1
|
Vasileva F, Font-Lladó R, López-Ros V, Barretina J, Noguera-Castells A, Esteller M, López-Bermejo A, Prats-Puig A. An Integrated Neuromuscular Training Intervention Applied in Primary School Induces Epigenetic Modifications in Disease-Related Genes: A Genome-Wide DNA Methylation Study. Scand J Med Sci Sports 2025; 35:e70012. [PMID: 39757698 DOI: 10.1111/sms.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Physical exercise has been shown to induce epigenetic modifications with various health implications, directly affect DNA methylation (DNAm), as well as reverse the epigenetic age. Hence, we aimed to identify differential methylation changes and assess the epigenetic age in the saliva of 7-9-year-old school children following a 3-month integrated neuromuscular training (INT), as well as to explore if any of the methylation changes are in core genes. Core genes are defined as genes of high relevance and essential importance within the human genome. Forty children (17 boys and 23 girls) were recruited from schools in Girona, Spain, and allocated into control (N = 20) or INT (N = 20) group. The INT group performed a 3-month INT as a warm-up during the physical education (PE) classes, encompassing strength, coordination, dynamic stabilization, plyometrics, speed, and agility exercises, whereas the control group performed traditional warm-up activities, encompassing aerobic exercises that will prepare the cardiovascular system and increase the joint mobility for the upcoming effort during the class. Genome-wide DNAm analysis was performed with the Illumina 900 K microarray. Core genes were recognized based on the accomplishment of a rigorous and widely accepted 3-point criteria: participation in the enriched pathways, high connectivity (≥ 10), and target genes of key transcription factors. There were 1200 differentially methylated positions (DMPs) in the control group and 414 DMPs in the INT group (FDR < 0.05, p < 0.05, Aβ < |0.1|), suggesting a non-significant trend of epigenetic age acceleration in the control group (1.18 months, p > 0.05) and a non-significant 1-month decrease of the epigenetic age in the INT group (p > 0.05). The genes with DMPs in the control group showed low similarity between enriched pathways and low interconnectivity, encompassing distinct pathways, mostly development and growth-related. Additionally, no core genes were identified in the control group. Interestingly, the genes with DMPs in the INT group showed high similarity between enriched pathways and high interconnectivity, encompassing related pathways involving signaling mechanisms, as well as hormone and protein metabolism pathways. Moreover, 17 DMPs in the children from the INT group were in core genes. The main findings of the present study are suggesting an integrated response to the training stimulus in 7-9-year-old school children that performed a 3-month INT, including epigenetic modifications in 17 genes considered as core genes. Trial Registration: The study protocol was registered in the ISRCTN registry (ISRCTN16744821).
Collapse
Affiliation(s)
- Fidanka Vasileva
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- University School of Health and Sport, University of Girona, Girona, Spain
| | - Raquel Font-Lladó
- University School of Health and Sport, University of Girona, Girona, Spain
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
- Chair of Sport and Physical Education - Centre of Olympic Studies, University of Girona, Girona, Spain
| | - Víctor López-Ros
- Faculty of Education and Psychology, University of Girona, Girona, Spain
- Research Group of Culture, Education and Human Development, Institute of Educational Research, University of Girona, Girona, Spain
| | | | - Aleix Noguera-Castells
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Biosciences, Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Biomedical Research Centre in Cancer Network, Madrid, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Biomedical Research Institute of Girona, Girona, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
- Pediatric Endocrinology, Dr. Josep Trueta Hospital, Girona, Spain
| | - Anna Prats-Puig
- University School of Health and Sport, University of Girona, Girona, Spain
- Research Group Health and Health Care, Nursing Department, University of Girona, Girona, Spain
| |
Collapse
|
2
|
Xia X, Huang Z, Xu C, Fu H, Wang S, Tian J, Rui K. Regulation of intestinal tissue‑resident memory T cells: a potential target for inflammatory bowel disease. Cell Commun Signal 2024; 22:610. [PMID: 39695803 DOI: 10.1186/s12964-024-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue-resident memory T (TRM) cells are populations which settle down in non-lymphoid tissues instead of returning to secondary lymph organs after the antigen presentation. These cells can provide rapid on-site immune protection as well as long-term tissue damage. It is reported that TRM cells from small intestine and colon exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional and functional heterogeneity. In this review, we focus on the reason why they lodge in intestinal tract, their developmental plasticity of going back to to circulation, as well as their regulators associated with retention, maintenance, exhaustion and metabolism. We also elaborate their role in the inflammatory bowel disease (IBD) and discuss the potential therapeutic strategies targeting TRM cells.
Collapse
Affiliation(s)
- Xin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhanjun Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hailong Fu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01098-w. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
4
|
Huang CX, Lao XM, Wang XY, Ren YZ, Lu YT, Shi W, Wang YZ, Wu CY, Xu L, Chen MS, Gao Q, Liu L, Wei Y, Kuang DM. Pericancerous cross-presentation to cytotoxic T lymphocytes impairs immunotherapeutic efficacy in hepatocellular carcinoma. Cancer Cell 2024; 42:2082-2097.e10. [PMID: 39547231 DOI: 10.1016/j.ccell.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Hyperprogressive disease can occur in cancer patients receiving immune checkpoint blockade (ICB) therapy, but whether and how reactive cytotoxic T lymphocytes (CTLs) exert protumorigenic effects in this context remain elusive. Herein, our study reveals that pericancerous macrophages cross-present antigens to CD103+ CTLs in hepatocellular carcinoma (HCC) via the endoplasmic reticulum (ER)-associated degradation machinery-mediated cytosolic pathway. This process leads to the retention of CD103+ CTLs in the pericancerous area, whereby they activate NLRP3 inflammasome in macrophages, promoting hepatoma progression and resistance to immunotherapy. Our single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analysis of HCC patients shows that despite their tissue-resident effector phenotype, the aggregation of CD103+ CTLs predicts unfavorable clinical outcomes for HCC patients receiving multiple types of treatment. Correspondingly, therapeutic strategies that redistribute CD103+ CTLs can disrupt this pathogenic interplay with macrophages, enhancing the efficacy of ICB treatment against HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Humans
- Immunotherapy/methods
- Macrophages/immunology
- Mice
- Animals
- Integrin alpha Chains/metabolism
- Integrin alpha Chains/immunology
- Cross-Priming/immunology
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Tumor Microenvironment/immunology
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chun-Xiang Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xu-Yan Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Zheng Ren
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Tong Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Zhe Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cai-Yuan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Min-Shan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Innovation Center of the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Innovation Center of the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Scott MC, Steier Z, Pierson MJ, Stolley JM, O'Flanagan SD, Soerens AG, Wijeyesinghe SP, Beura LK, Dileepan G, Burbach BJ, Künzli M, Quarnstrom CF, Ghirardelli Smith OC, Weyu E, Hamilton SE, Vezys V, Shalek AK, Masopust D. Deep profiling deconstructs features associated with memory CD8 + T cell tissue residence. Immunity 2024:S1074-7613(24)00522-3. [PMID: 39708817 DOI: 10.1016/j.immuni.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs-location, stimulation history, antigen persistence, and environment-resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
Collapse
Affiliation(s)
- Milcah C Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zoë Steier
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gayathri Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon J Burbach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Künzli
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia C Ghirardelli Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex K Shalek
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Magkouta S, Markaki E, Evangelou K, Petty R, Verginis P, Gorgoulis V. Decoding T cell senescence in cancer: Is revisiting required? Semin Cancer Biol 2024; 108:33-47. [PMID: 39615809 DOI: 10.1016/j.semcancer.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging. In fact, the term "senescence" has been often misused. This is also true in the case of immune cells. While several studies indicate the presence of senescent-like features (mainly in T cells), senescent immune cells are poorly described. Under this prism, we herein review the current literature on what has been characterized as T cell senescence and provide insights on how to accurately discriminate senescent cells against exhausted or anergic ones. We also summarize the major metabolic and epigenetic modifications associated with T cell senescence and underline the role of senescent T cells in the tumor microenvironment (TME). Moreover, we discuss how these cells associate with standard clinical therapeutic interventions and how they impact their efficacy. Finally, we underline the importance of precise identification and thorough characterization of "truly" senescent T cells in order to design successful therapeutic manipulations that would delay cancer incidence and maximize efficacy of immunotherapy.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, "Evangelismos" Hospital, Athens 10676, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, Heraklion 70013, Greece; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
7
|
Obers A, Poch T, Rodrigues G, Christo SN, Gandolfo LC, Fonseca R, Zaid A, Kuai JEY, Lai H, Zareie P, Yakou MH, Dryburgh L, Burn TN, Dosser J, Buquicchio FA, Lareau CA, Walsh C, Judd L, Theodorou MR, Gutbrod K, Dörmann P, Kingham J, Stinear T, Kallies A, Schroeder J, Mueller SN, Park SL, Speed TP, Satpathy AT, Phan TG, Wilhelm C, Zaph C, Evrard M, Mackay LK. Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency. Immunity 2024; 57:2615-2633.e10. [PMID: 39406245 DOI: 10.1016/j.immuni.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024]
Abstract
Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that whereas skin TRM cells strictly require transforming growth factor β (TGF-β) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive TRM cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal TRM populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated TRM cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.
Collapse
Affiliation(s)
- Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tobias Poch
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Grace Rodrigues
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joey En Yu Kuai
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hongjin Lai
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marina H Yakou
- Olivia Newton-John Cancer Research Institute, LaTrobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lachlan Dryburgh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James Dosser
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Calum Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise Judd
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maria Rafailia Theodorou
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Katharina Gutbrod
- Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Peter Dörmann
- Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Jenny Kingham
- Australian BioResources Pty Ltd, Moss Vale, NSW, Australia; Animal Services, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tim Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schroeder
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Tri Giang Phan
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; St Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Colby Zaph
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Raychaudhuri D, Singh P, Chakraborty B, Hennessey M, Tannir AJ, Byregowda S, Natarajan SM, Trujillo-Ocampo A, Im JS, Goswami S. Histone lactylation drives CD8 + T cell metabolism and function. Nat Immunol 2024; 25:2140-2151. [PMID: 39375549 DOI: 10.1038/s41590-024-01985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The activation and functional differentiation of CD8+ T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification; however, the relevance of histone lactylation in the context of CD8+ T cell activation and function is not known. Here, we show the enrichment of H3K18 lactylation (H3K18la) and H3K9 lactylation (H3K9la) in human and mouse CD8+ T cells, which act as transcription initiators of key genes regulating CD8+ T cell function. Further, we note distinct patterns of H3K18la and H3K9la in CD8+ T cell subsets linked to their specific metabolic profiles. Additionally, we find that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways influence CD8+ T cell effector function, including antitumor immunity, in preclinical models. Overall, our study uncovers the potential roles of H3K18la and H3K9la in CD8+ T cells.
Collapse
Affiliation(s)
- Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bidisha Chakraborty
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mercedes Hennessey
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aminah J Tannir
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shrinidhi Byregowda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seanu Meena Natarajan
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abel Trujillo-Ocampo
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jin Seon Im
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Kirchmeier D, Deng Y, Rieble L, Böni M, Läderach F, Schuhmachers P, Valencia-Camargo AD, Murer A, Caduff N, Chatterjee B, Chijioke O, Zens K, Münz C. Epstein-Barr virus infection induces tissue-resident memory T cells in mucosal lymphoid tissues. JCI Insight 2024; 9:e173489. [PMID: 39264727 PMCID: PMC11530129 DOI: 10.1172/jci.insight.173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
EBV contributes to around 2% of all tumors worldwide. Simultaneously, more than 90% of healthy human adults persistently carry EBV without clinical symptoms. In most EBV carriers, it is thought that virus-induced tumorigenesis is prevented by cell-mediated immunity. Specifically, memory CD8+ T cells recognize EBV-infected cells during latent and lytic infection. Using a symptomatic primary infection model, similar to infectious mononucleosis (IM), we found EBV-induced CD8+ tissue resident memory T cells (TRMs) in mice with a humanized immune system. These human TRMs were preferentially established after intranasal EBV infection in nasal-associated lymphoid tissues (NALT), equivalent to tonsils, the primary site of EBV infection in humans. They expressed canonical TRM markers, including CD69, CD103, and BLIMP-1, as well as granzyme B, CD107a, and CCL5. Despite cytotoxic activity and cytokine production ex vivo, these TRMs demonstrated reduced CD27 expression and proliferation and failed to control EBV viral loads in the NALT during infection, although effector memory T cells (TEMs) controlled viral titers in spleen and blood. Overall, TRMs are established in mucosal lymphoid tissues by EBV infection, but primarily, systemic CD8+ T cell expansion seems to control viral loads in the context of IM-like infection.
Collapse
Affiliation(s)
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Lisa Rieble
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Michelle Böni
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | | | | | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, and
| | | | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, and
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, and
| |
Collapse
|
10
|
Wang Q, Yin X, Huang X, Zhang L, Lu H. Impact of mitochondrial dysfunction on the antitumor effects of immune cells. Front Immunol 2024; 15:1428596. [PMID: 39464876 PMCID: PMC11502362 DOI: 10.3389/fimmu.2024.1428596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction, a hallmark of immune cell failure, affects the antitumor effects of immune cells through metabolic reprogramming, fission, fusion, biogenesis, and immune checkpoint signal transduction of mitochondria. According to researchers, restoring damaged mitochondrial function can enhance the efficacy of immune cells. Nevertheless, the mechanism of mitochondrial dysfunction in immune cells in patients with cancer is unclear. In this review, we recapitulate the impact of mitochondrial dysfunction on the antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-associated macrophage and propose that targeting mitochondria can provide new strategies for antitumor therapy.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Huang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Huang Z, Chen T, Li W, He W, Liu S, Wu Z, Li B, Yuan Y, Qiu J. Atezolizumab and bevacizumab plus transarterial chemoembolization and hepatic arterial infusion chemotherapy for patients with high tumor burden unresectable hepatocellular carcinoma: A multi-center cohort study. Int Immunopharmacol 2024; 139:112711. [PMID: 39029233 DOI: 10.1016/j.intimp.2024.112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Though atezolizumab plus bevacizumab (A+B) offer promise for unresectable hepatocellular carcinoma (uHCC) treatment, the response rate remains suboptimal. Our previous studies highlighted the potential of transarterial chemoembolization (TACE) when combined with FOLFOX-based hepatic arterial infusion chemotherapy (HAIC) in HCC treatment. This study aims to evaluate the safety and efficacy of A+B plus TACE-HAIC for high tumor burden uHCC (HTB-uHCC). METHODS This three-center retrospective study involved 82 HTB-uHCC patients administered with TACE-HAIC followed by A+B. We characterized HTB-uHCC patients as those surpassing the up-to-11 criteria, exhibiting VP 3-4, or presenting extrahepatic metastases. The primary outcomes were the objective response rate (ORR) and progression-free survival (PFS). Secondary outcomes encompassed the incidence of treatment-related adverse events (TRAEs) and overall survival (OS). RESULTS Employing the mRECIST criteria, the ORR was 62.2 %, wherein 18 (22.0 %) patients achieved complete response, 33 (40.2 %) demonstrated partial response, 21 (25.6 %) maintained stable disease, and 10 (12.2 %) exhibited disease progression. Impressively, 11 (13.4 %) patients were converted to resectable HCC and underwent curative hepatectomy. The median PFS was 10.1 months (95 % CI, 8.4 to NA), and the median OS was still pending. At the one-year mark, the OS and PFS rates were 92.8 % (95 % CI, 86.1 to 100.0) and 42.9 % (95 % CI, 31.3 to 58.7), respectively. 79 (96.3 %) experienced TRAEs, and 39 (47.6 %) had grade 3-4 TRAEs, though no treatment-related death was recorded. CONCLUSIONS The findings underscore the potential of the A+B and TACE-HAIC combined treatment for HTB-uHCC patients, marking it as a viable therapeutic option, given its potent efficacy and tolerable safety profile.
Collapse
Affiliation(s)
- Zhenkun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tiejun Chen
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Li
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Wei He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaoru Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zongfeng Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
12
|
Chung HK, Liu C, Jambor AN, Riesenberg BP, Sun M, Casillas E, Chick B, Wang J, Ma S, Mcdonald B, He P, Yang Q, Chen T, Varanasi SK, LaPorte M, Mann TH, Chen D, Hoffmann F, Tripple V, Ho J, Cho UH, Modliszewski J, Williams A, Liu L, Wang Y, Hargreaves DC, Thaxton JE, Kaech SM, Wang W. Multi-Omics Atlas-Assisted Discovery of Transcription Factors for Selective T Cell State Programming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.03.522354. [PMID: 36711632 PMCID: PMC9881845 DOI: 10.1101/2023.01.03.522354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcription factors (TFs) regulate the differentiation of T cells into diverse states with distinct functionalities. To precisely program desired T cell states in viral infections and cancers, we generated a comprehensive transcriptional and epigenetic atlas of nine CD8 + T cell differentiation states for TF activity prediction. Our analysis catalogued TF activity fingerprints of each state, uncovering new regulatory mechanisms that govern selective cell state differentiation. Leveraging this platform, we focused on two critical T cell states in tumor and virus control: terminally exhausted T cells (TEX term ), which are dysfunctional, and tissue-resident memory T cells (T RM ), which are protective. Despite their functional differences, these states share significant transcriptional and anatomical similarities, making it both challenging and essential to engineer T cells that avoid TEX term differentiation while preserving beneficial T RM characteristics. Through in vivo CRISPR screening combined with single-cell RNA sequencing (Perturb-seq), we validated the specific TFs driving the TEX term state and confirmed the accuracy of TF specificity predictions. Importantly, we discovered novel TEX term -specific TFs such as ZSCAN20, JDP2, and ZFP324. The deletion of these TEX term -specific TFs in T cells enhanced tumor control and synergized with immune checkpoint blockade. Additionally, this study identified multi-state TFs like HIC1 and GFI1, which are vital for both TEX term and T RM states. Furthermore, our global TF community analysis and Perturb-seq experiments revealed how TFs differentially regulate key processes in T RM and TEX term cells, uncovering new biological pathways like protein catabolism that are specifically linked to TEX term differentiation. In summary, our platform systematically identifies TF programs across diverse T cell states, facilitating the engineering of specific T cell states to improve tumor control and providing insights into the cellular mechanisms underlying their functional disparities.
Collapse
|
13
|
Buquicchio FA, Fonseca R, Yan PK, Wang F, Evrard M, Obers A, Gutierrez JC, Raposo CJ, Belk JA, Daniel B, Zareie P, Yost KE, Qi Y, Yin Y, Nico KF, Tierney FM, Howitt MR, Lareau CA, Satpathy AT, Mackay LK. Distinct epigenomic landscapes underlie tissue-specific memory T cell differentiation. Immunity 2024; 57:2202-2215.e6. [PMID: 39043184 DOI: 10.1016/j.immuni.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024]
Abstract
The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.
Collapse
Affiliation(s)
- Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Patrick K Yan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Fangyi Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacob C Gutierrez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Colin J Raposo
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Julia A Belk
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathryn E Yost
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Katherine F Nico
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Flora M Tierney
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Michael R Howitt
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Program in Immunology, Stanford University, Stanford, CA 94304, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA 94129, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
14
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Li C, Qian W, Wei X, Narasimhan H, Wu Y, Arish M, Cheon IS, Tang J, de Almeida Santos G, Li Y, Sharifi K, Kern R, Vassallo R, Sun J. Comparative single-cell analysis reveals IFN-γ as a driver of respiratory sequelae after acute COVID-19. Sci Transl Med 2024; 16:eadn0136. [PMID: 39018367 DOI: 10.1126/scitranslmed.adn0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) represent an urgent public health challenge and are estimated to affect more than 60 million individuals globally. Although a growing body of evidence suggests that dysregulated immune reactions may be linked with PASC symptoms, most investigations have primarily centered around blood-based studies, with few focusing on samples derived from affected tissues. Furthermore, clinical studies alone often provide correlative insights rather than causal mechanisms. Thus, it is essential to compare clinical samples with relevant animal models and conduct functional experiments to understand the etiology of PASC. In this study, we comprehensively compared bronchoalveolar lavage fluid single-cell RNA sequencing data derived from clinical PASC samples and a mouse model of PASC. This revealed a pro-fibrotic monocyte-derived macrophage response in respiratory PASC, as well as abnormal interactions between pulmonary macrophages and respiratory resident T cells, in both humans and mice. Interferon-γ (IFN-γ) emerged as a key node mediating the immune anomalies in respiratory PASC. Neutralizing IFN-γ after the resolution of acute SARS-CoV-2 infection reduced lung inflammation and tissue fibrosis in mice. Together, our study underscores the importance of performing comparative analysis to understand the cause of PASC and suggests that the IFN-γ signaling axis might represent a therapeutic target.
Collapse
Affiliation(s)
- Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yue Wu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jinyi Tang
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gislane de Almeida Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ying Li
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kamyar Sharifi
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ryan Kern
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Acosta-Iborra B, Gil-Acero AI, Sanz-Gómez M, Berrouayel Y, Puente-Santamaría L, Alieva M, del Peso L, Jiménez B. Bhlhe40 Regulates Proliferation and Angiogenesis in Mouse Embryoid Bodies under Hypoxia. Int J Mol Sci 2024; 25:7669. [PMID: 39062912 PMCID: PMC11277088 DOI: 10.3390/ijms25147669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Knowledge of the molecular mechanisms that underlie the regulation of major adaptive responses to an unbalanced oxygen tension is central to understanding tissue homeostasis and disease. Hypoxia-inducible transcription factors (HIFs) coordinate changes in the transcriptome that control these adaptive responses. Here, we focused on the functional role of the transcriptional repressor basic-helix-loop-helix family member e40 (Bhlhe40), which we previously identified in a meta-analysis as one of the most consistently upregulated genes in response to hypoxia across various cell types. We investigated the role of Bhlhe40 in controlling proliferation and angiogenesis using a gene editing strategy in mouse embryonic stem cells (mESCs) that we differentiated in embryoid bodies (EBs). We observed that hypoxia-induced Bhlhe40 expression was compatible with the rapid proliferation of pluripotent mESCs under low oxygen tension. However, in EBs, hypoxia triggered a Bhlhe40-dependent cell cycle arrest in most progenitor cells and endothelial cells within vascular structures. Furthermore, Bhlhe40 knockout increased the basal vascularization of the EBs in normoxia and exacerbated the hypoxia-induced vascularization, supporting a novel role for Bhlhe40 as a negative regulator of blood vessel formation. Our findings implicate Bhlhe40 in mediating key functional adaptive responses to hypoxia, such as proliferation arrest and angiogenesis.
Collapse
Affiliation(s)
- Bárbara Acosta-Iborra
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ana Isabel Gil-Acero
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Marta Sanz-Gómez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Yosra Berrouayel
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- Biocomputing Unit, Instituto Aragonés de Ciencias de la Salud, San Juan Bosco, 50009 Zaragoza, Spain
| | - Maria Alieva
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Luis del Peso
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| | - Benilde Jiménez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| |
Collapse
|
18
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
20
|
Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, Ventre KS, Lund AW. Lymphatic vessel transit seeds cytotoxic resident memory T cells in skin draining lymph nodes. Sci Immunol 2024; 9:eadk8141. [PMID: 38848340 DOI: 10.1126/sciimmunol.adk8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Lymphatic transport shapes the homeostatic immune repertoire of lymph nodes (LNs). LN-resident memory T cells (TRMs) play an important role in site-specific immune memory, yet how LN TRMs form de novo after viral infection remains unclear. Here, we tracked the anatomical distribution of antiviral CD8+ T cells as they seeded skin and LN TRMs using a model of vaccinia virus-induced skin infection. LN TRMs localized to the draining LNs (dLNs) of infected skin, and their formation depended on the lymphatic egress of effector CD8+ T cells from the skin, already poised for residence. Effector CD8+ T cell transit through skin was required to populate LN TRMs in dLNs, a process reinforced by antigen encounter in skin. Furthermore, LN TRMs were protective against viral rechallenge in the absence of circulating memory T cells. These data suggest that a subset of tissue-infiltrating CD8+ T cells egress from tissues during viral clearance and establish a layer of regional protection in the dLN basin.
Collapse
Affiliation(s)
- Taylor A Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Austin C Schultz
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vanessa Cristaldi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Madeline J Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Katherine S Ventre
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Nguyen C, Kudek M, Zander R, Niu H, Shen J, Bauer A, Alson D, Khatun A, Chen Y, Sun J, Drobyski W, Edelson BT, Cui W. Bhlhe40 Promotes CD4+ T Helper 1 Cell and Suppresses T Follicular Helper Cell Differentiation during Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1829-1842. [PMID: 38619295 DOI: 10.4049/jimmunol.2300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In response to acute infection, naive CD4+ T cells primarily differentiate into T helper 1 (Th1) or T follicular helper (Tfh) cells that play critical roles in orchestrating cellular or humoral arms of immunity, respectively. However, despite the well established role of T-bet and BCL-6 in driving Th1 and Tfh cell lineage commitment, respectively, whether additional transcriptional circuits also underlie the fate bifurcation of Th1 and Tfh cell subsets is not fully understood. In this article, we study how the transcriptional regulator Bhlhe40 dictates the Th1/Tfh differentiation axis in mice. CD4+ T cell-specific deletion of Bhlhe40 abrogates Th1 but augments Tfh differentiation. We also assessed an increase in germinal center B cells and Ab production, suggesting that deletion of Bhlhe40 in CD4+ T cells not only alters Tfh differentiation but also their capacity to provide help to B cells. To identify molecular mechanisms by which Bhlhe40 regulates Th1 versus Tfh lineage choice, we first performed epigenetic profiling in the virus specific Th1 and Tfh cells following LCMV infection, which revealed distinct promoter and enhancer activities between the two helper cell lineages. Furthermore, we identified that Bhlhe40 directly binds to cis-regulatory elements of Th1-related genes such as Tbx21 and Cxcr6 to activate their expression while simultaneously binding to regions of Tfh-related genes such as Bcl6 and Cxcr5 to repress their expression. Collectively, our data suggest that Bhlhe40 functions as a transcription activator to promote Th1 cell differentiation and a transcription repressor to suppress Tfh cell differentiation.
Collapse
Affiliation(s)
- Christine Nguyen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Matthew Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Ryan Zander
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA
| | - Hongshen Niu
- Department of Pathology, Northwestern University, Chicago, IL
| | - Jian Shen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University, Chicago, IL
| | - Ashley Bauer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University, Chicago, IL
| | - Donia Alson
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Sun
- University of Virginia School of Medicine, Charlottesville, VA
| | - William Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Versiti Wisconsin, Milwaukee, WI
- Department of Pathology, Northwestern University, Chicago, IL
| |
Collapse
|
22
|
Raychaudhuri D, Singh P, Hennessey M, Chakraborty B, Tannir AJ, Trujillo-Ocampo A, Im JS, Goswami S. Histone Lactylation Drives CD8 T Cell Metabolism and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.25.554830. [PMID: 38854142 PMCID: PMC11160580 DOI: 10.1101/2023.08.25.554830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The activation and functional differentiation of CD8 T cells are linked to metabolic pathways that result in the production of lactate. Lactylation is a lactate-derived histone post-translational modification (hPTM); however, the relevance of histone lactylation in the context of CD8 T cell activation and function is not known. Here, we show the enrichment of H3K18-lactylation (H3K18la) and H3K9-lactylation (H3K9la) in human and murine CD8 T cells which act as transcription initiators of key genes regulating CD8 T cell phenotype and function. Further, we note distinct impacts of H3K18la and H3K9la on CD8 T cell subsets linked to their specific metabolic profiles. Importantly, we demonstrate that modulation of H3K18la and H3K9la by targeting metabolic and epigenetic pathways regulates CD8 T cell effector function including anti-tumor immunity in preclinical models. Overall, our study uncovers the unique contributions of H3K18la and H3K9la in modulating CD8 T cell phenotype and function intricately associated with metabolic state.
Collapse
|
23
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Chen SJ, Yu F, Feng X, Li Q, Jiang YH, Zhao LQ, Cheng PP, Wang M, Song LJ, Liang LM, He XL, Xiong L, Xiang F, Wang X, Ye H, Ma WL. DEC1 is involved in circadian rhythm disruption-exacerbated pulmonary fibrosis. Cell Commun Signal 2024; 22:245. [PMID: 38671456 PMCID: PMC11046974 DOI: 10.1186/s12964-024-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The alveolar epithelial type II cell (AT2) and its senescence play a pivotal role in alveolar damage and pulmonary fibrosis. Cell circadian rhythm is strongly associated with cell senescence. Differentiated embryonic chondrocyte expressed gene 1 (DEC1) is a very important circadian clock gene. However, the role of DEC1 in AT2 senescence and pulmonary fibrosis was still unclear. RESULTS In this study, a circadian disruption model of light intervention was used. It was found that circadian disruption exacerbated pulmonary fibrosis in mice. To understand the underlying mechanism, DEC1 levels were investigated. Results showed that DEC1 levels increased in lung tissues of IPF patients and in bleomycin-induced mouse fibrotic lungs. In vitro study revealed that bleomycin and TGF-β1 increased the expressions of DEC1, collagen-I, and fibronectin in AT2 cells. Inhibition of DEC1 mitigated bleomycin-induced fibrotic changes in vitro and in vivo. After that, cell senescence was observed in bleomycin-treated AT2 cells and mouse models, but these were prevented by DEC1 inhibition. At last, p21 was confirmed having circadian rhythm followed DEC1 in normal conditions. But bleomycin disrupted the circadian rhythm and increased DEC1 which promoted p21 expression, increased p21 mediated AT2 senescence and pulmonary fibrosis. CONCLUSIONS Taken together, circadian clock protein DEC1 mediated pulmonary fibrosis via p21 and cell senescence in alveolar epithelial type II cells.
Collapse
Affiliation(s)
- Shuai-Jun Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Ye-Han Jiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
| | - Li-Qin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hang Kong Road, 430030, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China.
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, 430022, Wuhan, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China.
| |
Collapse
|
25
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Lee S, Yeung KK, Watts TH. Tissue-resident memory T cells in protective immunity to influenza virus. Curr Opin Virol 2024; 65:101397. [PMID: 38458064 DOI: 10.1016/j.coviro.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Influenza virus is an important human pathogen with significant pandemic potential. Tissue-resident memory T cells (Trm) in the lung provide critical protection against influenza, but unlike Trm at other mucosal sites, Trm in the respiratory tract (RT) are subject to rapid attrition in mice, mirroring the decline in protective immunity to influenza virus over time. Conversely, dysfunctional Trm can drive fibrosis in aged mice. The requirement for local antigen to induce and maintain RT Trm must be considered in vaccine strategies designed to induce this protective immune subset. Here, we discuss recent studies that inform our understanding of influenza-specific respiratory Trm, and the factors that influence their development and persistence. We also discuss how these biological insights are being used to develop vaccines that induce Trm in the RT, despite the limitations to monitoring Trm in humans.
Collapse
Affiliation(s)
- Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karen Km Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
27
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
28
|
St Paul M, Saibil SD, Kates M, Han S, Lien SC, Laister RC, Hezaveh K, Kloetgen A, Penny S, Guo T, Garcia-Batres C, Smith LK, Chung DC, Elford AR, Sayad A, Pinto D, Mak TW, Hirano N, McGaha T, Ohashi PS. Ex vivo activation of the GCN2 pathway metabolically reprograms T cells, leading to enhanced adoptive cell therapy. Cell Rep Med 2024; 5:101465. [PMID: 38460518 PMCID: PMC10983112 DOI: 10.1016/j.xcrm.2024.101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/14/2023] [Accepted: 02/15/2024] [Indexed: 03/11/2024]
Abstract
The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8+ T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment. The adoptive transfer of halo-treated CD8+ T cells into tumor-bearing mice led to robust tumor control and curative responses. Halo-treated T cells synergized in vivo with a 4-1BB agonistic antibody to control tumor growth in a mouse model resistant to immunotherapy. Importantly, treatment of human CD8+ T cells with halo resulted in similar metabolic and functional reprogramming. These findings demonstrate that activating the amino acid starvation response with the GCN2 agonist halo can enhance T cell metabolism and anti-tumor activity.
Collapse
Affiliation(s)
- Michael St Paul
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Samuel D Saibil
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada.
| | - Meghan Kates
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - SeongJun Han
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Scott C Lien
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Rob C Laister
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Kebria Hezaveh
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Andreas Kloetgen
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Penny
- Human Health Therapeutics Research Centre, National Research Council Canada, Halifax, NS, Canada
| | - Tingxi Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Carlos Garcia-Batres
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Logan K Smith
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Douglas C Chung
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Azin Sayad
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Devanand Pinto
- Human Health Therapeutics Research Centre, National Research Council Canada, Halifax, NS, Canada
| | - Tak W Mak
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Naoto Hirano
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Tracy McGaha
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1C1, Canada.
| |
Collapse
|
29
|
Asanoma K, Yagi H, Onoyama I, Cui L, Hori E, Kawakami M, Maenohara S, Hachisuga K, Tomonobe H, Kodama K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kitao H, Kato K. The BHLHE40‒PPM1F‒AMPK pathway regulates energy metabolism and is associated with the aggressiveness of endometrial cancer. J Biol Chem 2024; 300:105695. [PMID: 38301894 PMCID: PMC10904277 DOI: 10.1016/j.jbc.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Tomonobe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Joulia E, Michieletto MF, Agesta A, Peillex C, Girault V, Le Dorze AL, Peroceschi R, Bucciarelli F, Szelechowski M, Chaubet A, Hakim N, Marrocco R, Lhuillier E, Lebeurrier M, Argüello RJ, Saoudi A, El Costa H, Adoue V, Walzer T, Sarry JE, Dejean AS. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J Exp Med 2024; 221:e20230449. [PMID: 38189779 PMCID: PMC10772920 DOI: 10.1084/jem.20230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.
Collapse
Affiliation(s)
- Emeline Joulia
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Michaël F. Michieletto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arantxa Agesta
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Cindy Peillex
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Virginie Girault
- Suivi Immunologique des Thérapeutiques Innovantes, Pôle de Biologie, Pontchaillou University Hospital, Rennes, France
- UMR1236, University of Rennes, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Bretagne, Rennes, France
| | - Anne-Louise Le Dorze
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Romain Peroceschi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Florence Bucciarelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Marion Szelechowski
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Adeline Chaubet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rémi Marrocco
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Emeline Lhuillier
- GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Manuel Lebeurrier
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rafael J. Argüello
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Veronique Adoue
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Anne S. Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| |
Collapse
|
31
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
32
|
Teo WY, Lim YYE, Sio YY, Say YH, Reginald K, Chew FT. Atopic dermatitis-associated genetic variants regulate LOC100294145 expression implicating interleukin-27 production and type 1 interferon signaling. World Allergy Organ J 2024; 17:100869. [PMID: 38298829 PMCID: PMC10827559 DOI: 10.1016/j.waojou.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Background Atopic dermatitis (AD) is a complex inflammatory disease with a strong genetic component. A singular approach of genome wide association studies (GWAS) can identify AD-associated genetic variants, but is unable to explain their functional relevance in AD. This study aims to characterize AD-associated genetic variants and elucidate the mechanisms leading to AD through a multi-omics approach. Methods GWAS identified an association between genetic variants at 6p21.32 locus and AD. Genotypes of 6p21.32 locus variants were evaluated against LOC100294145 expression in peripheral blood mononuclear cells (PBMCs). Their influence on LOC100294145 promoter activity was measured in vitro via a dual-luciferase assay. The function of LOC100294145 was then elucidated through a combination of co-expression analyses and gene enrichment with g:Profiler. Mendelian randomization was further used to assess the causal regulatory effect of LOC100294145 on its co-expressed genes. Results Minor alleles of rs116160149 and rs115388857 at 6p21.32 locus were associated with increased AD risk (p = 2.175 × 10-8, OR = 1.552; p = 2.805 × 10-9, OR = 1.55) and higher LOC100294145 expression in PBMCs (adjusted p = 0.182; 8.267 × 10-12). LOC100294145 expression was also found to be increased in those with AD (adjusted p = 3.653 × 10-2). The genotype effect of 6p21.32 locus on LOC100294145 promoter activity was further validated in vitro. Co-expression analyses predicted LOC100294145 protein's involvement in interleukin-27 and type 1 interferon signaling, which was further substantiated through mendelian randomization. Conclusion Genetic variants at 6p21.32 locus increase AD susceptibility through raising LOC100294145 expression. A multi-omics approach enabled the deduction of its pathogenesis model comprising dysregulation of hub genes involved in type 1 interferon and interleukin 27 signaling.
Collapse
Affiliation(s)
- Wei Yi Teo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
33
|
Son YM, Cheon IS, Li C, Sun J. Persistent B Cell-Derived MHC Class II Signaling Is Required for the Optimal Maintenance of Tissue-Resident Helper T Cells. Immunohorizons 2024; 8:163-171. [PMID: 38345472 PMCID: PMC10916357 DOI: 10.4049/immunohorizons.2300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging studies have identified the critical roles of tissue-resident memory CD8+ T (TRM) and B (BRM) cells in the protection against mucosal viral infections, but the underlying mechanisms regulating robust development of TRM and BRM cells remain incompletely understood. We have recently shown that tissue-resident helper CD4+ T (TRH) cells, developed following influenza virus infection, function to sustain the optimal maintenance of TRM and BRM cells at the mucosal surface. In this study, we have explored the cellular and molecular cues modulating lung TRH persistence after influenza infection in C57BL/6 mice. We found that TRH cells were colocalized in tertiary lymphoid structures (TLSs) with local B cells. Abolishing TLSs or the depletion of B cells impaired lung TRH cell numbers. Of note, we found that persistent TCR signaling is needed for the maintenance of TRH cells after the clearance of infectious influenza virus. Furthermore, selective ablation of B cell-derived MHC class II resulted in partial reduction of lung TRH cell number after influenza infection. Our findings suggest that the interaction between lung-resident TRH cells and B cells, along with persistent Ag stimulation, is required to maintain TRH cells after respiratory viral infection.
Collapse
Affiliation(s)
- Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
- Carter Immunology Center, University of Virginia, Charlottesville, VA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Chaofan Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
- Carter Immunology Center, University of Virginia, Charlottesville, VA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Jie Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN
- Carter Immunology Center, University of Virginia, Charlottesville, VA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
34
|
Villa M, Sanin DE, Apostolova P, Corrado M, Kabat AM, Cristinzio C, Regina A, Carrizo GE, Rana N, Stanczak MA, Baixauli F, Grzes KM, Cupovic J, Solagna F, Hackl A, Globig AM, Hässler F, Puleston DJ, Kelly B, Cabezas-Wallscheid N, Hasselblatt P, Bengsch B, Zeiser R, Sagar, Buescher JM, Pearce EJ, Pearce EL. Prostaglandin E 2 controls the metabolic adaptation of T cells to the intestinal microenvironment. Nat Commun 2024; 15:451. [PMID: 38200005 PMCID: PMC10781727 DOI: 10.1038/s41467-024-44689-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Immune cells must adapt to different environments during the course of an immune response. Here we study the adaptation of CD8+ T cells to the intestinal microenvironment and how this process shapes the establishment of the CD8+ T cell pool. CD8+ T cells progressively remodel their transcriptome and surface phenotype as they enter the gut wall, and downregulate expression of mitochondrial genes. Human and mouse intestinal CD8+ T cells have reduced mitochondrial mass, but maintain a viable energy balance to sustain their function. We find that the intestinal microenvironment is rich in prostaglandin E2 (PGE2), which drives mitochondrial depolarization in CD8+ T cells. Consequently, these cells engage autophagy to clear depolarized mitochondria, and enhance glutathione synthesis to scavenge reactive oxygen species (ROS) that result from mitochondrial depolarization. Impairing PGE2 sensing promotes CD8+ T cell accumulation in the gut, while tampering with autophagy and glutathione negatively impacts the T cell pool. Thus, a PGE2-autophagy-glutathione axis defines the metabolic adaptation of CD8+ T cells to the intestinal microenvironment, to ultimately influence the T cell pool.
Collapse
Affiliation(s)
- Matteo Villa
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria.
| | - David E Sanin
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petya Apostolova
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine I (Hematology and Oncology), University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Mauro Corrado
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carmine Cristinzio
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Annamaria Regina
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Gustavo E Carrizo
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Nisha Rana
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Michal A Stanczak
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Francesc Baixauli
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Jovana Cupovic
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Francesca Solagna
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Alexandra Hackl
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Anna-Maria Globig
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Fabian Hässler
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | | | - Peter Hasselblatt
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I (Hematology and Oncology), University Medical Center Freiburg, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Sagar
- Department of Medicine II, University Medical Center Freiburg, 79106, Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Bloomberg-Kimmel Institute of Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- CIBSS Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
Mercado MAB, Li Q, Quick CM, Kim Y, Palmer R, Huang L, Li LX. BHLHE40 drives protective polyfunctional CD4 T cell differentiation in the female reproductive tract against Chlamydia. PLoS Pathog 2024; 20:e1011983. [PMID: 38271477 PMCID: PMC10846703 DOI: 10.1371/journal.ppat.1011983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.
Collapse
Affiliation(s)
- Miguel A. B. Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Qiang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Yejin Kim
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rachel Palmer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
36
|
Vantourout P, Eum J, Conde Poole M, Hayday TS, Laing AG, Hussain K, Nuamah R, Kannambath S, Moisan J, Stoop A, Battaglia S, Servattalab R, Hsu J, Bayliffe A, Katragadda M, Hayday AC. Innate TCRβ-chain engagement drives human T cells toward distinct memory-like effector phenotypes with immunotherapeutic potentials. SCIENCE ADVANCES 2023; 9:eadj6174. [PMID: 38055824 DOI: 10.1126/sciadv.adj6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Clonotypic αβ T cell responses to cargoes presented by major histocompatibility complex (MHC), MR1, or CD1 proteins underpin adaptive immunity. Those responses are mostly mediated by complementarity-determining region 3 motifs created by quasi-random T cell receptor (TCR) gene rearrangements, with diversity being highest for TCRγδ. Nonetheless, TCRγδ also displays nonclonotypic innate responsiveness following engagement of germline-encoded Vγ-specific residues by butyrophilin (BTN) or BTN-like (BTNL) proteins that uniquely mediate γδ T cell subset selection. We now report that nonclonotypic TCR engagement likewise induces distinct phenotypes in TCRαβ+ cells. Specifically, antibodies to germline-encoded human TCRVβ motifs consistently activated naïve or memory T cells toward core states distinct from those induced by anti-CD3 or superantigens and from others commonly reported. Those states combined selective proliferation and effector function with activation-induced inhibitory receptors and memory differentiation. Thus, nonclonotypic TCRVβ targeting broadens our perspectives on human T cell response modes and might offer ways to induce clinically beneficial phenotypes in defined T cell subsets.
Collapse
Affiliation(s)
- Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Josephine Eum
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - María Conde Poole
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Thomas S Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Adam G Laing
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Khiyam Hussain
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Rosamond Nuamah
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | - Shichina Kannambath
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, Guy's Hospital, London, SE1 9RT, UK
| | | | | | | | | | | | | | | | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
37
|
Schmid D, Auf der Maur P, Trefny MP, Zippelius A. Unraveling T-cell Exhaustion: Genetic Screening Meets In Vitro Modeling. Cancer Res 2023; 83:3830-3832. [PMID: 37855668 DOI: 10.1158/0008-5472.can-23-3204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
T-cell exhaustion poses a significant barrier to the efficacy of immunotherapies. In the past decade, immune checkpoint blockade (ICB) has been the leading strategy to prevent or reverse T-cell exhaustion. Although ICB yields promising clinical outcomes in patients with cancer, its impact on T-cell reinvigoration is often short-lived. High-throughput genomic tools, including CRISPR screening along with single-cell RNA and chromatin accessibility sequencing may point toward new therapeutic avenues. However, their utility in identifying key mediators of T-cell exhaustion is constrained by the restricted scalability of well-validated in vivo exhaustion models, like chronic LCMV infection. In a recent article in Science Immunology, Wu and colleagues introduce an in vitro exhaustion model that involves repetitive stimulation of T-cell receptor-transgenic, LCMV-specific P14 CD8 T cells. This approach enables a direct comparison of exhausted T (Tex) cells generated both in vivo and in vitro using the same antigen, adeptly pinpointing exhaustion features that can be recapitulated in vitro. Leveraging this efficient and scalable model alongside CRISPR screening, the authors highlight the transcription factor BHLHE40 as a pivotal element in promoting Tex-cell transition from progenitor to intermediate Tex cells.
Collapse
Affiliation(s)
- Dominic Schmid
- Department of Biomedicine, Laboratory Cancer Immunology, University of Basel, Basel, Switzerland
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Priska Auf der Maur
- Department of Medicine III, Klinikum Rechts der Issar, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Marcel P Trefny
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany
| | - Alfred Zippelius
- Department of Biomedicine, Laboratory Cancer Immunology, University of Basel, Basel, Switzerland
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
38
|
Zhou P, Shi H, Huang H, Sun X, Yuan S, Chapman NM, Connelly JP, Lim SA, Saravia J, Kc A, Pruett-Miller SM, Chi H. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 2023; 624:154-163. [PMID: 37968405 PMCID: PMC10700132 DOI: 10.1038/s41586-023-06733-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) orchestrate antitumour immunity and exhibit inherent heterogeneity1,2, with precursor exhausted T (Tpex) cells but not terminally exhausted T (Tex) cells capable of responding to existing immunotherapies3-7. The gene regulatory network that underlies CTL differentiation and whether Tex cell responses can be functionally reinvigorated are incompletely understood. Here we systematically mapped causal gene regulatory networks using single-cell CRISPR screens in vivo and discovered checkpoints for CTL differentiation. First, the exit from quiescence of Tpex cells initiated successive differentiation into intermediate Tex cells. This process is differentially regulated by IKAROS and ETS1, the deficiencies of which dampened and increased mTORC1-associated metabolic activities, respectively. IKAROS-deficient cells accumulated as a metabolically quiescent Tpex cell population with limited differentiation potential following immune checkpoint blockade (ICB). Conversely, targeting ETS1 improved antitumour immunity and ICB efficacy by boosting differentiation of Tpex to intermediate Tex cells and metabolic rewiring. Mechanistically, TCF-1 and BATF are the targets for IKAROS and ETS1, respectively. Second, the RBPJ-IRF1 axis promoted differentiation of intermediate Tex to terminal Tex cells. Accordingly, targeting RBPJ enhanced functional and epigenetic reprogramming of Tex cells towards the proliferative state and improved therapeutic effects and ICB efficacy. Collectively, our study reveals that promoting the exit from quiescence of Tpex cells and enriching the proliferative Tex cell state act as key modalities for antitumour effects and provides a systemic framework to integrate cell fate regulomes and reprogrammable functional determinants for cancer immunity.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujing Yuan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
39
|
Kim H, Abbasi A, Sharrock J, Santosa EK, Lau CM, Edelson BT, Sun JC. Cutting Edge: STAT4 Promotes Bhlhe40 Induction to Drive Protective IFN-γ from NK Cells during Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1469-1474. [PMID: 37830760 PMCID: PMC10842983 DOI: 10.4049/jimmunol.2300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
NK cells represent a cellular component of the mammalian innate immune system, and they mount rapid responses against viral infection, including the secretion of the potent antiviral effector cytokine IFN-γ. Following mouse CMV infection, Bhlhe40 was the most highly induced transcription factor in NK cells among the basic helix-loop-helix family. Bhlhe40 upregulation in NK cells depended upon IL-12 and IL-18 signals, with the promoter of Bhlhe40 enriched for STAT4 and the permissive histone H3K4me3, and with STAT4-deficient NK cells showing an impairment of Bhlhe40 induction and diminished H3K4me3. Transcriptomic and protein analysis of Bhlhe40-deficient NK cells revealed a defect in IFN-γ production during mouse CMV infection, resulting in diminished protective immunity following viral challenge. Finally, we provide evidence that Bhlhe40 directly promotes IFN-γ by binding throughout the Ifng loci in activated NK cells. Thus, our study reveals how STAT4-mediated control of Bhlhe40 drives protective IFN-γ secretion by NK cells during viral infection.
Collapse
Affiliation(s)
- Hyunu Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Aamna Abbasi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Jessica Sharrock
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Endi K. Santosa
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| | - Colleen M. Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
40
|
Balmas E, Chen J, Hu AK, DeBerg HA, Rosasco MG, Gersuk VH, Serti E, Speake C, Greenbaum CJ, Nepom GT, Linsley PS, Cerosaletti K. Islet-autoreactive CD4+ T cells are linked with response to alefacept in type 1 diabetes. JCI Insight 2023; 8:e167881. [PMID: 37751304 PMCID: PMC10721267 DOI: 10.1172/jci.insight.167881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Variation in the preservation of β cell function in clinical trials in type 1 diabetes (T1D) has emphasized the need to define biomarkers to predict treatment response. The T1DAL trial targeted T cells with alefacept (LFA-3-Ig) and demonstrated C-peptide preservation in approximately 30% of new-onset T1D individuals. We analyzed islet antigen-reactive (IAR) CD4+ T cells in PBMC samples collected prior to treatment from alefacept- and placebo-treated individuals using flow cytometry and single-cell RNA sequencing. IAR CD4+ T cells at baseline had heterogeneous phenotypes. Transcript profiles formed phenotypic clusters of cells along a trajectory based on increasing maturation and activation, and T cell receptor (TCR) chains showed clonal expansion. Notably, the frequency of IAR CD4+ T cells with a memory phenotype and a unique transcript profile (cluster 3) were inversely correlated with C-peptide preservation in alefacept-treated, but not placebo-treated, individuals. Cluster 3 cells had a proinflammatory phenotype characterized by expression of the transcription factor BHLHE40 and the cytokines GM-CSF and TNF-α, and shared TCR chains with effector memory-like clusters. Our results suggest IAR CD4+ T cells as a potential baseline biomarker of response to therapies targeting the CD2 pathway and warrant investigation for other T cell-related therapies.
Collapse
Affiliation(s)
| | | | - Alex K. Hu
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Mario G. Rosasco
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | - Vivian H. Gersuk
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | | | - Cate Speake
- Center for Interventional Immunology and Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, Washington, USA
| | | | - Peter S. Linsley
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington
| | | |
Collapse
|
41
|
Mercado MAB, Li Q, Quick CM, Kim Y, Palmer R, Huang L, Li LX. BHLHE40 drives protective polyfunctional CD4 T cell differentiation in the female reproductive tract against Chlamydia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565369. [PMID: 37961221 PMCID: PMC10635079 DOI: 10.1101/2023.11.02.565369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The protein basic helix-loop-helix family member e40 (BHLHE40) is a transcription factor recently emerged as a key regulator of host immunity to infections, autoimmune diseases and cancer. In this study, we investigated the role of Bhlhe40 in protective T cell responses to the intracellular bacterium Chlamydia in the female reproductive tract (FRT). Mice deficient in Bhlhe40 exhibited severe defects in their ability to control Chlamydia muridarum shedding from the FRT. The heightened bacterial burdens in Bhlhe40-/- mice correlated with a marked increase in IL-10-producing T regulatory type 1 (Tr1) cells and decreased polyfunctional CD4 T cells co-producing IFN-γ, IL-17A and GM-CSF. Genetic ablation of IL-10 or functional blockade of IL-10R increased CD4 T cell polyfunctionality and partially rescued the defects in bacterial control in Bhlhe40-/- mice. Using single-cell RNA sequencing coupled with TCR profiling, we detected a significant enrichment of stem-like T cell signatures in Bhlhe40-deficient CD4 T cells, whereas WT CD4 T cells were further down on the differentiation trajectory with distinct effector functions beyond IFN-γ production by Th1 cells. Altogether, we identified Bhlhe40 as a key molecular driver of CD4 T cell differentiation and polyfunctional responses in the FRT against Chlamydia.
Collapse
Affiliation(s)
- Miguel A. B. Mercado
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Qiang Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Yejin Kim
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Rachel Palmer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Lin-Xi Li
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
42
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
43
|
Feng M, Liu X, Hao X, Ren Y, Dong G, Tian J, Wang Y, Du L, Wang Y, Wang C. Fatty Acids Support the Fitness and Functionality of Tumor-Resident CD8+ T Cells by Maintaining SCML4 Expression. Cancer Res 2023; 83:3368-3384. [PMID: 37610617 DOI: 10.1158/0008-5472.can-23-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
CD8+ tissue-resident memory T (Trm) cells and tumor-infiltrating lymphocytes (TIL) regulate tumor immunity and immune surveillance. Characterization of Trm cells and TILs could help identify potential strategies to boost antitumor immunity. Here, we found that the transcription factor SCML4 was required for the progression and polyfunctionality of Trm cells and was associated with a better prognosis in patients with cancer. Moreover, SCML4 maintained multiple functions of TILs. Increased expression of SCML4 in CD8+ cells significantly reduced the growth of multiple types of tumors in mice, while deletion of SCML4 reduced antitumor immunity and promoted CD8+ T-cell exhaustion. Mechanistically, SCML4 recruited the HBO1-BRPF2-ING4 complex to reprogram the expression of T cell-specific genes, thereby enhancing the survival and effector functions of Trm cells and TILs. SCML4 expression was promoted by fatty acid metabolism through mTOR-IRF4-PRDM1 signaling, and fatty acid metabolism-induced epigenetic modifications that promoted tissue-resident and multifunctional gene expression in Trm cells and TILs. SCML4 increased the therapeutic effect of anti-PD-1 treatment by elevating the expression of effector molecules in TILs and inhibiting the apoptosis of TILs, which could be further enhanced by adding an inhibitor of H3K14ac deacetylation. These results provide a mechanistic perspective of functional regulation of tumor-localized Trm cells and TILs and identify an important activation target for tumor immunotherapy. SIGNIFICANCE SCML4 upregulation in CD8+ Trm cells and tumor-infiltrating lymphocytes induced by fatty acid metabolism enhances antitumor immune responses, providing an immunometabolic axis to target for cancer treatment. See related commentary by Chakraborty et al., p. 3321.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guoying Dong
- Department of Anatomy and Key Laboratory of Experimental Teratology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Tian
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
44
|
Xu Y, Chiang YH, Ho PC, Vannini N. Mitochondria Dictate Function and Fate of HSCs and T Cells. Cancer Immunol Res 2023; 11:1303-1313. [PMID: 37789763 DOI: 10.1158/2326-6066.cir-22-0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/23/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023]
Abstract
Hematopoietic stem cells (HSC) and T cells are intimately related, lineage-dependent cell populations that are extensively used as therapeutic products for the treatment of hematologic malignancies and certain types of solid tumors. These cellular therapies can be life-saving treatments; however, their efficacies are often limited by factors influencing their activity and cellular properties. Among these factors is mitochondrial metabolism, which influences the function and fate commitment of both HSCs and T cells. Mitochondria, besides being the "cellular powerhouse," provide metabolic intermediates that are used as substrates for epigenetic modifications and chromatin remodeling, thus, driving cell fate decisions during differentiation. Moreover, mitochondrial fitness and mitochondrial quality control mechanisms are closely related to cellular function, and impairment of these mitochondrial properties associates with cellular dysfunction due to factors such as T-cell exhaustion and aging. Here, we give an overview of the role of mitochondria in shaping the behavior of these lineage-related cell populations. Moreover, we discuss the potential of novel mitochondria-targeting strategies for enhancing HSC- and T cell-based cancer immunotherapies and highlight how design and application of such approaches requires consideration of the metabolic similarities and differences between HSCs and T cells. See related article on p. 1302.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Yi-Hsuan Chiang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Nicola Vannini
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
45
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
46
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
47
|
Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, Lund AW. Lymphatic vessel transit seeds precursors to cytotoxic resident memory T cells in skin draining lymph nodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555369. [PMID: 37693469 PMCID: PMC10491166 DOI: 10.1101/2023.08.29.555369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Resident memory T cells (TRM) provide rapid, localized protection in peripheral tissues to pathogens and cancer. While TRM are also found in lymph nodes (LN), how they develop during primary infection and their functional significance remains largely unknown. Here, we track the anatomical distribution of anti-viral CD8+ T cells as they simultaneously seed skin and LN TRM using a model of skin infection with restricted antigen distribution. We find exquisite localization of LN TRM to the draining LN of infected skin. LN TRM formation depends on lymphatic transport and specifically egress of effector CD8+ T cells that appear poised for residence as early as 12 days post infection. Effector CD8+ T cell transit through skin is necessary and sufficient to populate LN TRM in draining LNs, a process reinforced by antigen encounter in skin. Importantly, we demonstrate that LN TRM are sufficient to provide protection against pathogenic rechallenge. These data support a model whereby a subset of tissue infiltrating CD8+ T cells egress during viral clearance, and establish regional protection in the draining lymphatic basin as a mechanism to prevent pathogen spread.
Collapse
Affiliation(s)
- Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Austin C. Schultz
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vanessa Cristaldi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
48
|
Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, Clark ML, Lee JH, Chen Z, Khan O, Staupe RP, Huang YJ, Shi J, Giles JR, Wherry EJ. In vitro modeling of CD8 + T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. Sci Immunol 2023; 8:eade3369. [PMID: 37595022 DOI: 10.1126/sciimmunol.ade3369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/07/2023] [Indexed: 08/20/2023]
Abstract
Identifying molecular mechanisms of exhausted CD8 T cells (Tex) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo Tex can be costly and inefficient. In vitro models of Tex are easily customizable and quickly generate high cellular yield, enabling CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo Tex. We leveraged this model of in vitro chronic stimulation in combination with CRISPR screening to identify transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate Tex subsets. By developing and benchmarking an in vitro model of Tex, then applying high-throughput CRISPR screening, we demonstrate the utility of mechanistically annotated in vitro models of Tex.
Collapse
Affiliation(s)
- Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L Clark
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna H Lee
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui J Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Humblin E, Korpas I, Lu J, Filipescu D, van der Heide V, Goldstein S, Vaidya A, Soares-Schanoski A, Casati B, Selvan ME, Gümüş ZH, Wieland A, Corrado M, Cohen-Gould L, Bernstein E, Homann D, Chipuk J, Kamphorst AO. Sustained CD28 costimulation is required for self-renewal and differentiation of TCF-1 + PD-1 + CD8 T cells. Sci Immunol 2023; 8:eadg0878. [PMID: 37624910 PMCID: PMC10805182 DOI: 10.1126/sciimmunol.adg0878] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
During persistent antigen stimulation, such as in chronic infections and cancer, CD8 T cells differentiate into a hypofunctional programmed death protein 1-positive (PD-1+) exhausted state. Exhausted CD8 T cell responses are maintained by precursors (Tpex) that express the transcription factor T cell factor 1 (TCF-1) and high levels of the costimulatory molecule CD28. Here, we demonstrate that sustained CD28 costimulation is required for maintenance of antiviral T cells during chronic infection. Low-level CD28 engagement preserved mitochondrial fitness and self-renewal of Tpex, whereas stronger CD28 signaling enhanced glycolysis and promoted Tpex differentiation into TCF-1neg exhausted CD8 T cells (Tex). Furthermore, enhanced differentiation by CD28 engagement did not reduce the Tpex pool. Together, these findings demonstrate that continuous CD28 engagement is needed to sustain PD-1+ CD8 T cells and suggest that increasing CD28 signaling promotes Tpex differentiation into more functional effector-like Tex, possibly without compromising long-term responses.
Collapse
Affiliation(s)
- Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Isabel Korpas
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Jiahua Lu
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Dan Filipescu
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
| | - Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Simon Goldstein
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Abishek Vaidya
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Alessandra Soares-Schanoski
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | - Beatrice Casati
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
| | | | - Zeynep H. Gümüş
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
- Department of Genetics and Genomics, ISMMS; New York, NY 10029, USA
| | - Andreas Wieland
- Department of Otolaryngology-Head and Neck Surgery and Pelotonia Institute for Immuno-Oncology, OSUCCC – James, The Ohio State University, Columbus, OH 43210, USA
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); Center for Molecular Medicine (CMMC) and Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Leona Cohen-Gould
- Department of Biochemistry, Weill Cornell Medical College; New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
- Tisch Cancer Institute, ISMMS; New York, NY 10029, USA
| | - Dirk Homann
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
- Diabetes Obesity Metabolism Institute, ISMMS; New York, NY 10029, USA
| | - Jerry Chipuk
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
- Tisch Cancer Institute, ISMMS; New York, NY 10029, USA
| | - Alice O. Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount sinai - ISMMS; New York, NY 10029, USA
- Department of Oncological Sciences, ISMMS; New York, NY 10029, USA
- Tisch Cancer Institute, ISMMS; New York, NY 10029, USA
| |
Collapse
|
50
|
Ramirez DE, Mohamed A, Huang YH, Turk MJ. In the right place at the right time: tissue-resident memory T cells in immunity to cancer. Curr Opin Immunol 2023; 83:102338. [PMID: 37229984 PMCID: PMC10631801 DOI: 10.1016/j.coi.2023.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
Tissue-resident memory (Trm) cells have recently emerged as essential components of the immune response to cancer. Here, we highlight new studies that demonstrate how CD8+ Trm cells are ideally suited to accumulate in tumors and associated tissues, to recognize a wide range of tumor antigens (Ags), and to persist as durable memory. We discuss compelling evidence that Trm cells maintain potent recall function and serve as principal mediators of immune checkpoint blockade (ICB) therapeutic efficacy in patients. Finally, we propose that Trm and circulating memory T-cell compartments together form a formidable barrier against metastatic cancer. These studies affirm Trm cells as potent, durable, and necessary mediators of cancer immunity.
Collapse
Affiliation(s)
- Delaney E Ramirez
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Asmaa Mohamed
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Yina H Huang
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA
| | - Mary Jo Turk
- Dartmouth Cancer Center and the Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, USA.
| |
Collapse
|