1
|
Hilbig K, Towers R, Schmitz M, Bornhäuser M, Lennig P, Zhang Y. Cyclosporin A-Based PROTACs Can Deplete Abundant Cellular Cyclophilin A without Suppressing T Cell Activation. Molecules 2024; 29:2779. [PMID: 38930843 PMCID: PMC11206246 DOI: 10.3390/molecules29122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cyclophilin A (CypA), the cellular receptor of the immunosuppressant cyclosporin A (CsA), is an abundant cytosolic protein and is involved in a variety of diseases. For example, CypA supports cancer proliferation and mediates viral infections, such as the human immunodeficiency virus 1 (HIV-1). Here, we present the design of PROTAC (proteolysis targeting chimera) compounds against CypA to induce its intracellular proteolysis and to investigate their effect on immune cells. Interestingly, upon connecting to E3 ligase ligands, both peptide-based low-affinity binders and CsA-based high-affinity binders can degrade CypA at nM concentration in HeLa cells and fibroblast cells. As the immunosuppressive effect of CsA is not directly associated with the binding of CsA to CypA but the inhibition of phosphatase calcineurin by the CypA:CsA complex, we investigated whether a CsA-based PROTAC compound could induce CypA degradation without affecting the activation of immune cells. P3, the most efficient PROTAC compound discovered from this study, could deplete CypA in lymphocytes without affecting cell proliferation and cytokine production. This work demonstrates the feasibility of the PROTAC approach in depleting the abundant cellular protein CypA at low drug dosage without affecting immune cells, allowing us to investigate the potential therapeutic effects associated with the endogenous protein in the future.
Collapse
Affiliation(s)
- Katharina Hilbig
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; (K.H.); (P.L.)
| | - Russell Towers
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (R.T.); (M.B.)
| | - Marc Schmitz
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (R.T.); (M.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- School of Cancer and Pharmaceutical Science, King’s College, London WC2R 2LS, UK
| | - Petra Lennig
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; (K.H.); (P.L.)
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307 Dresden, Germany; (K.H.); (P.L.)
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Bai X, Yang W, Zhao Y, Cao T, Lin R, Jiao P, Li H, Li H, Min J, Jia X, Zhang H, Fan W, Jia X, Bi Y, Liu W, Sun L. The extracellular cyclophilin A-integrin β2 complex as a therapeutic target of viral pneumonia. Mol Ther 2024; 32:1510-1525. [PMID: 38454605 PMCID: PMC11081868 DOI: 10.1016/j.ymthe.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin β2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin β2 interaction. Overall, our findings reveal that eCypA-integrin β2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenxian Yang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuna Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Tongtong Cao
- Department of Traditional Chinese Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Runshan Lin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heqiao Li
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Jia
- The Biological Safety level-3 (BSL-3) Laboratory of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; The Biological Safety level-3 (BSL-3) Laboratory of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Maneix L, Iakova P, Lee CG, Moree SE, Lu X, Datar GK, Hill CT, Spooner E, King JCK, Sykes DB, Saez B, Di Stefano B, Chen X, Krause DS, Sahin E, Tsai FTF, Goodell MA, Berk BC, Scadden DT, Catic A. Cyclophilin A supports translation of intrinsically disordered proteins and affects haematopoietic stem cell ageing. Nat Cell Biol 2024; 26:593-603. [PMID: 38553595 PMCID: PMC11021199 DOI: 10.1038/s41556-024-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Loss of protein function is a driving force of ageing. We have identified peptidyl-prolyl isomerase A (PPIA or cyclophilin A) as a dominant chaperone in haematopoietic stem and progenitor cells. Depletion of PPIA accelerates stem cell ageing. We found that proteins with intrinsically disordered regions (IDRs) are frequent PPIA substrates. IDRs facilitate interactions with other proteins or nucleic acids and can trigger liquid-liquid phase separation. Over 20% of PPIA substrates are involved in the formation of supramolecular membrane-less organelles. PPIA affects regulators of stress granules (PABPC1), P-bodies (DDX6) and nucleoli (NPM1) to promote phase separation and increase cellular stress resistance. Haematopoietic stem cell ageing is associated with a post-transcriptional decrease in PPIA expression and reduced translation of IDR-rich proteins. Here we link the chaperone PPIA to the synthesis of intrinsically disordered proteins, which indicates that impaired protein interaction networks and macromolecular condensation may be potential determinants of haematopoietic stem cell ageing.
Collapse
Affiliation(s)
- Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Polina Iakova
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Charles G Lee
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Shannon E Moree
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Xuan Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gandhar K Datar
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Cedric T Hill
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Jordon C K King
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Borja Saez
- Center for Applied Medical Research, Hematology-Oncology Unit, Pamplona, Navarra, Spain
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Ergun Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Francis T F Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA
| | - Bradford C Berk
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - André Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Cell and Gene Therapy Program at the Dan L. Duncan Comprehensive Cancer Center, Houston, TX, USA.
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
5
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
6
|
Patil H, Cho KI, Ferreira PA. Proteostatic remodeling of small heat shock chaperones - crystallins by Ran-binding protein 2 and the peptidyl-prolyl cis-trans isomerase and chaperone activities of its cyclophilin domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577462. [PMID: 38352504 PMCID: PMC10862737 DOI: 10.1101/2024.01.26.577462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Disturbances in phase transitions and intracellular partitions of nucleocytoplasmic shuttling substrates promote protein aggregation - a hallmark of neurodegenerative diseases. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of disassembly and phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also play central roles in phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against photo-oxidative stress by proteostatic regulations of Ranbp2 substrates and by countering the build-up of poly-ubiquitylated substrates. Further, the peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 modulate the proteostasis of selective neuroprotective substrates, such as hnRNPA2B1, STAT3, HDAC4 or L/M-opsin, while promoting a decline of ubiquitylated substrates. However, links between CY PPIase activity on client substrates and its effect(s) on ubiquitylated substrates are unclear. Here, proteomics of genetically modified mice with deficits of Ranbp2 uncovered the regulation of the small heat shock chaperones - crystallins by Ranbp2 in the chorioretina. Loss of CY PPIase of Ranbp2 up-regulates αA-crystallin proteostasis, which is repressed in non-lenticular tissues. Conversely, the αA-crystallin's substrates, γ-crystallins, are down-regulated by impairment of CY's C-terminal chaperone activity. These CY-dependent effects cause the age-dependent decline of ubiquitylated substrates without overt chorioretinal morphological changes. A model emerges whereby the Ranbp2 CY-dependent remodeling of crystallins' proteostasis subdues molecular aging and preordains chorioretinal neuroprotection by augmenting the chaperone buffering capacity and the decline of ubiquitylated substrates against proteostatic impairments. Further, CY's moonlighting activity holds pan -therapeutic potential against neurodegeneration.
Collapse
|
7
|
Kalinina A, Grigorieva E, Smirnova A, Kazansky D, Khromykh L. Pharmacokinetic Parameters of Recombinant Human Cyclophilin A in Mice. Eur J Drug Metab Pharmacokinet 2024; 49:57-69. [PMID: 38040985 DOI: 10.1007/s13318-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Cyclophilin A (CypA) is an isomerase that functions as a chaperone, housekeeping protein, and cyclosporine A (CsA) ligand. Secreted CypA is a proinflammatory factor, chemoattractant, immune regulator, and factor of antitumor immunity. Experimental data suggest clinical applications of recombinant human CypA (rhCypA) as a biotherapeutic for cancer immunotherapy, stimulation of tissue regeneration, treatment of brain pathologies, and as a supportive treatment for CsA-based therapies. The objective of this study is to analyze the pharmacokinetics of rhCypA in a mouse model. METHODS rhCypA was isotope-labeled with 125I and injected intraperitoneally (i.p.) or subcutaneously (s/c) into female mice as a single dose of 100 μg per mouse, equivalent to the estimated first-in-human dose. Analysis of 125I-rhCypA biodistribution and excretion was performed by direct radiometry of the blood, viscera, and urine of mice 0.5-72 h following its administration. RESULTS rhCypA showed rapid and even tissue-organ distribution, with the highest tropism (fT = 1.56) and accumulation (maximum concentration, Cmax = 137-167 μg/g) in the kidneys, its primary excretory organ. rhCypA showed the lowest tropism to the bone marrow and the brain (fT = 0.07) but the longest retention in these organs [mean retention time (MRT) = 25-28 h]. CONCLUSION This study identified promising target organs for rhCypA's potential therapeutic effects. The mode of rhCypA accumulation and retention in organs could be primarily due to the expression of its receptors in them. For the first time, rhCypA was shown to cross the blood-brain barrier and accumulate in the brain. These rhCypA pharmacokinetic data could be extrapolated to humans as preliminary data for possible clinical trials.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Elena Grigorieva
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Anna Smirnova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478, Moscow, Russian Federation.
| |
Collapse
|
8
|
Ranjbar S, Mehrabi M, Akbari V, Pashaei S, Khodarahmi R. "Cyclophilin A" Enzymatic Effect on the Aggregation Behavior of 1N4R Tau Protein: An Overlooked Crucial Determinant that should be Re-considered in Alzheimer's Disease Pathogenesis. Curr Alzheimer Res 2024; 21:242-257. [PMID: 39161146 DOI: 10.2174/0115672050330163240812050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Neurodegenerative disorders like Alzheimer's disease (AD) involve the abnormal aggregation of tau protein, which forms toxic oligomers and amyloid deposits. The structure of tau protein is influenced by the conformational states of distinct proline residues, which are regulated by peptidyl-prolyl isomerases (PPIases). However, there has been no research on the impact of human cyclophilin A (CypA) as a PPIase on (non-phosphorylated) tau protein aggregation. METHODS On the basis of these explanations, we used various spectroscopic techniques to explore the effects of CypA on tau protein aggregation behavior. RESULTS We demonstrated the role of the isomerization activity of CypA in promoting the formation of tau protein amyloid fibrils with well-defined and highly ordered cross-β structures. According to the "cistauosis hypothesis," CypA's ability to enhance tau protein fibril formation in AD is attributed to the isomerization of specific proline residues from the trans to cis configuration. To corroborate this theory, we conducted refolding experiments using lysozyme as a model protein. The presence of CypA increased lysozyme aggregation and impeded its refolding process. It is known that proper refolding of lysozyme relies on the correct (trans) isomerization of two critical proline residues. CONCLUSION Thus, our findings confirmed that CypA induces the trans-to-cis isomerization of specific proline residues, ultimately leading to increased aggregation. Overall, this study highlights the emerging role of isomerization in tau protein pathogenesis in AD.
Collapse
Affiliation(s)
- Samira Ranjbar
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vali Akbari
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | - Somayeh Pashaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
10
|
Kalinina A, Tilova L, Kirsanov K, Lesovaya E, Zhidkova E, Fetisov T, Ilyinskaya G, Yakubovskaya M, Kazansky D, Khromykh L. Secreted cyclophilin A is non-genotoxic but acts as a tumor promoter. Toxicology 2023; 500:153675. [PMID: 37993081 DOI: 10.1016/j.tox.2023.153675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Chronic inflammation is associated with malignant transformation and creates the microenvironment for tumor progression. Cyclophilin A (CypA) is one of the major pro-inflammatory mediators that accumulates and persists in the site of inflammation in high doses over time. According to multiomics analyses of transformed cells, CypA is widely recognized as a pro-oncogenic factor. Vast experimental data define the functions of intracellular CypA in carcinogenesis, but findings on the role of its secreted form in tumor formation and progression are scarce. In the studies here, we exploit short-term in vitro and in vivo tests to directly evaluate the mutagenic, recombinogenic, and blastomogenic effects, as well as the promoter activity of recombinant human CypA (rhCypA), an analogue of secreted CypA. Our findings showed that rhCypA had no genotoxicity and, thus, was neither involved in nor influenced the initiation stage of carcinogenesis. At high doses, rhCypA could disrupt gap junctions in rat liver epithelial IAR-2 cells in vitro by decreasing the expression of connexins 26 and 43 in these cells and inhibit A549 cell adhesion. These data suggested that rhCypA could contribute to epithelial-mesenchymal transition in malignant cells. The research presented here elucidated the role of secreted CypA in carcinogenesis, revealing that it is not a tumor initiator but can act as a tumor promoter at high concentrations.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Leila Tilova
- Kabardino-Balkarian State University named after H.M. Berbekov, 173, Chernyshevsky st., 360004 Nalchik, Russia
| | - Kirill Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia; Institute of Medicine, RUDN University, 6, Miklukho-Maklaya st., 117198 Moscow, Russia
| | - Ekaterina Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia; Department of Oncology, I.P. Pavlov Ryazan State Medical University, 9, Vysokovoltnaya st., 390026 Ryazan, Russia
| | - Ekaterina Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Timur Fetisov
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Galina Ilyinskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Marianna Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 24, Kashirskoe sh., 115478 Moscow, Russia.
| |
Collapse
|
11
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
12
|
Kalinina A, Semenova M, Bruter A, Varlamova E, Kubekina M, Pavlenko N, Silaeva Y, Deikin A, Antoshina E, Gorkova T, Trukhanova L, Salmina A, Novikova S, Voronkov D, Kazansky D, Khromykh L. Cyclophilin A as a Pro-Inflammatory Factor Exhibits Embryotoxic and Teratogenic Effects during Fetal Organogenesis. Int J Mol Sci 2023; 24:11279. [PMID: 37511039 PMCID: PMC10380070 DOI: 10.3390/ijms241411279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The precise balance of Th1, Th2, and Th17 cytokines is a key factor in successful pregnancy and normal embryonic development. However, to date, not all humoral factors that regulate and influence physiological pregnancy have been completely studied. Our data here pointed out cyclophilin A (CypA) as the adverse pro-inflammatory factor negatively affecting fetal development and associated with pregnancy complications. In different mouse models in vivo, we demonstrated dramatic embryotoxicity and teratogenicity of increased CypA levels during pregnancy. Using generated transgenic models, we showed that CypA overexpression in fetal tissues induced the death of all transgenic fetuses and complete miscarriage. Administration of recombinant human CypA in a high dose to pregnant females during fetal organogenesis (6.5-11.5 dpc) exhibited teratogenic effects, causing severe defects in the brain and bone development that could lead to malformations and postnatal behavioral and cognitive disorders in the offspring. Embryotoxic and teratogenic effects could be mediated by CypA-induced up-regulation of M1 macrophage polarization via activation of the STAT1/3 signaling pathways. Here, we propose secreted CypA as a novel marker of complicated pregnancy and a therapeutic target for the correction of pregnancy complications.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Maria Semenova
- Department of Embryology, Faculty of Biology, Moscow State University, 1/12 Leninskie Gory, Moscow 119992, Russia
| | - Alexandra Bruter
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Ekaterina Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Marina Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Natalia Pavlenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Yulia Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | - Alexey Deikin
- United Center for Genetic Technologies, Belgorod State National Research University, 85 Pobedi Street, Belgorod 308001, Russia
| | - Elena Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Tatyana Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Lubov Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Alla Salmina
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow 125367, Russia
| | - Svetlana Novikova
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow 125367, Russia
| | - Dmitry Voronkov
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow 125367, Russia
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 24 Kashirskoe Shosse, Moscow 115478, Russia
| |
Collapse
|
13
|
Souza-Costa LP, Andrade-Chaves JT, Andrade JM, Costa VV, Franco LH. Uncovering new insights into the role of the ubiquitin ligase Smurf1 on the regulation of innate immune signaling and resistance to infection. Front Immunol 2023; 14:1185741. [PMID: 37228615 PMCID: PMC10203584 DOI: 10.3389/fimmu.2023.1185741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
Innate immunity is the body's first line of defense against infections. Innate immune cells express pattern recognition receptors in distinct cellular compartments that are responsible to detect either pathogens-associated molecules or cellular components derived from damaged cells, to trigger intracellular signaling pathways that lead to the activation of inflammatory responses. Inflammation is essential to coordinate immune cell recruitment, pathogen elimination and to keep normal tissue homeostasis. However, uncontrolled, misplaced or aberrant inflammatory responses could lead to tissue damage and drive chronic inflammatory diseases and autoimmunity. In this context, molecular mechanisms that tightly regulate the expression of molecules required for the signaling of innate immune receptors are crucial to prevent pathological immune responses. In this review, we discuss the ubiquitination process and its importance in the regulation of innate immune signaling and inflammation. Then, we summarize the roles of Smurf1, a protein that works on ubiquitination, on the regulation of innate immune signaling and antimicrobial mechanisms, emphasizing its substrates and highlighting its potential as a therapeutic target for infectious and inflammatory conditions.
Collapse
Affiliation(s)
- Luiz Pedro Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josiane Teixeira Andrade-Chaves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juvana Moreira Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luis Henrique Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Anto NP, Arya AK, Muraleedharan A, Shaik J, Nath PR, Livneh E, Sun Z, Braiman A, Isakov N. Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells. Cell Mol Life Sci 2022; 80:7. [PMID: 36495335 PMCID: PMC11072327 DOI: 10.1007/s00018-022-04657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.
Collapse
Affiliation(s)
- Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Awadhesh Kumar Arya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Jakeer Shaik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Clinical and Translational Immunology Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1857, USA
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
15
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
16
|
Liang W, Li K, Zhang Q, Li K, Ai K, Zhang J, Jiao X, Li J, Wei X, Yang J. Interleukin-2 inducible T cell kinase (ITK) may participate in the anti-bacterial immune response of Nile tilapia via regulating T-cell activation. FISH & SHELLFISH IMMUNOLOGY 2022; 127:419-426. [PMID: 35779809 DOI: 10.1016/j.fsi.2022.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Interleukin-2 inducible T cell kinase (ITK) plays a predominant role in the T-cell receptor (TCR) signaling cascade to ensure valid T-cell activation and function. Nevertheless, whether it regulates T-cell response of early vertebrates remains unknown. Herein, we investigated the involvement of ITK in the lymphocyte-mediated adaptive immune response, and its regulation to T-cell activation in the Nile tilapia Oreochromis niloticus. Both sequence and structure of O. niloticus ITK (OnITK) were remarkably conserved with its homologues from other vertebrates, implying its potential conserved function. OnITK mRNA was extensively expressed in lymphoid-related tissues, and with the relative highest level in peripheral blood. Once Nile tilapia was infected by Edwardsiella piscicida, OnITK in splenic lymphocytes was significantly up-regulated on 7-day post infection at both transcription and translation levels, suggesting that OnITK might involve in the primary adaptive immune response of teleost. Furthermore, upon splenic lymphocytes were stimulated by T-cell specific mitogen PHA, OnITK mRNA and protein levels were dramatically elevated. More importantly, treatment of splenic lymphocytes with specific inhibitor significantly crippled OnITK expression, which in turn impaired the inducible expression of T-cell activation markers IFN-γ, IL-2 and CD122, indicating the critical roles of ITK in regulating T-cell activation of Nile tilapia. Taken together, our results suggest that ITK takes part in the lymphocyte-mediated adaptive immunity of tilapia, and is indispensable for T-cell activation of teleost. Our findings thus provide novel evidences for understanding the mechanism regulating T-cell immunity of early vertebrates, as well as the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
17
|
Chen JL, Barr JY, Zuk JJ, Gorman JV, Colgan JD. Reciprocal SH2-SH3 Domain Contacts between ITK Molecules Limit T Cell Receptor Signaling in Th2-type CD4 + T Cells. Immunol Invest 2022; 51:1612-1629. [PMID: 34844506 DOI: 10.1080/08820139.2021.2007262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The nonreceptor tyrosine kinase ITK is a key component of the T cell receptor (TCR) signaling pathway and is required for cytokine production by CD4+ T cells that have differentiated into Th2 cells. Structural and biochemical studies suggest that contacts between the SH2 and SH3 domains of ITK mediate intermolecular self-association, forming a structure that restrains ITK activity by interfering with interactions between ITK and other components of the TCR signaling pathway. Wild-type (WT) ITK and a panel of ITK mutants containing amino acid substitutions in the SH2 and SH3 domains were tested for self-association and for binding to the adaptor protein SLP76, a key ligand for the ITK SH2 domain. WT and ITK mutants were also expressed in Itk-deficient CD4+ T cells via retroviral-mediated gene delivery to analyze their ability to support TCR signaling and cytokine production by Th2 cells. Specific amino acid substitutions in the ITK SH2 or SH3 domains impaired self-association, with the greatest effects being seen when both intermolecular SH2-SH3 domain contacts were disrupted. Two of the SH2 domain substitutions tested reduced ITK self-association but had no effect on binding to SLP-76. When their function was analyzed in Th2 cells, ITK proteins with diminished self-association activity supported greater IL-4 production and calcium flux in response to TCR stimulation compared to WT ITK. Our findings indicate that intermolecular contacts between ITK molecules can restrain the amplitude of TCR signaling, suggesting ITK is a limiting factor for responses by CD4+ T cells.
Collapse
Affiliation(s)
- Ji-Long Chen
- Department of Internal Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jennifer Y Barr
- Department of Anatomy and Cell Biology, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jonathan J Zuk
- The Molecular Medicine Graduate Program, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob V Gorman
- The Immunology Graduate Program, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John D Colgan
- Department of Internal Medicine, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Anatomy and Cell Biology, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,The Molecular Medicine Graduate Program, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,The Immunology Graduate Program, Roy J. And Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
19
|
Yang W, Bai X, Luan X, Min J, Tian X, Li H, Li H, Sun W, Liu W, Fan W, Liu W, Sun L. Delicate regulation of IL-1β-mediated inflammation by cyclophilin A. Cell Rep 2022; 38:110513. [PMID: 35294882 DOI: 10.1016/j.celrep.2022.110513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
The inflammatory response is tightly regulated, but its regulatory principles are still incompletely understood. Cyclophilin A (CypA) has long been considered as a pro-inflammatory factor. Here, we discover how CypA precisely regulates interleukin-1β (IL-1β)-mediated inflammatory responses. In lipopolysaccharide-treated mice, CypA deficiency initially inhibits and then promotes lung inflammation, which is closely related to IL-1β production. Mechanistically, CypA not only facilitates pro-IL-1β processing by increasing Smurf1-mediated K63-linked ubiquitination in an ATP-dependent manner but also accelerates pro-IL-1β degradation, depending on Smurf1-mediated K48-linked ubiquitination. Moreover, in IL-1β-treated mice, CypA exacerbates lung injury by enhancing cytokine production. It also upregulates the ILK/AKT pathway by inhibiting Cyld-mediated K63-linked ILK deubiquitination, which promotes the epithelial-mesenchymal transition (EMT) to facilitate lung repair. Collectively, CypA promotes inflammation activation by increasing IL-1β production and then promotes inflammation resolution by enhancing redundant pro-IL-1β degradation and IL-1β-induced EMT, indicating the complex and delicate regulation of inflammatory response.
Collapse
Affiliation(s)
- Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Min
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong 518107, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Kalinina AA, Kolesnikov AV, Kozyr AV, Kulikova NL, Zamkova MA, Kazansky DB, Khromykh LM. Preparative Production and Purification of Recombinant Human Cyclophilin A. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:259-268. [PMID: 35526853 DOI: 10.1134/s0006297922030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
In this work, we developed the method of preparative production of recombinant human cyclophilin A (rhCypA) in Escherichia coli. The full-length cDNA encoding the gene of human CypA (CYPA) was amplified by RT-PCR from the total RNA of human T cell lymphoma Jurkat. The nucleotide sequence of CYPA was optimized to provide highly effective translation in E. coli. Recombinant CYPA DNA was cloned into the pET22b(+) vector, and the resulted expression plasmid was used to transform E. coli strain BL21(DE3)Gold. The recombinant producer strain of E. coli produced soluble rhCypA in the bacterial cytoplasm. The synthesis efficiency of rhCypA was up to 50% of the total cell protein allowing to produce rhCypA in the amount of 1 g per liter of the culture. We also developed the method for rhCypA purification, consisting of a single-step tandem anion exchange chromatography on DEAE- and Q-Sepharose columns. The protein purity was 95% according to electrophoresis (SDS-PAGE), and its contamination with endotoxin did not exceed 0.05 ng per 1 mg of the protein that met the requirements of European pharmacopoeia for injectable preparations. The produced recombinant protein exhibited functional features of native CypA, i.e., isomerase activity and chemokine activity as assessed by stimulation of migration of mouse bone marrow hematopoietic stem cells in vivo. The generated producer strain of E. coli is a super-producer and could be used for large-scale experimental studies of rhCypA and in its preclinical and clinical trials as a drug.
Collapse
Affiliation(s)
- Anastasiia A Kalinina
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Alexander V Kolesnikov
- State Research Center of Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Arina V Kozyr
- State Research Center of Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Natalia L Kulikova
- Institute of Immunological Engineering, Lyubuchany, Moscow Region, 142380, Russia
| | - Maria A Zamkova
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Dmitry B Kazansky
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Ludmila M Khromykh
- N. N. Blokhin National Medical Research Center of Oncology, the Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
21
|
Pasetto L, Grassano M, Pozzi S, Luotti S, Sammali E, Migazzi A, Basso M, Spagnolli G, Biasini E, Micotti E, Cerovic M, Carli M, Forloni G, De Marco G, Manera U, Moglia C, Mora G, Traynor BJ, Chiò A, Calvo A, Bonetto V. Defective cyclophilin A induces TDP-43 proteinopathy: implications for amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2021; 144:3710-3726. [PMID: 34972208 PMCID: PMC8719849 DOI: 10.1093/brain/awab333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
Abstract
Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Maurizio Grassano
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Silvia Pozzi
- CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Eliana Sammali
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Manuela Basso
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Edoardo Micotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Milica Cerovic
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Mirjana Carli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gianluigi Forloni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Giovanni De Marco
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Umberto Manera
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Gabriele Mora
- Department of Neurorehabilitation, ICS Maugeri IRCCS, Milano, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA.,Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Torino, Italy
| | - Valentina Bonetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| |
Collapse
|
22
|
Wu Y, Ma Z, Zhang Y, Zhang M, Zhang W, Zhang M, Shi X, Li W, Liu W. Cyclophilin A regulates A549 cells apoptosis via stabilizing Twist1 protein. J Cell Sci 2021; 135:273668. [PMID: 34881782 DOI: 10.1242/jcs.259018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Cyclophilin A (CypA) is an essential member of the immunophilin family. As an intracellular target of immunosuppressive drug cyclosporin A (CsA) or a peptidyl-prolyl cis/trans isomerase (PPIase), it catalyzes the cis-trans isomerization of proline amidic peptide bonds, through which, it regulates a variety of biological processes, such as intracellular signaling, transcription, and apoptosis. In this study, we found that intracellular CypA enhanced Twist1 phosphorylation at Ser68 and inhibited apoptosis in A549 cells. Mechanistically, CypA could mediate the phosphorylation of Twist1 at Ser68 via p38 MAPK, which inhibited its ubiquitination-mediated degradation. In addition, CypA increased Twist-p65 interaction and nuclear accumulation, which regulated Twist1-dependent expression of CDH1 and CDH2. Our findings collectively indicated the role of CypA in Twist1-mediated A549 cells apoptosis through stabilizing Twist1 protein.
Collapse
Affiliation(s)
- Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanyan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenwen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Menghao Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xixi Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
23
|
Lechner K, Mott S, Al-Saifi R, Knipfer L, Wirtz S, Atreya R, Vieth M, Rath T, Fraass T, Winter Z, August A, Luban J, Zimmermann VS, Weigmann B, Neurath MF. Targeting of the Tec Kinase ITK Drives Resolution of T Cell-Mediated Colitis and Emerges as Potential Therapeutic Option in Ulcerative Colitis. Gastroenterology 2021; 161:1270-1287.e19. [PMID: 34224738 DOI: 10.1053/j.gastro.2021.06.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The molecular checkpoints driving T cell activation and cytokine responses in ulcerative colitis (UC) are incompletely understood. Here, we studied the Tec kinase ITK in UC. METHODS We analyzed patients with inflammatory bowel disease (n = 223) and evaluated ITK activity as well as the functional effects of cyclosporine-A (CsA). In addition, 3 independent murine colitis models were used to investigate the functional role of ITK. Finally, the activity of ITK was blocked via pharmacological inhibitors and genetically engineered mice. Readout parameters were mini-endoscopy, histopathology, mucosal T cell apoptosis, and cytokine production. RESULTS We found an expansion of pITK-expressing mucosal CD4+ T cells in UC rather than Crohn's disease that correlated with disease severity. CsA suppressed activation of ITK in cultured CD4+ T cells and calcineurin-containing microclusters adjacent to the T cell receptor signaling complex. Functionally, the capacity of CsA to suppress activity of experimental colitis was critically dependent on ITK. Genetic inactivation of Itk via gene targeting or induction of allele-sensitive Itk mutants prevented experimental colitis in 3 colitis models, and treatment with pharmacological ITK blockers suppressed established colitis. In addition, ITK controlled apoptosis and activation of mucosal Th2 and Th17 lymphocytes via NFATc2 signaling pathways. CONCLUSIONS ITK activation was detected in UC and could be down-regulated in cultured T cells by CsA administration. Selective targeting of ITK emerges as an attractive approach for treatment of chronic intestinal inflammation and potentially UC by driving resolution of mucosal inflammation.
Collapse
Affiliation(s)
- Kristina Lechner
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Stefanie Mott
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Ragheed Al-Saifi
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Lisa Knipfer
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, University of Erlangen-Nuremberg, Erlangen Germany
| | - Timo Rath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | | | | | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York
| | - Jeremy Luban
- Program in Molecular Medicine and Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Le Centre National de la Recherche Scientifique, Montpellier, France
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
24
|
Cyclophilin A Inhibits Human Respiratory Syncytial Virus (RSV) Replication by Binding to RSV-N through Its PPIase Activity. J Virol 2021; 95:e0056321. [PMID: 34011546 PMCID: PMC8274602 DOI: 10.1128/jvi.00563-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common pathogen which causes acute lower respiratory infection (ALRI) in infants. Recently, virus-host interaction has become a hot spot of virus-related research, and it needs to be further elaborated for RSV infection. In this study, we found that RSV infection significantly increased the expression of cyclophilin A (cypA) in clinical patients, mice, and epithelial cells. Therefore, we evaluated the function of cypA in RSV replication and demonstrated that virus proliferation was accelerated in cypA knockdown host cells but restrained in cypA-overexpressing host cells. Furthermore, we proved that cypA limited RSV replication depending on its PPIase activity. Moreover, we performed liquid chromatography-mass spectrometry, and the results showed that cypA could interact with several viral proteins, such as RSV-N, RSV-P, and RSV-M2-1. Finally, the interaction between cypA and RSV-N was certified by coimmunoprecipitation and immunofluorescence. Those results provided strong evidence that cypA may play an inhibitory role in RSV replication through interaction with RSV-N via its PPIase activity. IMPORTANCE RSV-N, packed in the viral genome to form the ribonucleoprotein (RNP) complex, which is recognized by the RSV RNA-dependent RNA polymerase (RdRp) complex to initiate viral replication and transcription, plays an indispensable role in the viral biosynthesis process. cypA, binding to RSV-N, may impair this function by weakening the interaction between RSV-N and RSV-P, thus leading to decreased viral production. Our research provides novel insight into cypA antiviral function, including binding to viral capsid protein to inhibit viral replication, which may be helpful for new antiviral drug exploration.
Collapse
|
25
|
Chen TY, Kuo PJ, Lin CY, Hung TF, Chiu HC, Chiang CY, Shih KC, Fu E. Porphyromonas gingivalis lipopolysaccharide and gingival fibroblast augment MMP-9 expression of monocytic U937 cells through cyclophilin A. J Periodontol 2021; 93:449-457. [PMID: 33999413 DOI: 10.1002/jper.19-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Intercellular cross-talking was suggested in matrix metalloproteinase (MMP)-9 expression with unknown mechanisms. Studies showed cyclophilin A (CypA) playing an important role in regulating MMP-9 expression in varied diseases. The aim of the study was to examine the CyPA on the MMP-9 augmentation in monocytic U937 cells after Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) treatment and human gingival fibroblast (hGF) co-culture. METHODS In independent culture or co-culture of hGF and U937 cell, quantitative real-time polymerase chain reaction (qPCR) and zymography were selected to examine the mRNA and protein activity of MMP-9, respectively. The CyPA expression was determined by qPCR. RESULTS LPS could enhance MMP-9 mRNA expression and enzyme activity in U937 cell. However, the enhancements were not observed in hGF. Similarly, LPS enhanced CyPA mRNA in U937, but not in hGF. After co-cultured with hGF, however, MMP-9 and CyPA in U937 increased regardless of the presence/absence of LPS. In U937 cells, the extra-supplied CyPA increased MMP-9 mRNA and enzyme activity, whereas the CyPA inhibitor, cyclosporine A, suppressed the LPS- and co-culture-enhanced MMP-9. Moreover, the inhibitors for MAP kinase, including PD98059 (ERK) and SP600125 (JNK), suppressed the CyPA-enhanced MMP-9 in U937. CONCLUSION Through the CyPA pathway, the LPS and the hGF could augment the MMP-9 expression in the U937 cells.
Collapse
Affiliation(s)
- Tzu-Ying Chen
- School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Po-Jan Kuo
- School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Fu Hung
- School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Hsien-Chung Chiu
- School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Cheng-Yang Chiang
- School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Earl Fu
- School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Xindian, New Taipei City, Taiwan
| |
Collapse
|
26
|
Chen CT, Shan CX, Ran J, Yin LM, Li HY, Wang Y, Xu YD, Guo JL, Shi YL, Chen YJ, Yang YQ. Cyclophilin A Plays Potential Roles in a Rat Model of Asthma and Suppression of Immune Response. J Asthma Allergy 2021; 14:471-480. [PMID: 33994799 PMCID: PMC8114824 DOI: 10.2147/jaa.s308938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Cyclophilin A (CypA) inhibits CD4+ T cell signal transduction via interleukin-2-inducible T-cell kinase (Itk), a tyrosine kinase required for T helper (Th) 2 cells function. Furthermore, mice with CypA silencing developed allergic diseases associated with increased Th2 cytokines production. CD4+ T cells with a Th2-cytokine pattern have been demonstrated to have a pivotal role in the pathogenesis of asthma. However, the effects of CypA in regulating immunity in asthma and in relieving asthmatic symptoms in vivo are entirely unknown. Methods Recombinant CypA protein (rCypA) was generated and purified. Ovalbumin (OVA)-challenged asthmatic rats model and acetylcholine chloride (ACh)-induced contraction of tracheal spirals were established. The pulmonary resistance (RL) value of asthmatic rats in vivo and the isometric tension of tracheal spirals ex vivo were recorded by MFLab 3.01 software. The levels of Th1 and Th2 cytokines and the quantities of immunoglobulin (IgA, IgG, IgM and IgE) in the supernatants of rat spleen lymphocytes were detected and analysed by bio-plex Suspension Array System and ELISA, respectively. CD4+ T cells were separated by MicroBeads, and the levels of interleukin (IL)-4 and interferon-γ (IFN-γ) were detected by ELISA. Results rCypA (10 ng/kg) significantly reduced RL within 2–7 min in OVA-challenged asthmatic rats in vivo, and there were no significant differences compared with terbutaline (TB) and hydrocortisone (HC). Furthermore, rCypA (10 ng/mL) significantly reduced the isometric tension in the ACh-induced contraction of the tracheal spiral ex vivo, and the effect of rCypA was better than that of TB. Additionally, rCypA suppressed the secretion of both Th1 and Th2 cytokines, and the suppressive effects of rCypA were stronger than those of HC, especially on Th2 cytokines. Conclusion These findings indicate that CypA may serve as a potential novel therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Cai-Tao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chun-Xiao Shan
- Changchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Jun Ran
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hai-Yan Li
- Shanghai First Rehabilitation Hospital, Shanghai, People's Republic of China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jing-Lei Guo
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Zhou Y, Gao F, Lv L, Wang S, He W, Lan Y, Li Z, Lu H, Song D, Guan J, Zhao K. Host factor cyclophilin B affects Orf virus replication by interacting with viral ORF058 protein. Vet Microbiol 2021; 258:109099. [PMID: 33984791 DOI: 10.1016/j.vetmic.2021.109099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Poxviruses have evolved multiple strategies to modulate host-derived factors to create an optimal environment for viral efficient replication. Our previous study indicated that cyclophilin B (CypB) is a critical factor for ORFV replication in MDBK cells. However, the precise molecular mechanism by which CypB facilitates ORFV replication remains less understood. In the present study, the function of CypB in ORFV replication is further evaluated. The overexpression of CypB was observed to facilitate ORFV replication in OFTu cells and HeLa cells, however, RNA interference (RNAi)-mediated reduction of endogenous CypB decreased the levels of ORFV replication. Coimmunoprecipitation experiments revealed that the CypB interacted with ORFV ORF058 protein, a late protein involved in virus entry. The interaction of host factor CypB and ORF058 protein was further confirmed by confocal microscopy analysis and GST-pull down. In addition, the 52-55 aa was identified as the critical binding sites for CypB on ORF058 protein by GST-pull down with OFTu cells overexpressing CypB and purified GST-tagged truncated ORF058. In conclusion, we demonstrate that CypB is a critical host factor for ORFV replication in vitro by interacting with ORF058 protein, providing new insights into ORFV pathogenesis.
Collapse
Affiliation(s)
- Yanlong Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lijun Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
28
|
Kalinina A, Golubeva I, Kudryavtsev I, Khromova N, Antoshina E, Trukhanova L, Gorkova T, Kazansky D, Khromykh L. Cyclophilin A is a factor of antitumor defense in the early stages of tumor development. Int Immunopharmacol 2021; 94:107470. [PMID: 33640856 DOI: 10.1016/j.intimp.2021.107470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 01/12/2023]
Abstract
Cyclophilin A (CypA) is a pro-inflammatory factor with multiple immunomodulating effects. Here, we investigated the effects of recombinant human CypA (rhCypA) as a factor of antitumor host defense. Our results demonstrated that rhCypA dramatically inhibited the growth of murine transplantable tumors (mammary adenocarcinoma Ca755, melanoma B16, Lewis lung carcinoma (LLC), and cervical cancer CC-5). In the B16 model, rhCypA effects were observed only when tumor cells were transplanted at the significantly reduced injection dose, indicating that antitumor properties of rhCypA are more effective at the initial stages of cancer development. Antitumor effect of rhCypA in the CC-5 model was comparable to the action of 5-fluorouracil (5FU), and rhCypA administration prevented 5FU - induced leukopenia in the blood of tumor-bearing mice. In the LLC model, rhCypA injection before but not after tumor resection significantly suppressed the formation of post-surgical metastases. RhCypA exhibited no direct cytotoxic effects in vitro on human leukemia cells (K-562, HL-60, KG-1), indicating that rhCypA antitumor action could be mediated by its immunomodulating activity. In the B16 model, rhCypA had no impact on tumor angiogenesis and gene expression of several MMPs, endogenous CypA, and CD147, which play a crucial role in cancer progression. However, in this model, rhCypA stimulated gene expression of MMPs 8, 9, and 12 that could contribute to malignancy growth inhibition. Here, our findings pointed out CypA as one of the factors of antitumor host defense that can effectively control the initial stages of tumor and metastases formation by regulating the action of MMPs and changing the tumor microenvironment.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Irina Golubeva
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Igor Kudryavtsev
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Natalia Khromova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Elena Antoshina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Lubov Trukhanova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Tatyana Gorkova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow 115478, Russian Federation.
| |
Collapse
|
29
|
Bai X, Yang W, Luan X, Li H, Li H, Tian D, Fan W, Li J, Wang B, Liu W, Sun L. Induction of cyclophilin A by influenza A virus infection facilitates group A Streptococcus coinfection. Cell Rep 2021; 35:109159. [PMID: 34010655 DOI: 10.1016/j.celrep.2021.109159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/02/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
During influenza A epidemics, bacterial coinfection is a major cause of increased morbidity and mortality. However, the roles of host factors in regulating influenza A virus (IAV)-triggered bacterial coinfection remain elusive. Cyclophilin A (CypA) is an important regulator of infection and immunity. Here, we show that IAV-induced CypA expression facilitates group A Streptococcus (GAS) coinfection both in vitro and in vivo. Upon IAV infection, CypA interacts with focal adhesion kinase (FAK) and inhibited E3 ligase cCbl-mediated, K48-linked ubiquitination of FAK, which positively regulates integrin α5 expression and actin rearrangement via the FAK/Akt signaling pathway to facilitate GAS colonization and invasion. Notably, CypA deficiency or inhibition by cyclosporine A significantly inhibits IAV-triggered GAS coinfection in mice. Collectively, these findings reveal that CypA is critical for GAS infection, and induction of CypA expression is another way for IAV to promote bacterial coinfection, suggesting that CypA is a promising therapeutic target for the secondary bacterial infection.
Collapse
Affiliation(s)
- Xiaoyuan Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Luan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heqiao Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Guangdong 518107, China.
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of Doxorubicin resistance in breast tumor cells. Cancer Cell Int 2021; 21:213. [PMID: 33858435 PMCID: PMC8170947 DOI: 10.1186/s12935-021-01873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chemotherapy is one of the most common treatment options for breast cancer (BC) patients. However, about half of the BC patients are chemotherapeutic resistant. Doxorubicin (DOX) is considered as one of the first line drugs in the treatment of BC patients whose function is negatively affected by multi drug resistance. Due to the severe side effects of DOX, it is very important to diagnose the DOX resistant BC patients. Therefore, assessment of molecular mechanisms involved in DOX resistance can improve the clinical outcomes in BC patients by introducing the novel therapeutic and diagnostic molecular markers. MicroRNAs (miRNAs) as members of the non-coding RNAs family have pivotal roles in various cellular processes including cell proliferation and apoptosis. Therefore, aberrant miRNAs functions and expressions can be associated with tumor progression, metastasis, and drug resistance. Moreover, due to miRNAs stability in body fluids, they can be considered as non-invasive diagnostic markers for the DOX response in BC patients. MAIN BODY In the present review, we have summarized all of the miRNAs that have been reported to be associated with DOX resistance in BC for the first time in the world. CONCLUSIONS Since, DOX has severe side effects; it is required to distinguish the non DOX-responders from responders to improve the clinical outcomes of BC patients. This review highlights the miRNAs as pivotal regulators of DOX resistance in breast tumor cells. Moreover, the present review paves the way of introducing a non-invasive panel of prediction markers for DOX response among BC patients.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Alimardani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
32
|
Cabello R, Fontecha-Barriuso M, Martin-Sanchez D, Lopez-Diaz AM, Carrasco S, Mahillo I, Gonzalez-Enguita C, Sanchez-Niño MD, Ortiz A, Sanz AB. Urinary Cyclophilin A as Marker of Tubular Cell Death and Kidney Injury. Biomedicines 2021; 9:biomedicines9020217. [PMID: 33672645 PMCID: PMC7924181 DOI: 10.3390/biomedicines9020217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Despite the term acute kidney injury (AKI), clinical biomarkers for AKI reflect function rather than injury and independent markers of injury are needed. Tubular cell death, including necroptotic cell death, is a key feature of AKI. Cyclophilin A (CypA) is an intracellular protein that has been reported to be released during necroptosis. We have now explored CypA as a potential marker for kidney injury in cultured tubular cells and in clinical settings of ischemia-reperfusion injury (IRI), characterized by limitations of current diagnostic criteria for AKI. Methods: CypA was analyzed in cultured human and murine proximal tubular epithelial cells exposed to chemical hypoxia, hypoxia/reoxygenation (H/R) or other cell death (apoptosis, necroptosis, ferroptosis) inducers. Urinary levels of CypA (uCypA) were analyzed in patients after nephron sparing surgery (NSS) in which the contralateral kidney is not disturbed and kidney grafts with initial function. Results: Intracellular CypA remained unchanged while supernatant CypA increased in parallel to cell death induction. uCypA levels were higher in NSS patients with renal artery clamping (that is, with NSS-IRI) than in no clamping (NSS-no IRI), and in kidney transplantation (KT) recipients (KT-IRI) even in the presence of preserved or improving kidney function, while this was not the case for urinary Neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, higher uCypA levels in NSS patients were associated with longer surgery duration and the incidence of AKI increased from 10% when using serum creatinine (sCr) or urinary output criteria to 36% when using high uCypA levels in NNS clamping patients. Conclusions: CypA is released by kidney tubular cells during different forms of cell death, and uCypA increased during IRI-induced clinical kidney injury independently from kidney function parameters. Thus, uCypA is a potential biomarker of kidney injury, which is independent from decreased kidney function.
Collapse
Affiliation(s)
- Ramio Cabello
- Department of Urology, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (R.C.); (C.G.-E.)
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
- Department of Medicine, School of Medicine, Autonoma University, 28029 Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
- Department of Medicine, School of Medicine, Autonoma University, 28029 Madrid, Spain
| | - Ana M. Lopez-Diaz
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
| | - Susana Carrasco
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
- Department of Medicine, School of Medicine, Autonoma University, 28029 Madrid, Spain
| | - Ignacio Mahillo
- Department of Epidemiology and Biostatistics. Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Carmen Gonzalez-Enguita
- Department of Urology, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (R.C.); (C.G.-E.)
| | - Maria D. Sanchez-Niño
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
- Department of Medicine, School of Medicine, Autonoma University, 28029 Madrid, Spain
- Department of Pharmacology, Autonoma University, 28029 Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
- Department of Medicine, School of Medicine, Autonoma University, 28029 Madrid, Spain
- IRSIN (Instituto Reina Sofía de Investigacíon en Nefrología), 28003 Madrid, Spain
- Correspondence: (A.O.); (A.B.S.)
| | - Ana B. Sanz
- Research Institute-Fundación Jiménez Díaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (A.M.L.-D.); (S.C.); (M.D.S.-N.)
- Department of Medicine, School of Medicine, Autonoma University, 28029 Madrid, Spain
- Correspondence: (A.O.); (A.B.S.)
| |
Collapse
|
33
|
Campinoti S, Gjinovci A, Ragazzini R, Zanieri L, Ariza-McNaughton L, Catucci M, Boeing S, Park JE, Hutchinson JC, Muñoz-Ruiz M, Manti PG, Vozza G, Villa CE, Phylactopoulos DE, Maurer C, Testa G, Stauss HJ, Teichmann SA, Sebire NJ, Hayday AC, Bonnet D, Bonfanti P. Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds. Nat Commun 2020; 11:6372. [PMID: 33311516 PMCID: PMC7732825 DOI: 10.1038/s41467-020-20082-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
The thymus is a primary lymphoid organ, essential for T cell maturation and selection. There has been long-standing interest in processes underpinning thymus generation and the potential to manipulate it clinically, because alterations of thymus development or function can result in severe immunodeficiency and autoimmunity. Here, we identify epithelial-mesenchymal hybrid cells, capable of long-term expansion in vitro, and able to reconstitute an anatomic phenocopy of the native thymus, when combined with thymic interstitial cells and a natural decellularised extracellular matrix (ECM) obtained by whole thymus perfusion. This anatomical human thymus reconstruction is functional, as judged by its capacity to support mature T cell development in vivo after transplantation into humanised immunodeficient mice. These findings establish a basis for dissecting the cellular and molecular crosstalk between stroma, ECM and thymocytes, and offer practical prospects for treating congenital and acquired immunological diseases.
Collapse
Affiliation(s)
- Sara Campinoti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marco Catucci
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, DIBIT 20132, Milan, Italy
| | - Stefan Boeing
- Bioinformatics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - John C Hutchinson
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Miguel Muñoz-Ruiz
- Immunosurveillance laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierluigi G Manti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gianluca Vozza
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carlo E Villa
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Demetra-Ellie Phylactopoulos
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Constance Maurer
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Hans J Stauss
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Neil J Sebire
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Adrian C Hayday
- Immunosurveillance laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|
34
|
Solouki S, Huang W, Elmore J, Limper C, Huang F, August A. TCR Signal Strength and Antigen Affinity Regulate CD8 + Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1217-1227. [PMID: 32759295 DOI: 10.4049/jimmunol.1901167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
CD8+ T cells play a critical role in adaptive immunity, differentiating into CD8+ memory T cells that form the basis of protective cellular immunity. Vaccine efficacy is attributed to long-term protective immunity, and understanding the parameters that regulate development of CD8+ T cells is critical to the design of T cell-mediated vaccines. We show in this study using mouse models that two distinct parameters, TCR signal strength (regulated by the tyrosine kinase ITK) and Ag affinity, play important but separate roles in modulating the development of memory CD8+ T cells. Unexpectedly, our data reveal that reducing TCR signal strength along with reducing Ag affinity for the TCR leads to enhanced and accelerated development of CD8+ memory T cells. Additionally, TCR signal strength is able to regulate CD8+ T cell effector cytokine R production independent of TCR Ag affinity. Analysis of RNA-sequencing data reveals that genes for inflammatory cytokines/cytokine receptors are significantly altered upon changes in Ag affinity and TCR signal strength. Furthermore, our findings show that the inflammatory milieu is critical in regulating this TCR signal strength-mediated increase in memory development, as both CpG oligonucleotide treatment or cotransfer of wild-type and Itk-/- T cells eliminates the observed increase in memory cell formation. These findings suggest that TCR signal strength and Ag affinity independently contribute to CD8+ memory T cell development, which is modulated by inflammation, and suggest that manipulating TCR signal strength along with Ag affinity, may be used to tune the development of CD8+ memory T cells during vaccine development.
Collapse
Affiliation(s)
- Sabrina Solouki
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Jessica Elmore
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Candice Limper
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Fei Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
35
|
Kuo PJ, Lin CY, Chen TY, Hung TF, Lin HL, Chiu HC, Chiang CY, Lin FG, Fu E. Fibroblast-enhanced cyclophilin A releasing from U937 cell upregulates MMP-2 in gingival fibroblast. J Periodontal Res 2020; 55:705-712. [PMID: 32406527 DOI: 10.1111/jre.12759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This in vitro study aimed to evaluate the expression of cyclophilin A (CyPA) in U937 monocytic cells after coculturing with the human gingival fibroblasts (HGFs) and the effect of CyPA on the augmentation of MMP-2 expression in the coculture environment. BACKGROUND Leukocyte infiltration in gingival connective tissue is one of the major findings in the lesions of inflammatory periodontal diseases. A crosstalk between the resident gingival fibroblasts and the recruited inflammatory cells that promote the expression of matrix metalloproteinases (MMPs) was proposed based on recent findings, whereas the cluster of differentiation 147 (CD147)-CyPA pathway was suggested to be involved with the crosstalk. MATERIAL AND METHODS CyPA was released into media, in the independent or transwell coculture of HGF and U937 cells, as determined by enzyme-linked immunosorbent assay, whereas intracellular mRNA expressions for CyPA and MMP-2 were examined by quantitative real-time polymerase chain reaction, in the transwell coculture or conditional medium models. Zymography was conducted to analyze the activities of pro-MMP-2/MMP-2 released into the media. RESULTS (a) A significantly increased CyPA protein level was observed in the transwell coculture media compared with that in the independent culture. (b) The transwell coculture-enhanced mRNA expression for CyPA was noticed in U937 cells but not in HGFs. After adding with HGF-conditioned medium, the mRNA enhancement in U937 cells occurred in a dose-dependent manner. (c) Although the MMP-2 activities significantly increased after transwell coculturing, the MMP-2 mRNA enhancement was observed only in HGFs. (d) Exogenous CyPA could enhance MMP-2 activities in HGFs in a dose-dependent manner. However, the CyPA antagonist reduced the MMP-2 activities in the transwell cocultures. (e) Moreover, the CyPA-enhanced MMP-2 activity in HGF was decreased significantly by the pathway inhibitor for c-Jun amino-terminal kinase (JNK). CONCLUSION Based on the present findings, we suggest that gingival fibroblasts could enhance the CyPA release from U937 cells, via the JNK pathway, resulting in MMP-2 enhancement in fibroblasts. The finding shed light on a new mechanism of cellular interaction involving MMP-2 and CyPA, in two cells.
Collapse
Affiliation(s)
- Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Chen
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Tsung-Fu Hung
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Hsiao-Lun Lin
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Cheng-Yang Chiang
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Fu-Gong Lin
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,University of Kang Ning, Tainan City, Taiwan
| | - Earl Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Xindian, Taiwan
| |
Collapse
|
36
|
Kumar S, Singh SK, Viswakarma N, Sondarva G, Nair RS, Sethupathi P, Sinha SC, Emmadi R, Hoskins K, Danciu O, Thatcher GRJ, Rana B, Rana A. Mixed lineage kinase 3 inhibition induces T cell activation and cytotoxicity. Proc Natl Acad Sci U S A 2020; 117:7961-7970. [PMID: 32209667 PMCID: PMC7149389 DOI: 10.1073/pnas.1921325117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets. MLK3 loss or pharmacological inhibition induces activation of T cells in in vitro, ex vivo, and in vivo conditions, irrespective of T cell activating agents. Conversely, overexpression of MLK3 decreases T cell activation. Mechanistically, loss or inhibition of MLK3 down-regulates expression of a prolyl-isomerase, Ppia, which is directly phosphorylated by MLK3 to increase its isomerase activity. Moreover, MLK3 also phosphorylates nuclear factor of activated T cells 1 (NFATc1) and regulates its nuclear translocation via interaction with Ppia, and this regulates T cell effector function. In an immune-competent mouse model of breast cancer, MLK3 inhibitor increases Granzyme B-positive CD8+ T cells and decreases MLK3 and Ppia gene expression in tumor-infiltrating T cells. Likewise, the MLK3 inhibitor in pan T cells, isolated from breast cancer patients, also increases cytotoxic CD8+ T cells. These results collectively demonstrate that MLK3 plays an important role in T cell biology, and targeting MLK3 could serve as a potential therapeutic intervention via increasing T cell cytotoxicity in cancer.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/blood
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Cell Line, Tumor/transplantation
- Cyclophilin A/metabolism
- Female
- Humans
- Lymphocyte Activation/drug effects
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- MAP Kinase Kinase Kinases/antagonists & inhibitors
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/metabolism
- Mammary Neoplasms, Experimental/blood
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mice
- NFATC Transcription Factors/metabolism
- Phosphorylation/drug effects
- Phosphorylation/immunology
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Escape/drug effects
- Mitogen-Activated Protein Kinase Kinase Kinase 11
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Gautam Sondarva
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Rakesh Sathish Nair
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Periannan Sethupathi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
| | - Subhash C Sinha
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065
| | - Rajyasree Emmadi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Kent Hoskins
- Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Oana Danciu
- Division of Hematology/Oncology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612
- Research Unit, Jesse Brown VA Medical Center, Chicago, IL 60612
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612;
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612
- Research Unit, Jesse Brown VA Medical Center, Chicago, IL 60612
| |
Collapse
|
37
|
Kalinina A, Zamkova M, Antoshina E, Trukhanova L, Gorkova T, Kazansky D, Khromykh L. Analyses of the toxic properties of recombinant human Cyclophilin A in mice. J Immunotoxicol 2020; 16:182-190. [PMID: 31646917 DOI: 10.1080/1547691x.2019.1665597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclophilin A (CypA), an 18 kDa multi-functional protein with cis-trans isomerase activity, is both a ligand for cyclosporine A and a proinflammatory factor. CypA is also a chemoattractant for hemopoietic stem cells and progenitors of different lineages, and can mediate regenerative processes in an organism. Accumulated experimental data have suggested there are practical applications for this protein in the treatment of several diseases (i.e. neutralization of cyclosporine A side effects, etc.). However, the range of CypA safe doses as well as its toxic effects remain unknown. The study here investigated the acute toxicity of a single intraperitoneal (IP) or subcutaneous (SC) dosing of recombinant human CypA (rhCypA) in both female and male mice and its effect on gene expression of acute phase proteins (APP) in the female mice after IP treatment. The results showed that toxicity of rhCypA was most evident in female and male mice dosed IP with 750 mg/kg, and manifested as kidney injury and increased granulocyte/lymphocyte ratios in the blood. Enhanced expression of Sаа1 and Sаа2 genes was induced with doses of 0.1-2 mg/mouse of rhCypA. Injection of the maximal dose (750 mg/kg) significantly stimulated expression of all the APP genes studied.
Collapse
Affiliation(s)
- Anastasiya Kalinina
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Mariya Zamkova
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Elena Antoshina
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Lubov Trukhanova
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Tatyana Gorkova
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Dmitriy Kazansky
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| | - Ludmila Khromykh
- Federal State Budgetary Institution, N.N. Blokhin National Medical Research Center of Oncology оf the Ministry of Health of the Russian Federation , Moscow , Russia
| |
Collapse
|
38
|
Liu J, Guo M, Lv Z, Wang Z, Shao Y, Li C. A cyclophilin A (CypA) from Apostichopus japonicus modulates NF-κB translocation as a cofactor. FISH & SHELLFISH IMMUNOLOGY 2020; 98:728-737. [PMID: 31740398 DOI: 10.1016/j.fsi.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
As a ubiquitously expressed protein, cyclophilin A (CypA) is involved in a variety of pathological process, including immune suppression, inflammation, cell apoptosis, viral infection and stress response. However, the functional roles of CypA were largely unknown in economic marine animals. In this report, a novel CypA gene from sea cucumber Apostichopus japonicus (designated as AjCypA) was cloned and its function roles in immune responses were explored. The full-length cDNA of AjCypA was 1297 bp containing an open reading frame of 489 bp encoding a putative protein of 162 amino acids (aa). A conserved cyclophilin-like domain (CLD) with PPIase signature was located from 5 to 155 aa sequences in AjCypA, in which five necessary aa residues was totally conserved. In healthy sea cucumbers, AjCypA was expressed in all detected tissues, with highly expressed in muscles and weakly expressed in coelomocytes. AjCypA transcripts was significantly induced 8.08-fold and 5.65-fold in coelomocytes when sea cucumbers challenged with Vibrio splendidus in vivo and LPS in vitro, respectively. The expression pattern is similar with the expression of AjRel in the same condition. Moreover, GST pull-down and immunofluorescence analysis both revealed that AjCypA might be interacted with AjRel. Furthermore, AjCypA knockdown not only inhibited the expression of inflammation cytokines, but also suppressed the translocation of AjRel in nucleus induced by LPS. Taken together, our results suggested that AjCypA play key roles in V. splendidus mediated immune responses via suppressing the nuclear translocation of AjRel activity in sea cucumber.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhenhui Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
39
|
Garimella V, McVoy JS, Oh U. The contribution of cyclophilin A to immune-mediated central nervous system inflammation. J Neuroimmunol 2020; 339:577118. [PMID: 31790981 PMCID: PMC6982367 DOI: 10.1016/j.jneuroim.2019.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Cyclophilin A has multiple known functions in inflammation. Intracellular cyclophilin A modulates T helper 2 response (Th2) and extracellular cyclophilin A functions as a leukocyte chemotactic factor. The contribution of cyclophilin A to central nervous system (CNS) inflammation has not been reported. To test the hypothesis that inhibition of cyclophilin A would ameliorate immune-mediated CNS inflammation, we compared the course and neuroimmunology of experimental allergic encephalomyelitis (EAE) in cyclophilin A knockout mice and wild type littermates. There was a trend towards lower incidence of EAE in cyclophilin A knockout mice, but the clinical course of EAE among animals that manifested clinical signs of EAE was similar in cyclophilin A knockout and wild type littermates. Antigen recall response to myelin oligodendrocyte glycoprotein (MOG) peptide showed that interferon-γ release was lower in cyclophilin A knockout mice. Analysis of CNS inflammatory cells showed that CD3+ T cell infiltration into the CNS was lower in cyclophilin A knockout mice. These results showed that the loss of cyclophilin A results in altered peripheral immune activation and CNS leukocyte infiltration, but these changes did not result in a substantial change in the clinical course of EAE.
Collapse
Affiliation(s)
- Vahnee Garimella
- Department of Neurology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA
| | - Julie Secor McVoy
- Department of Neurology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA.
| |
Collapse
|
40
|
Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation 2020; 17:16. [PMID: 31926558 PMCID: PMC6954572 DOI: 10.1186/s12974-020-1699-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Objective The potential roles and mechanisms of pericytes in maintaining blood–brain barrier (BBB) integrity, which would be helpful for the development of therapeutic strategies for subarachnoid hemorrhage (SAH), remain unclear. We sought to provide evidence on the potential role of pericytes in BBB disruption and possible involvement and mechanism of CypA signaling in both cultured pericytes and SAH models. Methods Three hundred fifty-three adult male C57B6J mice weighing 22 to 30 g, 29 CypA−/− mice, 30 CypA+/+ (flox/flox) mice, and 30 male neonatal C57B6J mice were used to investigate the time course of CypA expression in pericytes after SAH, the intrinsic function and mechanism of CypA in pericytes, and whether the known receptor CD147 mediates these effects. Results Our data demonstrated both intracellular CypA and CypA secretion increased after SAH and could activate CD147 receptor and downstream NF-κB pathway to induce MMP9 expression and proteolytic functions for degradation of endothelium tight junction proteins and basal membranes. CypA served as autocrine or paracrine ligand for its receptor, CD147. Although CypA could be endocytosed by pericytes, specific endocytosis inhibitor chlorpromazine did not have any effect on MMP9 activation. However, specific knockdown of CD147 could reverse the harmful effects of CypA expression in pericytes on the BBB integrity after SAH. Conclusions This study demonstrated for the first time that CypA mediated the harmful effects of pericytes on BBB disruption after SAH, which potentially mediated by CD147/NF-κB/MMP9 signal, and junction protein degradation in the brain. By targeting CypA and pericytes, this study may provide new insights on the management of SAH patients.
Collapse
|
41
|
Synthesis and Antitumor and Antimetastatic Activity of 5-hydroxypyrimidine Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Kim K, Dauphin A, Komurlu S, McCauley SM, Yurkovetskiy L, Carbone C, Diehl WE, Strambio-De-Castillia C, Campbell EM, Luban J. Cyclophilin A protects HIV-1 from restriction by human TRIM5α. Nat Microbiol 2019; 4:2044-2051. [PMID: 31636416 PMCID: PMC6879858 DOI: 10.1038/s41564-019-0592-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/12/2019] [Indexed: 12/20/2022]
Abstract
The HIV-1 capsid (CA) protein lattice encases viral genomic RNA and regulates steps essential to target cell invasion1. Cyclophilin A (CypA) has interacted with the CA of lentiviruses related to HIV-1 for millions of years2–7. Disruption of the CA-CypA interaction decreases HIV-1 infectivity in human cells8–12, but stimulates infectivity in non-human primate cells13–15. Genetic and biochemical data suggest that CypA protects HIV-1 from a CA-specific restriction factor in human cells16–20. Discovery of the CA-specific restriction factor tripartite-containing motif 5α (TRIM5α)21, and of multiple, independently-derived, TRIM5-CypA fusion genes4,5,15,22–26, pointed to human TRIM5α as the CypA-sensitive restriction factor. However, HIV-1 restriction by human TRIM5α in tumor cell lines is minimal21, and inhibition of such activity by CypA has not been detected27. Here, exploiting reverse genetic tools optimized for primary human blood cells, we demonstrate that disruption of the CA-CypA interaction renders HIV-1 susceptible to potent restriction by human TRIM5α, with the block occurring before reverse transcription. Endogenous TRIM5α associated with virion cores as they entered the cytoplasm, but only when the CA-CypA interaction was disrupted. These experiments resolve the long-standing mystery of the role of CypA in HIV-1 replication by demonstrating that this ubiquitous cellular protein shields HIV-1 from previously inapparent restriction by human TRIM5α.
Collapse
Affiliation(s)
- Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sevnur Komurlu
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sean M McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - William E Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Infectious Disease and Immunology Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
43
|
Kuo J, Serrano SS, Grönberg A, Massoumi R, Hansson MJ, Gallay P. Cyclophilin Inhibitor NV556 Reduces Fibrosis and Hepatocellular Carcinoma Development in Mice With Non-Alcoholic Steatohepatitis. Front Pharmacol 2019; 10:1129. [PMID: 31611801 PMCID: PMC6775500 DOI: 10.3389/fphar.2019.01129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the third major cause of cancer mortality, can result from non-alcoholic steatohepatitis (NASH). Due to limited efficacy of drugs approved for HCC and no drug available yet for NASH, identification of new effective treatments is crucial. Here, we investigated whether NV556, a cyclophilin inhibitor derived from sanglifehrins, would decrease the development of NASH and HCC in a preclinical mouse model. For our experiment, male mice were administered streptozotocin to disrupt pancreatic cells and nourished with high-fat diet since 3 weeks of age. Afterward, NV556 or vehicle was orally administered daily for 6 weeks before the 14-week-old time point for the development of NASH, or 10 weeks before the 30-week-old time point for the establishment of HCC. Body weight, blood glucose level, and liver weight were recorded. Moreover, for NASH, livers were histologically examined for inflammation and steatosis. Collagen was measured by Sirius Red staining of hepatic tissues. Systemic cytokine levels in serum were detected by multiplex assays. For HCC, nodules of livers were measured and scored according to a developed system with number and size of nodules as criteria. NV556 significantly decreased collagen deposition (p = 0.0281), but did not alter inflammation, steatosis, body and liver weight, and systemic cytokine production compared to control mice with NASH symptoms. For HCC, NV556 statistically reduced the number (p = 0.0091) and diameter of tumorous nodules (p = 0.0264), along with liver weight (p = 0.0026) of mice.Our study suggests NV556 as a promising candidate for treatment of NASH-derived fibrosis and HCC.
Collapse
Affiliation(s)
- Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Sonia Simón Serrano
- NeuroVive Pharmaceutical AB, Lund, Sweden.,Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund, Sweden
| | | | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University, Lund, Sweden
| | | | - Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
44
|
Xie Y, Li X, Ge J. STAT3-CyPA signaling pathway in endothelial cell apoptosis. Cell Signal 2019; 65:109413. [PMID: 31494257 DOI: 10.1016/j.cellsig.2019.109413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023]
Abstract
Cyclophilin A (CyPA), which is encoded by PPIA, is a ubiquitously expressed intracellular protein and is secreted in response to inflammatory stimuli. CyPA stimulates proinflammatory and apoptosis signaling pathways in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), promotes VSMC migration and proliferation, EC adhesion molecules expression, and inflammatory cell chemotaxis and apoptosis. Therefore, we sought to study the transcriptional regulation of CyPA, we hypothesized that transcription factor STAT3 regulated CyPA expression and activated vascular ECs in vitro in a CyPA-dependent manner. Using RT-qPCR, immunostaining, luciferase and ChIP assays, we found that STAT3 induced CyPA expression depended on its transcriptional activation by binding to a specific region containing the STAT3-responsive element (SRE) in the CyPA promoter. Moreover, with cell viability and apoptosis assays, we identified STAT3 stimulated CyPA-dependent apoptosis of human umbilical vein ECs in vitro.
Collapse
Affiliation(s)
- Yifan Xie
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China; Department of Molecular and Cellular Biology, The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | - Junbo Ge
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
45
|
Cyclophilin A–FoxO1 signaling pathway in endothelial cell apoptosis. Cell Signal 2019; 61:57-65. [DOI: 10.1016/j.cellsig.2019.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/26/2023]
|
46
|
Bouybayoune I, Comerio L, Pasetto L, Bertani I, Bonetto V, Chiesa R. Cyclophillin A deficiency accelerates RML-induced prion disease. Neurobiol Dis 2019; 130:104498. [PMID: 31181281 DOI: 10.1016/j.nbd.2019.104498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023] Open
Abstract
Prion diseases typically involve brain deposition of abnormally folded prion protein, which is associated with activated glia and increased cytokine production. Cyclophilin A (CypA) is a ubiquitous protein with peptidyl prolyl cis-trans isomerase activity, which regulates protein folding, and can be secreted by cells in response to inflammatory stimuli. On the basis of in vitro studies, CypA was proposed to mediate glial activation during prion infection. To investigate the role of CypA in vivo, we inoculated CypA+/+, CypA+/- and CypA-/- mice with the RML prion strain, and recorded the time to onset of neurological signs and to terminal disease, and the astrocyte and microglia response at presymptomatic and symptomatic stages. Time to onset of disease and survival were significantly shorter in CypA-deficient mice than CypA-expressing controls. CypA-deficient mice had significantly greater microglial activation in the presymptomatic stage, and analysis of anti- and pro-inflammatory microglial markers indicated a shift towards a pro-inflammatory phenotype. There was no difference in astrocyte activation. This suggests that CypA contributes to dampening the pro-inflammatory microglial response during the early stage of RML-induced prion disease.
Collapse
Affiliation(s)
- Ihssane Bouybayoune
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Liliana Comerio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Laura Pasetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
| |
Collapse
|
47
|
Zhang Y, He Y, Lu LL, Zhou ZY, Wan NB, Li GP, He X, Deng HW. miRNA-192-5p impacts the sensitivity of breast cancer cells to doxorubicin via targeting peptidylprolyl isomerase A. Kaohsiung J Med Sci 2019; 35:17-23. [PMID: 30844143 DOI: 10.1002/kjm2.12004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yi Zhang
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Ying He
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Ling-Li Lu
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Zheng-Yu Zhou
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Neng-Bin Wan
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Guo-Peng Li
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Xiao He
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| | - Hong-Wu Deng
- The Second Department of Breast Surgery, Hunan Cancer Hospital; Affiliated Cancer Hospital of Xiangya Medical School; Changsha China
| |
Collapse
|
48
|
The first-trimester maternal serum cyclophilin A concentrations in women with complicated pregnancy as preeeclampsia. Clin Chim Acta 2018; 484:105-110. [DOI: 10.1016/j.cca.2018.05.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
|
49
|
Volker SE, Hedrick SE, Feeney YB, Clevenger CV. Cyclophilin A Function in Mammary Epithelium Impacts Jak2/Stat5 Signaling, Morphogenesis, Differentiation, and Tumorigenesis in the Mammary Gland. Cancer Res 2018; 78:3877-3887. [PMID: 29959151 DOI: 10.1158/0008-5472.can-17-2892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 11/16/2022]
Abstract
The prolyl isomerase cyclophilin A (CypA) regulates the Jak2/Stat5 pathway, which is necessary for mammary differentiation and the pathogenesis of breast cancer. In this study, we assessed the role of this isomerase during mammary gland development and erbB2-driven tumorigenesis. Genetic deletion of CypA resulted in delayed mammary gland morphogenesis and differentiation with corresponding decrease in Jak2/Stat5 activation; mammary gland cross-transplantation confirmed this defect was epithelial in nature. Analysis of mammary stem and progenitor populations revealed significant disruption of epithelial maturation. Loss of CypA in the erbB2 transgenic mouse model revealed a marked increase in mammary tumor latency that correlated with decreased Stat5 activation, associated gene expression, and reduced epithelial cell proliferation. These results demonstrate an important role for CypA in the regulation of Jak2/Stat5-mediated biology in mammary epithelium, identifying this isomerase as a novel target for therapeutic intervention.Significance: These findings reveal cyclophilin A functions in normal mammary epithelial development and ErbB2-driven mammary tumorigenesis and suggest therapies targeting cyclophilin A may be efficacious for breast cancer treatment.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3877/F1.large.jpg Cancer Res; 78(14); 3877-87. ©2018 AACR.
Collapse
Affiliation(s)
- Sonja E Volker
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Shannon E Hedrick
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Yvonne B Feeney
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Charles V Clevenger
- Department of Pathology and Massey Cancer Center, Virginia Commonwealth University Health System, Richmond, Virginia.
| |
Collapse
|
50
|
Reis EC, da Silva LT, da Silva WC, Rios A, Duarte AJ, Oshiro TM, Crovella S, Pontillo A. Host genetics contributes to the effectiveness of dendritic cell-based HIV immunotherapy. Hum Vaccin Immunother 2018; 14:1995-2002. [PMID: 29641325 DOI: 10.1080/21645515.2018.1463942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Systems biological analysis has recently revealed how innate immune variants as well as gut microbiota impact the individual response to immunization. HIV-infected (HIV+) patients have a worse response rate after standard vaccinations, possibly due to the immune exhaustion, increased gut permeability and microbial translocation. In the last decade, dendritic cells (DC)-based immunotherapy has been proposed as an alternative approach to control HIV plasma viral load, however clinical trials showed a heterogeneity of immunization response. Hypothesizing that host genetics may importantly affects the outcome of immunotherapy in HIV+ patients, genetic polymorphisms' distribution and gene expression modulation were analyzed in a phase I/II clinical trial of DC-based immunotherapy according to immunization response, and quality of vaccine product (DC). Polymorphisms in genes previously associated with progression of HIV infection to AIDS (i.e.: PARD3B, CCL5) contribute to a better response to immunotherapy in HIV+ individuals, possibly through a systemic effect on host immune system, but also directly on vaccine product. Genes expression profile after immunization correlates with different degrees of immune chronic activation/exhaustion of HIV+ patients (i.e. PD1, IL7RA, EOMES), but also with anti-viral response and DC quality (i.e.: APOBEC3G, IL8, PPIA), suggested that an immunocompetent individual would have a better vaccine response. These findings showed once more that host genetics can affect the response to DC-based immunotherapy in HIV+ individuals, contributing to the heterogeneity of response observed in concluded trials; and it can be used as predictor of immunization success.
Collapse
Affiliation(s)
- Edione C Reis
- a Laboratório de Imunogenética, Departamento de Imunologia , Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| | - Lais T da Silva
- b Laboratório de Investigação Médica LIM-56, Departamento de Dermatologia , Faculdade de Medicina, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| | - Wanessa C da Silva
- b Laboratório de Investigação Médica LIM-56, Departamento de Dermatologia , Faculdade de Medicina, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| | - Alexandre Rios
- a Laboratório de Imunogenética, Departamento de Imunologia , Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| | - Alberto J Duarte
- b Laboratório de Investigação Médica LIM-56, Departamento de Dermatologia , Faculdade de Medicina, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| | - Telma M Oshiro
- b Laboratório de Investigação Médica LIM-56, Departamento de Dermatologia , Faculdade de Medicina, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| | - Sergio Crovella
- c Departamento de Genética , Universidade Federal de Pernambuco , Recife , PE , Brazil
| | - Alessandra Pontillo
- a Laboratório de Imunogenética, Departamento de Imunologia , Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP , São Paulo , SP , Brazil
| |
Collapse
|