1
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024; 98:e0172024. [PMID: 39508605 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Smith JC, Arunachalam PS, Legere TH, Cavacini LA, Hunter E, Pulendran B, Amara RR, Kozlowski PA. Induction of Tier 2 HIV-Neutralizing IgA Antibodies in Rhesus Macaques Vaccinated with BG505.664 SOSIP. Vaccines (Basel) 2024; 12:1386. [PMID: 39772048 PMCID: PMC11680376 DOI: 10.3390/vaccines12121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND A goal of mucosal human immunodeficiency virus type 1 (HIV-1) vaccines is to generate mucosal plasma cells producing polymeric IgA (pIgA)-neutralizing antibodies at sites of viral entry. However, vaccine immunogens capable of eliciting IgA neutralizing antibodies (nAbs) that recognize tier 2 viral isolates have not yet been identified. METHODS To determine if stabilized native-like HIV-1 envelope (Env) trimers could generate IgA nAbs, we purified total IgA and IgG from the banked sera of six rhesus macaques that had been found in a previous study to develop serum nAbs after subcutaneous immunization with BG505.664 SOSIP and 3M-052 adjuvant, which is a TLR7/8 agonist. The neutralization of autologous tier 2 BG505 T332N pseudovirus by the IgA and IgG preparations was measured using the TZM-bl assay. Anti-SOSIP binding antibodies (bAbs) were measured by ELISA. RESULTS The IgG samples were found to have significantly greater levels of both nAb and bAb. However, after normalizing the nAb titer relative to the concentration of bAb, SOSIP-specific IgA purified from 2/6 animals was found to neutralize just as effectively as SOSIP-specific IgG, and in 3/6 animals, neutralization by the specific IgA was significantly greater. The more potent neutralization by IgA in these three animals was associated with a higher percentage of anti-SOSIP J chain-bound (polymeric) antibody. CONCLUSIONS The parenteral vaccination of nonhuman primates with BG505.664 SOSIP generates HIV-1 tier 2 IgA nAbs in serum, including SOSIP-specific polymeric IgA, which appears to neutralize more efficiently than monomeric IgA or IgG. Mucosal delivery of this SOSIP or other stable Env trimers could generate locally synthesized polymeric IgA nAbs in mucosal tissues and secretions.
Collapse
Affiliation(s)
- Justin C. Smith
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Traci H. Legere
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | - Lisa A. Cavacini
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA;
| | - Eric Hunter
- Emory Vaccine Center, Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA;
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rama R. Amara
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA;
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
3
|
Richard J, Sannier G, Zhu L, Prévost J, Marchitto L, Benlarbi M, Beaudoin-Bussières G, Kim H, Sun Y, Chatterjee D, Medjahed H, Bourassa C, Delgado GG, Dubé M, Kirchhoff F, Hahn BH, Kumar P, Kaufmann DE, Finzi A. CD4 downregulation precedes Env expression and protects HIV-1-infected cells from ADCC mediated by non-neutralizing antibodies. mBio 2024; 15:e0182724. [PMID: 39373535 PMCID: PMC11559134 DOI: 10.1128/mbio.01827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
HIV-1 envelope glycoprotein (Env) conformation substantially impacts antibody-dependent cellular cytotoxicity (ADCC). Envs from primary HIV-1 isolates adopt a prefusion "closed" conformation, which is targeted by broadly neutralizing antibodies (bnAbs). CD4 binding drives Env into more "open" conformations, which are recognized by non-neutralizing Abs (nnAbs). To better understand Env-Ab and Env-CD4 interaction in CD4+ T cells infected with HIV-1, we simultaneously measured antibody binding and HIV-1 mRNA expression using multiparametric flow cytometry and RNA flow fluorescent in situ hybridization (FISH) techniques. We observed that env mRNA is almost exclusively expressed by HIV-1 productively infected cells that already downmodulated CD4. This suggests that CD4 downmodulation precedes env mRNA expression. Consequently, productively infected cells express "closed" Envs on their surface, which renders them resistant to nnAbs. Cells recognized by nnAbs were all env mRNA negative, indicating Ab binding through shed gp120 or virions attached to their surface. Consistent with these findings, treatment of HIV-1-infected humanized mice with the ADCC-mediating nnAb A32 failed to lower viral replication or reduce the size of the viral reservoir. These findings confirm the resistance of productively infected CD4+ T cells to nnAbs-mediated ADCC and question the rationale of immunotherapy approaches using this strategy. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) represents an effective immune response for clearing virally infected cells, making ADCC-mediating antibodies promising therapeutic candidates for HIV-1 cure strategies. Broadly neutralizing antibodies (bNAbs) target epitopes present on the native "closed" envelope glycoprotein (Env), while non-neutralizing antibodies (nnAbs) recognize epitopes exposed upon Env-CD4 interaction. Here, we provide evidence that env mRNA is predominantly expressed by productively infected cells that have already downmodulated cell-surface CD4. This indicates that CD4 downmodulation by HIV-1 precedes Env expression, making productively infected cells resistant to ADCC mediated by nnAbs but sensitive to those mediated by bnAbs. These findings offer critical insights for the development of immunotherapy-based strategies aimed at targeting and eliminating productively infected cells in people living with HIV.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Hongil Kim
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yaping Sun
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel E. Kaufmann
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Hahn WO, Parks KR, Shen M, Ozorowski G, Janes H, Ballweber-Fleming L, Woodward Davis AS, Duplessis C, Tomai M, Dey AK, Sagawa ZK, De Rosa SC, Seese A, Kallur Siddaramaiah L, Stamatatos L, Lee WH, Sewall LM, Karlinsey D, Turner HL, Rubin V, Furth S, MacPhee K, Duff M, Corey L, Keefer MC, Edupuganti S, Frank I, Maenza J, Baden LR, Hyrien O, Sanders RW, Moore JP, Ward AB, Tomaras GD, Montefiori DC, Rouphael N, McElrath MJ. Use of 3M-052-AF with Alum adjuvant in HIV trimer vaccine induces human autologous neutralizing antibodies. J Exp Med 2024; 221:e20240604. [PMID: 39235529 PMCID: PMC11380150 DOI: 10.1084/jem.20240604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140 formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding, and immunogenicity in a first-in-healthy adult (n = 17), randomized, and placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, and B cell and CD4+ T cell responses emerged after vaccination. Five vaccinees developed serum autologous tier 2 nAbs (ID50 titer, 1:28-1:8647) after two to three doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/Alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes.
Collapse
Affiliation(s)
- William O. Hahn
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mingchao Shen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Chris Duplessis
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, NY, USA
| | | | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dalton Karlinsey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hannah L. Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vanessa Rubin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah Furth
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kellie MacPhee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Duff
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Srilatha Edupuganti
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ian Frank
- School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology and Departments of Surgery and Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | | | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Nelson AN, Shen X, Vekatayogi S, Zhang S, Ozorowski G, Dennis M, Sewall LM, Milligan E, Davis D, Cross KA, Chen Y, van Schooten J, Eudailey J, Isaac J, Memon S, Weinbaum C, Gao H, Stanfield-Oakley S, Byrd A, Chutkan S, Berendam S, Cronin K, Yasmeen A, Alam S, LaBranche CC, Rogers K, Shirreff L, Cupo A, Derking R, Villinger F, Klasse PJ, Ferrari G, Williams WB, Hudgens MG, Ward AB, Montefiori DC, Van Rompay KKA, Wiehe K, Moore JP, Sanders RW, De Paris K, Permar SR. Immunization with germ line-targeting SOSIP trimers elicits broadly neutralizing antibody precursors in infant macaques. Sci Immunol 2024; 9:eadm7097. [PMID: 39213340 DOI: 10.1126/sciimmunol.adm7097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Adolescents are a growing population of people living with HIV. The period between weaning and sexual debut presents a low-risk window for HIV acquisition, making early childhood an ideal time for implementing an immunization regimen. Because the elicitation of broadly neutralizing antibodies (bnAbs) is critical for an effective HIV vaccine, our goal was to assess the ability of a bnAb B cell lineage-designed HIV envelope SOSIP (protein stabilized by a disulfide bond between gp120-gp41-named "SOS"-and an isoleucine-to-proline point mutation-named "IP"-at residue 559) to induce precursor CD4 binding site (CD4bs)-targeting bnAbs in early life. Infant rhesus macaques received either a BG505 SOSIP, based on the infant BG505 transmitted/founder virus, or the CD4bs germ line-targeting BG505 SOSIP GT1.1 (n = 5 per group). Although both strategies induced durable, high-magnitude plasma autologous virus neutralization responses, only GT1.1-immunized infants (n = 3 of 5) exhibited VRC01-like CD4bs bnAb precursor development. Thus, a multidose immunization regimen with bnAb lineage-designed SOSIPs shows promise for inducing early B cell responses with the potential to mature into protective HIV bnAbs before sexual debut.
Collapse
Affiliation(s)
- Ashley N Nelson
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sravani Vekatayogi
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Shiyu Zhang
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Leigh M Sewall
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - Emma Milligan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dominique Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaitlyn A Cross
- Gillings School of Public Health and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Chen
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jelle van Schooten
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Joshua Eudailey
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - John Isaac
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Saad Memon
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Carolyn Weinbaum
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Hongmei Gao
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Alliyah Byrd
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Suni Chutkan
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Stella Berendam
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Kenneth Cronin
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - S Alam
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Celia C LaBranche
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Guido Ferrari
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Wilton B Williams
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Michael G Hudgens
- Gillings School of Public Health and Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, USA
| | - David C Montefiori
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, Netherlands
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Zhang P, Gorman J, Tsybovsky Y, Lu M, Liu Q, Gopan V, Singh M, Lin Y, Miao H, Seo Y, Kwon A, Olia AS, Chuang GY, Geng H, Lai YT, Zhou T, Mascola JR, Mothes W, Kwong PD, Lusso P. Design of soluble HIV-1 envelope trimers free of covalent gp120-gp41 bonds with prevalent native-like conformation. Cell Rep 2024; 43:114518. [PMID: 39028623 PMCID: PMC11459465 DOI: 10.1016/j.celrep.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Soluble HIV-1 envelope (Env) trimers may serve as effective vaccine immunogens. The widely utilized SOSIP trimers have been paramount for structural studies, but the disulfide bond they feature between gp120 and gp41 constrains intersubunit mobility and may alter antigenicity. Here, we report an alternative strategy to generate stabilized soluble Env trimers free of covalent gp120-gp41 bonds. Stabilization was achieved by introducing an intrasubunit disulfide bond between the inner and outer domains of gp120, defined as interdomain lock (IDL). Correctly folded IDL trimers displaying a native-like antigenic profile were produced for HIV-1 Envs of different clades. Importantly, the IDL design abrogated CD4 binding while not affecting recognition by potent neutralizing antibodies to the CD4-binding site. By cryoelectron microscopy, IDL trimers were shown to adopt a closed prefusion configuration, while single-molecule fluorescence resonance energy transfer documented a high prevalence of native-like conformation. Thus, IDL trimers may be promising candidates as vaccine immunogens.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Vinay Gopan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mamta Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yin Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuna Seo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, 20 Riverside Road, Weston, MA 02493, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, Urrea V, Barreiro A, Gonzalez-Tendero A, Rovira-Rigau M, Cardona M, Ferrer L, Clotet B, Carrillo J, Aguilar-Gurrieri C, Blanco J. Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein. Viruses 2024; 16:987. [PMID: 38932278 PMCID: PMC11209239 DOI: 10.3390/v16060987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.
Collapse
MESH Headings
- Animals
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred C57BL
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Leukemia Virus, Feline/immunology
- Leukemia Virus, Feline/genetics
- Gene Products, gag/immunology
- Gene Products, gag/genetics
- Female
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Humans
- Cats
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Raquel Ortiz
- IrsiCaixa, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Barajas
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Anna Pons-Grífols
- IrsiCaixa, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, 08916 Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
8
|
Williams WB, Alam SM, Ofek G, Erdmann N, Montefiori DC, Seaman MS, Wagh K, Korber B, Edwards RJ, Mansouri K, Eaton A, Cain DW, Martin M, Hwang J, Arus-Altuz A, Lu X, Cai F, Jamieson N, Parks R, Barr M, Foulger A, Anasti K, Patel P, Sammour S, Parsons RJ, Huang X, Lindenberger J, Fetics S, Janowska K, Niyongabo A, Janus BM, Astavans A, Fox CB, Mohanty I, Evangelous T, Chen Y, Berry M, Kirshner H, Van Itallie E, Saunders KO, Wiehe K, Cohen KW, McElrath MJ, Corey L, Acharya P, Walsh SR, Baden LR, Haynes BF. Vaccine induction of heterologous HIV-1-neutralizing antibody B cell lineages in humans. Cell 2024; 187:2919-2934.e20. [PMID: 38761800 DOI: 10.1016/j.cell.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.
Collapse
Affiliation(s)
- Wilton B Williams
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA.
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA.
| | - Gilad Ofek
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | | | - David C Montefiori
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Mitchell Martin
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - JongIn Hwang
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Aria Arus-Altuz
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Nolan Jamieson
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Andrew Foulger
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Parth Patel
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Salam Sammour
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Ruth J Parsons
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Xiao Huang
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Jared Lindenberger
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Susan Fetics
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Aurelie Niyongabo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Benjamin M Janus
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Anagh Astavans
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Ipsita Mohanty
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Tyler Evangelous
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Yue Chen
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Madison Berry
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Helene Kirshner
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA
| | | | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA
| | | | | | | | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke School of Medicine, Durham, NC 27710, USA
| | - Stephen R Walsh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunobiology, Duke School of Medicine, Durham, NC 27710, USA; Duke Global Health Institute, Duke School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Hahn WO, Parks KR, Shen M, Ozorowski G, Janes H, Ballweber-Fleming L, Woodward Davis AS, Duplessis C, Tomai M, Dey AK, Sagawa ZK, De Rosa SC, Seese A, Siddaramaiah LK, Stamatatos L, Lee WH, Sewall LM, Karlinsey D, Turner HL, Rubin V, Furth S, MacPhee K, Duff M, Corey L, Keefer MC, Edupuganti S, Frank I, Maenza J, Baden LR, Hyrien O, Sanders RW, Moore JP, Ward AB, Tomaras GD, Montefiori DC, Rouphael N, McElrath MJ. HIV BG505 SOSIP.664 trimer with 3M-052-AF/alum induces human autologous tier-2 neutralizing antibodies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.08.24306957. [PMID: 38766048 PMCID: PMC11100857 DOI: 10.1101/2024.05.08.24306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.
Collapse
|
10
|
Berger A, Pedersen J, Kowatsch MM, Scholte F, Lafrance MA, Azizi H, Li Y, Gomez A, Wade M, Fausther-Bovendo H, de La Vega MA, Jelinski J, Babuadze G, Nepveu-Traversy ME, Lamarre C, Racine T, Kang CY, Gaillet B, Garnier A, Gilbert R, Kamen A, Yao XJ, Fowke KR, Arts E, Kobinger G. Impact of Recombinant VSV-HIV Prime, DNA-Boost Vaccine Candidates on Immunogenicity and Viremia on SHIV-Infected Rhesus Macaques. Vaccines (Basel) 2024; 12:369. [PMID: 38675751 PMCID: PMC11053682 DOI: 10.3390/vaccines12040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.
Collapse
Affiliation(s)
- Alice Berger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Jannie Pedersen
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Monika M. Kowatsch
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.K.); (K.R.F.)
| | - Florine Scholte
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Marc-Alexandre Lafrance
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Hiva Azizi
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Yue Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada; (Y.L.); (C.-Y.K.); (E.A.)
| | - Alejandro Gomez
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Matthew Wade
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Hugues Fausther-Bovendo
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Marc-Antoine de La Vega
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Joseph Jelinski
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - George Babuadze
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | | | - Claude Lamarre
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Unversité Laval, Quebec, QC G1V 0A6, Canada; (A.B.); (J.P.); (F.S.); (M.-A.L.); (H.A.); (A.G.); (M.W.); (H.F.-B.); (M.-A.d.L.V.); (G.B.); (C.L.)
| | - Trina Racine
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, QC G1E 6W2, Canada; (T.R.); (X.-J.Y.)
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada; (Y.L.); (C.-Y.K.); (E.A.)
| | - Bruno Gaillet
- Department of Chemical Engineering, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada; (B.G.); (A.G.)
| | - Alain Garnier
- Department of Chemical Engineering, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada; (B.G.); (A.G.)
| | - Rénald Gilbert
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council, Montreal, QC H4P 2R2, Canada;
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Xiao-Jian Yao
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec, QC G1E 6W2, Canada; (T.R.); (X.-J.Y.)
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.M.K.); (K.R.F.)
| | - Eric Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada; (Y.L.); (C.-Y.K.); (E.A.)
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
11
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Maciel M, Amara RR, Bar KJ, Crotty S, Deeks SG, Duplessis C, Gaiha G, McElrath MJ, McMichael A, Palin A, Rutishauser R, Shapiro S, Smiley ST, D'Souza MP. Exploring synergies between B- and T-cell vaccine approaches to optimize immune responses against HIV-workshop report. NPJ Vaccines 2024; 9:39. [PMID: 38383616 PMCID: PMC10881492 DOI: 10.1038/s41541-024-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Milton Maciel
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rama R Amara
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher Duplessis
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gaurav Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Amy Palin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Rachel Rutishauser
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Stuart Shapiro
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Stephen T Smiley
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - M Patricia D'Souza
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
13
|
Pegu A, Lovelace SE, DeMouth ME, Cully MD, Morris DJ, Li Y, Wang K, Schmidt SD, Choe M, Liu C, Chen X, Viox E, Rowshan A, Taft JD, Zhang B, Xu K, Duan H, Ou L, Todd JP, Kong R, Li H, Shaw GM, Doria-Rose NA, Kwong PD, Koup RA, Mascola JR. Antibodies targeting the fusion peptide on the HIV envelope provide protection to rhesus macaques against mucosal SHIV challenge. Sci Transl Med 2024; 16:eadh9039. [PMID: 38232141 DOI: 10.1126/scitranslmed.adh9039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024]
Abstract
The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.15 and DF1W-a.01, to protect against simian-HIV (SHIV)BG505 challenge. VRC34.01 neutralized SHIVBG505 with a 50% inhibitory concentration (IC50) of 0.58 μg/ml, whereas DF1W-a.01 and DFPH-a.15 were 4- or 30-fold less potent, respectively. VRC34.01 was infused into four rhesus macaques at a dose of 10 mg/kg and four rhesus macaques at a dose of 2.5 mg/kg. The animals were intrarectally challenged 5 days later with SHIVBG505. In comparison with all 12 control animals that became infected, all four animals infused with VRC34.01 (10 mg/kg) and three out of four animals infused with VRC34.01 (2.5 mg/kg) remained uninfected. Because of the lower potency of DF1W-a.01 and DFPH-a.15 against SHIVBG505, we infused both Abs at a higher dose of 100 mg/kg into four rhesus macaques each, followed by SHIVBG505 challenge 5 days later. Three of four animals that received DF1W-a.01 were protected against infection, whereas all animals that received DFPH-a.15 were protected. Overall, the protective serum neutralization titers observed in these animals were similar to what has been observed for other bNAbs in similar SHIV infection models and in human clinical trials. In conclusion, FP-directed mAbs can thus provide dose-dependent in vivo protection against mucosal SHIV challenges, supporting the development of prophylactic vaccines targeting the HIV-1 Env FP.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Michelle D Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel J Morris
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elise Viox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ariana Rowshan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Justin D Taft
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hongying Duan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hui Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Nelson AN, Shen X, Vekatayogi S, Zhang S, Ozorowski G, Dennis M, Sewall LM, Milligan E, Davis D, Cross KA, Chen Y, van Schooten J, Eudailey J, Isaac J, Memon S, Weinbaum C, Stanfield-Oakley S, Byrd A, Chutkan S, Berendam S, Cronin K, Yasmeen A, Alam SM, LaBranche CC, Rogers K, Shirreff L, Cupo A, Derking R, Villinger F, Klasse PJ, Ferrari G, Williams WB, Hudgens MG, Ward AB, Montefiori DC, Van Rompay KK, Wiehe K, Moore JP, Sanders RW, De Paris K, Permar SR. Germline-targeting SOSIP trimer immunization elicits precursor CD4 binding-site targeting broadly neutralizing antibodies in infant macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565306. [PMID: 37986885 PMCID: PMC10659289 DOI: 10.1101/2023.11.07.565306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A vaccine that can achieve protective immunity prior to sexual debut is critical to prevent the estimated 410,000 new HIV infections that occur yearly in adolescents. As children living with HIV can make broadly neutralizing antibody (bnAb) responses in plasma at a faster rate than adults, early childhood is an opportune window for implementation of a multi-dose HIV immunization strategy to elicit protective immunity prior to adolescence. Therefore, the goal of our study was to assess the ability of a B cell lineage-designed HIV envelope SOSIP to induce bnAbs in early life. Infant rhesus macaques (RMs) received either BG505 SOSIP or the germline-targeting BG505 GT1.1 SOSIP (n=5/group) with the 3M-052-SE adjuvant at 0, 6, and 12 weeks of age. All infant RMs were then boosted with the BG505 SOSIP at weeks 26, 52 and 78, mimicking a pediatric immunization schedule of multiple vaccine boosts within the first two years of life. Both immunization strategies induced durable, high magnitude binding antibodies and plasma autologous virus neutralization that primarily targeted the CD4-binding site (CD4bs) or C3/465 epitope. Notably, three BG505 GT1.1-immunized infants exhibited a plasma HIV neutralization signature reflective of VRC01-like CD4bs bnAb precursor development and heterologous virus neutralization. Finally, infant RMs developed precursor bnAb responses at a similar frequency to that of adult RMs receiving a similar immunization strategy. Thus, a multi-dose immunization regimen with bnAb lineage designed SOSIPs is a promising strategy for inducing protective HIV bnAb responses in childhood prior to adolescence when sexual HIV exposure risk begins.
Collapse
Affiliation(s)
- Ashley N. Nelson
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Sravani Vekatayogi
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Shiyu Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Emma Milligan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Dominique Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Kaitlyn A. Cross
- Gillings School of Public Health and Center for AIDS Research, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Yue Chen
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Jelle van Schooten
- Department of Medical Microbiology, Academic Medical Center; Amsterdam, Netherlands
| | - Joshua Eudailey
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| | - John Isaac
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| | - Saad Memon
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| | - Carolyn Weinbaum
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| | | | - Alliyah Byrd
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Suni Chutkan
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Stella Berendam
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Kenneth Cronin
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine; New York, NY, USA
| | - S. Munir Alam
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Celia C. LaBranche
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Lisa Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medicine; New York, NY, USA
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center; Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine; New York, NY, USA
| | - Guido Ferrari
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Wilton B. Williams
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - Michael G. Hudgens
- Gillings School of Public Health and Center for AIDS Research, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Koen K.A. Van Rompay
- California National Primate Research Center, University of California; Davis, CA, USA
| | - Kevin Wiehe
- Human Vaccine Institute, Duke University Medical Center; Durham, NC, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine; New York, NY, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center; Amsterdam, Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medicine; New York, NY, USA
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine; New York, NY, USA
| |
Collapse
|
15
|
Boopathy AV, Sharma B, Nekkalapudi A, Wimmer R, Gamez-Guerrero M, Suthram S, Truong H, Lee J, Li J, Martin R, Blair W, Geleziunas R, Orlinger K, Ahmadi-Erber S, Lauterbach H, Makadzange T, Falkard B, Schmidt S. Immunogenic arenavirus vector SIV vaccine reduces setpoint viral load in SIV-challenged rhesus monkeys. NPJ Vaccines 2023; 8:175. [PMID: 37945621 PMCID: PMC10635999 DOI: 10.1038/s41541-023-00768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
HIV affects more than 38 million people worldwide. Although HIV can be effectively treated by lifelong combination antiretroviral therapy, only a handful of patients have been cured. Therapeutic vaccines that induce robust de novo immune responses targeting HIV proteins and latent reservoirs will likely be integral for functional HIV cure. Our study shows that immunization of naïve rhesus macaques with arenavirus-derived vaccine vectors encoding simian immunodeficiency virus (SIVSME543 Gag, Env, and Pol) immunogens is safe, immunogenic, and efficacious. Immunization induced robust SIV-specific CD8+ and CD4+ T-cell responses with expanded cellular breadth, polyfunctionality, and Env-binding antibodies with antibody-dependent cellular cytotoxicity. Vaccinated animals had significant reductions in median SIV viral load (1.45-log10 copies/mL) after SIVMAC251 challenge compared with placebo. Peak viral control correlated with the breadth of Gag-specific T cells and tier 1 neutralizing antibodies. These results support clinical investigation of arenavirus-based vectors as a central component of therapeutic vaccination for HIV cure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hoa Truong
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Johnny Lee
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | - Wade Blair
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | | | | | | | | | | - Brie Falkard
- Gilead Sciences, Inc., Foster City, CA, 94404, USA
| | | |
Collapse
|
16
|
Phung I, Rodrigues KA, Marina-Zárate E, Maiorino L, Pahar B, Lee WH, Melo M, Kaur A, Allers C, Fahlberg M, Grasperge BF, Dufour JP, Schiro F, Aye PP, Lopez PG, Torres JL, Ozorowski G, Eskandarzadeh S, Kubitz M, Georgeson E, Groschel B, Nedellec R, Bick M, Kaczmarek Michaels K, Gao H, Shen X, Carnathan DG, Silvestri G, Montefiori DC, Ward AB, Hangartner L, Veazey RS, Burton DR, Schief WR, Irvine DJ, Crotty S. A combined adjuvant approach primes robust germinal center responses and humoral immunity in non-human primates. Nat Commun 2023; 14:7107. [PMID: 37925510 PMCID: PMC10625619 DOI: 10.1038/s41467-023-42923-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
Adjuvants and antigen delivery kinetics can profoundly influence B cell responses and should be critically considered in rational vaccine design, particularly for difficult neutralizing antibody targets such as human immunodeficiency virus (HIV). Antigen kinetics can change depending on the delivery method. To promote extended immunogen bioavailability and to present antigen in a multivalent form, native-HIV Env trimers are modified with short phosphoserine peptide linkers that promote tight binding to aluminum hydroxide (pSer:alum). Here we explore the use of a combined adjuvant approach that incorporates pSer:alum-mediated antigen delivery with potent adjuvants (SMNP, 3M-052) in an extensive head-to-head comparison study with conventional alum to assess germinal center (GC) and humoral immune responses. Priming with pSer:alum plus SMNP induces additive effects that enhance the magnitude and persistence of GCs, which correlate with better GC-TFH cell help. Autologous HIV-neutralizing antibody titers are improved in SMNP-immunized animals after two immunizations. Over 9 months after priming immunization of pSer:alum with either SMNP or 3M-052, robust Env-specific bone marrow plasma cells (BM BPC) are observed. Furthermore, pSer-modification of Env trimer reduce targeting towards immunodominant non-neutralizing epitopes. The study shows that a combined adjuvant approach can augment humoral immunity by modulating immunodominance and shows promise for clinical translation.
Collapse
Affiliation(s)
- Ivy Phung
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Ester Marina-Zárate
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Carolina Allers
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Marissa Fahlberg
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Paul G Lopez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Saman Eskandarzadeh
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Kubitz
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Katarzyna Kaczmarek Michaels
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Hongmei Gao
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Xiaoying Shen
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Diane G Carnathan
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David C Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research & Development, Duke University Medical Center, Duke University, Durham, NC, 27710, USA
| | - Andrew B Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lars Hangartner
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, 70433, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Darrell J Irvine
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Haynes BF, Wiehe K, Alam SM, Weissman D, Saunders KO. Progress with induction of HIV broadly neutralizing antibodies in the Duke Consortia for HIV/AIDS Vaccine Development. Curr Opin HIV AIDS 2023; 18:300-308. [PMID: 37751363 PMCID: PMC10552807 DOI: 10.1097/coh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Design of an HIV vaccine that can induce broadly neutralizing antibodies (bnAbs) is a major goal. However, HIV bnAbs are not readily made by the immune system. Rather HIV bnAbs are disfavored by a number of virus and host factors. The purpose of the review is to discuss recent progress made in the design and use of immunogens capable of inducing HIV bnAbs in the Duke Consortia for HIV/AIDS Vaccine Development. RECENT FINDINGS New immunogens capable of binding with high affinity to unmutated common ancestors (UCAs) of bnAb B cell lineages have been designed and strategies for stabilization of HIV Env in its prefusion state are being developed. Success is starting to be translated from preclinical studies of UCA-targeting immunogens in animals, to success of initiating bnAb lineages in humans. SUMMARY Recent progress has been made in both immunogen design and in achieving bnAb B cell lineage induction in animal models and now in human clinical trials. With continued progress, a practical HIV/AIDS vaccine may be possible. However, host constraints on full bnAb maturation remain as potential roadblocks for full maturation of some types of bnAbs.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - S. Munir Alam
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Drew Weissman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
18
|
Counts JA, Saunders KO. Guiding HIV-1 vaccine development with preclinical nonhuman primate research. Curr Opin HIV AIDS 2023; 18:315-322. [PMID: 37712825 PMCID: PMC10810179 DOI: 10.1097/coh.0000000000000819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF THE REVIEW Nonhuman primates (NHPs) are seen as the closest animal model to humans in terms of anatomy and immune system makeup. Here, we review how preclinical studies in this model system are teaching the field of HIV vaccinology the basic immunology that is needed to induce broadly neutralizing antibodies (bnAbs) with vaccination and elicit protective T cell responses. These lessons are being translated into clinical trials to advance towards protective active vaccination against HIV-1 infection. RECENT FINDINGS Preclinical vaccination studies in NHPs have shown that highly engineered HIV-1 immunogens can initiate bnAb precursors providing proof of concept for Phase I clinical trials. Additionally, NHP models of HIV-1 infection are elucidating the pathways for bnAb development while serving as systems to evaluate vaccine protection. Innovative immunization strategies have increased affinity maturation of HIV-1 antibodies in long-lived germinal centers. Preclinical studies in macaques have defined the protective level of neutralizing antibodies and have shown that T cell responses can synergize with antibody-mediated immunity to provide protection in the presence of lower neutralizing antibody titers. SUMMARY The NHP model provides vaccine regimens and desired antibody and T cell responses that serve as benchmarks for clinical trials, accelerating HIV vaccine design.
Collapse
Affiliation(s)
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
19
|
Bollimpelli VS, Reddy PBJ, Gangadhara S, Charles TP, Burton SL, Tharp GK, Styles TM, Labranche CC, Smith JC, Upadhyay AA, Sahoo A, Legere T, Shiferaw A, Velu V, Yu T, Tomai M, Vasilakos J, Kasturi SP, Shaw GM, Montefiori D, Bosinger SE, Kozlowski PA, Pulendran B, Derdeyn CA, Hunter E, Amara RR. Intradermal but not intramuscular modified vaccinia Ankara immunizations protect against intravaginal tier2 simian-human immunodeficiency virus challenges in female macaques. Nat Commun 2023; 14:4789. [PMID: 37553348 PMCID: PMC10409804 DOI: 10.1038/s41467-023-40430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.
Collapse
Affiliation(s)
- Venkata S Bollimpelli
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Pradeep B J Reddy
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tysheena P Charles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Samantha L Burton
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Gregory K Tharp
- NHP Genomics Core Laboratory, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Traci Legere
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Tianwei Yu
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - Sudhir P Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Steven E Bosinger
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Sengupta S, Zhang J, Reed MC, Yu J, Kim A, Boronina TN, Board NL, Wrabl JO, Shenderov K, Welsh RA, Yang W, Timmons AE, Hoh R, Cole RN, Deeks SG, Siliciano JD, Siliciano RF, Sadegh-Nasseri S. A cell-free antigen processing system informs HIV-1 epitope selection and vaccine design. J Exp Med 2023; 220:e20221654. [PMID: 37058141 PMCID: PMC10114365 DOI: 10.1084/jem.20221654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Distinct CD4+ T cell epitopes have been associated with spontaneous control of HIV-1 replication, but analysis of antigen-dependent factors that influence epitope selection is lacking. To examine these factors, we used a cell-free antigen processing system that incorporates soluble HLA-DR (DR1), HLA-DM (DM), cathepsins, and full-length protein antigens for epitope identification by LC-MS/MS. HIV-1 Gag, Pol, Env, Vif, Tat, Rev, and Nef were examined using this system. We identified 35 novel epitopes, including glycopeptides. Epitopes from smaller HIV-1 proteins mapped to regions of low protein stability and higher solvent accessibility. HIV-1 antigens associated with limited CD4+ T cell responses were processed efficiently, while some protective epitopes were inefficiently processed. 55% of epitopes obtained from cell-free processing induced memory CD4+ T cell responses in HIV-1+ donors, including eight of 19 novel epitopes tested. Thus, an in vitro processing system utilizing the components of Class II processing reveals factors influencing epitope selection of HIV-1 and represents an approach to understanding epitope selection from non-HIV-1 antigens.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josephine Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madison C. Reed
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeanna Yu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aeryon Kim
- Department of Inflammation and Oncology and Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Tatiana N. Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan L. Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James O. Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Shenderov
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin A. Welsh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Anderson JL, Sandstrom K, Smith WR, Wetzel M, Klenchin VA, Evans DT. MHC Class I Ligands of Rhesus Macaque Killer Cell Ig-like Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1815-1826. [PMID: 37036309 PMCID: PMC10192222 DOI: 10.4049/jimmunol.2200954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
22
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Nguyen HT, Wang Q, Anang S, Sodroski JG. Characterization of the Human Immunodeficiency Virus (HIV-1) Envelope Glycoprotein Conformational States on Infectious Virus Particles. J Virol 2023; 97:e0185722. [PMID: 36815832 PMCID: PMC10062176 DOI: 10.1128/jvi.01857-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells involves triggering of the viral envelope glycoprotein (Env) trimer ([gp120/gp41]3) by the primary receptor, CD4, and coreceptors, CCR5 or CXCR4. The pretriggered (State-1) conformation of the mature (cleaved) Env is targeted by broadly neutralizing antibodies (bNAbs), which are inefficiently elicited compared with poorly neutralizing antibodies (pNAbs). Here, we characterize variants of the moderately triggerable HIV-1AD8 Env on virions produced by an infectious molecular proviral clone; such virions contain more cleaved Env than pseudotyped viruses. We identified three types of cleaved wild-type AD8 Env trimers on virions: (i) State-1-like trimers preferentially recognized by bNAbs and exhibiting strong subunit association; (ii) trimers recognized by pNAbs directed against the gp120 coreceptor-binding region and exhibiting weak, detergent-sensitive subunit association; and (iii) a minor gp41-only population. The first Env population was enriched and the other Env populations reduced by introducing State-1-stabilizing changes in the AD8 Env or by treatment of the virions with crosslinker or the State-1-preferring entry inhibitor, BMS-806. These stabilized AD8 Envs were also more resistant to gp120 shedding induced by a CD4-mimetic compound or by incubation on ice. Conversely, a State-1-destabilized, CD4-independent AD8 Env variant exhibited weaker bNAb recognition and stronger pNAb recognition. Similar relationships between Env triggerability and antigenicity/shedding propensity on virions were observed for other HIV-1 strains. State-1 Envs on virions can be significantly enriched by minimizing the adventitious incorporation of uncleaved Env; stabilizing the pretriggered conformation by Env modification, crosslinking or BMS-806 treatment; strengthening Env subunit interactions; and using CD4-negative producer cells. IMPORTANCE Efforts to develop an effective HIV-1 vaccine have been frustrated by the inability to elicit broad neutralizing antibodies that recognize multiple virus strains. Such antibodies can bind a particular shape of the HIV-1 envelope glycoprotein trimer, as it exists on a viral membrane but before engaging receptors on the host cell. Here, we establish simple yet powerful assays to characterize the envelope glycoproteins in a natural context on virus particles. We find that, depending on the HIV-1 strain, some envelope glycoproteins change shape and fall apart, creating decoys that can potentially divert the host immune response. We identify requirements to keep the relevant envelope glycoprotein target for broad neutralizing antibodies intact on virus-like particles. These studies suggest strategies that should facilitate efforts to produce and use virus-like particles as vaccine immunogens.
Collapse
Affiliation(s)
- Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Bibollet-Ruche F, Russell RM, Ding W, Liu W, Li Y, Wagh K, Wrapp D, Habib R, Skelly AN, Roark RS, Sherrill-Mix S, Wang S, Rando J, Lindemuth E, Cruickshank K, Park Y, Baum R, Carey JW, Connell AJ, Li H, Giorgi EE, Song GS, Ding S, Finzi A, Newman A, Hernandez GE, Machiele E, Cain DW, Mansouri K, Lewis MG, Montefiori DC, Wiehe KJ, Alam SM, Teng IT, Kwong PD, Andrabi R, Verkoczy L, Burton DR, Korber BT, Saunders KO, Haynes BF, Edwards RJ, Shaw GM, Hahn BH. A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies. mBio 2023; 14:e0337022. [PMID: 36629414 PMCID: PMC9973348 DOI: 10.1128/mbio.03370-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 and its SIV precursors share a broadly neutralizing antibody (bNAb) epitope in variable loop 2 (V2) at the envelope glycoprotein (Env) trimer apex. Here, we tested the immunogenicity of germ line-targeting versions of a chimpanzee SIV (SIVcpz) Env in human V2-apex bNAb heavy-chain precursor-expressing knock-in mice and as chimeric simian-chimpanzee immunodeficiency viruses (SCIVs) in rhesus macaques (RMs). Trimer immunization of knock-in mice induced V2-directed NAbs, indicating activation of V2-apex bNAb precursor-expressing mouse B cells. SCIV infection of RMs elicited high-titer viremia, potent autologous tier 2 neutralizing antibodies, and rapid sequence escape in the canonical V2-apex epitope. Six of seven animals also developed low-titer heterologous plasma breadth that mapped to the V2-apex. Antibody cloning from two of these animals identified multiple expanded lineages with long heavy chain third complementarity determining regions that cross-neutralized as many as 7 of 19 primary HIV-1 strains, but with low potency. Negative stain electron microscopy (NSEM) of members of the two most cross-reactive lineages confirmed V2 targeting but identified an angle of approach distinct from prototypical V2-apex bNAbs, with antibody binding either requiring or inducing an occluded-open trimer. Probing with conformation-sensitive, nonneutralizing antibodies revealed that SCIV-expressed, but not wild-type SIVcpz Envs, as well as a subset of primary HIV-1 Envs, preferentially adopted a more open trimeric state. These results reveal the existence of a cryptic V2 epitope that is exposed in occluded-open SIVcpz and HIV-1 Env trimers and elicits cross-neutralizing responses of limited breadth and potency. IMPORTANCE An effective HIV-1 vaccination strategy will need to stimulate rare precursor B cells of multiple bNAb lineages and affinity mature them along desired pathways. Here, we searched for V2-apex germ line-targeting Envs among a large set of diverse primate lentiviruses and identified minimally modified versions of one chimpanzee SIV Env that bound several human V2-apex bNAb precursors and stimulated one of these in a V2-apex bNAb precursor-expressing knock-in mouse. We also generated chimeric simian-chimpanzee immunodeficiency viruses and showed that they elicit low-titer V2-directed heterologous plasma breadth in six of seven infected rhesus macaques. Characterization of this antibody response identified a new class of weakly cross-reactive neutralizing antibodies that target the V2-apex, but only in occluded-open Env trimers. The existence of this cryptic epitope, which in some Env backgrounds is immunodominant, needs to be considered in immunogen design.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronnie M. Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Daniel Wrapp
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rumi Habib
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin N. Skelly
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan S. Roark
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Lindemuth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kendra Cruickshank
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Younghoon Park
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Baum
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John W. Carey
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elena E. Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ge S. Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily Machiele
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin J. Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Laurent Verkoczy
- San Diego Biomedical Research Institute, San Diego, California, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of MGH, Harvard and MIT, Cambridge, Massachusetts, USA
| | - Bette T. Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Rosato PC, Lotfi-Emran S, Joag V, Wijeyesinghe S, Quarnstrom CF, Degefu HN, Nedellec R, Schenkel JM, Beura LK, Hangartner L, Burton DR, Masopust D. Tissue-resident memory T cells trigger rapid exudation and local antibody accumulation. Mucosal Immunol 2023; 16:17-26. [PMID: 36657662 PMCID: PMC10338064 DOI: 10.1016/j.mucimm.2022.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Adaptive immunity is didactically partitioned into humoral and cell-mediated effector mechanisms, which may imply that each arm is separate and does not function together. Here, we report that the activation of CD8+ resident memory T cells (TRM) in nonlymphoid tissues triggers vascular permeability, which facilitates rapid distribution of serum antibodies into local tissues. TRM reactivation was associated with transcriptional upregulation of antiviral signaling pathways as well as Fc receptors and components of the complement cascade. Effects were local, but evidence is presented that TRM in brain and reproductive mucosa are both competent to induce rapid antibody exudation. TRM reactivation in the mouse female genital tract increased local concentrations of virus-specific neutralizing antibodies, including anti-vesicular stomatitis virus, and passively transferred anti-HIV antibodies. We showed that this response was sufficient to increase the efficacy of ex vivo vesicular stomatitis virus neutralization. These results indicate that CD8+ TRM antigen recognition can enhance local humoral immunity.
Collapse
Affiliation(s)
- Pamela C Rosato
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Sahar Lotfi-Emran
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Vineet Joag
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Sathi Wijeyesinghe
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Clare F Quarnstrom
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Hanna N Degefu
- Geisel School of Medicine at Dartmouth College, Dartmouth Cancer Center, Department of Microbiology and Immunology, Lebanon, NH, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jason M Schenkel
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA
| | - Lalit K Beura
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA; Brown University, Department of Molecular Microbiology and Immunology, Providence, RI, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Masopust
- University of Minnesota, Center for Immunology, Department of Microbiology and Immunology, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Sajadi MM, Myers A, Logue J, Saadat S, Shokatpour N, Quinn J, Newman M, Deming M, Rikhtegaran Tehrani Z, Magder LS, Karimi M, Abbasi A, Shlyak M, Baracco L, Frieman MB, Crotty S, Harris AD. Mucosal and Systemic Responses to Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination Determined by Severity of Primary Infection. mSphere 2022; 7:e0027922. [PMID: 36321826 PMCID: PMC9769618 DOI: 10.1128/msphere.00279-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
With much of the world infected with or vaccinated against severe acute respiratory syndrome coronavirus 2 (commonly abbreviated SARS-CoV-2; abbreviated here SARS2), understanding the immune responses to the SARS2 spike (S) protein in different situations is crucial to controlling the pandemic. We studied the clinical, systemic, mucosal, and cellular responses to two doses of SARS2 mRNA vaccines in 62 individuals with and without prior SARS2 infection that were divided into three groups based on antibody serostatus prior to vaccination and/or degree of disease symptoms among those with prior SARS2 infection: antibody negative (naive), low symptomatic, and symptomatic. Antibody negative were subjects who were antibody negative (i.e., those with no prior infection). Low symptomatic subjects were those who were antibody negative and had minimal or no symptoms at time of SARS2 infection. Symptomatic subjects were those who were antibody positive and symptomatic at time of SARS2 infection. All three groups were then studied when they received their SARS2 mRNA vaccines. In the previously SARS2-infected (based on antibody test) low symptomatic and symptomatic groups, reactogenic symptoms related to a recall response were elicited after the first vaccination. Anti-S trimer IgA and IgG titers, and neutralizing antibody titers, peaked after the 1st vaccination in the previously SARS2-infected groups and were significantly higher than for the SARS2 antibody-negative group in the plasma and nasal samples at most time points. Nasal and plasma IgA antibody responses were significantly higher in the low symptomatic group than in the symptomatic group at most time points. After the first vaccination, differences in cellular immunity were not evident between groups, but the activation-induced cell marker (AIM+) CD4+ cell response correlated with durability of IgG humoral immunity against the SARS2 S protein. In those SARS2-infected subjects, severity of infection dictated plasma and nasal IgA responses in primary infection as well as response to vaccination (peak responses and durability), which could have implications for continued protection against reinfection. Lingering differences between the SARS2-infected and SARS2-naive up to 10 months postvaccination could explain the decreased reinfection rates in the SARS2-infected vaccinees recently reported and suggests that additional strategies (such as boosting of the SARS2-naive vaccinees) are needed to narrow the differences observed between these groups. IMPORTANCE This study on SARS2 vaccination in those with and without previous exposure to the virus demonstrates that severity of infection dictates IgA responses in primary infection as well as response to vaccination (peak responses and durability), which could have implications for continued protection against reinfection.
Collapse
Affiliation(s)
- Mohammad M. Sajadi
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amber Myers
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saman Saadat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Narjes Shokatpour
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James Quinn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Michelle Newman
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Meagan Deming
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Laurence S. Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maryam Karimi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mike Shlyak
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lauren Baracco
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Anthony D. Harris
- Baltimore VA Medical Center, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thijs H Steijaert
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
28
|
Reiss EIMM, van Haaren MM, van Schooten J, Claireaux MAF, Maisonnasse P, Antanasijevic A, Allen JD, Bontjer I, Torres JL, Lee WH, Ozorowski G, Vázquez Bernat N, Kaduk M, Aldon Y, Burger JA, Chawla H, Aartse A, Tolazzi M, Gao H, Mundsperger P, Crispin M, Montefiori DC, Karlsson Hedestam GB, Scarlatti G, Ward AB, Le Grand R, Shattock R, Dereuddre-Bosquet N, Sanders RW, van Gils MJ. Fine-mapping the immunodominant antibody epitopes on consensus sequence-based HIV-1 envelope trimer vaccine candidates. NPJ Vaccines 2022; 7:152. [PMID: 36433972 PMCID: PMC9700725 DOI: 10.1038/s41541-022-00576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is the key target for vaccines aimed at inducing neutralizing antibodies (NAbs) against HIV-1. The clinical candidate immunogen ConM SOSIP.v7 is a stabilized native-like HIV-1 Env trimer based on an artificial consensus sequence of all HIV-1 isolates in group M. In preclinical studies ConM SOSIP.v7 trimers induced strong autologous NAb responses in non-human primates (NHPs). To fine-map these responses, we isolated monoclonal antibodies (mAbs) from six cynomolgus macaques that were immunized three times with ConM SOSIP.v7 protein and boosted twice with the closely related ConSOSL.UFO.664 immunogen. A total of 40 ConM and/or ConS-specific mAbs were isolated, of which 18 were retrieved after the three ConM SOSIP.v7 immunizations and 22 after the two immunizations with ConSOSL.UFO.664. 22 mAbs (55%) neutralized the ConM and/or ConS virus. Cross-neutralization of ConS virus by approximately one-third of the mAbs was seen prior to ConSOSL.UFO.664 immunization, albeit with modest potency. Neutralizing antibodies predominantly targeted the V1 and V2 regions of the immunogens, with an apparent extension towards the V3 region. Thus, the V1V2V3 region is immunodominant in the potent NAb response elicited by two consensus sequence native-like HIV-1 Env immunogens. Immunization with these soluble consensus Env proteins also elicited non-neutralizing mAbs targeting the trimer base. These results inform the use and improvement of consensus-based trimer immunogens in combinatorial vaccine strategies.
Collapse
Affiliation(s)
- E I M M Reiss
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M M van Haaren
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J van Schooten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A F Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Maisonnasse
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - A Antanasijevic
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - J D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - I Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J L Torres
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - W-H Lee
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - G Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - N Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y Aldon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J A Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - H Chawla
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - A Aartse
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - M Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - H Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - P Mundsperger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - M Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - D C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - G B Karlsson Hedestam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - G Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - A B Ward
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - R Le Grand
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R Shattock
- Division of Mucosal Infection and Immunity, Department of Medicine, Imperial College of Science, Technology and Medicine, London, UK
| | - N Dereuddre-Bosquet
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - M J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Prévost J, Anand SP, Rajashekar JK, Zhu L, Richard J, Goyette G, Medjahed H, Gendron-Lepage G, Chen HC, Chen Y, Horwitz JA, Grunst MW, Zolla-Pazner S, Haynes BF, Burton DR, Flavell RA, Kirchhoff F, Hahn BH, Smith AB, Pazgier M, Nussenzweig MC, Kumar P, Finzi A. HIV-1 Vpu restricts Fc-mediated effector functions in vivo. Cell Rep 2022; 41:111624. [PMID: 36351384 PMCID: PMC9703018 DOI: 10.1016/j.celrep.2022.111624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jyothi Krishnaswamy Rajashekar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Yaozong Chen
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michael W Grunst
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), Duke University, Durham, NC 27710, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
30
|
Wang E, Chakraborty AK. Design of immunogens for eliciting antibody responses that may protect against SARS-CoV-2 variants. PLoS Comput Biol 2022; 18:e1010563. [PMID: 36156540 PMCID: PMC9536555 DOI: 10.1371/journal.pcbi.1010563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/06/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of SARS-CoV-2 variants and the history of outbreaks caused by zoonotic coronaviruses point to the need for next-generation vaccines that confer protection against variant strains. Here, we combined analyses of diverse sequences and structures of coronavirus spikes with data from deep mutational scanning to design SARS-CoV-2 variant antigens containing the most significant mutations that may emerge. We trained a neural network to predict RBD expression and ACE2 binding from sequence, which allowed us to determine that these antigens are stable and bind to ACE2. Thus, they represent viable variants. We then used a computational model of affinity maturation (AM) to study the antibody response to immunization with different combinations of the designed antigens. The results suggest that immunization with a cocktail of the antigens is likely to promote evolution of higher titers of antibodies that target SARS-CoV-2 variants than immunization or infection with the wildtype virus alone. Finally, our analysis of 12 coronaviruses from different genera identified the S2’ cleavage site and fusion peptide as potential pan-coronavirus vaccine targets. SARS-CoV-2 variants have already emerged and future variants may pose greater threats to the efficacy of current vaccines. Rather than using a reactive approach to vaccine development that would lag behind the evolution of the virus, such as updating the sequence in the vaccine with a current variant, we sought to use a proactive approach that predicts some of the mutations that could arise that could evade current immune responses. Then, by including these mutations in a new vaccine antigen, we might be able to protect against those potential variants before they appear. Toward this end, we used various computational methods including sequence analysis and machine learning to design such antigens. We then used simulations of antibody development, and the results suggest that immunization with our designed antigens is likely to result in an antibody response that is better able to target SARS-CoV-2 variants than current vaccines. We also leveraged our sequence analysis to suggest that a particular site on the spike protein could serve as a useful target for a pan-coronavirus vaccine.
Collapse
Affiliation(s)
- Eric Wang
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arup K. Chakraborty
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Saunders KO, Edwards RJ, Tilahun K, Manne K, Lu X, Cain DW, Wiehe K, Williams WB, Mansouri K, Hernandez GE, Sutherland L, Scearce R, Parks R, Barr M, DeMarco T, Eater CM, Eaton A, Morton G, Mildenberg B, Wang Y, Rountree RW, Tomai MA, Fox CB, Moody MA, Alam SM, Santra S, Lewis MG, Denny TN, Shaw GM, Montefiori DC, Acharya P, Haynes BF. Stabilized HIV-1 envelope immunization induces neutralizing antibodies to the CD4bs and protects macaques against mucosal infection. Sci Transl Med 2022; 14:eabo5598. [PMID: 36070369 PMCID: PMC10034035 DOI: 10.1126/scitranslmed.abo5598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Microbiology and Molecular Genetics, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kedamawit Tilahun
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Derek W. Cain
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Todd DeMarco
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Chloe M. Eater
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | | | | | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - R. Wes Rountree
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Mark A. Tomai
- 3M Corporate Research Materials Lab, 3M Company; St. Paul, MN, 55144, USA
| | | | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Pediatrics, Duke University Medical Center; Durham, NC, 27710, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center; Boston, MA, 02215, USA
| | | | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Surgery, Duke University Medical Center; Durham, NC 27710
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center; Durham, NC 27710
- Department of Immunology, Duke University Medical Center; Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center; Durham, NC, 27710, USA
| |
Collapse
|
32
|
Zhao F, Berndsen ZT, Pedreño-Lopez N, Burns A, Allen JD, Barman S, Lee WH, Chakraborty S, Gnanakaran S, Sewall LM, Ozorowski G, Limbo O, Song G, Yong P, Callaghan S, Coppola J, Weisgrau KL, Lifson JD, Nedellec R, Voigt TB, Laurino F, Louw J, Rosen BC, Ricciardi M, Crispin M, Desrosiers RC, Rakasz EG, Watkins DI, Andrabi R, Ward AB, Burton DR, Sok D. Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nat Commun 2022; 13:5236. [PMID: 36068229 PMCID: PMC9446601 DOI: 10.1038/s41467-022-32783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zachary T Berndsen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Leigh M Sewall
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI, New York, NY, 10004, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica Coppola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas B Voigt
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Fernanda Laurino
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Johan Louw
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Brandon C Rosen
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Ricciardi
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David I Watkins
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, 02139, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI, New York, NY, 10004, USA.
| |
Collapse
|
33
|
Gilbert PB, Huang Y, deCamp AC, Karuna S, Zhang Y, Magaret CA, Giorgi EE, Korber B, Edlefsen PT, Rossenkhan R, Juraska M, Rudnicki E, Kochar N, Huang Y, Carpp LN, Barouch DH, Mkhize NN, Hermanus T, Kgagudi P, Bekker V, Kaldine H, Mapengo RE, Eaton A, Domin E, West C, Feng W, Tang H, Seaton KE, Heptinstall J, Brackett C, Chiong K, Tomaras GD, Andrew P, Mayer BT, Reeves DB, Sobieszczyk ME, Garrett N, Sanchez J, Gay C, Makhema J, Williamson C, Mullins JI, Hural J, Cohen MS, Corey L, Montefiori DC, Morris L. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat Med 2022; 28:1924-1932. [PMID: 35995954 PMCID: PMC9499869 DOI: 10.1038/s41591-022-01953-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
The Antibody Mediated Prevention trials showed that the broadly neutralizing antibody (bnAb) VRC01 prevented acquisition of human immunodeficiency virus-1 (HIV-1) sensitive to VRC01. Using AMP trial data, here we show that the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker-which quantifies the neutralization potency of antibodies in an individual's serum against an HIV-1 isolate-can be used to predict HIV-1 prevention efficacy. Similar to the results of nonhuman primate studies, an average PT80 of 200 (meaning a bnAb concentration 200-fold higher than that required to reduce infection by 80% in vitro) against a population of probable exposing viruses was estimated to be required for 90% prevention efficacy against acquisition of these viruses. Based on this result, we suggest that the goal of sustained PT80 <200 against 90% of circulating viruses can be achieved by promising bnAb regimens engineered for long half-lives. We propose the PT80 biomarker as a surrogate endpoint for evaluatinon of bnAb regimens, and as a tool for benchmarking candidate bnAb-inducing vaccines.
Collapse
Affiliation(s)
- Peter B. Gilbert
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA USA
| | - Yunda Huang
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Global Health, University of Washington, Seattle, WA USA
| | - Allan C. deCamp
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Shelly Karuna
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Yuanyuan Zhang
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Craig A. Magaret
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Elena E. Giorgi
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA ,grid.270240.30000 0001 2180 1622Present Address: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Bette Korber
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Paul T. Edlefsen
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Raabya Rossenkhan
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Michal Juraska
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Erika Rudnicki
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Nidhi Kochar
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Ying Huang
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Lindsay N. Carpp
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Dan H. Barouch
- grid.239395.70000 0000 9011 8547Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA USA ,grid.32224.350000 0004 0386 9924Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Nonhlanhla N. Mkhize
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Hermanus
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Valerie Bekker
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa ,grid.26009.3d0000 0004 1936 7961Present Address: Duke Center for Human Systems Immunology, Duke University Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC USA
| | - Haajira Kaldine
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rutendo E. Mapengo
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Eaton
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Elize Domin
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Carley West
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Wenhong Feng
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Haili Tang
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Kelly E. Seaton
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Jack Heptinstall
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Caroline Brackett
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Kelvin Chiong
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Georgia D. Tomaras
- grid.26009.3d0000 0004 1936 7961Duke University Departments of Surgery, Immunology, Molecular Genetics and Micobiology, Duke Center for Human Systems Immunology, Durham, NC USA
| | - Philip Andrew
- grid.245835.d0000 0001 0300 5112Family Health International, Durham, NC USA
| | - Bryan T. Mayer
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Daniel B. Reeves
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Magdalena E. Sobieszczyk
- grid.21729.3f0000000419368729Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY USA
| | - Nigel Garrett
- grid.16463.360000 0001 0723 4123Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa ,grid.16463.360000 0001 0723 4123Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Jorge Sanchez
- grid.10800.390000 0001 2107 4576Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Cynthia Gay
- grid.10698.360000000122483208Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Joseph Makhema
- Botswana-Harvard AIDS Initiative Partnership for HIV Research and Education, Gaborone, Botswana ,grid.239395.70000 0000 9011 8547Division of Infectious Disease, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Carolyn Williamson
- grid.7836.a0000 0004 1937 1151Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - James I. Mullins
- grid.34477.330000000122986657Department of Global Health, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Microbiology, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA
| | - John Hural
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Myron S. Cohen
- grid.10698.360000000122483208Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lawrence Corey
- grid.270240.30000 0001 2180 1622Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Department of Laboratory Medicine, University of Washington, Seattle, WA USA
| | - David C. Montefiori
- grid.189509.c0000000100241216Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Lynn Morris
- grid.416657.70000 0004 0630 4574National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa ,grid.11951.3d0000 0004 1937 1135Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa ,grid.16463.360000 0001 0723 4123Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
34
|
Barnes CO, Schoofs T, Gnanapragasam PN, Golijanin J, Huey-Tubman KE, Gruell H, Schommers P, Suh-Toma N, Lee YE, Cetrulo Lorenzi JC, Piechocka-Trocha A, Scheid JF, West AP, Walker BD, Seaman MS, Klein F, Nussenzweig MC, Bjorkman PJ. A naturally arising broad and potent CD4-binding site antibody with low somatic mutation. SCIENCE ADVANCES 2022; 8:eabp8155. [PMID: 35960796 PMCID: PMC9374330 DOI: 10.1126/sciadv.abp8155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The induction of broadly neutralizing antibodies (bNAbs) is a potential strategy for a vaccine against HIV-1. However, most bNAbs exhibit features such as unusually high somatic hypermutation, including insertions and deletions, which make their induction challenging. VRC01-class bNAbs not only exhibit extraordinary breadth and potency but also rank among the most highly somatically mutated bNAbs. Here, we describe a VRC01-class antibody isolated from a viremic controller, BG24, that is much less mutated than most relatives of its class while achieving comparable breadth and potency. A 3.8-Å x-ray crystal structure of a BG24-BG505 Env trimer complex revealed conserved contacts at the gp120 interface characteristic of the VRC01-class Abs, despite lacking common CDR3 sequence motifs. The existence of moderately mutated CD4-binding site (CD4bs) bNAbs such as BG24 provides a simpler blueprint for CD4bs antibody induction by a vaccine, raising the prospect that such an induction might be feasible with a germline-targeting approach.
Collapse
Affiliation(s)
- Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | | | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn E. Huey-Tubman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Johannes F. Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- German Center for Infection Research, partner site Bonn–Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
35
|
Rosenberg YJ, Jiang X, Lees JP, Urban LA, Mao L, Sack M. Enhanced HIV SOSIP Envelope yields in plants through transient co-expression of peptidyl-prolyl isomerase B and calreticulin chaperones and ER targeting. Sci Rep 2022; 12:10027. [PMID: 35705669 PMCID: PMC9200074 DOI: 10.1038/s41598-022-14075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.
Collapse
|
36
|
Zhou T, Chen L, Gorman J, Wang S, Kwon YD, Lin BC, Louder MK, Rawi R, Stancofski ESD, Yang Y, Zhang B, Quigley AF, McCoy LE, Rutten L, Verrips T, Weiss RA, Doria-Rose NA, Shapiro L, Kwong PD. Structural basis for llama nanobody recognition and neutralization of HIV-1 at the CD4-binding site. Structure 2022; 30:862-875.e4. [PMID: 35413243 PMCID: PMC9177634 DOI: 10.1016/j.str.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Nanobodies can achieve remarkable neutralization of genetically diverse pathogens, including HIV-1. To gain insight into their recognition, we determined crystal structures of four llama nanobodies (J3, A12, C8, and D7), all of which targeted the CD4-binding site, in complex with the HIV-1 envelope (Env) gp120 core, and determined a cryoelectron microscopy (cryo-EM) structure of J3 with the Env trimer. Crystal and cryo-EM structures of J3 complexes revealed this nanobody to mimic binding to the prefusion-closed trimer for the primary site of CD4 recognition as well as a secondary quaternary site. In contrast, crystal structures of A12, C8, and D7 with gp120 revealed epitopes that included portions of the gp120 inner domain, inaccessible on the prefusion-closed trimer. Overall, these structures explain the broad and potent neutralization of J3 and limited neutralization of A12, C8, and D7, which utilized binding modes incompatible with the neutralization-targeted prefusion-closed conformation of Env.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Forsman Quigley
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy Rutten
- University of Utrecht, Utrecht, the Netherlands
| | | | - Robin A Weiss
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
37
|
Langel SN, Blasi M, Permar SR. Maternal immune protection against infectious diseases. Cell Host Microbe 2022; 30:660-674. [PMID: 35550669 DOI: 10.1016/j.chom.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The maternal immune system protects developing offspring against pathogens before birth via transplacental transfer and after birth through secreted milk. This transferred maternal immunity influences each generation's susceptibility to infections and responsiveness to immunization. Thus, boosting immunity in the maternal-neonatal dyad is a potentially valuable public health strategy. Additionally, at critical times during fetal and postnatal development, environmental factors and immune stimuli influence immune development. These "windows of opportunity" offer a chance to identify both risk and protective factors that promote long-term health and limit disease. Here, we review pre- and postpartum maternal immune factors that protect against infectious agents in offspring and how they may shape the infant's immune landscape over time. Additionally, we discuss the influence of maternal immunity on the responsiveness to immunization in early life. Lastly, when maternal factors are insufficient to prevent neonatal infectious diseases, we discuss pre- and postnatal therapeutic strategies for the maternal-neonatal dyad.
Collapse
Affiliation(s)
- Stephanie N Langel
- Department of Surgery, Duke Center for Human Systems Immunology, Durham, NC, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Klasse PJ, Moore JP. Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. J Virol 2022; 96:e0003422. [PMID: 35384694 PMCID: PMC9044961 DOI: 10.1128/jvi.00034-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
With the much-debated exception of the modestly reduced acquisition reported for the RV144 efficacy trial, HIV-1 vaccines have not protected humans against infection, and a vaccine of similar design to that tested in RV144 was not protective in a later trial, HVTN 702. Similar vaccine regimens have also not consistently protected nonhuman primates (NHPs) against viral acquisition. Conversely, experimental vaccines of different designs have protected macaques from viral challenges but then failed to protect humans, while many other HIV-1 vaccine candidates have not protected NHPs. While efficacy varies more in NHPs than humans, vaccines have failed to protect in the most stringent NHP model. Intense investigations have aimed to identify correlates of protection (CoPs), even in the absence of net protection. Unvaccinated animals and humans vary vastly in their susceptibility to infection and in their innate and adaptive responses to the vaccines; hence, merely statistical associations with factors that do not protect are easily found. Systems biological analyses, including artificial intelligence, have identified numerous candidate CoPs but with no clear consistency within or between species. Proposed CoPs sometimes have only tenuous mechanistic connections to immune protection. In contrast, neutralizing antibodies (NAbs) are a central mechanistic CoP for vaccines that succeed against other viruses, including SARS-CoV-2. No HIV-1 vaccine candidate has yet elicited potent and broadly active NAbs in NHPs or humans, but narrow-specificity NAbs against the HIV-1 isolate corresponding to the immunogen do protect against infection by the autologous virus. Here, we analyze why so many HIV-1 vaccines have failed, summarize the outcomes of vaccination in NHPs and humans, and discuss the value and pitfalls of hunting for CoPs other than NAbs. We contrast the failure to find a consistent CoP for HIV-1 vaccines with the identification of NAbs as the principal CoP for SARS-CoV-2.
Collapse
Affiliation(s)
- P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
39
|
Huettner I, Krumm SA, Serna S, Brzezicka K, Monaco S, Walpole S, van Diepen A, Allan F, Hicks T, Kimuda S, Emery AM, Landais E, Hokke CH, Angulo J, Reichardt N, Doores KJ. Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycans. Cell Rep 2022; 38:110611. [PMID: 35354052 PMCID: PMC10073069 DOI: 10.1016/j.celrep.2022.110611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/26/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Isabella Huettner
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Stefanie A Krumm
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Katarzyna Brzezicka
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Samuel Walpole
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Aidan M Emery
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK
| | - Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Niels Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain; CIBER-BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
40
|
Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. J Virol 2022; 96:e0166821. [PMID: 35343783 DOI: 10.1128/jvi.01668-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.
Collapse
|
41
|
Nicholas RE, Sandstrom K, Anderson JL, Smith WR, Wetzel M, Banerjee P, Janaka SK, Evans DT. KIR3DL05 and KIR3DS02 Recognition of a Nonclassical MHC Class I Molecule in the Rhesus Macaque Implicated in Pregnancy Success. Front Immunol 2022; 13:841136. [PMID: 35401580 PMCID: PMC8984097 DOI: 10.3389/fimmu.2022.841136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the MHC class I ligands of rhesus macaque killer-cell Ig-like receptors (KIRs) is fundamental to understanding the role of natural killer (NK) cells in this species as a nonhuman primate model for infectious diseases, transplantation and reproductive biology. We previously identified Mamu-AG as a ligand for KIR3DL05. Mamu-AG is a nonclassical MHC class I molecule that is expressed at the maternal-fetal interface of the placenta in rhesus macaques similar to HLA-G in humans. Although Mamu-AG and HLA-G share similar molecular features, including limited polymorphism and a short cytoplasmic tail, Mamu-AG is considerably more polymorphic. To determine which allotypes of Mamu-AG serve as ligands for KIR3DL05, we tested reporter cell lines expressing five different alleles of KIR3DL05 (KIR3DL05*001, KIR3DL05*004, KIR3DL05*005, KIR3DL05*008 and KIR3DL05*X) for responses to target cells expressing eight different alleles of Mamu-AG. All five allotypes of KIR3DL05 responded to Mamu-AG2*01:01, two exhibited dominant responses to Mamu-AG1*05:01, and three had low but detectable responses to Mamu-AG3*03:01, -AG3*03:02, -AG3*03:03 and -AG3*03:04. Since KIR3DL05*X is the product of recombination between KIR3DL05 and KIR3DS02, we also tested an allotype of KIR3DS02 (KIR3DS02*004) and found that this activating KIR also recognizes Mamu-AG2*01:01. Additional analysis of Mamu-AG variants with single amino acid substitutions identified residues in the α1-domain essential for recognition by KIR3DL05. These results reveal variation in KIR3DL05 and KIR3DS02 responses to Mamu-AG and define Mamu-AG polymorphisms that differentially affect KIR recognition.
Collapse
Affiliation(s)
- Rachel E. Nicholas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kjell Sandstrom
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer L. Anderson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Willow R. Smith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly Wetzel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Priyankana Banerjee
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
42
|
Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection. mSphere 2022; 7:e0083921. [PMID: 35196125 PMCID: PMC8865927 DOI: 10.1128/msphere.00839-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improved access to antiretroviral therapy (ART) and antenatal care has significantly reduced in utero and peripartum mother-to-child human immunodeficiency virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an unacceptable rate, there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. In this study, we tested the efficacy of an optimized vaccine regimen against oral simian-human immunodeficiency virus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized with empty MVA. The vaccine prime was given within 10 days of birth, with booster doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection or time to acquisition compared to controls. However, among vaccinated animals, ADCC postvaccination and postinfection was associated with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization but may have contributed to control of viremia. IMPORTANCE Women of childbearing age are three times more likely to contract HIV infection than their male counterparts. Poor HIV testing rates coupled with low adherence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV transmission, especially during the breastfeeding period. A preventative vaccine could curb pediatric HIV infections, reduce potential health sequalae, and prevent the need for lifelong ART in this population. The results of the current study imply that the HIV Env-specific IgG antibodies elicited by this candidate vaccine regimen, despite a high magnitude of Fc-mediated effector function but a lack of neutralizing antibodies and polyfunctional T cell responses, were insufficient to protect infant rhesus macaques against oral virus acquisition.
Collapse
|
43
|
Xu Z, Walker S, Wise MC, Chokkalingam N, Purwar M, Moore A, Tello-Ruiz E, Wu Y, Majumdar S, Konrath KM, Kulkarni A, Tursi NJ, Zaidi FI, Reuschel EL, Patel I, Obeirne A, Du J, Schultheis K, Gites L, Smith T, Mendoza J, Broderick KE, Humeau L, Pallesen J, Weiner DB, Kulp DW. Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nat Commun 2022; 13:695. [PMID: 35121758 PMCID: PMC8816947 DOI: 10.1038/s41467-022-28363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
HIV Envelope (Env) is the main vaccine target for induction of neutralizing antibodies. Stabilizing Env into native-like trimer (NLT) conformations is required for recombinant protein immunogens to induce autologous neutralizing antibodies(nAbs) against difficult to neutralize HIV strains (tier-2) in rabbits and non-human primates. Immunizations of mice with NLTs have generally failed to induce tier-2 nAbs. Here, we show that DNA-encoded NLTs fold properly in vivo and induce autologous tier-2 nAbs in mice. DNA-encoded NLTs also uniquely induce both CD4 + and CD8 + T-cell responses as compared to corresponding protein immunizations. Murine neutralizing antibodies are identified with an advanced sequencing technology. The structure of an Env-Ab (C05) complex, as determined by cryo-EM, identifies a previously undescribed neutralizing Env C3/V5 epitope. Beyond potential functional immunity gains, DNA vaccines permit in vivo folding of structured antigens and provide significant cost and speed advantages for enabling rapid evaluation of new HIV vaccines.
Collapse
Affiliation(s)
- Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susanne Walker
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mansi Purwar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Alan Moore
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Edgar Tello-Ruiz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuanhan Wu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Sonali Majumdar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Kylie M Konrath
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Abhijeet Kulkarni
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Faraz I Zaidi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Emma L Reuschel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Ishaan Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - April Obeirne
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jianqiu Du
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | - Lauren Gites
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Trevor Smith
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Janess Mendoza
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | | | - Laurent Humeau
- Inovio Pharmaceuticals, Plymouth Meeting, PA, 19462, USA
| | - Jesper Pallesen
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Pegu A, Xu L, DeMouth ME, Fabozzi G, March K, Almasri CG, Cully MD, Wang K, Yang ES, Dias J, Fennessey CM, Hataye J, Wei RR, Rao E, Casazza JP, Promsote W, Asokan M, McKee K, Schmidt SD, Chen X, Liu C, Shi W, Geng H, Foulds KE, Kao SF, Noe A, Li H, Shaw GM, Zhou T, Petrovas C, Todd JP, Keele BF, Lifson JD, Doria-Rose N, Koup RA, Yang ZY, Nabel GJ, Mascola JR. Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Rep 2022; 38:110199. [PMID: 34986348 PMCID: PMC8767641 DOI: 10.1016/j.celrep.2021.110199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Megan E. DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cassandra G. Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle D. Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joana Dias
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shing-Fen Kao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Gary J. Nabel
- Sanofi, 640 Memorial Dr., Cambridge MA, USA,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA,Lead contact,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| |
Collapse
|
45
|
Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, Hu Z, Follmann D, Lin Y, Miao H, Schmeisser H, Rogers D, Falcone S, Elbashir SM, Presnyak V, Bahl K, Prabhakaran M, Chen X, Sarfo EK, Ambrozak DR, Gautam R, Martin MA, Swerczek J, Herbert R, Weiss D, Misamore J, Ciaramella G, Himansu S, Stewart-Jones G, McDermott A, Koup RA, Mascola JR, Finzi A, Carfi A, Fauci AS, Lusso P. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med 2021; 27:2234-2245. [PMID: 34887575 DOI: 10.1038/s41591-021-01574-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | - Qingbo Liu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Shilei Ding
- Université de Montreal, Montreal, Quebec, Canada
| | - Zonghui Hu
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yin Lin
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Hana Schmeisser
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Denise Rogers
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Xuejun Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Malcom A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Université de Montreal, Montreal, Quebec, Canada
| | | | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
46
|
Escolano A, Gristick HB, Gautam R, DeLaitsch AT, Abernathy ME, Yang Z, Wang H, Hoffmann MA, Nishimura Y, Wang Z, Koranda N, Kakutani LM, Gao H, Gnanapragasam PNP, Raina H, Gazumyan A, Cipolla M, Oliveira TY, Ramos V, Irvine DJ, Silva M, West AP, Keeffe JR, Barnes CO, Seaman MS, Nussenzweig MC, Martin MA, Bjorkman PJ. Sequential immunization of macaques elicits heterologous neutralizing antibodies targeting the V3-glycan patch of HIV-1 Env. Sci Transl Med 2021; 13:eabk1533. [PMID: 34818054 PMCID: PMC8932345 DOI: 10.1126/scitranslmed.abk1533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 develop after prolonged virus and antibody coevolution. Previous studies showed that sequential immunization with a V3-glycan patch germline-targeting HIV-1 envelope trimer (Env) followed by variant Envs can reproduce this process in mice carrying V3-glycan bNAb precursor B cells. However, eliciting bNAbs in animals with polyclonal antibody repertoires is more difficult. We used a V3-glycan immunogen multimerized on virus-like particles (VLPs), followed by boosting with increasingly native-like Env-VLPs, to elicit heterologous neutralizing antibodies in nonhuman primates (NHPs). Structures of antibody/Env complexes after prime and boost vaccinations demonstrated target epitope recognition with apparent maturation to accommodate glycans. However, we also observed increasing off-target antibodies with boosting. Eight vaccinated NHPs were subsequently challenged with simian-human immunodeficiency virus (SHIV), and seven of eight animals became infected. The single NHP that remained uninfected after viral challenge exhibited one of the lowest neutralization titers against the challenge virus. These results demonstrate that more potent heterologous neutralization resulting from sequential immunization is necessary for protection in this animal model. Thus, improved prime-boost regimens to increase bNAb potency and stimulate other immune protection mechanisms are essential for developing anti–HIV-1 vaccines.
Collapse
Affiliation(s)
- Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Harry B. Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Present address: Virology Branch, Basic Research Section, NIAID, NIH. 5601 Fisher’s Lane. Rockville, MD 20892, USA
| | - Andrew T. DeLaitsch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhi Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas Koranda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M. Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Darrell J. Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Malcolm A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
47
|
Williams WB, Wiehe K, Saunders KO, Haynes BF. Strategies for induction of HIV-1 envelope-reactive broadly neutralizing antibodies. J Int AIDS Soc 2021; 24 Suppl 7:e25831. [PMID: 34806332 PMCID: PMC8606870 DOI: 10.1002/jia2.25831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION A primary focus of HIV-1 vaccine development is the activation of B cell receptors for naïve or precursor broadly neutralizing antibodies (bnAbs), followed by expansion and maturation of bnAb B cell lineage intermediates leading to highly affinity-matured bnAbs. HIV-1 envelope (Env) encodes epitopes for bnAbs of different specificities. Design of immunogens to induce bnAb precursors of different specificities and mature them into bnAb status is a goal for HIV-1 vaccine development. We review vaccine strategies for bnAb lineages development and highlight the immunological barriers that these strategies must overcome to generate bnAbs. METHODS We provide perspectives based on published research articles and reviews. DISCUSSION The recent Antibody Mediated Protection (AMP) trial that tested the protective efficacy of one HIV-1 Env bnAb specificity demonstrated that relatively high levels of long-lasting serum titers of multiple specificities of bnAbs will be required for protection from HIV-1 transmission. Current vaccine efforts for induction of bnAb lineages are focused on immunogens designed to expand naïve HIV-1 bnAb precursor B cells following the recent success of vaccine-induction of bnAb precursor B cells in macaques and humans. BnAb precursor B cells serve as templates for priming-immunogen design. However, design of boosting immunogens for bnAb maturation requires knowledge of the optimal immunogen design and immunological environment for bnAb B cell lineage affinity maturation. BnAb lineages acquire rare genetic changes as mutations during B cell maturation. Moreover, the immunological environment that supports bnAb development during HIV-1 infection is perturbed with an altered B cell repertoire and dysfunctional immunoregulatory controls, suggesting that in normal settings, bnAb development will be disfavoured. Thus, strategies for vaccine induction of bnAbs must circumvent immunological barriers for bnAb development that normally constrain bnAb B cell affinity maturation. CONCLUSIONS A fully protective HIV-1 vaccine needs to induce durable high titers of bnAbs that can be generated by a sequential set of Env immunogens for expansion and maturation of bnAb B cell lineages in a permitted immunological environment. Moreover, multiple specificities of bnAbs will be required to be sufficiently broad to prevent the escape of HIV-1 strains during transmission.
Collapse
Affiliation(s)
- Wilton B. Williams
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Kevin Wiehe
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Kevin O. Saunders
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of SurgeryDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Barton F. Haynes
- Human Vaccine InstituteDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
48
|
Targeted destabilization of the HIV-1 gp120-gp41 interface leads to convergent evolution with mutations in the V1V2, HR1 and HR2 domains. J Virol 2021; 95:e0053221. [PMID: 34586861 PMCID: PMC8610599 DOI: 10.1128/jvi.00532-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is responsible for viral entry into target cells and is the sole target of neutralizing antibodies. The Env protein is therefore the focus of HIV-1 vaccine design. Env consists of two noncovalently linked subunits (gp120 and gp41) that form a trimer of heterodimers and this 6-subunit complex is metastable and conformationally flexible. Several approaches have been pursued to stabilize the Env trimer for vaccine purposes, which include structure-based design, high-throughput screening, and selection by mammalian cell display. Here, we employed directed virus evolution to improve Env trimer stability. Accordingly, we deliberately destabilized the Env gp120-gp41 interface by mutagenesis in the context of replicating HIV-1 LAI virus and virus evolution over time. We identified compensatory changes that pointed at convergent evolution, as they were largely restricted to specific Env regions, namely, the V1V2 domain of gp120 and the HR1 and HR2 domain of gp41. Specifically, S614G in V1V2 and Q567R in HR1 were frequently identified. Interestingly, the majority of the compensatory mutations were at distant locations from the original mutations and most likely strengthen intersubunit interactions. These results show how the virus can overcome Env instability and illuminate the regions that play a dominant role in Env stability. IMPORTANCE A successful HIV-1 vaccine most likely requires an envelope glycoprotein (Env) component, as Env is the only viral protein on the surface of the virus and the target for neutralizing antibodies. However, HIV Env is metastable and flexible because of the weak interactions between the Env subunits, complicating the generation of recombinant mimics of native Env. Here, we used directed viral evolution to study Env stability. We deliberately destabilized the interface between Env subunits and explored the capacity of the virus to repair trimer instability by evolution. We identified compensatory mutations that converged in specific Env locations: the apex and the trimer interface. Selected mutations enhanced the stability of recombinant soluble Env trimer proteins. These results provided clues on understanding the structural mechanisms involved in Env trimer stability, which can guide future immunogen design.
Collapse
|
49
|
D'Souza MP, Palin AC, Calder T, Golding H, Kleinstein SH, Milliken EL, O'Connor D, Tomaras G, Warren J, Boggiano C. Mind the gap from research laboratory to clinic: Challenges and opportunities for next-generation assays in human diseases. Vaccine 2021; 39:5233-5239. [PMID: 34366145 PMCID: PMC8343370 DOI: 10.1016/j.vaccine.2021.07.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Modern vaccinology has experienced major conceptual and technological advances over the past 30 years. These include atomic-level structures driving immunogen design, new vaccine delivery methods, powerful adjuvants, and novel animal models. In addition, utilizing advanced assays to learn how the immune system senses a pathogen and orchestrates protective immunity has been critical in the design of effective vaccines and therapeutics. The National Institute of Allergy and Infectious Diseases of the National Institutes of Health convened a workshop in September 2020 focused on next generation assays for vaccine development (Table 1). The workshop focused on four critical pathogens: severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and human immunodeficiency virus (HIV)-which have no licensed vaccines-and tuberculosis (TB) and influenza-both of which are in critical need of improved vaccines. The goal was to share progress and lessons learned, and to identify any commonalities that can be leveraged to design vaccines and therapeutics.
Collapse
Affiliation(s)
- M Patricia D'Souza
- Vaccine Clinical Research Branch, Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA.
| | - Amy C Palin
- Vaccine Clinical Research Branch, Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Thomas Calder
- Office of the Director, Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Pathology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - David O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Georgia Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Jon Warren
- Pre-clinical Research and Development Branch, Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Cesar Boggiano
- Pre-clinical Research and Development Branch, Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| |
Collapse
|
50
|
Anand SP, Ding S, Tolbert WD, Prévost J, Richard J, Gil HM, Gendron-Lepage G, Cheung WF, Wang H, Pastora R, Saxena H, Wakarchuk W, Medjahed H, Wines BD, Hogarth M, Shaw GM, Martin MA, Burton DR, Hangartner L, Evans DT, Pazgier M, Cossar D, McLean MD, Finzi A. Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. J Virol 2021; 95:e0079621. [PMID: 34232070 PMCID: PMC8387047 DOI: 10.1128/jvi.00796-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Hirak Saxena
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malcom A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, Massachusetts, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Doug Cossar
- PlantForm Corporation, Toronto, Ontario, Canada
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|