflammation. Based on these evaluations the CEP Panel recommended that a revised Tolerable Daily Intake (TDI) for BPA of 0.04 ng/kg bw/day should be adopted; representing a very substantial reduction (100,000-fold) compared with the existing TDI. The purpose of this commentary is to summarize briefly the role of TH17 cells in immune responses, and to review relevant literature regarding the influence of BPA on these cells, and on inflammatory responses in the lung and respiratory allergy. The conclusion drawn is that based on uncertainties about the effects of BPA on TH17 cells and lung inflammation in mice, the absence of consistent or persuasive evidence from human studies that exposure of BPA is associated with inflammation or allergy, and unresolved questions regarding the species selectivity of immune effects induced by BPA, it is inappropriate to adopt the revised TDI. Additional research is required to explore further the influence of BPA on the immune system and immune responses.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
18
|
Alfaar AS, Stürzbecher L, Diedrichs-Möhring M, Lam M, Roubeix C, Ritter J, Schumann K, Annamalai B, Pompös IM, Rohrer B, Sennlaub F, Reichhart N, Wildner G, Strauß O. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. J Neuroinflammation 2022; 19:260. [PMID: 36273134 PMCID: PMC9588251 DOI: 10.1186/s12974-022-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Background Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood–retina barrier of the immune privileged eye. Methods We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1β and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. Results RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1β to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. Conclusion Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02620-w.
Collapse
Affiliation(s)
- Ahmad Samir Alfaar
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.,Department of Ophthalmology, University Hospital of Ulm, 89075, Ulm, Germany
| | - Lucas Stürzbecher
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Maria Diedrichs-Möhring
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marion Lam
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Christophe Roubeix
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Julia Ritter
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Kathrin Schumann
- Institut Für Med. Mikrobiologie, Immunologie Und Hygiene, TU München, 81675, Munich, Germany
| | - Balasubramaniam Annamalai
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Inga-Marie Pompös
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Bärbel Rohrer
- Department of Ophthalmology, College of Medicine, Medical University South Carolina, Charleston, SC, 29425, USA
| | - Florian Sennlaub
- Institut de La Vision, Sorbonne Université, INSERM, CNRS, 75012, Paris, France
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, LMU Munich, 80336, Munich, Germany.
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, 10117, Berlin, Germany.
| |
Collapse
|
19
|
Miyasaka Y, Wang J, Hattori K, Yamauchi Y, Hoshi M, Yoshimi K, Ishida S, Mashimo T. A high-quality severe combined immunodeficiency (SCID) rat bioresource. PLoS One 2022; 17:e0272950. [PMID: 35960733 PMCID: PMC9374221 DOI: 10.1371/journal.pone.0272950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Immunodeficient animals are valuable models for the engraftment of exogenous tissues; they are widely used in many fields, including the creation of humanized animal models, as well as regenerative medicine and oncology. Compared with mice, laboratory rats have a larger body size and can more easily undergo transplantation of various tissues and organs. Considering the absence of high-quality resources of immunodeficient rats, we used the CRISPR/Cas9 genome editing system to knock out the interleukin-2 receptor gamma chain gene (Il2rg) in F344/Jcl rats—alone or together with recombination activating gene 2 (Rag2)—to create a high-quality bioresource that researchers can freely use: severe combined immunodeficiency (SCID) rats. We selected one founder rat with frame-shift mutations in both Il2rg (5-bp del) and Rag2 ([1-bp del+2-bp ins]/[7-bp del+2-bp ins]), then conducted mating to establish a line of immunodeficient rats. The immunodeficiency phenotype was preliminarily confirmed by the presence of severe thymic hypoplasia in Il2rg-single knockout (sKO) and Il2rg/Rag2-double knockout (dKO) rats. Assessment of blood cell counts in peripheral blood showed that the white blood cell count was significantly decreased in sKO and dKO rats, while the red blood cell count was unaffected. The decrease in white blood cell count was mainly caused by a decrease in lymphocytes. Furthermore, analyses of lymphocyte populations via flow cytometry showed that the numbers of B cells (CD3- CD45+) and natural killer cells (CD3- CD161+) were markedly reduced in both knockout rats. In contrast, T cells were markedly reduced but showed slightly different results between sKO and dKO rats. Notably, our immunodeficient rats do not exhibit growth retardation or gametogenesis defects. This high-quality SCID rat resource is now managed by the National BioResource Project in Japan. Our SCID rat model has been used in various research fields, demonstrating its importance as a bioresource.
Collapse
Affiliation(s)
- Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Jinxi Wang
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kosuke Hattori
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuko Yamauchi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Hoshi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuto Yoshimi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Saeko Ishida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
20
|
Balietti M, Conti F. Environmental enrichment and the aging brain: is it time for standardization? Neurosci Biobehav Rev 2022; 139:104728. [PMID: 35691473 DOI: 10.1016/j.neubiorev.2022.104728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/01/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Aging entails a progressive decline of cognitive abilities. However, since the brain is endowed with considerable plasticity, adequate stimulation can delay or partially compensate for age-related structural and functional impairment. Environmental enrichment (EE) has been reported to determine a wide range of cerebral changes. Although most findings have been obtained in young and adult animals, research has recently turned to aged individuals. Notably, EE can contribute identifying key lifestyle factors whose change can help extend the "mind-span", i.e., the time an individual lives in a healthy cognitive condition. Here we discuss specific methodological issues that can affect the outcomes of EE interventions applied to aged rodents, summarize the main variables that would need standardization (e.g., timing and duration, enrichment items, control animals and setting), and offer some suggestions on how this goal may be achieved. Reaching a consensus on EE experiment design would significantly reduce differences between and within laboratories, enable constructive discussions among researchers, and improve data interpretation.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy; Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
21
|
Li Z, Qi X, Zhang X, Yu L, Gao L, Kong W, Chen W, Dong W, Luo L, Lu D, Zhang L, Ma Y. TRDMT1 exhibited protective effects against LPS-induced inflammation in rats through TLR4-NF-κB/MAPK-TNF-α pathway. Animal Model Exp Med 2022; 5:172-182. [PMID: 35474613 PMCID: PMC9043724 DOI: 10.1002/ame2.12221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background Inflammation is a complex physiological and pathological process. Although many types of inflammation are well characterized, their physiological functions are largely unknown. tRNA aspartic acid methyltransferase 1 (TRDMT1) has been implicated as a stress‐related protein, but its intrinsic biological role is unclear. Methods We constructed a Trdmt1 knockout rat and adopted the LPS‐induced sepsis model. Survival curve, histopathological examination, expression of inflammatory factors, and protein level of TLR4 pathway were analyzed. Results Trdmt1 deletion had no obvious impact on development and growth. Trdmt1 deletion slightly increased the mortality during aging. Our data showed that Trdmt1 strongly responded in LPS‐treated rats, and Trdmt1 knockout rats were vulnerable to LPS treatment with declined survival rate. We also observed more aggravated tissue damage and more cumulative functional cell degeneration in LPS‐treated knockout rats compared with control rats. Further studies showed upregulated TNF‐α level in liver, spleen, lung, and serum tissues, which may be explained by enhanced p65 and p38 phosphorylation. Conclusions Our data demonstrated that Trdmt1 plays a protective role in inflammation by regulating the TLR4‐NF‐κB/MAPK‐TNF‐α pathway. This work provides useful information to understand the TRDMT1 function in inflammation.
Collapse
Affiliation(s)
- Zhengguang Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Yu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weining Kong
- National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijun Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China.,National Human Diseases Animal Model Resource Center and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Morris JA, Boshoff CH, Schor NF, Wong LM, Gao G, Davidson BL. Next-generation strategies for gene-targeted therapies of central nervous system disorders: A workshop summary. Mol Ther 2021; 29:3332-3344. [PMID: 34547463 DOI: 10.1016/j.ymthe.2021.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022] Open
Abstract
The National Institute of Neurological Disorders and Stroke (NINDS) held a workshop titled "Next generation strategies for gene-targeted therapies of central nervous system (CNS) disorders" in September 2019 in Bethesda, MD, USA. The meeting brought together a multi-disciplinary group of experts in the field of CNS-directed gene-targeted therapy delivery from academia, industry, advocacy, and the government. The group was charged with identifying the key challenges and gaps in this evolving field, as well as suggesting potential solutions. The workshop was divided into four sessions: (1) control of level and location, (2) improving delivery and distribution, (3) enhancing models and manufacturing, and (4) impacting patients. Prior to the workshop, NINDS established working groups of key opinion leaders (KOLs) for each session. In pre-meeting teleconferences, KOLs were tasked with identifying the research gaps and key obstacles that delay and/or prevent gene-targeted therapies to move into the clinic. This approach allowed for the workshop to begin with problem-solving discussions and strategy development, as the key issues had been established. The overall purpose of the workshop was to consider knowledge gaps and potential strategies to inform the community around CNS gene-targeted therapies, including but not limited to researchers and funders.
Collapse
Affiliation(s)
- Jill A Morris
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Chris H Boshoff
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina F Schor
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling M Wong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Medical School, Worcester, MA 01605, USA
| | - Beverly L Davidson
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
25
|
Complete Freund's adjuvant-free experimental autoimmune encephalomyelitis in Dark Agouti rats is a valuable tool for multiple sclerosis studies. J Neuroimmunol 2021; 354:577547. [PMID: 33765502 DOI: 10.1016/j.jneuroim.2021.577547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is classically induced with complete Freund's adjuvant (CFA). The immune response against CFA has a confounding influence on the translational capacity of EAE as a multiple sclerosis model. Here, we compare clinical, cellular and molecular properties between syngeneic spinal cord homogenate (SCH)- and SCH + CFA-immunized Dark Agouti rats. EAE signs were observed earlier and the cumulative clinical score was higher without CFA. Also, a higher number of immune cells infiltrates in the spinal cords was noticed at the peak of EAE without CFA. High spinal cord abundance of CD8+CD11bc+MHC class II+ cells was detected in SCH-immunized rats. Myelin basic protein -specific response can be elicited in the cells from the lymph nodes draining the site of SCH immunization. This CFA-free EAE is a reliable multiple sclerosis model.
Collapse
|
26
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
27
|
Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, Sønksen J, Cortes D, Fedder J, Andersen CY, Goossens E. Review of injection techniques for spermatogonial stem cell transplantation. Hum Reprod Update 2020; 26:368-391. [PMID: 32163572 DOI: 10.1093/humupd/dmaa003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although the prognosis of childhood cancer survivors has increased dramatically during recent years, chemotherapy and radiation treatments for cancer and other conditions may lead to permanent infertility in prepubertal boys. Recent developments have shown that spermatogonial stem cell (SSC) transplantation may be a hope for restoring fertility in adult survivors of childhood cancers. For this reason, several centres around the world are collecting and cryopreserving testicular tissue or cells anticipating that, in the near future, some patients will return for SSC transplantation. This review summarizes the current knowledge and utility of SSC transplantation techniques. OBJECTIVE AND RATIONALE The aim of this narrative review is to provide an overview of the currently used experimental injection techniques for SSC transplantation in animal and human testes. This is crucial in understanding and determining the role of the different techniques necessary for successful transplantation. SEARCH METHODS A comprehensive review of peer-reviewed publications on this topic was performed using the PubMed and Google Scholar databases. The search was limited to English language work and studies between 1994 (from the first study on SSC transplantation) and April 2019. Key search terms included mouse, rat, boar, ram, dog, sheep, goat, cattle, monkey, human, cadaver, testes, SSC transplantation, injection and technique. OUTCOMES This review provides an extensive clinical overview of the current research in the field of human SSC transplantation. Rete testis injection with ultrasonography guidance currently seems the most promising injection technique thus far; however, the ability to draw clear conclusions is limited due to long ischemia time of cadaver testis, the relatively decreased volume of the testis, the diminishing size of seminiferous tubules, a lack of intratesticular pressure and leakage into the interstitium during the injection on human cadaver testis. Current evidence does not support improved outcomes from multiple infusions through the rete testes. Overall, further optimization is required to increase the efficiency and safety of the infusion method. WIDER IMPLICATIONS Identifying a favourable injection method for SSC transplantation will provide insight into the mechanisms of successful assisted human reproduction. Future research could focus on reducing leakage and establishing the optimal infusion cell concentrations and pressure.
Collapse
Affiliation(s)
- Murat Gul
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Urology, Selcuk University School of Medicine, 42250 Konya, Turkey
| | - Simone Hildorf
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lihua Dong
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jorgen Thorup
- Department of Pediatric Surgery, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Molecular and Cellular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens Sønksen
- Department of Urology, Herlev and Gentofte University Hospital, 2930 Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dina Cortes
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Department of Pediatrics, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense, Denmark.,Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
28
|
Abstract
Supplemental Digital Content is available in the text. Background. Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. Methods. We generated immunodeficient Rat Rag−/− Gamma chain−/− human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. Results. RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. Conclusions. hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.
Collapse
|
29
|
Abstract
Autoimmune uveitis is a sight-threatening, rare disease, potentially leading to blindness. Uveitis is a synonym for intraocular inflammation, presenting as various clinical phenotypes with different underlying immune responses in patients, whereas different animal models usually represent one certain clinical and immunological type of uveitis due to genetic uniformity and the method of disease induction. T cells recognizing intraocular antigens initiate the disease, recruiting inflammatory cells (granulocytes, monocytes/macrophages) to the eyes, which cause the damage of the tissue. The treatment of uveitis so far aims at downregulation of inflammation to protect the ocular tissues from damage, and at immunosuppression to stop fueling T cell reactivity. Uveitis is usually prevented by specific mechanisms of the ocular immune privilege and the blood-eye-barriers, but once the disease is induced, mechanisms of the immune privilege as well as a variety of novel regulatory features including new Treg cell populations and suppressive cytokines are induced to downregulate the ocular inflammation and T cell responses and to avoid relapses and chronicity. Here we describe mechanisms of regulation observed in experimental animal models as well as detected in studies with peripheral lymphocytes from patients.
Collapse
|