1
|
Cortese M, Hagan T, Rouphael N, Wu SY, Xie X, Kazmin D, Wimmers F, Gupta S, van der Most R, Coccia M, Aranuchalam PS, Nakaya HI, Wang Y, Coyle E, Horiuchi S, Wu H, Bower M, Mehta A, Gunthel C, Bosinger SE, Kotliarov Y, Cheung F, Schwartzberg PL, Germain RN, Tsang J, Li S, Albrecht R, Ueno H, Subramaniam S, Mulligan MJ, Khurana S, Golding H, Pulendran B. System vaccinology analysis of predictors and mechanisms of antibody response durability to multiple vaccines in humans. Nat Immunol 2025; 26:116-130. [PMID: 39747435 DOI: 10.1038/s41590-024-02036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity. We found that TPO administration enhanced the durability of vaccine-induced antibody responses. TPO-activated megakaryocytes also promoted survival of human bone-marrow plasma cells through integrin β1/β2-mediated cell-cell interactions, along with survival factors APRIL and the MIF-CD74 axis. Using machine learning, we developed a classifier based on this platelet-associated signature, which predicted antibody response longevity across six vaccines from seven independent trials, highlighting a conserved mechanism for vaccine durability.
Collapse
Affiliation(s)
- Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Sheng-Yang Wu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Prabhu S Aranuchalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yating Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Elizabeth Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shu Horiuchi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanchih Wu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Bower
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | - Aneesh Mehta
- Hope Clinic of the Emory Vaccine Center, Decatur, GA, USA
| | | | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Yerkes Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuri Kotliarov
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Ronald N Germain
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - John Tsang
- NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD, USA
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology, Kyoto University, Kyoto, Japan
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark J Mulligan
- Division of Infectious Diseases and Immunology, Department of Medicine and NYU Langone Vaccine Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Liu J, Wang Y, Qu Z, Si J, Jiang Y. Aberrant frequency of circulating IL-21+ T follicular helper cells in patients with primary focal segmental glomerulosclerosis. Mol Immunol 2024; 176:30-36. [PMID: 39561490 DOI: 10.1016/j.molimm.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/03/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Follicular helper T (Tfh) cells have been implicated in the pathophysiology of numerous diseases. This study investigated the hypothetical function of peripheral blood IL-21+ Tfh cells in the etiology of focal segmental glomerulosclerosis (FSGS). Tfh cell subsets were identified via flow cytometry in PBMCs from 15 patients with FSGS and 9 healthy controls (HCs). Moreover, a cytometric bead array (CBA) was used to determine the level of IL-21 in the serum. The proportions of IL-21+ cTfh cells, IL-21+ PD-1+ cTfh cells and serum IL-21 were lower in FSGS patients than in HCs. In FSGS patients, the serum IL-21 concentration was positively correlated with the frequency of IL-21+ cTfh cells and IL-21+ PD-1+ cTfh cells. The frequencies of IL-21+ cTfh cells and IL-21+ PD-1+ cTfh cells were negatively associated with 24-h urine protein but positively correlated with eGFR, serum albumin and serum IgG. CONCLUSIONS: An aberrant frequency of IL-21+ Tfh cells was detected in FSGS patients, which may provide a better understanding of FSGS pathogenesis.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130021, China; Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai 200120, China.
| | - Yanbo Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhihui Qu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Junzhuo Si
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Choi J, Crotty S, Choi YS. Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions. Immune Netw 2024; 24:e8. [PMID: 38455461 PMCID: PMC10917579 DOI: 10.4110/in.2024.24.e8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.
Collapse
Affiliation(s)
- Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shane Crotty
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
4
|
Sannier G, Nicolas A, Dubé M, Marchitto L, Nayrac M, Tastet O, Chatterjee D, Tauzin A, Lima-Barbosa R, Laporte M, Cloutier R, Sreng Flores AM, Boutin M, Gong SY, Benlarbi M, Ding S, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Brassard N, Delgado GG, Niessl J, Gokool L, Morrisseau C, Arlotto P, Rios N, Tremblay C, Martel-Laferrière V, Prat A, Bélair J, Beaubien-Souligny W, Goupil R, Nadeau-Fredette AC, Lamarche C, Finzi A, Suri RS, Kaufmann DE. A third SARS-CoV-2 mRNA vaccine dose in people receiving hemodialysis overcomes B cell defects but elicits a skewed CD4 + T cell profile. Cell Rep Med 2023; 4:100955. [PMID: 36863335 PMCID: PMC9902290 DOI: 10.1016/j.xcrm.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Cellular immune defects associated with suboptimal responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyze antibody, B cell, CD4+, and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CIs). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses, and enhances comparatively more T helper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (tumor necrosis factor alpha [TNFα]/interleukin [IL]-2 skewing), while others (CCR6, CXCR6, programmed cell death protein 1 [PD-1], and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieving robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.
Collapse
Affiliation(s)
- Gérémy Sannier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Nicolas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Mathieu Dubé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Manon Nayrac
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Debashree Chatterjee
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Alexandra Tauzin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | - Mélanie Laporte
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Rose Cloutier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alina M Sreng Flores
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Marianne Boutin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Shang Yu Gong
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Shilei Ding
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Catherine Bourassa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Halima Medjahed
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Goyette
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nathalie Brassard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Gloria-Gabrielle Delgado
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Julia Niessl
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Laurie Gokool
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Chantal Morrisseau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Pascale Arlotto
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Norka Rios
- Research Institute of the McGill University Health Centre, Montreal, QC H3H 2L9, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Département de Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Justin Bélair
- Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - William Beaubien-Souligny
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Nephrology Division, Centre Hospitalier de l'Université de Montréal, Montreal, QC H3X 3E4, Canada
| | - Rémi Goupil
- Centre de Recherche of the Hôpital du Sacré-Cœur de Montréal, Montreal, QC H4J 1C5, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Annie-Claire Nadeau-Fredette
- Nephrology Division, Centre Hospitalier de l'Université de Montréal, Montreal, QC H3X 3E4, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Centre de Recherche of the Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - Caroline Lamarche
- Nephrology Division, Centre Hospitalier de l'Université de Montréal, Montreal, QC H3X 3E4, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Centre de Recherche of the Hôpital Maisonneuve-Rosemont, Montreal, QC H1T 2M4, Canada
| | - Andrés Finzi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Rita S Suri
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H3H 2L9, Canada; Division of Nephrology, Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Le Saos-Patrinos C, Loizon S, Zouine A, Turpin D, Dilhuydy MS, Blanco P, Sisirak V, Forcade E, Duluc D. Elevated levels of circulatory follicular T helper cells in chronic lymphocytic leukemia contribute to B cell expansion. J Leukoc Biol 2023; 113:305-314. [PMID: 36807447 DOI: 10.1093/jleuko/qiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an expansion of mature B cells in the bone marrow, peripheral lymphoid organs, and blood. CD4 T helper (Th) lymphocytes significantly contribute to the physiopathology of CLL, but the subset(s) of Th cell involved in CLL pathogenesis is (are) still under debate. In this study, we performed flow cytometry analysis of the circulatory T cells of untreated CLL patients and observed an increase in follicular helper T cells (Tfh), which is a subset of T cells specialized in B cell help. Elevated numbers of Tfh cells correlated with disease severity as measured by the Binet staging system. Tfh from CLL patients were activated and skewed toward a Th1 profile as evidenced by their PD-1+IL-21+IFNγ+ phenotype and their CXCR3+CCR6- chemokine receptor profile. Tfh efficiently enhanced B-CLL survival and proliferation through IL-21 but independently of IFNγ. Finally, we observed an inverse correlation between the Tfh1 and IgA and IgG serum levels in patients, suggesting a role for this Tfh subset in the immune dysfunction associated with CLL. Altogether, our data highlight an impairment in circulatory Tfh subsets in CLL patients and their critical role in CLL physiopathology.
Collapse
Affiliation(s)
| | - Séverine Loizon
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Atika Zouine
- TBM Core, UB Facsility, CNRS UMS 3427, Inserm US 005, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Delphine Turpin
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Marie-Sarah Dilhuydy
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Av de Magellan, 33600 Pessac, Bordeaux, France
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France.,Service d'immunologie et immunogénétique, Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Vanja Sisirak
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Edouard Forcade
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Av de Magellan, 33600 Pessac, Bordeaux, France
| | - Dorothée Duluc
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| |
Collapse
|
6
|
Chen Y, Luo L, Zheng Y, Zheng Q, Zhang N, Gan D, Yirga SK, Lin Z, Shi Q, Fu L, Hu J, Chen Y. Association of Platelet Desialylation and Circulating Follicular Helper T Cells in Patients With Thrombocytopenia. Front Immunol 2022; 13:810620. [PMID: 35450072 PMCID: PMC9016750 DOI: 10.3389/fimmu.2022.810620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Thrombocytopenia is a multifactorial condition that frequently involves concomitant defects in platelet production and clearance. The physiopathology of low platelet count in thrombocytopenia remains unclear. Sialylation on platelet membrane glycoprotein and follicular helper T cells (TFHs) are thought to be the novel platelet clearance pathways. The aim of this study was to clarify the roles of platelet desialylation and circulating TFHs in patients with immune thrombocytopenia (ITP) and non-ITP thrombocytopenia. We enrolled 190 patients with ITP and 94 patients with non-ITP related thrombocytopenia including case of aplastic anemia (AA) and myelodysplastic syndromes (MDS). One hundred and ten healthy volunteers were included as controls. We found significantly increased desialylated platelets in patients with ITP or thrombocytopenia in the context of AA and MDS. Platelet desialylation was negatively correlated with platelet count. Meanwhile, the circulating TFH levels in patients with thrombocytopenia were significantly higher than those of normal controls, and were positively correlated with desialylated platelet levels. Moreover, TFHs-related chemokine CXCL13 and apoptotic platelet levels were abnormally high in ITP patients. The upregulation of pro-apoptotic proteins and the activation of the MAPK/mTOR pathway were observed in the same cohort. These findings suggested that platelet desialylation and circulating TFHs may become the potential biomarkers for evaluating the disease process associated with thrombocytopenia in patients with ITP and non-ITP.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongzhi Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Donghui Gan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shimuye Kalayu Yirga
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhenxing Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Yingyu Chen, ; Jianda Hu,
| |
Collapse
|
7
|
Liu J, Tang T, Qu Z, Wang L, Si R, Wang H, Jiang Y. Elevated number of IL-21+ TFH and CD86+CD38+ B cells in blood of renal transplant recipients with AMR under conventional immuno-suppression. Int J Immunopathol Pharmacol 2022; 36:20587384211048027. [PMID: 35012395 PMCID: PMC8755922 DOI: 10.1177/20587384211048027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/03/2021] [Indexed: 11/12/2022] Open
Abstract
The objective of this study is to detect the number of different subsets of TFH and B cells in renal transplant recipients (RTR) with antibody-mediated acute rejection (AMR), acute rejection (AR), chronic rejection (CR), or transplant stable (TS). The present study was a prospective study. The numbers of ICOS +, PD-1+ and IL-21+ TFH, CD86+, CD38+, CD27+, and IgD- B cells in 21 patients with end-stage renal disease (ESRD) and post-transplant times were measured by flow cytometry. The level of serum IL-21 was detected by ELISA. The numbers of circulating CD4+CXCR5+, CD4+CXCR5+ICOS+, CD4+CXCR5+PD-1+, CD4+CXCR5+IL-21+ TFH, CD19+CD86+, and CD19 +CD86+CD38+ B cells as well as the level of serum IL-21 in the AMR, AR, and CR groups at post-transplantation were significantly higher than those at pre-transplantation. In contrast, the number of circulating CD19+CD27+IgD B cells was significantly increased in the TS groups in respect to the other groups. Moreover, the numbers of circulating CD4+CXCR5+IL-21+ TFH cells, CD19+CD86+CD38+ B cells as well as the level of serum IL-21 were positive related to the level of serum Cr while showing negative correlated with the values of eGFR in the AMR groups at post-transplantation for 4 and 12 weeks. Circulating TFH cells may be a biomarker in RTR with AMR, which can promote the differentiation of B cells into plasma cells by activating B cells, thereby promoting disease progression.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Tongyu Tang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Qu
- Department of Nephrology, the First Hospital of Jilin University, Changchun, China
| | - Li Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
- Xu Zhou Central Hospital, Xuzhou, China
| | - Rui Si
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Haifeng Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Zoonoses Research, Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2022; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
CXCL13 Is an Indicator of Germinal Center Activity and Alloantibody Formation Following Transplantation. Transplant Direct 2021; 7:e785. [PMID: 34778545 PMCID: PMC8580198 DOI: 10.1097/txd.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Donor-specific antibodies (DSA) are a recognized cause of allograft injury, yet biomarkers that indicate their development posttransplant or guide management are not available. CXCL13 (chemokine [C-X-C motif] ligand 1) is a chemoattractant produced within secondary lymphoid organs necessary for germinal center (GC) and alloantibody formation. Perturbations in serum CXCL13 levels have been associated with humoral immune activity. Therefore, CXCL13 may correlate with the formation of HLA antibodies following transplantation.
Collapse
|
10
|
van Zelm MC, McKenzie CI, Varese N, Rolland JM, O’Hehir RE. Advances in allergen-specific immune cell measurements for improved detection of allergic sensitization and immunotherapy responses. Allergy 2021; 76:3374-3382. [PMID: 34355403 DOI: 10.1111/all.15036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Over the past two decades, precision medicine has advanced diagnostics and treatment of allergic diseases. Component-resolved analysis of allergen sensitization facilitates stratification of patients. Furthermore, new formulations of allergen immunotherapy (AIT) products can more effectively deliver the relevant components. Molecular insights from the identification of allergen component sensitization and clinical outcomes of treatment with new AIT formulations can now be utilized for a deeper understanding of the nature of the pathogenic immune response in allergy and how this can be corrected by AIT. Fundamental in these processes are the allergen-specific B and T cells. Within the large B- and T-cell compartments, only those that specifically recognize the allergen with their immunoglobulin (Ig) or T-cell receptor (TCR), respectively, are of clinical relevance. With peripheral blood allergen-specific B- and T-cell frequencies below 1%, bulk cell analysis is typically insufficiently sensitive. We here review the latest technologies to detect allergen-specific B and T cells, as well as new developments in utilizing these tools for diagnostics and therapy monitoring to advance precision medicine for allergic diseases.
Collapse
Affiliation(s)
- Menno C. van Zelm
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Craig I. McKenzie
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Nirupama Varese
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Jennifer M. Rolland
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| | - Robyn E. O’Hehir
- Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
- Department of Allergy, Immunology and Respiratory Medicine Central Clinical School Monash University, and Alfred Hospital Melbourne VIC Australia
| |
Collapse
|
11
|
The role of circulating T follicular helper cells in kidney transplantation. Transpl Immunol 2021; 69:101459. [PMID: 34461243 DOI: 10.1016/j.trim.2021.101459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Humoral rejection plays a crucial role in the chronic deterioration of kidney allografts, but there is no effective therapeutic strategy to prevent or treat it. T follicular helper (Tfh) cells provide help to B cells, subsequently contributing to humoral rejection. Investigation of Tfh cells may be a useful strategy for assessing the risk and level of humoral rejection. However, it is difficult to investigate Tfh cells from patient-derived lymphoid tissue. Recent studies have shown that circulating Tfh (cTfh) cells, working in parallel to Tfh cells, have the capacity to promote antibody-secreting B cell differentiation and antibody secretion. Here, we review recent studies of cTfh cells in kidney transplantation and discuss the characteristics and functions of cTfh cells in kidney transplant recipients.
Collapse
|
12
|
Roussel L, Vinh DC. ICOSL in host defense at epithelial barriers: lessons from ICOSLG deficiency. Curr Opin Immunol 2021; 72:21-26. [PMID: 33756276 DOI: 10.1016/j.coi.2021.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/31/2023]
Abstract
Autosomal recessive mutations in Inducible T Cell Costimulator Ligand (ICOSLG) result in a combined immunodeficiency syndrome of humans, saliently marked by recurrent respiratory tract infections and significant disease with DNA-based viruses at epithelial barriers, including human papillomavirus (HPV). These features are also seen in persons with loss of function of the complementary gene, ICOS. The infection phenotypes associated with these natural experiments disclose a critical role of the corresponding proteins, ICOSL and ICOS, in human immunity at mucocutaneous barriers. Here, we review the syndromes of ICOSL and ICOS deficiency and explore the mechanisms by which the ICOSL:ICOS axis mediates epithelial host defenses.
Collapse
Affiliation(s)
- Lucie Roussel
- Host-directed Immunotherapy to Fight Infectious Diseases (HI-FI) Program, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Donald C Vinh
- Host-directed Immunotherapy to Fight Infectious Diseases (HI-FI) Program, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada; Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Microbiology, Department of Pathology & Laboratory Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Helmold Hait S, Hogge CJ, Rahman MA, Hunegnaw R, Mushtaq Z, Hoang T, Robert-Guroff M. T FH Cells Induced by Vaccination and Following SIV Challenge Support Env-Specific Humoral Immunity in the Rectal-Genital Tract and Circulation of Female Rhesus Macaques. Front Immunol 2021; 11:608003. [PMID: 33584682 PMCID: PMC7876074 DOI: 10.3389/fimmu.2020.608003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
T follicular helper (TFH) cells are pivotal in lymph node (LN) germinal center (GC) B cell affinity maturation. Circulating CXCR5+ CD4+ T (cTFH) cells have supported memory B cell activation and broadly neutralizing antibodies in HIV controllers. We investigated the contribution of LN SIV-specific TFH and cTFH cells to Env-specific humoral immunity in female rhesus macaques following a mucosal Ad5hr-SIV recombinant priming and SIV gp120 intramuscular boosting vaccine regimen and following SIV vaginal challenge. TFH and B cells were characterized by flow cytometry. B cell help was evaluated in TFH-B cell co-cultures and by real-time PCR. Vaccination induced Env-specific TFH and Env-specific memory (ESM) B cells in LNs. LN Env-specific TFH cells post-priming and GC ESM B cells post-boosting correlated with rectal Env-specific IgA titers, and GC B cells at the same timepoints correlated with vaginal Env-specific IgG titers. Vaccination expanded cTFH cell responses, including CD25+ Env-specific cTFH cells that correlated negatively with vaginal Env-specific IgG titers but positively with rectal Env-specific IgA titers. Although cTFH cells post-2nd boost positively correlated with viral-loads following SIV challenge, cTFH cells of SIV-infected and protected macaques supported maturation of circulating B cells into plasma cells and IgA release in co-culture. Additionally, cTFH cells of naïve macaques promoted upregulation of genes associated with B cell proliferation, BCR engagement, plasma cell maturation, and antibody production, highlighting the role of cTFH cells in blood B cell maturation. Vaccine-induced LN TFH and GC B cells supported anti-viral mucosal immunity while cTFH cells provided B cell help in the periphery during immunization and after SIV challenge. Induction of TFH responses in blood and secondary lymphoid organs is likely desirable for protective efficacy of HIV vaccines.
Collapse
Affiliation(s)
- Sabrina Helmold Hait
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher James Hogge
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mohammad Arif Rahman
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ruth Hunegnaw
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zuena Mushtaq
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Marcos-Jiménez A, Sánchez-Alonso S, Alcaraz-Serna A, Esparcia L, López-Sanz C, Sampedro-Núñez M, Mateu-Albero T, Sánchez-Cerrillo I, Martínez-Fleta P, Gabrie L, Del Campo Guerola L, Rodríguez-Frade JM, Casasnovas JM, Reyburn HT, Valés-Gómez M, López-Trascasa M, Martín-Gayo E, Calzada MJ, Castañeda S, de la Fuente H, González-Álvaro I, Sánchez-Madrid F, Muñoz-Calleja C, Alfranca A. Deregulated cellular circuits driving immunoglobulins and complement consumption associate with the severity of COVID-19 patients. Eur J Immunol 2021; 51:634-647. [PMID: 33251605 PMCID: PMC7753288 DOI: 10.1002/eji.202048858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
SARS‐CoV‐2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID‐19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID‐19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56–CD16+ NK‐cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID‐19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ana Marcos-Jiménez
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Santiago Sánchez-Alonso
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Ana Alcaraz-Serna
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Laura Esparcia
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Miguel Sampedro-Núñez
- Department of Endocrinology, La Princesa Hospital, Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Tamara Mateu-Albero
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | | | - Pedro Martínez-Fleta
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Ligia Gabrie
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Luciana Del Campo Guerola
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | | | | | | | | | | | - Enrique Martín-Gayo
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - María José Calzada
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Santos Castañeda
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Isidoro González-Álvaro
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain.,School of Medicine, Department of Medicine, Universidad Autónoma of Madrid, Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Biomedical Research Institute La Princesa Hospital (IIS-IP), Madrid, Spain
| |
Collapse
|
15
|
Caldirola MS, Martínez MP, Bezrodnik L, Zwirner NW, Gaillard MI. Immune Monitoring of Patients With Primary Immune Regulation Disorders Unravels Higher Frequencies of Follicular T Cells With Different Profiles That Associate With Alterations in B Cell Subsets. Front Immunol 2020; 11:576724. [PMID: 33193371 PMCID: PMC7658009 DOI: 10.3389/fimmu.2020.576724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory conditions due to defects in the immune homeostasis affecting different T, B and NK cell subsets. To improve our understanding of these conditions, in this work we analyzed the T and B cell compartments of 15 PID patients with dysregulation, including 3 patients with STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and compared them with healthy donors and with CVID patients without dysregulation. CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of naïve and regulatory T cells with increased frequencies of activated cells, central memory CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients also exhibited a significantly increased frequency of circulating CD4+ follicular helper T cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient presented a skew toward cTfh17 cells. These alterations confirmed the existence of an imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked dysregulation in the B cell compartment, characterized by a prevalence of transitional and naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant positive correlation between the frequencies cTfh17 cells and switched-memory B cells and between the frequency of switched-memory B cells and the serum IgG. Therefore, primary immunodeficiencies with dysregulation are characterized by a skew toward an activated/memory phenotype within the CD4+ and CD8+ T cell compartment, accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17 subsets that likely impact on B cell help for antibody production, which likely contributes to their autoimmune and inflammatory conditions. Therefore, assessment of these alterations by flow cytometry constitutes a simple and straightforward manner to improve diagnosis of these complex clinical entities that may impact early diagnosis and patients' treatment. Also, our findings unravel phenotypic alterations that might be associated, at least in part, with some of the clinical manifestations observed in these patients.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Paula Martínez
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Centro de Inmunología Clínica Dra. Bezrodnik, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| |
Collapse
|
16
|
Sánchez-Alonso S, Setti-Jerez G, Arroyo M, Hernández T, Martos MI, Sánchez-Torres JM, Colomer R, Ramiro AR, Alfranca A. A new role for circulating T follicular helper cells in humoral response to anti-PD-1 therapy. J Immunother Cancer 2020; 8:e001187. [PMID: 32900863 PMCID: PMC7478024 DOI: 10.1136/jitc-2020-001187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent malignancies in humans and is a major cause of death. A number of therapies aimed at reinforcing antitumor immune response, including antiprogrammed cell death protein 1 (anti-PD-1) antibodies, are successfully used to treat several neoplasias as non-small cell lung cancer (NSCLC). However, host immune mechanisms that participate in response to anti-PD-1 therapy are not completely understood. METHODS We used a syngeneic immunocompetent mouse model of NSCLC to analyze host immune response to anti-PD-1 treatment in secondary lymphoid organs, peripheral blood and tumors, by flow cytometry, immunohistochemistry and quantitative real-time PCR (qRT-PCR). In addition, we also studied specific characteristics of selected immune subpopulations in ex vivo functional assays. RESULTS We show that anti-PD-1 therapy induces a population of circulating T follicular helper cells (cTfh) with enhanced B activation capacity, which participates in tumor response to treatment. Anti-PD-1 increases the number of tertiary lymphoid structures (TLS), which correlates with impaired tumor growth. Of note, TLS support cTfh-associated local antibody production, which participates in host immune response against tumor. CONCLUSION These findings unveil a novel mechanism of action for anti-PD-1 therapy and provide new targets for optimization of current therapies against lung cancer.
Collapse
Affiliation(s)
- Santiago Sánchez-Alonso
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Giulia Setti-Jerez
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Montserrat Arroyo
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Tathiana Hernández
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Mª Inmaculada Martos
- B Lymphocyte Lab, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Ramon Colomer
- Medical Oncology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de la Princesa. Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
17
|
Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, Das J, Wang H, Guthmiller J, Zheng NY, Huang M, Uphadhyay AA, Gardinassi L, Petitdemange C, McCullough MP, Johnson SJ, Gill K, Cervasi B, Zou J, Bretin A, Hahn M, Gewirtz AT, Bosinger SE, Wilson PC, Li S, Alter G, Khurana S, Golding H, Pulendran B. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2020; 178:1313-1328.e13. [PMID: 31491384 DOI: 10.1016/j.cell.2019.08.010] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.
Collapse
Affiliation(s)
- Thomas Hagan
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mario Cortese
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Carolyn Boudreau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Caitlin Linde
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mohan S Maddur
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jishnu Das
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Hong Wang
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jenna Guthmiller
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Amit A Uphadhyay
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Luiz Gardinassi
- Department of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Caroline Petitdemange
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | | | - Sara Jo Johnson
- Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Kiran Gill
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Barbara Cervasi
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Jun Zou
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Alexis Bretin
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Steve E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Verma A, Schmidt BA, Elizaldi SR, Nguyen NK, Walter KA, Beck Z, Trinh HV, Dinasarapu AR, Lakshmanappa YS, Rane NN, Matyas GR, Rao M, Shen X, Tomaras GD, LaBranche CC, Reimann KA, Foehl DH, Gach JS, Forthal DN, Kozlowski PA, Amara RR, Iyer SS. Impact of T h1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques. J Virol 2020; 94:e01737-19. [PMID: 31827000 PMCID: PMC7158739 DOI: 10.1128/jvi.01737-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Anil Verma
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Brian A Schmidt
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Sonny R Elizaldi
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- Graduate Group in Immunology, UC Davis, Davis, California, USA
| | - Nancy K Nguyen
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zoltan Beck
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ashok R Dinasarapu
- Emory Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Niharika N Rane
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Keith A Reimann
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - David H Foehl
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Smita S Iyer
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- California National Primate Research Center, School of Veterinary Medicine, UC Davis, Davis, California, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
19
|
La Muraglia GM, Wagener ME, Ford ML, Badell IR. Circulating T follicular helper cells are a biomarker of humoral alloreactivity and predict donor-specific antibody formation after transplantation. Am J Transplant 2020; 20:75-87. [PMID: 31250973 PMCID: PMC7193899 DOI: 10.1111/ajt.15517] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/25/2023]
Abstract
Donor-specific antibodies (DSAs) contribute to renal allograft loss. However, biomarkers to guide clinical management of DSA posttransplant or detect humoral alloimmune responses before alloantibodies develop are not available. Circulating T follicular helper (cTfh) cells are CD4+ CXCR5+ Tfh-like cells in the blood that have been associated with alloantibodies in transplant recipients, but whether they precede antibody formation for their evaluation as a predictive biomarker in transplant is unknown. To evaluate the ability of cTfh cells to predict DSA, we used murine transplant models to determine the temporal relationship between cTfh cells, germinal center formation, and DSA development. We observed that donor-reactive CD4+ CXCR5+ cTfh cells expand after allotransplant. These cTfh cells were equivalent to graft-draining lymph node-derived Tfh cells in their ability to provide B cell help for antibody production. cTfh cell expansion and differentiation into ICOS+ PD-1+ cells temporally correlated with germinal center alloreactivity and preceded the generation of DSAs in instances of modified and unmodified alloantibody formation. Importantly, delayed costimulation blockade initiated after the detection of ICOS+ PD-1+ cTfh cells prevented DSAs. These findings suggest that cTfh cells could serve as a biomarker for humoral alloreactivity before the detection of alloantibodies and inform therapeutic approaches to prevent DSAs.
Collapse
Affiliation(s)
| | | | | | - I. Raul Badell
- Emory Transplant Center, Atlanta, GA, USA,Corresponding Author: I. Raul Badell,
| |
Collapse
|
20
|
Tapia-Calle G, Born PA, Koutsoumpli G, Gonzalez-Rodriguez MI, Hinrichs WLJ, Huckriede ALW. A PBMC-Based System to Assess Human T Cell Responses to Influenza Vaccine Candidates In Vitro. Vaccines (Basel) 2019; 7:vaccines7040181. [PMID: 31766202 PMCID: PMC6963913 DOI: 10.3390/vaccines7040181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/08/2023] Open
Abstract
Vaccine development is an expensive and time-consuming process that heavily relies on animal models. Yet, vaccine candidates that have previously succeeded in animal experiments often fail in clinical trials questioning the predictive value of animal models. Alternative assay systems that can add to the screening and evaluation of functional characteristics of vaccines in a human context before embarking on costly clinical trials are therefore urgently needed. In this study, we have established an in vitro system consisting of long-term cultures of unfractionated peripheral blood mononuclear cells (PBMCs) from healthy volunteers to assess (recall) T cell responses to vaccine candidates. We observed that different types of influenza vaccines (whole inactivated virus (WIV), split, and peptide vaccines) were all able to stimulate CD4 and CD8 T cell responses but to different extents in line with their reported in vivo properties. In-depth analyses of different T cell subsets revealed that the tested vaccines evoked mainly recall responses as indicated by the fact that the vast majority of the responding T cells had a memory phenotype. Furthermore, we observed vaccine-induced activation of T follicular helper cells, which are associated with the induction of humoral immune responses. Our results demonstrate the suitability of the established PBMC-based system for the in vitro evaluation of memory T cell responses to vaccines and the comparison of vaccine candidates in a human immune cell context. As such, it can help to bridge the gap between animal experiments and clinical trials and assist in the selection of promising vaccine candidates, at least for recall antigens.
Collapse
Affiliation(s)
- Gabriela Tapia-Calle
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| | - Philip A Born
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Georgia Koutsoumpli
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| | - Martin Ignacio Gonzalez-Rodriguez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, 9713AV Groningen, The Netherlands
| |
Collapse
|
21
|
Xing M, Feng Y, Yao J, Lv H, Chen Y, He H, Wang Z, Hu C, Lou X. Induction of peripheral blood T follicular helper cells expressing ICOS correlates with antibody response to hepatitis B vaccination. J Med Virol 2019; 92:62-70. [PMID: 31475733 DOI: 10.1002/jmv.25585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/22/2019] [Indexed: 11/06/2022]
Abstract
T follicular helper (TFH) cells, a critical subset of CD4+ T cells, provide help to B cells during the procession of the humoral immune response in the germinal center (GC) and extrafollicular sites. CXCR5+ CD4+ T cells in human circulating blood, referred to herein as peripheral TFH (pTFH) cells, share phenotypes and functional properties with TFH cells in GC. Hepatitis B vaccine protects about 60% of the chronic hepatitis C patients from hepatitis B. The immunological bases that lead to the induction of protective antibody response is not well understood. In the present study, the pTFH cells subsets were determined in 18 healthy controls (anti-HBs ≥ 100 mIU/mL; HC), 21 nonresponders (anti-HBs < 10 mIU/mL; NR), and 23 weak responders (10 mIU/mL ≤ anti-HBs < 100 mIU/mL; WR) of chronic hepatitis patients upon routine hepatitis B vaccination. Though the frequency of the pTFH cell was equivalent in HC, WR, and NR, ICOS+ pTFH cells in HC underwent expansion with increased IL-21 secretion and production of serum anti-HBs response at 4 weeks after a full course of hepatitis B vaccination. These changes were not shown in both NR and WR. Analysis of ICOS+ pTFH cells represents a novel cellular determinant of the hepatitis B vaccine-induced humoral immune response, which may have relevance for design of hepatitis B vaccine.
Collapse
Affiliation(s)
- Mingluan Xing
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yonghui Feng
- Department of Clinical Laboratory, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun Yao
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Huakun Lv
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yongdi Chen
- Key Medical Research Center, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hanqing He
- Department of Immunization Programme, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhifang Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chonggao Hu
- Key Medical Research Center, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaoming Lou
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. Loss of human ICOSL results in combined immunodeficiency. J Exp Med 2019; 215:3151-3164. [PMID: 30498080 PMCID: PMC6279397 DOI: 10.1084/jem.20180668] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies represent naturally occurring experimental models to decipher human immunobiology. We report a patient with combined immunodeficiency, marked by recurrent respiratory tract and DNA-based viral infections, hypogammaglobulinemia, and panlymphopenia. He also developed moderate neutropenia but without prototypical pyogenic infections. Using whole-exome sequencing, we identified a homozygous mutation in the inducible T cell costimulator ligand gene (ICOSLG; c.657C>G; p.N219K). Whereas WT ICOSL is expressed at the cell surface, the ICOSLN219K mutation abrogates surface localization: mutant protein is retained in the endoplasmic reticulum/Golgi apparatus, which is predicted to result from deleterious conformational and biochemical changes. ICOSLN219K diminished B cell costimulation of T cells, providing a compelling basis for the observed defect in antibody and memory B cell generation. Interestingly, ICOSLN219K also impaired migration of lymphocytes and neutrophils across endothelial cells, which normally express ICOSL. These defects likely contributed to the altered adaptive immunity and neutropenia observed in the patient, respectively. Our study identifies human ICOSLG deficiency as a novel cause of a combined immunodeficiency.
Collapse
Affiliation(s)
- Lucie Roussel
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Makan Golizeh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Alexis Blanchet-Cohen
- Bioinformatics, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Dansereau
- Department of Internal Medicine, Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Marc-Antoine Parent
- Department of Family Medicine, Centre intégé de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Sonia Marin
- Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Julia Luo
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Catherine Le
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Brinley R Ford
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L King
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Medical Genetics, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada .,Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
23
|
Tian Y, Grifoni A, Sette A, Weiskopf D. Human T Cell Response to Dengue Virus Infection. Front Immunol 2019; 10:2125. [PMID: 31552052 PMCID: PMC6737489 DOI: 10.3389/fimmu.2019.02125] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
DENV is a major public health problem worldwide, thus underlining the overall significance of the proposed Program. The four dengue virus (DENV) serotypes (1-4) cause the most common mosquito-borne viral disease of humans, with 3 billion people at risk for infection and up to 100 million cases each year, most often affecting children. The protective role of T cells during viral infection is well-established. Generally, CD8 T cells can control viral infection through several mechanisms, including direct cytotoxicity, and production of pro-inflammatory cytokines such as IFN-γ and TNF-α. Similarly, CD4 T cells are thought to control viral infection through multiple mechanisms, including enhancement of B and CD8 T cell responses, production of inflammatory and anti-viral cytokines, cytotoxicity, and promotion of memory responses. To probe the phenotype of virus-specific T cells, epitopes derived from viral sequences need to be known. Here we discuss the identification of CD4 and CD8 T cell epitopes derived from DENV and how these epitopes have been used by researchers to interrogate the phenotype and function of DENV-specific T cell populations.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
24
|
Faro J, von Haeften B, Gardner R, Faro E. A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers. Front Immunol 2019; 10:2038. [PMID: 31543878 PMCID: PMC6729701 DOI: 10.3389/fimmu.2019.02038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/12/2019] [Indexed: 01/25/2023] Open
Abstract
Germinal centers (GCs) are transient anatomical microenvironments where antibody affinity maturation and memory B cells generation takes place. In the past, models of Germinal Center (GC) dynamics have focused on understanding antibody affinity maturation rather than on the main mechanism(s) driving their rise-and-fall dynamics. Here, based on a population dynamics model core, we compare three mechanisms potentially responsible for this GC biphasic behavior dependent on follicular dendritic cell (FDC) maturation, follicular T helper (Tfh) cell maturation, and antigen depletion. Analyzing the kinetics of B and T cells, as well as its parameter sensitivities, we found that only the FDC-maturation-based model could describe realistic GC dynamics, whereas the simple Tfh-maturation and antigen-depletion mechanisms, as implemented here, could not. We also found that in all models the processes directly related to Tfh cell kinetics have the highest impact on GC dynamics. This suggests the existence of some still unknown mechanism(s) tuning GC dynamics by affecting Tfh cell response to proliferation-inducing stimuli.
Collapse
Affiliation(s)
- Jose Faro
- Area of Immunology, Faculty of Biology, CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain
- Instituto Biomédico de Vigo, Vigo, Spain
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Bernardo von Haeften
- Departamento de Física, FCEyN, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Emilio Faro
- Department of Applied Mathematics II, University of Vigo, Vigo, Spain
| |
Collapse
|
25
|
Zhang J, Liu W, Wen B, Xie T, Tang P, Hu Y, Huang L, Jin K, Zhang P, Liu Z, Niu L, Qu X. Circulating CXCR3 + Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients. Sci Rep 2019; 9:10090. [PMID: 31300682 PMCID: PMC6626020 DOI: 10.1038/s41598-019-46533-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating T follicular helper (cTfh) cells have been identified as counterparts of germinal center Tfh (GC Tfh) cells in humans and can support T-dependent B cell maturation and antibody production in vitro. However, the role of cTfh cells in neutralizing antibody (nAb) responses in HCV infection remains unclear. Here, we characterized the phenotype and function of cTfh cells and demonstrated the associations of cTfh cells and their subsets with nAb responses in HCV infection. A total of 38 HCV-infected individuals and 28 healthy controls were enrolled from a pool of injection drug users. The frequency and function of blood Tfh cells were analyzed by flow cytometry. The titers and breadths of serum nAbs were measured using HCV pseudo-particle neutralization assays. Herein, we report several key observations. First, HCV infection skewed cTfh toward CXCR3+ cTfh cell differentiation. Second, the frequency of CXCR3+ cTfh cells positively correlated with HCV nAb titers and breadths. Third, CXCR3+ cTfh cells showed higher expression of Tfh-associated molecules (PD-1, ICOS, IL-21, Bcl-6) compared with CXCR3− cTfh cells from individuals with HCV infection. Coculture of cTfh cells and autologous memory B cells in vitro indicated that CXCR3+ cTfh cells show a superior ability to support HCV E2-specific B cell expansion compared with CXCR3− cTfh cells from individuals with HCV infection. HCV infection skews cTfh cells toward CXCR3-biased Tfh cell differentiation, which positively correlates with the magnitude and breadth of the HCV nAb response. It is our hope that these findings will provide insights for the rational design of a nAb-based HCV vaccine.
Collapse
Affiliation(s)
- Jian Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Wenpei Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China.,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, 423000, China
| | - Bo Wen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ting Xie
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ping Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Liyan Huang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Kun Jin
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ping Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ziyan Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ling Niu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Xiaowang Qu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China. .,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, 423000, China.
| |
Collapse
|
26
|
Yap XZ, Hustin LSP, Sauerwein RW. T H1-Polarized T FH Cells Delay Naturally-Acquired Immunity to Malaria. Front Immunol 2019; 10:1096. [PMID: 31156642 PMCID: PMC6533880 DOI: 10.3389/fimmu.2019.01096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 11/15/2022] Open
Abstract
Humoral immunity is a critical effector arm for protection against malaria but develops only slowly after repeated infections. T cell-mediated regulatory dynamics affect the development of antibody responses to Plasmodium parasites. Here, we hypothesize that T follicular helper cell (TFH) polarization generated by repeated Plasmodium asexual blood-stage infections delays the onset of protective humoral responses. IFN-γ production promotes polarization toward TFH1 and increased generation of regulatory follicular helper cells (TFR). Delineating the mechanisms that drive TH1 polarization will provide clues for appropriate induction of lasting, protective immunity against malaria.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| | - Lucie S P Hustin
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands.,Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Robert W Sauerwein
- Department of Medical Microbiology, RadboudUMC Centre for Infectious Diseases, Nijmegen, Netherlands
| |
Collapse
|
27
|
Follicular helper T cell and memory B cell immunity in CHC patients. J Mol Med (Berl) 2019; 97:397-407. [PMID: 30666346 DOI: 10.1007/s00109-018-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis C (CHC) is associated with biological activity of T follicular helper (Tfh) cells and memory B cells (MBCs). However, the nature of Tfh cell subsets that are responsible for MBCs in CHC patients has not been evaluated. This study aimed to investigate Tfh and MBC immunity before and after direct-acting antiviral (DAA) therapy in patients with CHC. A total of 31 CHC patients and 15 healthy controls (HCs) were recruited. Individual patients were treated with sofosbuvir/ribavirin (SOF/RBV) or in combination with pegylated interferon alpha-2a (PEG-IFN-α-2a) for 12 weeks. Immunofluorescence revealed the frequency of ICOS+CD4+CXCR5+ active Tfh cells in liver tissue of CHC patients was higher than that of healthy control. Tfh and B cell co-culture experiments showed that Tfh2 cells from CHC patients have potential ability to induce B cell differentiation and IgG production. Flow cytometry showed that the frequencies of CD21-CD27+IgD- activated MBCs, ICOS+CD4+CXCR5+ activated Tfh cells, Tfh1 (IFN-γ+CD4+CXCR5+) cells, and Tfh2 (IL-4+CD4+CXCR5+) cells, but not of Tfh17 (IL-17+CD4+CXCR5+) cells, increased in CHC patients before and after DAA therapy. Collectively, ICOS+ Tfh, Tfh1, Tfh2 cells, and MBCs participated in the antiviral treatment process of SOF/RBV with or without PEG-IFN-α-2a in CHC patients, and their activity was further enhanced during the treatment. KEY MESSAGES: This study aimed to investigate Tfh cells and MBC immunity in CHC patients. CD21-CD27+IgD- activated MBCs increased in CHC patients before and after treatment. Tfh1 and Tfh2 cells increased in CHC patients before and after antiviral treatment. Intrahepatic activated Tfh cells increased in CHC patients before treatment. Tfh2 cells from CHC patients have a stronger ability to induce B cell differentiation.
Collapse
|
28
|
Macedo C, Hadi K, Walters J, Elinoff B, Marrari M, Zeevi A, Ramaswami B, Chalasani G, Landsittel D, Shields A, Alloway R, Lakkis FG, Woodle ES, Metes D. Impact of Induction Therapy on Circulating T Follicular Helper Cells and Subsequent Donor-Specific Antibody Formation After Kidney Transplant. Kidney Int Rep 2018; 4:455-469. [PMID: 30899873 PMCID: PMC6409398 DOI: 10.1016/j.ekir.2018.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction The cellular events that contribute to generation of donor-specific anti-HLA antibodies (DSA) post-kidney transplantation (KTx) are not well understood. Characterization of such mechanisms could allow tailoring of immunosuppression to benefit sensitized patients. Methods We prospectively monitored circulating T follicular helper (cTFH) cells in KTx recipients who received T-cell depleting (thymoglobulin, n = 54) or T-cell nondepleting (basiliximab, n = 20) induction therapy from pre-KTx to 1 year post-KTx and assessed their phenotypic changes due to induction and DSA occurrence, in addition to healthy controls (n = 13), for a total of 307 blood samples. Results Before KTx, patients displayed comparable levels of resting, central memory cTFH cells with similar polarization to those of healthy controls. Unlike basiliximab induction, thymoglobulin induction significantly depleted cTFH cells, triggered lymphopenia-induced proliferation that skewed cTFH cells toward increased Th1 polarization, effector memory, and elevated programmed cell death protein 1 (PD-1)int/hi expression, resembling activated phenotypes. Regardless of induction, patients who developed DSA post-KTx, harbored pre-KTx donor-reactive memory interleukin (IL)-21+ cTFH cells and showed higher % cTFH and lower % of T regulatory (TREG) cells post-KTx resulting in elevated cTFH:TREG ratio at DSA occurrence. Conclusion Induction therapy distinctly shapes cTFH cell phenotype post-KTx. Monitoring cTFH cells before and after KTx may help detect those patients prone to DSA generation post-KTx.
Collapse
Affiliation(s)
- Camila Macedo
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Hadi
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Walters
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth Elinoff
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marilyn Marrari
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bala Ramaswami
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Geetha Chalasani
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas Landsittel
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adele Shields
- Division of Transplantation, University of Cincinnati, Cincinnati, Ohio, USA
| | - Rita Alloway
- Division of Nephrology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Fadi G Lakkis
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - E Steve Woodle
- Division of Transplantation, University of Cincinnati, Cincinnati, Ohio, USA
| | - Diana Metes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
McCarty B, Mwamzuka M, Marshed F, Generoso M, Alvarez P, Ilmet T, Kravietz A, Ahmed A, Borkowsky W, Unutmaz D, Khaitan A. Low Peripheral T Follicular Helper Cells in Perinatally HIV-Infected Children Correlate With Advancing HIV Disease. Front Immunol 2018; 9:1901. [PMID: 30197641 PMCID: PMC6117426 DOI: 10.3389/fimmu.2018.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
Background T follicular helper (Tfh) cells are crucial for B cell differentiation and antigen-specific antibody production. Dysregulation of Tfh-mediated B cell help weakens B cell responses in HIV infection. Moreover, Tfh cells in the lymph node and peripheral blood comprise a significant portion of the latent HIV reservoir. There is limited data on the effects of perinatal HIV infection on Tfh cells in children. We examined peripheral Tfh (pTfh) cell frequencies and phenotype in HIV-infected children and their associations with disease progression, immune activation, and B cell differentiation. Methods In a Kenyan cohort of 76 perinatally HIV-infected children, comprised of 43 treatment-naïve (ART−) and 33 on antiretroviral therapy (ART+), and 42 healthy controls (HIV−), we identified memory pTfh cells, T cell activation markers, and B cell differentiation states using multi-parameter flow cytometry. Soluble CD163 and intestinal fatty acid-binding protein plasma levels were quantified by ELISA. Results ART− children had reduced levels of pTfh cells compared with HIV− children that increased with antiretroviral therapy. HIV+ children had higher programmed cell death protein 1 (PD-1) expression on pTfh cells, regardless of treatment status. Low memory pTfh cells with elevated PD-1 levels correlated with advancing HIV disease status, indicated by increasing HIV viral loads and T cell and monocyte activation, and decreasing %CD4 and CD4:CD8 ratios. Antiretroviral treatment, particularly when started at younger ages, restored pTfh cell frequency and eliminated correlations with disease progression, but failed to lower PD-1 levels on pTfh cells and their associations with CD4 T cell percentages and activation. Altered B cell subsets, with decreased naïve and resting memory B cells and increased activated and tissue-like memory B cells in HIV+ children, correlated with low memory pTfh cell frequencies. Last, HIV+ children had decreased proportions of CXCR5+ CD8 T cells that associated with low %CD4 and CD4:CD8 ratios. Conclusion Low memory pTfh cell frequencies with high PD-1 expression in HIV+ children correlate with worsening disease status and an activated and differentiated B cell profile. This perturbed memory pTfh cell population may contribute to weak vaccine and HIV-specific antibody responses in HIV+ children. Restoring Tfh cell capacity may be important for novel pediatric HIV cure and vaccine strategies.
Collapse
Affiliation(s)
- Bret McCarty
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | | | | | - Matthew Generoso
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Patricia Alvarez
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Tiina Ilmet
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Adam Kravietz
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | | | - William Borkowsky
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Alka Khaitan
- Department of Pediatrics, Division of Infectious Diseases, New York University School of Medicine, New York, NY, United States.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
30
|
Moysi E, Petrovas C, Koup RA. The role of follicular helper CD4 T cells in the development of HIV-1 specific broadly neutralizing antibody responses. Retrovirology 2018; 15:54. [PMID: 30081906 PMCID: PMC6080353 DOI: 10.1186/s12977-018-0437-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/28/2018] [Indexed: 01/23/2023] Open
Abstract
The induction of HIV-1-specific antibodies that can neutralize a broad number of isolates is a major goal of HIV-1 vaccination strategies. However, to date no candidate HIV-1 vaccine has successfully elicited broadly neutralizing antibodies of sufficient quality and breadth for protection. In this review, we focus on the role of follicular helper CD4 T-cells (Tfh) in the development of such cross-reactive protective antibodies. We discuss germinal center (GC) formation and the dynamics of Tfh and GC B cells during HIV-1/SIV infection and vaccination. Finally, we consider future directions for the study of Tfh and offer perspective on factors that could be modulated to enhance Tfh function in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| |
Collapse
|
31
|
Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blanco P, Richez C. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol 2018; 9:1637. [PMID: 30065726 PMCID: PMC6056609 DOI: 10.3389/fimmu.2018.01637] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells are a distinct subset of CD4+ T lymphocytes, specialized in B cell help and in regulation of antibody responses. They are required for the generation of germinal center reactions, where selection of high affinity antibody producing B cells and development of memory B cells occur. Owing to the fundamental role of Tfh cells in adaptive immunity, the stringent control of their production and function is critically important, both for the induction of an optimal humoral response against thymus-dependent antigens but also for the prevention of self-reactivity. Indeed, deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. In the present review, we briefly introduce the molecular factors involved in Tfh cell formation in the context of a normal immune response, as well as markers associated with their identification (transcription factor, surface marker expression, and cytokine production). We then consider in detail the role of Tfh cells in the pathogenesis of a broad range of autoimmune diseases, with a special focus on systemic lupus erythematosus and rheumatoid arthritis, as well as on the other autoimmune/inflammatory disorders. We summarize the observed alterations in Tfh numbers, activation state, and circulating subset distribution during autoimmune and some other inflammatory disorders. In addition, central role of interleukin-21, major cytokine produced by Tfh cells, is discussed, as well as the involvement of follicular regulatory T cells, which share characteristics with both Tfh and regulatory T cells.
Collapse
Affiliation(s)
- Noémie Gensous
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Manon Charrier
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Dorothée Duluc
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | | - Estibaliz Lazaro
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Christophe Richez
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Zhang D, Wu Y, Sun G. miR-192 suppresses T follicular helper cell differentiation by targeting CXCR5 in childhood asthma. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:236-242. [PMID: 29490514 DOI: 10.1080/00365513.2018.1440628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate the role of miR-192 in differentiation of T follicular helper cells in childhood asthma. Blood samples were taken from eighteen children with acute asthma attacks and fifteen healthy children (HC). Quantitative real-time PCR and Western blotting were used to detect the expression levels of miR-192, C-X-C chemokine receptor type 5 (CXCR5), B-cell lymphoma 6 (BCL-6) and inducible T-cell costimulator (ICOS). The flow cytometry was performed to detect the proportion of CD4 + CXCR5+ Tfh cells on CD4 + T lymphocytes. The enzyme-linked immunosorbent assay (ELISA) was carried out to determine the plasma concentrations of total IgE and IL-21. The effect of miR-192 on the T follicular helper cells differentiation by targeting CXCR5 was determined by dual-luciferase reporter assay. Children with asthma had lower levels of miR-192 than HC. The proportion of CD4 + CXCR + Tfh cells was significantly higher in the acute asthma group than HC. Similarly, the plasma concentration of total IgE and IL-21 in the acute group markedly increased compared with the HC, and IgE concentration was positively correlated with the proportion of CD4 + CXCR5 + Tfh cells. Furthermore, the expression levels of CXCR5, Bcl-6 and ICOS were significantly higher in the acute group than in the HC. While the proportion of CD4 + CXCR5 + Tfh cells, IL-21, CXCR5, Bcl-6 and ICOS were obviously lower in the CD4 + T cells transfected with miR-192 plasmid than that in miR-192 + CXCR5 group and control group. In conclusion, miR-192 blocks the activation pathway of Tfh cells by targeting CXCR5, which is a reasonable cellular target for therapeutic intervention.
Collapse
Affiliation(s)
- Defeng Zhang
- a Department of Pediatrics , Anhui Provincial Hospital, Anhui Medical University , Hefei , Anhui , China
| | - Yuanbo Wu
- b Department of Neurology , Anhui Provincial Hospital, Anhui Medical University , Hefei , Anhui , China
| | - Gengyun Sun
- c Department of Respiration , First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| |
Collapse
|
33
|
Reiss S, Baxter AE, Cirelli KM, Dan JM, Morou A, Daigneault A, Brassard N, Silvestri G, Routy JP, Havenar-Daughton C, Crotty S, Kaufmann DE. Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen-specific CD4 T cells. PLoS One 2017; 12:e0186998. [PMID: 29065175 PMCID: PMC5655442 DOI: 10.1371/journal.pone.0186998] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/11/2017] [Indexed: 11/19/2022] Open
Abstract
The identification and study of antigen-specific CD4 T cells, both in peripheral blood and in tissues, is key for a broad range of immunological research, including vaccine responses and infectious diseases. Detection of these cells is hampered by both their rarity and their heterogeneity, in particular with regards to cytokine secretion profiles. These factors prevent the identification of the total pool of antigen-specific CD4 T cells by classical methods. We have developed assays for the highly sensitive detection of such cells by measuring the upregulation of surface activation induced markers (AIM). Here, we compare two such assays based on concurrent expression of CD69 plus CD40L (CD154) or expression of OX40 plus CD25, and we develop additional AIM assays based on OX40 plus PD-L1 or 4-1BB. We compare the relative sensitivity of these assays for detection of vaccine and natural infection-induced CD4 T cell responses and show that these assays identify distinct, but overlapping populations of antigen-specific CD4 T cells, a subpopulation of which can also be detected on the basis of cytokine synthesis. Bystander activation had minimal effect on AIM markers. However, some T regulatory cells upregulate CD25 upon antigen stimulation. We therefore validated AIM assays designed to exclude most T regulatory cells, for both human and non-human primate (NHP, Macaca mulatta) studies. Overall, through head-to-head comparisons and methodological improvements, we show that AIM assays represent a sensitive and valuable method for the detection of antigen-specific CD4 T cells.
Collapse
Affiliation(s)
- Samantha Reiss
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Amy E. Baxter
- CR-CHUM, Université de Montréal, Montreal, Québec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, California, United States of America
| | - Kimberly M. Cirelli
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jennifer M. Dan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- UCSD School of Medicine, Division of Infectious Diseases, La Jolla, California, United States of America
| | - Antigoni Morou
- CR-CHUM, Université de Montréal, Montreal, Québec, Canada
| | | | | | - Guido Silvestri
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, California, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Yerkes National Primate Research Center and Emory Vaccine Center, Atlanta, Georgia, United States of America
| | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, California, United States of America
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, California, United States of America
- UCSD School of Medicine, Division of Infectious Diseases, La Jolla, California, United States of America
- * E-mail: (SC); (DEK)
| | - Daniel E. Kaufmann
- CR-CHUM, Université de Montréal, Montreal, Québec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, California, United States of America
- * E-mail: (SC); (DEK)
| |
Collapse
|
34
|
Obeng-Adjei N, Portugal S, Holla P, Li S, Sohn H, Ambegaonkar A, Skinner J, Bowyer G, Doumbo OK, Traore B, Pierce SK, Crompton PD. Malaria-induced interferon-γ drives the expansion of Tbethi atypical memory B cells. PLoS Pathog 2017; 13:e1006576. [PMID: 28953967 PMCID: PMC5633206 DOI: 10.1371/journal.ppat.1006576] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/09/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
Many chronic infections, including malaria and HIV, are associated with a large expansion of CD21−CD27− ‘atypical’ memory B cells (MBCs) that exhibit reduced B cell receptor (BCR) signaling and effector functions. Little is known about the conditions or transcriptional regulators driving atypical MBC differentiation. Here we show that atypical MBCs in malaria-exposed individuals highly express the transcription factor T-bet, and that T-bet expression correlates inversely with BCR signaling and skews toward IgG3 class switching. Moreover, a longitudinal analysis of a subset of children suggested a correlation between the incidence of febrile malaria and the expansion of T-bethi B cells. The Th1-cytokine containing supernatants of malaria-stimulated PBMCs plus BCR cross linking induced T-bet expression in naïve B cells that was abrogated by neutralizing IFN-γ or blocking the IFN-γ receptor on B cells. Accordingly, recombinant IFN-γ plus BCR cross-linking drove T-bet expression in peripheral and tonsillar B cells. Consistent with this, Th1-polarized Tfh (Tfh-1) cells more efficiently induced T-bet expression in naïve B cells. These data provide new insight into the mechanisms underlying atypical MBC differentiation. Antibodies are proteins in blood that help kill microbes such as viruses, bacteria and parasites. Antibodies are produced by B cells with the help of T follicular helper (Tfh) cells. Some microbes for which we have no effective vaccines, such as HIV and malaria, establish chronic infections that are not cleared by the immune system. These chronic infections are associated with ‘atypical’ B cells that are less able to produce antibodies. We studied blood samples of malaria-exposed children to understand why normal B cells become atypical B cells. We found that atypical B cells express high levels of T-bet—a protein that is important for determining the fate of other types of immune cells. Children who frequently got malaria had more T-bet expressing B cells than children who rarely got malaria. We also found that malaria parasites cause immune cells to secrete inflammatory substances that cause normal B cells to express T-bet. Similarly, the inflammation-prone Tfh cells that malaria activates, which are relatively poor B cell helpers, also caused normal B cells to express T-bet. This study helps us understand why atypical B cells arise during chronic infections—information that could lead to strategies to improve antibody responses through vaccination.
Collapse
Affiliation(s)
- Nyamekye Obeng-Adjei
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Silvia Portugal
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Prasida Holla
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Haewon Sohn
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Abhijit Ambegaonkar
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Georgina Bowyer
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Ogobara K. Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Susan K. Pierce
- Lymphocyte Activation Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Gensous N, Schmitt N, Richez C, Ueno H, Blanco P. T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:516-523. [PMID: 27498357 DOI: 10.1093/rheumatology/kew297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/13/2022] Open
Abstract
SLE is a chronic systemic autoimmune disease characterized by a breakdown of tolerance to nuclear antigens and generation of high-affinity pathogenic autoantibodies. These autoantibodies form, with autoantigens, immune complexes that are involved in organ and tissue damages. Understanding how the production of these pathogenic autoantibodies arises is of prime importance. T follicular helper cells (Tfh) and IL-21 have emerged as central players in this process. This article reviews the pathogenic role of Tfh cells and IL-21 in SLE.
Collapse
Affiliation(s)
| | | | | | - Hideki Ueno
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA
| | | |
Collapse
|
36
|
Akiyama M, Suzuki K, Yasuoka H, Kaneko Y, Yamaoka K, Takeuchi T. Follicular helper T cells in the pathogenesis of IgG4-related disease. Rheumatology (Oxford) 2017; 57:236-245. [DOI: 10.1093/rheumatology/kex171] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 12/24/2022] Open
|
37
|
Monteiro C, Kasahara TM, Castro JR, Sacramento PM, Hygino J, Centurião N, Cassano T, Lopes LMF, Leite S, Silva VG, Gupta S, Bento CAM. Pregnancy favors the expansion of circulating functional follicular helper T Cells. J Reprod Immunol 2017; 121:1-10. [PMID: 28482188 DOI: 10.1016/j.jri.2017.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/25/2017] [Indexed: 11/29/2022]
Abstract
Pregnancy favors antibody production, and some evidence has suggested a direct effect of estrogen on B cells. The impact of pregnancy on circulating follicular helper T (TFH) cells, typically identified by the expression of CD45RO and CXCR5, has not been previously investigated. Here, the percentage of TFH cells, co-expressing or not PD-1, ICOS, or CXCR3 markers was significantly higher in pregnant women (PW) as compared with non-pregnant ones (nPW). Furthermore, the percentage of CXCR3+ TFH cells able to produce IL-6, IL-21, and IL-10 was significantly higher in PW than nPW. Interestingly, anti-CMV and anti-HBs antibody titers were significantly higher in the plasma of PW and were directly correlated with IL-21-producing CXCR3+ TFH cells. Finally, peripheral estrogen levels, but not progesterone, were positively related to either PD-1+ CXCR3+ TFH cells or plasma anti-CMV and anti-HBs IgG antibodies. In summary, our data suggests a positive effect of pregnancy on the proportion of CD4+ T cell subset specialized in helping B cells. This phenomenon, which could be related to the high estrogen levels produced during pregnancy, may help to explain why pregnancy favor humoral immunity.
Collapse
Affiliation(s)
- Clarice Monteiro
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - Taissa M Kasahara
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, UERJ, Rio de Janeiro, Brazil
| | - José Roberto Castro
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil
| | - Priscila M Sacramento
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil
| | - Joana Hygino
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil
| | - Newton Centurião
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil
| | - Tatiane Cassano
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil
| | - Lana M Ferreira Lopes
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil
| | - Simone Leite
- Fernandes Figueira Institute/IOC, Rio de Janeiro, Brazil
| | | | | | - Cleonice A M Bento
- Department of Microbiology and Parasitology/Federal University of the State of Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Hansen DS, Obeng-Adjei N, Ly A, Ioannidis LJ, Crompton PD. Emerging concepts in T follicular helper cell responses to malaria. Int J Parasitol 2016; 47:105-110. [PMID: 27866903 DOI: 10.1016/j.ijpara.2016.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
Antibody responses to malaria and candidate malaria vaccines are short-lived in children, leaving them susceptible to repeated malaria episodes. Because T follicular helper (TFH) cells provide critical help to B cells to generate long-lived antibody responses, they have become the focus of recent studies of Plasmodium-infected mice and humans. The emerging data converge on common themes, namely, that malaria-induced TH1 cytokines are associated with the activation of (i) T-like memory TFH cells with impaired B cell helper function, and (ii) pre-TFH cells that acquire Th1-like features (T-bet expression, IFN-γ production), which impede their differentiation into fully functional TFH cells, thus resulting in germinal center dysfunction and suboptimal antibody responses. Deeper knowledge of TFH cells in malaria could illuminate strategies to improve vaccines through modulating TFH cell responses. This review summarizes emerging concepts in TFH cell responses to malaria.
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nyamekye Obeng-Adjei
- Malaria Infection Biology & Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lisa J Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter D Crompton
- Malaria Infection Biology & Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
39
|
Decreased PD-1 positive blood follicular helper T cells in patients with psoriasis. Arch Dermatol Res 2016; 308:593-9. [DOI: 10.1007/s00403-016-1679-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
|
40
|
Havenar-Daughton C, Reiss SM, Carnathan DG, Wu JE, Kendric K, Torrents de la Peña A, Kasturi SP, Dan JM, Bothwell M, Sanders RW, Pulendran B, Silvestri G, Crotty S. Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique. THE JOURNAL OF IMMUNOLOGY 2016; 197:994-1002. [PMID: 27335502 DOI: 10.4049/jimmunol.1600320] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023]
Abstract
A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein-immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological function.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Jennifer E Wu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Kayla Kendric
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sudhir Pai Kasturi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Jennifer M Dan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Infectious Diseases, University of California San Diego, La Jolla, CA 92093
| | - Marcella Bothwell
- Department of Surgery, University of California San Diego, San Diego, CA 92123; and Pediatric Otolaryngology, Rady Children's Hospital-San Diego, San Diego, CA 92123
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Bali Pulendran
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037;
| |
Collapse
|
41
|
A critical role of T follicular helper cells in human mucosal anti-influenza response that can be enhanced by immunological adjuvant CpG-DNA. Antiviral Res 2016; 132:122-30. [PMID: 27247060 DOI: 10.1016/j.antiviral.2016.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/22/2023]
Abstract
T Follicular helper cells (TFH) are considered critical for B cell antibody response, and recent efforts have focused on promoting TFH in order to enhance vaccine efficacy. We studied the frequency and function of TFH in nasopharynx-associated lymphoid tissues (NALT) from children and adults, and its role in anti-influenza antibody response following stimulation by a live-attenuated influenza vaccine (LAIV) or an inactivated seasonal virus antigen (sH1N1). We further studied whether CpG-DNA promotes TFH and by which enhances anti-influenza response. We showed NALT from children aged 1.5-10 years contained abundant TFH, suggesting efficient priming of TFH during early childhood. Stimulation by LAIV induced a marked increase in TFH that correlated with a strong production of anti-hemagglutinin (HA) IgA/IgG/IgM antibodies in tonsillar cells. Stimulation by the inactivated sH1N1 antigen induced a small increase in TFH which was markedly enhanced by CpG-DNA, accompanied by enhanced anti-HA antibody responses. In B cell co-culture experiment, anti-HA responses were only seen in the presence of TFH, and addition of plasmacytoid dendritic cell to TFH-B cell co-culture enhanced the TFH-mediated antibody production following CpG-DNA and sH1N1 antigen stimulation. Induction of TFH differentiation from naïve T cells was also shown following the stimulation. Our results support a critical role of TFH in human mucosal anti-influenza antibody response. Use of an adjuvant such as CpG-DNA that has the capacity to promote TFH by which to enhance antigen-induced antibody responses in NALT tissue may have important implications for future vaccination strategies against respiratory pathogens.
Collapse
|
42
|
Circulating T follicular helper cells with increased function during chronic graft-versus-host disease. Blood 2016; 127:2489-97. [PMID: 26944544 DOI: 10.1182/blood-2015-12-688895] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a major late complication of allogeneic hematopoietic stem cell transplantation (HSCT). Previous studies have established that both donor B and T cells contribute to immune pathology in cGVHD but the mechanisms responsible for coordinated B- and T-cell responses directed against recipient antigens have not been understood. T follicular helper cells (TFH) play an important role in the regulation of B-cell immunity. We performed extensive phenotypic and functional analysis of circulating TFH (cTFH) and B cells in 66 patients after HSCT. Patients with active cGVHD had a significantly lower frequency of cTFH compared with patients without cGVHD. This was associated with higher CXCL13 plasma levels suggesting increased homing of TFH to secondary lymphoid organs. In patients with active cGVHD, cTFH phenotype was skewed toward a highly activated profile with predominance of T helper 2 (Th2)/Th17 subsets. Activated cTFH in patients with cGVHD demonstrated increased functional ability to promote B-cell immunoglobulin secretion and maturation. Moreover, the activation signature of cTFH was highly correlated with increased B-cell activation and plasmablast maturation in patients after transplant. These studies provide new insights into the immune pathogenesis of human cGVHD and identify TFH as a key coordinating element supporting B-cell involvement in this disease.
Collapse
|
43
|
Kong FY, Feng B, Zhang HH, Rao HY, Wang JH, Cong X, Wei L. CD4+CXCR5+ T cells activate CD27+IgG+ B cells via IL-21 in patients with hepatitis C virus infection. Hepatobiliary Pancreat Dis Int 2016; 15:55-64. [PMID: 26818544 DOI: 10.1016/s1499-3872(16)60054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection causes the skewing and activation of B cell subsets, but the characteristics of IgG+ B cells in patients with chronic hepatitis C (CHC) infection have not been thoroughly elucidated. CD4+CXCR5+ follicular helper T (Tfh) cells, via interleukin (IL)-21 secretion, activate B cells. However, the role of CD4+CXCR5+ T cells in the activation of IgG+ B cells in CHC patients is not clear. METHODS The frequency of IgG+ B cells, including CD27-IgG+ B and CD27+IgG+ B cells, the expression of the activation markers (CD86 and CD95) in IgG+ B cells, and the percentage of circulating CD4+CXCR5+ T cells were detected by flow cytometry in CHC patients (n=70) and healthy controls (n=25). The concentrations of serum IL-21 were analyzed using ELISA. The role of CD4+CXCR5+ T cells in the activation of IgG+ B cells was investigated using a co-culture system. RESULTS A significantly lower proportion of CD27+IgG+ B cells with increased expression of CD86 and CD95 was observed in CHC patients. The expression of CD95 was negatively correlated with the percentage of CD27+IgG+ B cells, and it contributed to CD27+IgG+ B cell apoptosis. Circulating CD4+CXCR5+ T cells and serum IL-21 were significantly increased in CHC patients. Moreover, circulating CD4+CXCR5+ T cells from CHC patients induced higher expressions of CD86 and CD95 in CD27+IgG+ B cells in a co-culture system; the blockade of the IL-21 decreased the expression levels of CD86 and CD95 in CD27+IgG+ B cells. CONCLUSIONS HCV infection increased the frequency of CD4+CXCR5+ T cells and decreased the frequency of CD27+IgG+ B cells. CD4+CXCR5+ T cells activated CD27+IgG+ B cells via the secretion of IL-21.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11 Xizhimen South Street, Beijing 100044, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion, and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell-targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE.
Collapse
Affiliation(s)
- D Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - M P Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - G C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Obeng-Adjei N, Portugal S, Tran TM, Yazew TB, Skinner J, Li S, Jain A, Felgner PL, Doumbo OK, Kayentao K, Ongoiba A, Traore B, Crompton PD. Circulating Th1-Cell-type Tfh Cells that Exhibit Impaired B Cell Help Are Preferentially Activated during Acute Malaria in Children. Cell Rep 2015; 13:425-39. [PMID: 26440897 DOI: 10.1016/j.celrep.2015.09.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/10/2015] [Accepted: 08/31/2015] [Indexed: 01/17/2023] Open
Abstract
Malaria-specific antibody responses are short lived in children, leaving them susceptible to repeated bouts of febrile malaria. The cellular and molecular mechanisms underlying this apparent immune deficiency are poorly understood. Recently, T follicular helper (Tfh) cells have been shown to play a critical role in generating long-lived antibody responses. We show that Malian children have resting PD-1(+)CXCR5(+)CD4(+) Tfh cells in circulation that resemble germinal center Tfh cells phenotypically and functionally. Within this population, PD-1(+)CXCR5(+)CXCR3(-) Tfh cells are superior to Th1-polarized PD-1(+)CXCR5(+)CXCR3(+) Tfh cells in helping B cells. Longitudinally, we observed that malaria drives Th1 cytokine responses, and accordingly, the less-functional Th1-polarized Tfh subset was preferentially activated and its activation did not correlate with antibody responses. These data provide insights into the Tfh cell biology underlying suboptimal antibody responses to malaria in children and suggest that vaccine strategies that promote CXCR3(-) Tfh cell responses may improve malaria vaccine efficacy.
Collapse
Affiliation(s)
- Nyamekye Obeng-Adjei
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Silvia Portugal
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Tuan M Tran
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Takele B Yazew
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Aarti Jain
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Philip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako BP E.1805, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako BP E.1805, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako BP E.1805, Mali
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako BP E.1805, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
46
|
Matsui K, Adelsberger JW, Kemp TJ, Baseler MW, Ledgerwood JE, Pinto LA. Circulating CXCR5⁺CD4⁺ T Follicular-Like Helper Cell and Memory B Cell Responses to Human Papillomavirus Vaccines. PLoS One 2015; 10:e0137195. [PMID: 26333070 PMCID: PMC4557948 DOI: 10.1371/journal.pone.0137195] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022] Open
Abstract
Through the interaction of T follicular helper (Tfh) cells and B cells, efficacious vaccines can generate high-affinity, pathogen-neutralizing antibodies, and memory B cells. Using CXCR5, CXCR3, CCR6, CCR7, PD1, and ICOS as markers, Tfh-like cells can be identified in the circulation and be classified into three functionally distinct subsets that are PD1+ICOS+, PD1+ ICOS-, or PD1-ICOS-. We used these markers to identify different subsets of CXCR5+CD4+ Tfh-like cells in response to highly immunogenic and efficacious vaccines for human papillomaviruses (HPV): Cervarix and Gardasil. In this small study, we used PBMC samples from 11 Gardasil recipients, and 8 Cervarix recipients from the Vaccine Research Center 902 Study to examine the induction of circulating Tfh-like cells and IgD-CD38HiCD27+ memory B cells by flow cytometry. PD1+ICOS+ CXCR3+CCR6-CXCR5+CD4+ (Tfh1-like) cells were induced and peaked on Day (D) 7 post-first vaccination, but not as much on D7 post-third vaccination. We also observed a trend toward increase in PD1+ICOS+ CXCR3-CCR6-CXCR5+CD4+ (Tfh2-like) cells for both vaccines, and PD1+ICOS+ CXCR3-CCR6+CXCR5+CD4+ (Tfh17-like) subset was induced by Cervarix post-first vaccination. There were also minimal changes in the other cellular subsets. In addition, Cervarix recipients had more memory B cells post-first vaccination than did Gardasil recipients at D14 and D30. We found frequencies of memory B cells at D30 correlated with anti-HPV16 and 18 antibody titers from D30, and the induction levels of memory B cells at D30 and PD1+ICOS+Tfh1-like cells at D7 post-first vaccination correlated for Cervarix. Our study showed that induction of circulating CXCR5+CD4+ Tfh-like subsets can be detected following immunization with HPV vaccines, and potentially be useful as a marker of immunogenicity of vaccines. However, further investigations should be extended to different cohorts with larger sample size to better understand the functions of these T cells, as well as their relationship with B cells and antibodies.
Collapse
MESH Headings
- Alphapapillomavirus/immunology
- Antibodies, Viral/blood
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/administration & dosage
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/immunology
- Humans
- Immunologic Memory
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/immunology
- Receptors, CXCR5/blood
Collapse
Affiliation(s)
- Ken Matsui
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Clinical Service Program, Applied and Developmental Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Troy J. Kemp
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael W. Baseler
- AIDS Monitoring Laboratory, Clinical Service Program, Applied and Developmental Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ligia A. Pinto
- Human Papillomavirus (HPV) Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
47
|
Leddon SA, Richards KA, Treanor JJ, Sant AJ. Abundance and specificity of influenza reactive circulating memory follicular helper and non-follicular helper CD4 T cells in healthy adults. Immunology 2015; 146:157-62. [PMID: 26094691 PMCID: PMC4552510 DOI: 10.1111/imm.12491] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/24/2022] Open
Abstract
CD4 T-cell responses are functionally complex and regulate many aspects of innate and adaptive immunity. Follicular helper (Tfh) cells are CD4 T cells specialized to support B-cell production of isotype-switched, high-affinity antibody. So far, studies of Tfh cells in humans have focused on their differentiation requirements, with little research devoted to their antigen specificity. Here, after separating circulating human memory CD4 T cells based on expression of CXCR5, a signature marker of Tfh, we have quantified and assayed the influenza protein antigen specificity of blood Tfh cells and CD4 T cells lacking this marker. Through the use of peptide pools derived from nucleoprotein (NP) or haemagglutinin (HA) and a panel of human donors, we have discovered that circulating Tfh cells preferentially recognize peptide epitopes from HA while cells lacking CXCR5 are enriched for specificity toward NP. These studies suggest that reactive CD4 T cells specific for distinct viral antigens may have generalized differences in their functional potential due to their previous stimulation history.
Collapse
Affiliation(s)
- Scott A Leddon
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, USA
| | - John J Treanor
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, USA
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical CenterRochester, NY, USA
| |
Collapse
|
48
|
Distribution of Peripheral Memory T Follicular Helper Cells in Patients with Schistosomiasis Japonica. PLoS Negl Trop Dis 2015; 9:e0004015. [PMID: 26284362 PMCID: PMC4540279 DOI: 10.1371/journal.pntd.0004015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schistosomiasis is a helminthic disease that affects more than 200 million people. An effective vaccine would be a major step towards eliminating the disease. Studies suggest that T follicular helper (Tfh) cells provide help to B cells to generate the long-term humoral immunity, which would be a crucial component of successful vaccines. Thus, understanding the biological characteristics of Tfh cells in patients with schistosomiasis, which has never been explored, is essential for vaccine design. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the biological characteristics of peripheral memory Tfh cells in schistosomiasis patients by flow cytometry. Our data showed that the frequencies of total and activated peripheral memory Tfh cells in patients were significantly increased during Schistosoma japonicum infection. Moreover, Tfh2 cells, which were reported to be a specific subpopulation to facilitate the generation of protective antibodies, were increased more greatly than other subpopulations of total peripheral memory Tfh cells in patients with schistosomiasis japonica. More importantly, our result showed significant correlations of the percentage of Tfh2 cells with both the frequency of plasma cells and the level of IgG antibody. In addition, our results showed that the percentage of T follicular regulatory (Tfr) cells was also increased in patients with schistosomiasis. CONCLUSIONS/SIGNIFICANCE Our report is the first characterization of peripheral memory Tfh cells in schistosomasis patients, which not only provides potential targets to improve immune response to vaccination, but also is important for the development of vaccination strategies to control schistosomiasis.
Collapse
|
49
|
Abstract
T follicular helper (Tfh) cells are the subset of CD4 T helper cells that are required for generation and maintenance of germinal center reactions and the generation of long-lived humoral immunity. This specialized T helper subset provides help to cognate B cells via their expression of CD40 ligand, IL-21, IL-4, and other molecules. Tfh cells are characterized by their expression of the chemokine receptor CXCR5, expression of the transcriptional repressor Bcl6, and their capacity to migrate to the follicle and promote germinal center B cell responses. Until recently, it remained unclear whether Tfh cells differentiated into memory cells and whether they maintain Tfh commitment at the memory phase. This review will highlight several recent studies that support the idea of Tfh-committed CD4 T cells at the memory stage of the immune response. The implication of these findings is that memory Tfh cells retain their capacity to recall their Tfh-specific effector functions upon reactivation to provide help for B cell responses and play an important role in prime and boost vaccination or during recall responses to infection. The markers that are useful for distinguishing Tfh effector and memory cells, as well as the limitations of using these markers will be discussed. Tfh effector and memory generation, lineage maintenance, and plasticity relative to other T helper lineages (Th1, Th2, Th17, etc.) will also be discussed. Ongoing discoveries regarding the maintenance and lineage stability versus plasticity of memory Tfh cells will improve strategies that utilize CD4 T cell memory to modulate antibody responses during prime and boost vaccination.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine , Atlanta, GA , USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
50
|
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2015; 41:529-42. [PMID: 25367570 DOI: 10.1016/j.immuni.2014.10.004] [Citation(s) in RCA: 1366] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Indexed: 12/22/2022]
Abstract
Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high-affinity antibodies and memory B cells. Tfh cell differentiation is a multistage, multifactorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|