1
|
Zhang H, Monk IR, Braverman J, Jones CM, Brooks AG, Stinear TP, Wakim LM. Staphylococcal superantigens evoke temporary and reversible T cell anergy, but fail to block the development of a bacterium specific cellular immune response. Nat Commun 2024; 15:9872. [PMID: 39543088 PMCID: PMC11564628 DOI: 10.1038/s41467-024-54074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Superantigens (sAgs) are bacterial virulence factors that induce a state of immune hyperactivation by forming a bridge between certain subsets of T cell receptor (TCR) β chains on T lymphocytes, and class II major histocompatibility complex (MHC-II) molecules; this cross-linking leads to indiscriminate T cell activation, cytokine storm and toxic shock. Here we show that sAg exposure drives the preferential expansion of naive and central memory T cell subsets, but not effector or resident memory T cells, which instead, hyper release pro-inflammatory cytokines. A targeted therapeutic approach to minimise cytokine release by effector memory T cells attenuated sAg-induced cytokine release. Irrespective of antigen experience, sAg activation does not render mature T cells permanently dysfunctional, and full restoration of effector function is observed following a transient and reversible anergy. Moreover, we show that in the face of sAg induced immune hyperactivation, an intact bacterium-specific CD4+ T cell response can be mounted.
Collapse
Affiliation(s)
- Heran Zhang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Jessica Braverman
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Claerwen M Jones
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Manville RW, Yoshimura RF, Yeromin AV, Hogenkamp D, van der Horst J, Zavala A, Chinedu S, Arena G, Lasky E, Fisher M, Tracy CR, Othy S, Jepps TA, Cahalan MD, Abbott GW. Polymodal K + channel modulation contributes to dual analgesic and anti-inflammatory actions of traditional botanical medicines. Commun Biol 2024; 7:1059. [PMID: 39198706 PMCID: PMC11358443 DOI: 10.1038/s42003-024-06752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ryan F Yoshimura
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Derk Hogenkamp
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jennifer van der Horst
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Angel Zavala
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Sonia Chinedu
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Grey Arena
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Emma Lasky
- Redwood Creek Vegetation Team, National Park Service, Sausalito, CA, USA
| | - Mark Fisher
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Christopher R Tracy
- Philip L. Boyd Deep Canyon Desert Research Center, University of California Natural Reserve System, Indian Wells, CA, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Thomas A Jepps
- Department of Biomedical Sciences, Vascular Biology Group, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Cahalan
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Bonnet V, Maikranz E, Madec M, Vertti-Quintero N, Cuche C, Mastrogiovanni M, Alcover A, Di Bartolo V, Baroud CN. Cancer-on-a-chip model shows that the adenomatous polyposis coli mutation impairs T cell engagement and killing of cancer spheroids. Proc Natl Acad Sci U S A 2024; 121:e2316500121. [PMID: 38442157 PMCID: PMC10945811 DOI: 10.1073/pnas.2316500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Evaluating the ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells is crucial, for instance, to predict the efficiency of cell therapy in personalized medicine. However, the destruction of a tumor by CTLs involves CTL migration in the extra-tumoral environment, accumulation on the tumor, antigen recognition, and cooperation in killing the cancer cells. Therefore, identifying the limiting steps in this complex process requires spatio-temporal measurements of different cellular events over long periods. Here, we use a cancer-on-a-chip platform to evaluate the impact of adenomatous polyposis coli (APC) mutation on CTL migration and cytotoxicity against 3D tumor spheroids. The APC mutated CTLs are found to have a reduced ability to destroy tumor spheroids compared with control cells, even though APC mutants migrate in the extra-tumoral space and accumulate on the spheroids as efficiently as control cells. Once in contact with the tumor however, mutated CTLs display reduced engagement with the cancer cells, as measured by a metric that distinguishes different modes of CTL migration. Realigning the CTL trajectories around localized killing cascades reveals that all CTLs transition to high engagement in the 2 h preceding the cascades, which confirms that the low engagement is the cause of reduced cytotoxicity. Beyond the study of APC mutations, this platform offers a robust way to compare cytotoxic cell efficiency of even closely related cell types, by relying on a multiscale cytometry approach to disentangle complex interactions and to identify the steps that limit the tumor destruction.
Collapse
Affiliation(s)
- Valentin Bonnet
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| | - Erik Maikranz
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| | - Marianne Madec
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva 4CH-1211, Switzerland
| | - Nadia Vertti-Quintero
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
| | - Céline Cuche
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Marta Mastrogiovanni
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, New York, NY10461
| | - Andrés Alcover
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Vincenzo Di Bartolo
- Unité Biologie Cellulaire des Lymphocytes, Institut Pasteur, Department of immunology, Université Paris Cité, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, ParisF-75015, France
| | - Charles N. Baroud
- Institut Pasteur, Department of Genomes and Genetics, Université Paris Cité, Physical Microfluidics and Bioengineering, ParisF-75015, France
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau91120, France
| |
Collapse
|
4
|
Lintermans LL, Stegeman CA, Muñoz-Elías EJ, Tarcha EJ, Iadonato SP, Rutgers A, Heeringa P, Abdulahad WH. Kv1.3 blockade by ShK186 modulates CD4+ effector memory T-cell activity of patients with granulomatosis with polyangiitis. Rheumatology (Oxford) 2024; 63:198-208. [PMID: 37086441 PMCID: PMC10765141 DOI: 10.1093/rheumatology/kead192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVES Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory, as it relies on strong immunosuppressive regimens, with either CYC or rituximab, which reduce the immunogenicity of several vaccines and are risk factors for a severe form of COVID-19. This emphasizes the need to identify new drug targets and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186. METHODS Peripheral blood samples from 27 patients with GPA in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with phorbol myristate acetate, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+ T helper (CD4+TH) cells were assessed using flow cytometry. RESULTS ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17 and IL-21 in CD4+TH cells from patients with GPA in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs. CONCLUSIONS Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.
Collapse
Affiliation(s)
- Lucas L Lintermans
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Wang Y, Hurley A, De Giorgi M, Tanner MR, Hu RC, Pennington MW, Lagor WR, Beeton C. Adeno-Associated virus 8 delivers an immunomodulatory peptide to mouse liver more efficiently than to rat liver. PLoS One 2023; 18:e0283996. [PMID: 37040361 PMCID: PMC10089316 DOI: 10.1371/journal.pone.0283996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Targeting the Kv1.3 potassium channel has proven effective in reducing obesity and the severity of animal models of autoimmune disease. Stichodactyla toxin (ShK), isolated from the sea anemone Stichodactyla helianthus, is a potent blocker of Kv1.3. Several of its analogs are some of the most potent and selective blockers of this channel. However, like most biologics, ShK and its analogs require injections for their delivery, and repeated injections reduce patient compliance during the treatment of chronic diseases. We hypothesized that inducing the expression of an ShK analog by hepatocytes would remove the requirement for frequent injections and lead to a sustained level of Kv1.3 blocker in the circulation. To this goal, we tested the ability of Adeno-Associated Virus (AAV)8 vectors to target hepatocytes for expressing the ShK analog, ShK-235 (AAV-ShK-235) in rodents. We designed AAV8 vectors expressing the target transgene, ShK-235, or Enhanced Green fluorescent protein (EGFP). Transduction of mouse livers led to the production of sufficient levels of functional ShK-235 in the serum from AAV-ShK-235 single-injected mice to block Kv1.3 channels. However, AAV-ShK-235 therapy was not effective in reducing high-fat diet-induced obesity in mice. In addition, injection of even high doses of AAV8-ShK-235 to rats resulted in a very low liver transduction efficiency and failed to reduce inflammation in a well-established rat model of delayed-type hypersensitivity. In conclusion, the AAV8-based delivery of ShK-235 was highly effective in inducing the secretion of functional Kv1.3-blocking peptide in mouse, but not rat, hepatocytes yet did not reduce obesity in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ayrea Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark R. Tanner
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rong-Chi Hu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christine Beeton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
6
|
A bioengineered probiotic for the oral delivery of a peptide Kv1.3 channel blocker to treat rheumatoid arthritis. Proc Natl Acad Sci U S A 2023; 120:e2211977120. [PMID: 36595694 PMCID: PMC9926172 DOI: 10.1073/pnas.2211977120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.
Collapse
|
7
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
8
|
How the Potassium Channel Response of T Lymphocytes to the Tumor Microenvironment Shapes Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14153564. [PMID: 35892822 PMCID: PMC9330401 DOI: 10.3390/cancers14153564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Competent antitumor immune cells are fundamental for tumor surveillance and combating active cancers. Once established, tumors generate a tumor microenvironment (TME) consisting of complex cellular and metabolic elements that serve to suppress the function of antitumor immune cells. T lymphocytes are key cellular elements of the TME. In this review, we explore the role of ion channels, particularly K+ channels, in mediating the suppressive effects of the TME on T cells. First, we will review the complex network of ion channels that mediate Ca2+ influx and control effector functions in T cells. Then, we will discuss how multiple features of the TME influence the antitumor capabilities of T cells via ion channels. We will focus on hypoxia, adenosine, and ionic imbalances in the TME, as well as overexpression of programmed cell death ligand 1 by cancer cells that either suppress K+ channels in T cells and/or benefit from regulating these channels’ activity, ultimately shaping the immune response. Finally, we will review some of the cancer treatment implications related to ion channels. A better understanding of the effects of the TME on ion channels in T lymphocytes could promote the development of more effective immunotherapies, especially for resistant solid malignancies.
Collapse
|
9
|
Selvakumar P, Fernández-Mariño AI, Khanra N, He C, Paquette AJ, Wang B, Huang R, Smider VV, Rice WJ, Swartz KJ, Meyerson JR. Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. Nat Commun 2022; 13:3854. [PMID: 35788586 PMCID: PMC9253088 DOI: 10.1038/s41467-022-31285-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
The Kv1.3 potassium channel is expressed abundantly on activated T cells and mediates the cellular immune response. This role has made the channel a target for therapeutic immunomodulation to block its activity and suppress T cell activation. Here, we report structures of human Kv1.3 alone, with a nanobody inhibitor, and with an antibody-toxin fusion blocker. Rather than block the channel directly, four copies of the nanobody bind the tetramer's voltage sensing domains and the pore domain to induce an inactive pore conformation. In contrast, the antibody-toxin fusion docks its toxin domain at the extracellular mouth of the channel to insert a critical lysine into the pore. The lysine stabilizes an active conformation of the pore yet blocks ion permeation. This study visualizes Kv1.3 pore dynamics, defines two distinct mechanisms to suppress Kv1.3 channel activity with exogenous inhibitors, and provides a framework to aid development of emerging T cell immunotherapies.
Collapse
Affiliation(s)
- Purushotham Selvakumar
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Ana I Fernández-Mariño
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nandish Khanra
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Alice J Paquette
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, USA
- Minotaur Therapeutics, San Diego, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William J Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joel R Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
10
|
Zhang X, Zhao Q, Yang F, Lan Z, Li Y, Xiao M, Yu H, Li Z, Zhou Y, Wu Y, Cao Z, Yin S. Mechanisms underlying the inhibition of KV1.3 channel by scorpion toxin ImKTX58. Mol Pharmacol 2022; 102:150-160. [PMID: 35764383 DOI: 10.1124/molpharm.121.000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/19/2022] [Indexed: 11/22/2022] Open
Abstract
Voltage-gated KV1.3 channel has been reported to be a drug target for the treatment of autoimmune diseases, and specific inhibitors of Kv1.3 are potential therapeutic drugs for multiple diseases. The scorpions could produce various bioactive peptides which could inhibit KV1.3 channel. Here we identified a new scorpion toxin polypeptide gene ImKTX58 from the venom gland cDNA library of the Chinese scorpion Isometrus maculatus Sequence alignment revealed high similarities between ImKTX58 mature peptide and previously reported KV1.3 channel blockers - LmKTX10 and ImKTX88, suggesting that ImKTX58 peptide might also be a KV1.3 channel blocker. By using electrophysiological recordings, we showed that recombinant ImKTX58 prepared by genetic engineering technologies had a highly selective inhibiting effect on KV1.3 channel. Further alanine scanning mutagenesis and computer simulation identified four amino acid residues in ImKTX58 peptide as key binding sites to KV1.3 channel by forming hydrogen bonds, salt bonds and hydrophobic interactions. Among these four residues, 28th lysine of the ImKTX58 mature peptide was found to be the most critical amino acid residue for blocking KV1.3 channel. Significance Statement In this study, we discovered a scorpion toxin gene ImKTX58 which has not been reported before in Hainan Isometrus maculatus and successfully used prokaryotic expression system to express and purify the polypeptides encoded by this gene. Electrophysiological experiments on ImKTX58 showed that ImKTX58 has a selectively blocking effects on KV1.3 channel over Kv1.1, Kv1.2, Kv1.5, SK2, SK3 and BK channels. These findings provide a theoretical basis for designing highly effective KV1.3 blockers to treat autoimmune and other diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Fan Yang
- Department of Virology, College of Life Sciences, Wuhan University, China
| | - Zhen Lan
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Min Xiao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Hui Yu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Ziyi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Yongsheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| | - Yingliang Wu
- Department of Virology, College of Life Sciences, Wuhan University, China
| | - Zhijian Cao
- Department of Virology, College of Life Sciences, Wuhan University, China
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, China
| |
Collapse
|
11
|
Wright JR, Jones S, Parvathy S, Kaczmarek LK, Forsythe I, Farndale RW, Gibbins JM, Mahaut-Smith MP. The voltage-gated K + channel Kv1.3 modulates platelet motility and α 2β 1 integrin-dependent adhesion to collagen. Platelets 2022; 33:451-461. [PMID: 34348571 PMCID: PMC8935947 DOI: 10.1080/09537104.2021.1942818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Kv1.3 is a voltage-gated K+-selective channel with roles in immunity, insulin-sensitivity, neuronal excitability and olfaction. Despite being one of the largest ionic conductances of the platelet surface membrane, its contribution to platelet function is poorly understood. Here we show that Kv1.3-deficient platelets display enhanced ADP-evoked platelet aggregation and secretion, and an increased surface expression of platelet integrin αIIb. In contrast, platelet adhesion and thrombus formation in vitro under arterial shear conditions on surfaces coated with collagen were reduced for samples from Kv1.3-/- compared to wild type mice. Use of collagen-mimetic peptides revealed a specific defect in the engagement with α2β1. Kv1.3-/- platelets developed significantly fewer, and shorter, filopodia than wild type platelets during adhesion to collagen fibrils. Kv1.3-/- mice displayed no significant difference in thrombus formation within cremaster muscle arterioles using a laser-induced injury model, thus other pro-thrombotic pathways compensate in vivo for the adhesion defect observed in vitro. This may include the increased platelet counts of Kv1.3-/- mice, due in part to a prolonged lifespan. The ability of Kv1.3 to modulate integrin-dependent platelet adhesion has important implications for understanding its contribution to normal physiological platelet function in addition to its reported roles in auto-immune diseases and thromboinflammatory models of stroke.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sarah Jones
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Sasikumar Parvathy
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Leonard K Kaczmarek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, USA
| | - Ian Forsythe
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | | | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | | |
Collapse
|
12
|
Ley K. Neutrophil ion currents matter. Cardiovasc Res 2022; 118:1165-1166. [PMID: 35238344 DOI: 10.1093/cvr/cvac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Klaus Ley
- Center for Autoimmunity and Inflammation, Inflammation Biology Laboratory, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Immler R, Nadolni W, Bertsch A, Morikis V, Rohwedder I, Masgrau-Alsina S, Schroll T, Yevtushenko A, Soehnlein O, Moser M, Gudermann T, Barnea ER, Rehberg M, Simon SI, Zierler S, Pruenster M, Sperandio M. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res 2022; 118:1289-1302. [PMID: 33881519 PMCID: PMC8953450 DOI: 10.1093/cvr/cvab133] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Neutrophil trafficking within the vasculature strongly relies on intracellular calcium signalling. Sustained Ca2+ influx into the cell requires a compensatory efflux of potassium to maintain membrane potential. Here, we aimed to investigate whether the voltage-gated potassium channel KV1.3 regulates neutrophil function during the acute inflammatory process by affecting sustained Ca2+ signalling. METHODS AND RESULTS Using in vitro assays and electrophysiological techniques, we show that KV1.3 is functionally expressed in human neutrophils regulating sustained store-operated Ca2+ entry through membrane potential stabilizing K+ efflux. Inhibition of KV1.3 on neutrophils by the specific inhibitor 5-(4-Phenoxybutoxy)psoralen (PAP-1) impaired intracellular Ca2+ signalling, thereby preventing cellular spreading, adhesion strengthening, and appropriate crawling under flow conditions in vitro. Using intravital microscopy, we show that pharmacological blockade or genetic deletion of KV1.3 in mice decreased neutrophil adhesion in a blood flow dependent fashion in inflamed cremaster muscle venules. Furthermore, we identified KV1.3 as a critical component for neutrophil extravasation into the inflamed peritoneal cavity. Finally, we also revealed impaired phagocytosis of Escherichia coli particles by neutrophils in the absence of KV1.3. CONCLUSION We show that the voltage-gated potassium channel KV1.3 is critical for Ca2+ signalling and neutrophil trafficking during acute inflammatory processes. Our findings do not only provide evidence for a role of KV1.3 for sustained calcium signalling in neutrophils affecting key functions of these cells, they also open up new therapeutic approaches to treat inflammatory disorders characterized by overwhelming neutrophil infiltration.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Wiebke Nadolni
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Annika Bertsch
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Vasilios Morikis
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Anna Yevtushenko
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkofer Straße 8a, 80336 Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Solnavägen 1, 17177 Stockholm, Sweden
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Enmarch-Straße 56, 48149 Münster, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Einsteinstraße 25, 81675 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Eytan R Barnea
- BioIncept LLC, New York, 140 East 40th Street #11E, NY 10016, USA
| | - Markus Rehberg
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Scott I Simon
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
14
|
Zeng Q, Lu W, Deng Z, Zhang B, Wu J, Chai J, Chen X, Xu X. The toxin mimic FS48 from the salivary gland of Xenopsylla cheopis functions as a Kv1.3 channel-blocking immunomodulator of T cell activation. J Biol Chem 2022; 298:101497. [PMID: 34919963 PMCID: PMC8732088 DOI: 10.1016/j.jbc.2021.101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
The Kv1.3 channel has been widely demonstrated to play crucial roles in the activation and proliferation of T cells, which suggests that selective blockers could serve as potential therapeutics for autoimmune diseases mediated by T cells. We previously described that the toxin mimic FS48 from salivary gland of Xenopsylla cheopis downregulates the secretion of proinflammatory factors by Raw 264.7 cells by blocking the Kv1.3 channel and the subsequent inactivation of the proinflammatory MAPK/NF-κB pathways. However, the effects of FS48 on human T cells and autoimmune diseases are unclear. Here, we described its immunomodulatory effects on human T cells derived from suppression of Kv1.3 channel. Kv1.3 currents in Jurkat T cells were recorded by whole-cell patch-clamp, and Ca2+ influx, cell proliferation, and TNF-α and IL-2 secretion were measured using Fluo-4, CCK-8, and ELISA assays, respectively. The in vivo immunosuppressive activity of FS48 was evaluated with a rat DTH model. We found that FS48 reduced Kv1.3 currents in Jurkat T cells in a concentration-dependent manner with an IC50 value of about 1.42 μM. FS48 also significantly suppressed Kv1.3 protein expression, Ca2+ influx, MAPK/NF-κB/NFATc1 pathway activation, and TNF-α and IL-2 production in activated Jurkat T cells. Finally, we show that FS48 relieved the DTH response in rats. We therefore conclude that FS48 can block the Kv1.3 channel and inhibit human T cell activation, which most likely contributes to its immunomodulatory actions and highlights the great potential of this evolutionary-guided peptide as a drug template in future studies.
Collapse
Affiliation(s)
- Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F. Pharmacological blockade of KV1.3 channel as a promising treatment in autoimmune diseases. J Transl Autoimmun 2022; 5:100146. [PMID: 35146402 PMCID: PMC8818563 DOI: 10.1016/j.jtauto.2022.100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022] Open
Abstract
There are more than 100 autoimmune diseases (AD), which have a high prevalence that ranges between 5% and 8% of the general population. Type I diabetes mellitus, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis remain the health problem of highest concern among people worldwide due to its high morbidity and mortality. The development of new treatment strategies has become a research hotspot. In recent years, the study of the ion channels presents in the cells of the immune system, regarding their functional role, the consequences of mutations in their genes and the different ways of blocking them are the subject of intense research. Pharmacological blockade of KV1.3 channel inhibits Ca2+ signaling, T cell proliferation, and pro-inflammatory interleukins production in human CD4+ effector memory T cells. These cells mediated most of the AD and their inhibition is a promising therapeutic target. In this review, we will highlight the biological function of KV1.3 channel in T cells, consequence of the pharmacological inhibition (through anemone and scorpion toxins, synthetic peptides, nanoparticles, or monoclonal antibodies) as well as the possible therapeutical application in AD.
Collapse
Affiliation(s)
- Carlos A. Cañas
- Universidad Icesi, CIRAT, Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, Colombia
- Unit of Rheumatology, Fundación Valle del Lili, Cali, Colombia
- Corresponding author. Rheumatology Unit, Fundación Valle del Lili, Cra. 98 18-49, Cali, 760032, Colombia.
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle, Cali, Colombia
| | - Fernando Castro-Herrera
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle, Cali, Colombia
| |
Collapse
|
16
|
Markakis I, Charitakis I, Beeton C, Galani M, Repousi E, Aggeloglou S, Sfikakis PP, Pennington MW, Chandy KG, Poulopoulou C. Kv1.3 Channel Up-Regulation in Peripheral Blood T Lymphocytes of Patients With Multiple Sclerosis. Front Pharmacol 2021; 12:714841. [PMID: 34630091 PMCID: PMC8495199 DOI: 10.3389/fphar.2021.714841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/09/2021] [Indexed: 11/02/2022] Open
Abstract
Voltage-gated Kv1.3 potassium channels are key regulators of T lymphocyte activation, proliferation and cytokine production, by providing the necessary membrane hyper-polarization for calcium influx following immune stimulation. It is noteworthy that an accumulating body of in vivo and in vitro evidence links these channels to multiple sclerosis pathophysiology. Here we studied the electrophysiological properties and the transcriptional and translational expression of T lymphocyte Kv1.3 channels in multiple sclerosis, by combining patch clamp recordings, reverse transcription polymerase chain reaction and flow cytometry on freshly isolated peripheral blood T lymphocytes from two patient cohorts with multiple sclerosis, as well as from healthy and disease controls. Our data demonstrate that T lymphocytes in MS, manifest a significant up-regulation of Kv1.3 mRNA, Kv1.3 membrane protein and Kv1.3 current density and therefore of functional membrane channel protein, compared to control groups (p < 0.001). Interestingly, patient sub-grouping shows that Kv1.3 channel density is significantly higher in secondary progressive, compared to relapsing-remitting multiple sclerosis (p < 0.001). Taking into account the tight connection between Kv1.3 channel activity and calcium-dependent processes, our data predict and could partly explain the reported alterations of T lymphocyte function in multiple sclerosis, while they highlight Kv1.3 channels as potential therapeutic targets and peripheral biomarkers for the disease.
Collapse
Affiliation(s)
- Ioannis Markakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Ioannis Charitakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christine Beeton
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| | - Melpomeni Galani
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Elpida Repousi
- National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Stella Aggeloglou
- Department of Neurology, "St. Panteleimon" General State Hospital, Nikaia, Greece
| | - Petros P Sfikakis
- National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - K George Chandy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang Ave, Singapore
| | | |
Collapse
|
17
|
Wright JR, Mahaut-Smith MP. Why do platelets express K + channels? Platelets 2021; 32:872-879. [PMID: 33872124 PMCID: PMC8437091 DOI: 10.1080/09537104.2021.1904135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/02/2022]
Abstract
Potassium ions have widespread roles in cellular homeostasis and activation as a consequence of their large outward concentration gradient across the surface membrane and ability to rapidly move through K+-selective ion channels. In platelets, the predominant K+ channels include the voltage-gated K+ channel Kv1.3, and the intermediate conductance Ca2+-activated K+ channel KCa3.1, also known as the Gardos channel. Inwardly rectifying potassium GIRK channels and KCa1.1 large conductance Ca2+-activated K+ channels have also been reported in the platelet, although they remain to be demonstrated using electrophysiological techniques. Whole-cell patch clamp and fluorescent indicator measurements in the platelet or their precursor cell reveal that Kv1.3 sets the resting membrane potential and KCa3.1 can further hyperpolarize the cell during activation, thereby controlling Ca2+ influx. Kv1.3-/- mice exhibit an increased platelet count, which may result from an increased splenic megakaryocyte development and longer platelet lifespan. This review discusses the evidence in the literature that Kv1.3, KCa3.1. GIRK and KCa1.1 channels contribute to a number of platelet functional responses, particularly collagen-evoked adhesion, procoagulant activity and GPCR function. Putative roles for other K+ channels and known accessory proteins which to date have only been detected in transcriptomic or proteomic studies, are also discussed.
Collapse
Affiliation(s)
- Joy R Wright
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| | | |
Collapse
|
18
|
Chen Y, Cui Y, Singh L, Wulff H. The potassium channel Kv1.3 as a therapeutic target for immunocytoprotection after reperfusion. Ann Clin Transl Neurol 2021; 8:2070-2082. [PMID: 34617690 PMCID: PMC8528456 DOI: 10.1002/acn3.51456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The voltage-gated potassium channel Kv1.3, which is expressed on activated, disease-associated microglia and memory T cells, constitutes an attractive target for immunocytoprotection after endovascular thrombectomy (EVT). Using young male mice and rats we previously demonstrated that the Kv1.3 blocker PAP-1 when started 12 h after reperfusion dose-dependently reduces infarction and improves neurological deficit on day 8. However, these proof-of-concept findings are of limited translational value because the majority of strokes occur in patients over 65 and, when considering overall lifetime risk, in females. Here, we therefore tested whether Kv1.3 deletion or delayed pharmacological therapy would be beneficial in females and aged animals. METHODS Transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in 16-week-old and 80-week-old male and female wild-type C57BL/6J and Kv1.3-/- mice. Stroke outcomes were assessed daily with the 14-score tactile and proprioceptive limp placing test and on day 8 before sacrifice by T2-weighted MRI. Young and old female mice were treated twice daily with 40 mg/kg PAP-1 starting 12 h after reperfusion. Microglia/macrophage activation and T-cell infiltration were evaluated in whole slide scans. RESULTS Kv1.3 deletion provided no significant benefit in young females but improved outcomes in young males, old males, and old females compared with wild-type controls of the same sex. Delayed PAP-1 treatment improved outcomes in both young and old females. In old females, Kv1.3 deletion and PAP-1 treatment significantly reduced Iba-1 and CD3 staining intensity in the ipsilateral hemisphere. INTERPRETATION Our preclinical studies using aged and female mice further validate Kv1.3 inhibitors as potential adjunctive treatments for reperfusion therapy in stroke by providing both genetic and pharmacological verification.
Collapse
Affiliation(s)
- Yi‐Je Chen
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
- Animal Models CoreDepartment of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Yanjun Cui
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Latika Singh
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| | - Heike Wulff
- Department of PharmacologySchool of MedicineUniversity of CaliforniaDavisCalifornia95616USA
| |
Collapse
|
19
|
Li G, Kolan SS, Guo S, Marciniak K, Kolan P, Malachin G, Grimolizzi F, Haraldsen G, Skålhegg BS. Activated, Pro-Inflammatory Th1, Th17, and Memory CD4+ T Cells and B Cells Are Involved in Delayed-Type Hypersensitivity Arthritis (DTHA) Inflammation and Paw Swelling in Mice. Front Immunol 2021; 12:689057. [PMID: 34408746 PMCID: PMC8365304 DOI: 10.3389/fimmu.2021.689057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Delayed-type hypersensitivity arthritis (DTHA) is a recently established experimental model of rheumatoid arthritis (RA) in mice with pharmacological values. Despite an indispensable role of CD4+ T cells in inducing DTHA, a potential role for CD4+ T cell subsets is lacking. Here we have quantified CD4+ subsets during DTHA development and found that levels of activated, pro-inflammatory Th1, Th17, and memory CD4+ T cells in draining lymph nodes were increased with differential dynamic patterns after DTHA induction. Moreover, according to B-cell depletion experiments, it has been suggested that this cell type is not involved in DTHA. We show that DTHA is associated with increased levels of B cells in draining lymph nodes accompanied by increased levels of circulating IgG. Finally, using the anti-rheumatoid agents, methotrexate (MTX) and the anti-inflammatory drug dexamethasone (DEX), we show that MTX and DEX differentially suppressed DTHA-induced paw swelling and inflammation. The effects of MTX and DEX coincided with differential regulation of levels of Th1, Th17, and memory T cells as well as B cells. Our results implicate Th1, Th17, and memory T cells, together with activated B cells, to be involved and required for DTHA-induced paw swelling and inflammation.
Collapse
Affiliation(s)
- Gaoyang Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Shuai Guo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Katarzyna Marciniak
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pratibha Kolan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Giulia Malachin
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Franco Grimolizzi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Shi S, Zhao Q, Ke C, Long S, Zhang F, Zhang X, Li Y, Liu X, Hu H, Yin S. Loureirin B Exerts its Immunosuppressive Effects by Inhibiting STIM1/Orai1 and K V1.3 Channels. Front Pharmacol 2021; 12:685092. [PMID: 34248635 PMCID: PMC8268022 DOI: 10.3389/fphar.2021.685092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Loureirin B (LrB) is a constituent extracted from traditional Chinese medicine Resina Draconis. It has broad biological functions and an impressive immunosuppressive effect that has been supported by numerous studies. However, the molecular mechanisms underlying Loureirin B-induced immune suppression are not fully understood. We previously reported that Loureirin B inhibited KV1.3 channel, calcium ion (Ca2+) influx, and interleukin-2 (IL-2) secretion in Jurkat T cells. In this study, we applied CRISPR/Cas9 to edit KV1.3 coding gene KCNA3 and successfully generated a KV1.3 knockout (KO) cell model to determine whether KV1.3 KO was sufficient to block the Loureirin B-induced immunosuppressive effect. Surprisingly, we showed that Loureirin B could still inhibit Ca2+ influx and IL-2 secretion in the Jurkat T cells in the absence of KV1.3 although KO KV1.3 reduced about 50% of Ca2+ influx and 90% IL-2 secretion compared with that in the wild type cells. Further experiments showed that Loureirin B directly inhibited STIM1/Orai1 channel in a dose-dependent manner. Our results suggest that Loureirin B inhibits Ca2+ influx and IL-2 secretion in Jurkat T cells by inhibiting both KV1.3 and STIM1/Orai1 channels. These studies also revealed an additional molecular target for Loureirin B-induced immunosuppressive effect, which makes it a promising leading compound for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shujuan Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qianru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Caihua Ke
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Siru Long
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Feng Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xu Zhang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinqiao Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hongzhen Hu
- Department of Anesthesiology, the Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Shijin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
21
|
Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP, Miles JJ. Immunological Responses to Envenomation. Front Immunol 2021; 12:661082. [PMID: 34040609 PMCID: PMC8141633 DOI: 10.3389/fimmu.2021.661082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Venoms are complex mixtures of toxic compounds delivered by bite or sting. In humans, the consequences of envenomation range from self-limiting to lethal. Critical host defence against envenomation comprises innate and adaptive immune strategies targeted towards venom detection, neutralisation, detoxification, and symptom resolution. In some instances, venoms mediate immune dysregulation that contributes to symptom severity. This review details the involvement of immune cell subtypes and mediators, particularly of the dermis, in host resistance and venom-induced immunopathology. We further discuss established venom-associated immunopathology, including allergy and systemic inflammation, and investigate Irukandji syndrome as a potential systemic inflammatory response. Finally, this review characterises venom-derived compounds as a source of immune modulating drugs for treatment of disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
| | - Jamie Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
- QIMR Berghofer Medical Research Institute, The University of Queensland, Herston, QLD, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - John J. Miles
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
22
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
23
|
Tanner MR, Huq R, Sikkema WKA, Nilewski LG, Yosef N, Schmitt C, Flores-Suarez CP, Raugh A, Laragione T, Gulko PS, Tour JM, Beeton C. Antioxidant Carbon Nanoparticles Inhibit Fibroblast-Like Synoviocyte Invasiveness and Reduce Disease Severity in a Rat Model of Rheumatoid Arthritis. Antioxidants (Basel) 2020; 9:E1005. [PMID: 33081234 PMCID: PMC7602875 DOI: 10.3390/antiox9101005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•-) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•-, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•- and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William K. A. Sikkema
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Lizanne G. Nilewski
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
| | - Nejla Yosef
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Schmitt
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
| | - Carlos P. Flores-Suarez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arielle Raugh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Teresina Laragione
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - Pércio S. Gulko
- Department of Medicine, Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY 11030, USA; (T.L.); (P.S.G.)
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (W.K.A.S.); (L.G.N.)
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (M.R.T.); (R.H.); (N.Y.); (C.S.); (C.P.F.-S.); (A.R.)
- Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Prolonged Plasma Exposure of the Kv1.3-Inhibitory Peptide HsTX1[R14A] by Subcutaneous Administration of a Poly(Lactic-co-Glycolic Acid) (PLGA) Microsphere Formulation. J Pharm Sci 2020; 110:1182-1188. [PMID: 33065128 DOI: 10.1016/j.xphs.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
This study evaluated the impact of poly(lactic-co-glycolic acid) (PLGA) microsphere formulations on in vitro release and in vivo plasma exposure of HsTX1[R14A], a potent inhibitor of the voltage-gated potassium channel Kv1.3, with potential to treat autoimmune conditions. Microspheres containing HsTX1[R14A] were prepared using different PLGA materials, including Resomer® RG502H, RG503H and PURASORB® PDLG 5004 (Purac). After assessing encapsulation efficiency and in vitro release, plasma concentrations of HsTX1[R14A] were quantified by LCMS/MS following subcutaneous administration of HsTX1[R14A]-loaded RG503H microspheres (15 mg/kg) or HsTX1[R14A] solution (4 mg/kg) to Sprague-Dawley rats. Microspheres prepared with Purac exhibited the greatest encapsulation efficiency (45.5 ± 2.4% (mean ± SD)) and RG502H the lowest (22.0 ± 6.4%). Release of HsTX1[R14A] was fastest in vitro for RG502H microspheres (maximum release at 31 days) and slowest for Purac (82 days). With a relatively rapid burst release of 20.0 ± 0.4% and a controlled release profile of up to 41 days, HsTX1[R14A]-loaded RG503H microspheres were selected for subcutaneous administration, resulting in detectable plasma concentrations for 11 days relative to 8 h following subcutaneous administration of HsTX1[R14A] solution. Therefore, subcutaneous administration of RG503H PLGA microspheres is a promising approach to be exploited for delivery of this immune modulator.
Collapse
|
25
|
Fan C, Yang X, Wang WW, Wang J, Li W, Guo M, Huang S, Wang Z, Liu K. Role of Kv1.3 Channels in Platelet Functions and Thrombus Formation. Arterioscler Thromb Vasc Biol 2020; 40:2360-2375. [PMID: 32787516 DOI: 10.1161/atvbaha.120.314278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Platelet activation by stimulatory factors leads to an increase in intracellular calcium concentration ([Ca
2+
]
i
), which is essential for almost all platelet functions. Modulation of Ca
2+
influx and [Ca
2+
]
i
in platelets has been emerging as a possible strategy for preventing and treating platelet-dependent thrombosis. Voltage-gated potassium 1.3 channels (Kv1.3) are highly expressed in platelets and able to regulate agonist-evoked [Ca
2+
]
i
increase. However, the role of Kv1.3 channels in regulating platelet functions and thrombosis has not yet been elucidated. In addition, it is difficult to obtain a specific blocker for this channel, since Kv1.3 shares identical drug-binding sites with other K
+
channels. Here, we investigate whether specific blockade of Kv1.3 channels by monoclonal antibodies affects platelet functions and thrombosis.
Approach and Results:
In this study, we produced the anti-Kv1.3 monoclonal antibody 6E12#15, which could specifically recognize both human and mouse Kv1.3 proteins and sufficiently block Kv1.3 channel currents. We found Kv1.3 blockade by 6E12#15 inhibited platelet aggregation, adhesion, and activation upon agonist stimulation. In vivo treatment with 6E12#15 alleviated thrombus formation in a mesenteric arteriole thrombosis mouse model and protected mice from collagen/epinephrine-induced pulmonary thromboembolism. Furthermore, we observed Kv1.3 regulated platelet functions by modulating Ca
2+
influx and [Ca
2+
]
i
elevation, and that this is mediated in part by P2X
1
. Interestingly,
Kv1.3
−/−
mice showed impaired platelet aggregation while displayed no abnormalities in in vivo thrombus formation. This phenomenon was related to more megakaryocytes and platelets produced in
Kv1.3
−/−
mice compared with wild-type mice.
Conclusions:
We showed specific inhibition of Kv1.3 by the novel monoclonal antibody 6E12#15 suppressed platelet functions and platelet-dependent thrombosis through modulating platelet [Ca
2+
]
i
elevation. These results indicate that Kv1.3 could act as a promising therapeutic target for antiplatelet therapies.
Collapse
Affiliation(s)
- Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Xiaofang Yang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, China (X.Y.)
| | | | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.W.)
| | - Wenzhu Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (W.L.)
| | - Mengyuan Guo
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.F., M.G., S.H., Z.W.)
| | - Kun Liu
- Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (K.L.)
| |
Collapse
|
26
|
Gupta SS, Sharp R, Hofferek C, Kuai L, Dorn GW, Wang J, Chen M. NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8 + T Cells. Cell Rep 2020; 29:1862-1877.e7. [PMID: 31722203 PMCID: PMC6886713 DOI: 10.1016/j.celrep.2019.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a critical role in the maintenance of immunological memory. However, the molecular mechanisms involved in autophagy-regulated effector memory formation in CD8+ T cells remain unclear. Here we show that deficiency in NIX-dependent mitophagy leads to metabolic defects in effector memory T cells. Deletion of NIX caused HIF1α accumulation and altered cellular metabolism from long-chain fatty acid to short/branched-chain fatty acid oxidation, thereby compromising ATP synthesis during effector memory formation. Preventing HIF1α accumulation restored long-chain fatty acid metabolism and effector memory formation in antigen-specific CD8+ T cells. Our study suggests that NIX-mediated mitophagy is critical for effector memory formation in T cells. Gupta et al. demonstrate that mitophagy mediated by NIX, a mitochondrial outer membrane protein, plays a critical role in CD8+ T cell effector memory formation by regulating mitochondrial superoxide-dependent HIF1α protein accumulation and fatty acid metabolism. These findings elucidate the molecular mechanisms regulating T cell effector memory formation against viruses.
Collapse
Affiliation(s)
- Shubhranshu S Gupta
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert Sharp
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colby Hofferek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Le Kuai
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Tajti G, Wai DCC, Panyi G, Norton RS. The voltage-gated potassium channel K V1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol 2020; 181:114146. [PMID: 32653588 DOI: 10.1016/j.bcp.2020.114146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the fact that many venom-derived peptides are potent inhibitors of KV1.3, suggests that venoms are likely to continue to serve as a rich source of new pharmacological tools and therapeutic leads targeting this channel.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
28
|
Konieczny P, Naik S. Warp Speed Ahead! Technology-Driven Breakthroughs in Skin Immunity and Inflammatory Disease. J Invest Dermatol 2020; 141:15-18. [PMID: 32533963 DOI: 10.1016/j.jid.2020.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
The skin's physical barrier is reinforced by an arsenal of immune cells that actively patrol the tissue and respond swiftly to penetrating microbes, noxious agents, and injurious stimuli. When unchecked, these same immune cells drive diseases such as psoriasis, atopic dermatitis, and alopecia. Rapidly advancing microscopy, animal modeling, and genomic and computational technologies have illuminated the complexity of the cutaneous immune cells and their functions in maintaining skin health and driving diseases. Here, we discuss the recent technology-driven breakthroughs that have transformed our understanding of skin immunity and highlight burgeoning areas that hold great promise for future discoveries.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of Pathology, Department of Medicine, and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Shruti Naik
- Department of Pathology, Department of Medicine, and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
29
|
Li A, Tanner MR, Lee CM, Hurley AE, De Giorgi M, Jarrett KE, Davis TH, Doerfler AM, Bao G, Beeton C, Lagor WR. AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9. Mol Ther 2020; 28:1432-1441. [PMID: 32348718 PMCID: PMC7264438 DOI: 10.1016/j.ymthe.2020.04.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated viral (AAV) vectors are a leading candidate for the delivery of CRISPR-Cas9 for therapeutic genome editing in vivo. However, AAV-based delivery involves persistent expression of the Cas9 nuclease, a bacterial protein. Recent studies indicate a high prevalence of neutralizing antibodies and T cells specific to the commonly used Cas9 orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans. We tested in a mouse model whether pre-existing immunity to SaCas9 would pose a barrier to liver genome editing with AAV packaging CRISPR-Cas9. Although efficient genome editing occurred in mouse liver with pre-existing SaCas9 immunity, this was accompanied by an increased proportion of CD8+ T cells in the liver. This cytotoxic T cell response was characterized by hepatocyte apoptosis, loss of recombinant AAV genomes, and complete elimination of genome-edited cells, and was followed by compensatory liver regeneration. Our results raise important efficacy and safety concerns for CRISPR-Cas9-based in vivo genome editing in the liver.
Collapse
Affiliation(s)
- Ang Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea E Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelsey E Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Alexandria M Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Ong ST, Bajaj S, Tanner MR, Chang SC, Krishnarjuna B, Ng XR, Morales RAV, Chen MW, Luo D, Patel D, Yasmin S, Ng JJH, Zhuang Z, Nguyen HM, El Sahili A, Lescar J, Patil R, Charman SA, Robins EG, Goggi JL, Tan PW, Sadasivam P, Ramasamy B, Hartimath SV, Dhawan V, Bednenko J, Colussi P, Wulff H, Pennington MW, Kuyucak S, Norton RS, Beeton C, Chandy KG. Modulation of Lymphocyte Potassium Channel K V1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacol Transl Sci 2020; 3:720-736. [PMID: 32832873 DOI: 10.1021/acsptsci.0c00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/23/2022]
Abstract
We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.
Collapse
Affiliation(s)
- Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shih Chieh Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Xuan Rui Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ming Wei Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dharmeshkumar Patel
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sabina Yasmin
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeremy Jun Heng Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Zhong Zhuang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Julien Lescar
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Edward G Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667.,Singapore Bioimaging Consortium, NUS Clinical Imaging Research Centre (CIRC), Centre for Life Sciences, Singapore 117599
| | - Julian L Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Peng Wen Tan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Pragalath Sadasivam
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Siddana V Hartimath
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Vikas Dhawan
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Janna Bednenko
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Paul Colussi
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Michael W Pennington
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - K George Chandy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
31
|
Wang X, Li G, Guo J, Zhang Z, Zhang S, Zhu Y, Cheng J, Yu L, Ji Y, Tao J. Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. Front Neurosci 2020; 13:1393. [PMID: 31992966 PMCID: PMC6971160 DOI: 10.3389/fnins.2019.01393] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
It remains a challenge for the effective treatment of neuroinflammatory disease, including multiple sclerosis (MS), stroke, epilepsy, and Alzheimer’s and Parkinson’s disease. The voltage-gated potassium Kv1.3 channel is of interest, which is considered as a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of T lymphocytes as well as microglial cells. Toxic animals, such as sea anemones, scorpions, spiders, snakes, and cone snails, can produce a variety of toxins that act on the Kv1.3 channel. The Stichodactyla helianthus K+ channel blocking toxin (ShK) from the sea anemone S. helianthus is proved as a classical blocker of Kv1.3. One of the synthetic analogs ShK-186, being developed as a therapeutic for autoimmune diseases, has successfully completed first-in-man Phase 1 trials. In addition to addressing the recent progress on the studies underlying the pharmacological characterizations of ShK on MS, the review will also explore the possibility for clinical treatment of ShK-like Kv1.3 blocking polypeptides on other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingkang Guo
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Zhiping Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Shuzhang Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Yu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| |
Collapse
|
32
|
Abstract
The skin is the outermost organ of the body and is exposed to many kinds of external pathogens. To manage this, the skin contains multiple types of immune cells. To achieve sufficient induction of cutaneous adaptive immune responses, the antigen presentation/recognition in the skin is an essential process. Recent studies have expanded our knowledge of how T cells survey their cognate antigens in the skin. In addition, the formation of a lymphoid cluster, named inducible skin-associated lymphoid tissue (iSALT), has been reported during skin inflammation. Although iSALT may not be classified as a typical tertiary lymphoid organ, it provides specific antigen presentation sites in the skin. In this article, we provide an overview of the antigen presentation mechanism in the skin, with a focus on the development of iSALT and its function.
Collapse
Affiliation(s)
- Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
33
|
Ye CJ, Li SA, Zhang Y, Lee WH. Geraniol targets K V1.3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo. Fitoterapia 2019; 139:104394. [PMID: 31669719 DOI: 10.1016/j.fitote.2019.104394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 01/18/2023]
Abstract
Naturally occurring monoterpenes are known for their various pharmacological activities including anti-inflammation. KV1.3 ion channel is a voltage-gated potassium channel and has been validated as a drug target for autoimmune and chronic inflammatory diseases like psoriasis. Here we experimentally test the direct interaction between monoterpenes and KV1.3 ion channel. Our electrophysiological analysis determined that monoterpenes (geraniol, nerol, β-citronellol, citral and linalool) have inhibitory effects on KV1.3 ion channel. Representatively, geraniol reversibly blocked KV1.3 currents in a voltage-dependent manner with an IC50 of 490.50 ± 1.04 μM at +40 mV in HEK293T cells. At the effective concentrations, geraniol also inhibited cytokine secretion of activated human T cells, including IL-2, TNF-α and IFN-γ. In an imiquimod-induced psoriasis-like animal model, geraniol administration significantly reduced psoriasis area and severity index scores, ameliorated the deteriorating histopathology and decreased the degree of splenomegaly. Together, our findings not only suggest that monoterpenes may serve as lead molecules for the development of KV1.3 inhibitors, but also indicate that geraniol could be considered as a promising therapeutic candidate to treat autoimmune diseases.
Collapse
Affiliation(s)
- Chen-Jun Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
34
|
Yang F, Wang D, Tong Y, Qin C, Yang L, Yu F, Huang X, Liu S, Cao Z, Guo L, Li W, Wu Y, Zhao X. Thermostable potassium channel-inhibiting neurotoxins in processed scorpion medicinal material revealed by proteomic analysis: Implications of its pharmaceutical basis in traditional Chinese medicine. J Proteomics 2019; 206:103435. [DOI: 10.1016/j.jprot.2019.103435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
|
35
|
Maezawa I, Nguyen HM, Di Lucente J, Jenkins DP, Singh V, Hilt S, Kim K, Rangaraju S, Levey AI, Wulff H, Jin LW. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain 2019; 141:596-612. [PMID: 29272333 DOI: 10.1093/brain/awx346] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-β oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-β oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-β oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-β aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-β uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - David Paul Jenkins
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, CA 95817, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis, One Shields Avenue, Med Sci 1-C, Davis, CA 95616, USA
| | - Srikant Rangaraju
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA.,Alzheimer's Disease Center, University of California Davis Medical Center, 4860 Y Street, Suite 3900, Sacramento, CA 95817, USA
| |
Collapse
|
36
|
Wulff H, Christophersen P, Colussi P, Chandy KG, Yarov-Yarovoy V. Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov 2019; 18:339-357. [PMID: 30728472 PMCID: PMC6499689 DOI: 10.1038/s41573-019-0013-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ion channels play fundamental roles in both excitable and non-excitable tissues and therefore constitute attractive drug targets for myriad neurological, cardiovascular and metabolic diseases as well as for cancer and immunomodulation. However, achieving selectivity for specific ion channel subtypes with small-molecule drugs has been challenging, and there currently is a growing trend to target ion channels with biologics. One approach is to improve the pharmacokinetics of existing or novel venom-derived peptides. In parallel, after initial studies with polyclonal antibodies demonstrated the technical feasibility of inhibiting channel function with antibodies, multiple preclinical programmes are now using the full spectrum of available technologies to generate conventional monoclonal and engineered antibodies or nanobodies against extracellular loops of ion channels. After a summary of the current state of ion channel drug discovery, this Review discusses recent developments using the purinergic receptor channel P2X purinoceptor 7 (P2X7), the voltage-gated potassium channel KV1.3 and the voltage-gated sodium channel NaV1.7 as examples of targeting ion channels with biologics.
Collapse
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | | | | | - K George Chandy
- Molecular Physiology Laboratory, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vladimir Yarov-Yarovoy
- Department of Physiology & Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
37
|
Hunter MC, Teijeira A, Montecchi R, Russo E, Runge P, Kiefer F, Halin C. Dendritic Cells and T Cells Interact Within Murine Afferent Lymphatic Capillaries. Front Immunol 2019; 10:520. [PMID: 30967863 PMCID: PMC6440485 DOI: 10.3389/fimmu.2019.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Afferent lymphatic vessels contribute to immunity by transporting antigen and leukocytes to draining lymph nodes (LNs) and are emerging as new players in the regulation of peripheral tolerance. Performing intravital microscopy in inflamed murine ear skin we found that migrating dendritic cells (DCs) and antigen-experienced effector T cells spend considerable time arresting or clustering within afferent lymphatic capillaries. We also observed that intralymphatic T cells frequently interacted with DCs. When imaging polyclonal T cells during an ongoing contact-hypersensitivity response, most intralymphatic DC-T cell interactions were short-lived. Conversely, during a delayed-type-hypersensitivity response, cognate antigen-bearing DCs engaged in long-lived MHCII-(I-A/I-E)-dependent interactions with antigen-specific T cells. Long-lived intralymphatic DC-T cell interactions reduced the speed of DC crawling but did not delay overall DC migration to draining LNs. While further consequences of these intralymphatic interactions still need to be explored, our findings suggest that lymphatic capillaries represent a unique compartment in which adaptive immune interaction and modulation occur.
Collapse
Affiliation(s)
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Erica Russo
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging - EIMI, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
38
|
Du C, Li J, Shao Z, Mwangi J, Xu R, Tian H, Mo G, Lai R, Yang S. Centipede KCNQ Inhibitor SsTx Also Targets K V1.3. Toxins (Basel) 2019; 11:toxins11020076. [PMID: 30717088 PMCID: PMC6409716 DOI: 10.3390/toxins11020076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/19/2022] Open
Abstract
It was recently discovered that Ssm Spooky Toxin (SsTx) with 53 residues serves as a key killer factor in red-headed centipede’s venom arsenal, due to its potent blockage of the widely expressed KCNQ channels to simultaneously and efficiently disrupt cardiovascular, respiratory, muscular, and nervous systems, suggesting that SsTx is a basic compound for centipedes’ defense and predation. Here, we show that SsTx also inhibits KV1.3 channel, which would amplify the broad-spectrum disruptive effect of blocking KV7 channels. Interestingly, residue R12 in SsTx extends into the selectivity filter to block KV7.4, however, residue K11 in SsTx replaces this ploy when toxin binds on KV1.3. Both SsTx and its mutant SsTx_R12A inhibit cytokines production in T cells without affecting the level of KV1.3 expression. The results further suggest that SsTx is a key molecule for defense and predation in the centipedes’ venoms and it evolves efficient strategy to disturb multiple physiological targets.
Collapse
Affiliation(s)
- Canwei Du
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jiameng Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zicheng Shao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing 100009, China.
| | - Runjia Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Huiwen Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ren Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan 430074, Hubei, China.
| |
Collapse
|
39
|
Tanner MR, Pennington MW, Chauhan SS, Laragione T, Gulko PS, Beeton C. KCa1.1 and Kv1.3 channels regulate the interactions between fibroblast-like synoviocytes and T lymphocytes during rheumatoid arthritis. Arthritis Res Ther 2019; 21:6. [PMID: 30612588 PMCID: PMC6322314 DOI: 10.1186/s13075-018-1783-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and Kv1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and Kv1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and Kv1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA. METHODS We used in vitro functional assays to assess the effects of selective KCa1.1 and Kv1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and Kv1.3 blockers in reducing disease severity compared with monotherapies. RESULTS We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and Kv1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting Kv1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and Kv1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA. CONCLUSIONS Our results demonstrate the importance of KCa1.1 and Kv1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.
Collapse
Affiliation(s)
- Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Michael W. Pennington
- Peptides International, Inc., Louisville, KY USA
- Present address: Ambiopharm, Inc., North Augusta, SC USA
| | | | - Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Pércio S. Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Biology of Inflammation Center, Center for Drug Discovery, Cardiovascular Research Institute, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
40
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
41
|
|
42
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
43
|
García-Lozano A, Toriello C, Antonio-Herrera L, Bonifaz LC. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4 + T Cells. Front Microbiol 2018; 9:1275. [PMID: 29946313 PMCID: PMC6005866 DOI: 10.3389/fmicb.2018.01275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023] Open
Abstract
Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC) combined with the cholera toxin (CT) induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17). These cells mediate a strong delayed-type hypersensitivity (DTH) reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ) and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.
Collapse
Affiliation(s)
- Alberto García-Lozano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Conchita Toriello
- Laboratorio de Micología Básica, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Antonio-Herrera
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
44
|
Bednenko J, Harriman R, Mariën L, Nguyen HM, Agrawal A, Papoyan A, Bisharyan Y, Cardarelli J, Cassidy-Hanley D, Clark T, Pedersen D, Abdiche Y, Harriman W, van der Woning B, de Haard H, Collarini E, Wulff H, Colussi P. A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3. MAbs 2018; 10:636-650. [PMID: 29494279 PMCID: PMC5973702 DOI: 10.1080/19420862.2018.1445451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.
Collapse
Affiliation(s)
| | - Rian Harriman
- b Department of Immunology , Crystal Bioscience , Emeryville , California , USA
| | | | - Hai M Nguyen
- d Department of Pharmacology , University of California , Davis , California , USA
| | - Alka Agrawal
- a TetraGenetics Inc , Arlington , Massachusetts , USA
| | - Ashot Papoyan
- a TetraGenetics Inc , Arlington , Massachusetts , USA
| | | | | | - Donna Cassidy-Hanley
- e Department of Immunology and Microbiology , Cornell University , Ithaca , New York , USA
| | - Ted Clark
- a TetraGenetics Inc , Arlington , Massachusetts , USA.,e Department of Immunology and Microbiology , Cornell University , Ithaca , New York , USA
| | | | | | | | | | | | | | - Heike Wulff
- d Department of Pharmacology , University of California , Davis , California , USA
| | - Paul Colussi
- a TetraGenetics Inc , Arlington , Massachusetts , USA
| |
Collapse
|
45
|
Bozic I, Tesovic K, Laketa D, Adzic M, Jakovljevic M, Bjelobaba I, Savic D, Nedeljkovic N, Pekovic S, Lavrnja I. Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis. Neurochem Res 2018; 43:1020-1034. [PMID: 29574670 DOI: 10.1007/s11064-018-2509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.
Collapse
Affiliation(s)
- Iva Bozic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia.
| | - Katarina Tesovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Laketa
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Danijela Savic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sanja Pekovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| | - Irena Lavrnja
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Blvd Despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
46
|
Lowinus T, Bose T, Busse S, Busse M, Reinhold D, Schraven B, Bommhardt UHH. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness. Oncotarget 2018; 7:53797-53807. [PMID: 27462773 PMCID: PMC5288222 DOI: 10.18632/oncotarget.10777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
Memantine is approved for the treatment of advanced Alzheimer's disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate.
Collapse
Affiliation(s)
- Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tanima Bose
- Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Current address: Lee Kong Chian School of Medicine, Singapore
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Pediatric Pulmonology & Allergology, Medical University of Hannover, Hannover, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula H H Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
47
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
48
|
Rot A, Massberg S, Khandoga AG, von Andrian UH. Chemokines and Hematopoietic Cell Trafficking. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
49
|
Chen YJ, Nguyen HM, Maezawa I, Jin LW, Wulff H. Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. Ann Clin Transl Neurol 2017; 5:147-161. [PMID: 29468176 PMCID: PMC5817832 DOI: 10.1002/acn3.513] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Objective Inhibitors of the voltage‐gated K+ channel Kv1.3 are currently in development as immunomodulators for the treatment of autoimmune diseases. As Kv1.3 is also expressed on microglia and has been shown to be specifically up‐regulated on “M1‐like” microglia, we here tested the therapeutic hypothesis that the brain‐penetrant small‐molecule Kv1.3‐inhibitor PAP‐1 reduces secondary inflammatory damage after ischemia/reperfusion. Methods We studied microglial Kv1.3 expression using electrophysiology and immunohistochemistry, and evaluated PAP‐1 in hypoxia‐exposed organotypic hippocampal slices and in middle cerebral artery occlusion (MCAO) with 8 days of reperfusion in both adult male C57BL/6J mice (60 min MCAO) and adult male Wistar rats (90 min MCAO). In both models, PAP‐1 administration was started 12 h after reperfusion. Results We observed Kv1.3 staining on activated microglia in ischemic infarcts in mice, rats, and humans and found higher Kv1.3 current densities in acutely isolated microglia from the infarcted hemisphere than in microglia isolated from the contralateral hemisphere of MCAO mice. PAP‐1 reduced microglia activation and increased neuronal survival in hypoxia‐exposed hippocampal slices as effectively as minocycline. In mouse MCAO, PAP‐1 dose‐dependently reduced infarct area, improved neurological deficit score, and reduced brain levels of IL‐1β and IFN‐γ without affecting IL‐10 and brain‐derived nerve growth factor (BDNF) levels or inhibiting ongoing phagocytosis. The beneficial effects on infarct area and neurological deficit score were reproduced in rats providing confirmation in a second species. Interpretation Our findings suggest that Kv1.3 constitutes a promising therapeutic target for preferentially inhibiting “M1‐like” inflammatory microglia/macrophage functions in ischemic stroke.
Collapse
Affiliation(s)
- Yi-Je Chen
- Department of Pharmacology University of California Davis 95616 California
| | - Hai M Nguyen
- Department of Pharmacology University of California Davis 95616 California
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine University of California Davis, Sacramento 95817 California.,M.I.N.D. Institute University of California Davis 95817 California
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine University of California Davis, Sacramento 95817 California.,M.I.N.D. Institute University of California Davis 95817 California
| | - Heike Wulff
- Department of Pharmacology University of California Davis 95616 California
| |
Collapse
|
50
|
Land J, Lintermans LL, Stegeman CA, Muñoz-Elías EJ, Tarcha EJ, Iadonato SP, Heeringa P, Rutgers A, Abdulahad WH. Kv1.3 Channel Blockade Modulates the Effector Function of B Cells in Granulomatosis with Polyangiitis. Front Immunol 2017; 8:1205. [PMID: 29018452 PMCID: PMC5622953 DOI: 10.3389/fimmu.2017.01205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
B cells are central to the pathogenesis of granulomatosis with polyangiitis (GPA), exhibiting both (auto)antibody-dependent and -independent properties. Class-switched memory B cells in particular are a major source of pathogenic autoantibodies. These cells are characterized by high expression levels of Kv1.3 potassium channels, which may offer therapeutic potential for Kv1.3 blockade. In this study, we investigated the effect of the highly potent Kv1.3 blocker ShK-186 on B cell properties in GPA in vitro. Circulating B cell subsets were determined from 33 GPA patients and 17 healthy controls (HCs). Peripheral blood mononuclear cells (PBMCs) from GPA patients, and HCs were stimulated in vitro in the presence and absence of ShK-186. The production of total and antineutrophil cytoplasmic antibodies targeting proteinase 3 (PR3-ANCA) IgG was analyzed by enzyme-linked immunosorbent assay and Phadia EliA, respectively. In addition, effects of ShK-186 on B cell proliferation and cytokine production were determined by flow cytometry. The frequency of circulating switched and unswitched memory B cells was decreased in GPA patients as compared to HC. ShK-186 suppressed the production of both total and PR3-ANCA IgG in stimulated PBMCs. A strong decrease in production of tumor necrosis factor alpha (TNFα), interleukin (IL)-2, and interferon gamma was observed upon ShK-186 treatment, while effects on IL-10 production were less pronounced. As such, ShK-186 modulated the TNFα/IL-10 ratio among B cells, resulting in a relative increase in the regulatory B cell pool. ShK-186 modulates the effector functions of B cells in vitro by decreasing autoantibody and pro-inflammatory cytokine production. Kv1.3 channel blockade may hold promise as a novel therapeutic strategy in GPA and other B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Judith Land
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lucas L Lintermans
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | | | | | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|