1
|
Han K, Yan Z, Ding Z, Zhou P, Ye C, Qin L, Bao Z, Zhang M, Zhang W. High-sensitivity SERS sensor leveraging three-dimensional Ti 3C 2T x/TiO 2/W 18O 49 semiconductor heterostructures for reliable detection of trace micro/nanoplastics in environmental matrices. Talanta 2024; 286:127474. [PMID: 39733525 DOI: 10.1016/j.talanta.2024.127474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The proliferation of micro/nanoplastics (MNPs) has emerged as a pivotal environmental issue, largely due to their potential for human exposure. Consequently, the development of sensitive and efficient detection methodologies is paramount for elucidating their environmental footprint. Here, we report a novel three-dimensional (3D) surface-enhanced Raman scattering (SERS) sensor, which integrate Ti3C2Tx/TiO2/W18O49 semiconductor heterostructure, for the rapid and sensitive detection of MNPs in environmental matrices. The sensor's unique layered architecture and efficient charge transfer mechanism endow it with high sensitivity. It has demonstrated remarkable detection capabilities, achieving a sensitivity of 10-8 M for Rhodamine 6G (R6G), equating to an enhancement factor (EF) of 2.33 × 106. This level of sensitivity allows for the detection of polystyrene (PS) microplastics at concentration as low as 25 μg/mL, with a relative standard deviation (RSD) of 12.58 %, signifying superior reproducibility. Moreover, the sensor's fingerprinting capabilities enable the identification of a variety of MNPs, including polyethylene (PE) and polyethylene terephthalate (PET), thus facilitating the analysis of complex MNPs mixtures. The sensor's applicability to real-world samples was confirmed through the quantitative detection of PS microplastics in rainwater, soil, and industrial wastewater, with a detection limit of 25 μg/mL and exhibiting good linearity. It is concluded that the 3D SERS sensor is a promising tool for the rapid and precise detection of MNPs across diverse environmental matrices. The advent of this technology marks a significant leap forward in environmental analysis, providing a robust method for the monitoring of MNPs pollution.
Collapse
Affiliation(s)
- Konghao Han
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zilong Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhuang Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Pengfei Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Cheng Ye
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Ling Qin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhiyong Bao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
2
|
Qiu X, Li L, Qiu Q, Lan T, Du L, Feng X, Song X. Medical exposure to micro(nano)plastics: An exposure pathway with potentially significant harm to human health that should not be overlooked. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177743. [PMID: 39612708 DOI: 10.1016/j.scitotenv.2024.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Micro(nano)plastics (MNPs) are an emerging type of contaminants that are widely present in the environments that people live in. MNPs can enter the human body in a variety of pathways, but the three main ones are through dietary intake, air inhalation, and skin contact. However, it has been discovered that medical plastics used in medical activities also pose potential risks to MNPs exposure as exposure pathways are continuously refined and clarified. Unfortunately, there is currently insufficient study on the exposure of medical plastics and MNPs, and exposure risks and potential health problems are frequently overlooked. This study aimed to close this research gap by searching the databases of China National Knowledge Infrastructure (CNKI), PubMed, and Web of Science for relevant literature. It then filtered out publications that contained information relevant to keywords such as micro(nano)plastics, medical plastics, exposure pathways, and human health in order to do analysis and summary. We discovered that medical plastics are a high-risk source of direct MNPs exposure to the human body, and this exposure could pose a potential harm to human health. Because of the potential harm to human health, this work presents the medical exposure of MNPs for the first time and calls for more research and attention on this vital area.
Collapse
Affiliation(s)
- Xihong Qiu
- Department of Rheumatology, Immunology and Hematology, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu 610083, China
| | - Lingfan Li
- Department of Thyroid and Breast Surgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Qiqi Qiu
- Nursing school, Southwest Medical University, Luzhou 646000, China
| | - Tianxiang Lan
- Intensive Care Unit, Chengdu Eighth People's Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu 610083, China
| | - Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Xiaoqian Feng
- Department of Pediatric Respiratory Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu 610219, China.
| |
Collapse
|
3
|
Malinowska K, Tarhonska K, Foksiński M, Sicińska P, Jabłońska E, Reszka E, Zarakowska E, Gackowski D, Górecka K, Balcerczyk A, Bukowska B. Impact of Short-Term Exposure to Non-Functionalized Polystyrene Nanoparticles on DNA Methylation and Gene Expression in Human Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12786. [PMID: 39684496 DOI: 10.3390/ijms252312786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of the present study was to investigate the concentration- and size-dependent effects of non-functionalized polystyrene nanoparticles (PS-NPs) of varying diameters (29 nm, 44 nm, and 72 nm) on specific epigenetic modifications and gene expression profiles related to carcinogenesis in human peripheral blood mononuclear cells (PBMCs) in vitro. This in vitro human-cell-based model is used to investigate the epigenetic effect of various environmental xenobiotics. PBMCs were exposed to PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 h period. The analysis encompassed epigenetic DNA modifications, including levels of 5-methyl-2'-deoxycytidine (5-mdC) and 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC), as well as the levels of 2'-deoxyuridine (dU) and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) by mass spectrometry methods, methylation in the promoter regions of selected tumor suppressor genes TP53 (P53), CDKN2A (P16), and CDKN1A (P21) and proto-oncogenes (CCND1, BCL2, BCL6), along with the expression profile of the indicated genes by real-time PCR assays. The results obtained revealed no significant changes in global DNA methylation/demethylation levels in PBMCs after short-term exposure to non-functionalized PS-NPs. Furthermore, there were no changes observed in the level of dU, a product of cytosine deamination. However, the level of 5-hmdU, a product of both 5-hmdC deamination and thymine oxidation, was increased at the highest concentrations of larger PS-NPs (72 nm). None of the PS-NPs caused a change in the methylation pattern of the promoter regions of the TP53, CDKN2A, CDKN1A, CCND1, BCL2 and BCL6 genes. However, gene profiling indicated that PS-NPs with a diameter of 29 nm and 44 nm altered the expression of the TP53 gene. The smallest PS-NPs with a diameter of 29 nm increased the expression of the TP53 gene at a concentration of 10 µg/mL, while PS-NPs with a diameter of 44 nm did so at a concentration of 100 µg/mL. An increase in the expression of the CDKN2A gene was also observed when PBMCs were exposed to PS-NPs with 29 nm in diameter at the highest concentration. The observed effect depended on both the concentration and the size of the PS-NPs.
Collapse
Affiliation(s)
- Kinga Malinowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Kateryna Tarhonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Teresy Str. 8, 91-348 Lodz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Ewa Jabłońska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Teresy Str. 8, 91-348 Lodz, Poland
| | - Edyta Reszka
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Górecka
- The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
- Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Aneta Balcerczyk
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Schwenger KJP, Ghorbani Y, Bharatselvam S, Chen L, Chomiak KM, Tyler AC, Eddingsaas NC, Fischer SE, Jackson TD, Okrainec A, Allard JP. Links between fecal microplastics and parameters related to metabolic dysfunction-associated steatotic liver disease (MASLD) in humans: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176153. [PMID: 39260480 DOI: 10.1016/j.scitotenv.2024.176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) can persist in the environment and human body. Murine studies showed that exposure to MPs could cause metabolic dysregulation, contributing metabolic dysfunction-associated steatotic liver disease (MASLD) or steatohepatitis (MASH). However, research on the role of MPs in humans is limited. Thus, we aimed to assess links between human fecal MPs and liver histology, gene expression, immune cells and intestinal microbiota (IM). We included 6 lean healthy liver donors and 6 normal liver (obese) and 11 MASH patients. Overall, pre-BSx, we observed no significant differences in fecal MPs between groups. However, fecal MP fibers and total MPs positively correlated with portal and total macrophages and total killer T cells while total fecal MPs were positively correlated with natural killer cells. Additionally, 19 genes related to immune system and apoptosis correlated with fecal MPs at baseline. Fecal MP fibers correlated positively with fecal Bifidobacterium and negatively with Lachnospiraceae. Patients with MASH (n = 11) were re-assessed 12-months post-bariatric surgery (BSx) and we found that those with persistent disease (n = 4) had higher fecal MP fragments than those with normalized liver histology (n = 7). At 12-month post-BSx, MP fragments positively correlated with helper T cells and total MPs positively correlated with natural killer T cells and B cells. Our study is the first to look at 1) the role of MPs in MASH and its association with IM, immune cells and hepatic gene expression and 2) look at the role of MPs longitudinally in MASH persistence following BSx. Future research should further explore this relationship.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kristina M Chomiak
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Anna Christina Tyler
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nathan C Eddingsaas
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, Division of Gastroenterology, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Hua X, Wang D. Transgenerational response of germline histone acetyltransferases and deacetylases to nanoplastics at predicted environmental doses in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175903. [PMID: 39218082 DOI: 10.1016/j.scitotenv.2024.175903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Nanoplastics could cause toxic effects on organism and their offsprings; however, how this transgenerational toxicity is formed remains largely unclear. We here examined potential involvement of germline histone acetylation regulation in modulating transgenerational toxicity of polyetyrene nanoparticle (PS-NP) in Caenorhabditis elegans. At parental generation (P0-G), PS-NP (1-100 μg/L) decreased expressions of germline cbp-1 and taf-1 encoding histone acetyltransferases, as well as germline expressions of sir-2.1 and hda-3 encoding histone deacetylase. Decrease in these 4 germline genes were also observed in the offspring of PS-NP (1-100 μg/L) exposed nematodes. Germline RNAi of cbp-1, taf-1, sir-2.1 and hda-3 resulted in more severe transgenerational PS-NP toxicity on locomotion and brood size. Meanwhile, in PS-NP exposed nematodes, germline RNAi of cbp-1, taf-1, sir-2.1 and hda-3 increased expression of genes encoding insulin, FGF, Wnt, and/or Notch ligands and expressions of their receptor genes in the offspring. Susceptibility to transgenerational PS-NP toxicity in cbp-1(RNAi), taf-1(RNAi), sir-2.1(RNAi), and hda-3 (RNAi) was inhibited by RNAi of these germline ligands genes. Moreover, histone deacetylase inhibition served as molecular initiating event (MIE) leading to transgenerational toxicity in epigenetic adverse outcome pathway (AOP) for nanoplastics. Our data provided evidence that germline histone acetylation regulation functioned as an important mechanism for transgenerational toxicity of nanoplastics at predicted environmental doses (PEDs) by affecting secreted ligands in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
6
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
7
|
Schmidt C, Kühnel D, Materić D, Stubenrauch J, Schubert K, Luo A, Wendt-Potthoff K, Jahnke A. A multidisciplinary perspective on the role of plastic pollution in the triple planetary crisis. ENVIRONMENT INTERNATIONAL 2024; 193:109059. [PMID: 39418784 DOI: 10.1016/j.envint.2024.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
In this perspective paper, we discuss the negative impacts of plastics and associated chemicals on the triple planetary crisis of environmental pollution, climate change and biodiversity loss from a multidisciplinary perspective. Plastics are part of the pollution crisis, threatening ecosystems and human health. They also impact climate change and accelerate biodiversity loss; in this, they aggravate the triple planetary crisis. We analyze the scientific state-of-the-art to identify critical knowledge gaps regarding the life cycle, release, fate, exposure, hazard and governance of plastics and associated chemicals, as well as links to climate change and biodiversity loss. Based on the outcome, we derive key research needs for a comprehensive hazard assessment of plastics and associated chemicals, amongst others, to address the largely missing regulation of plastic additives and in-use plastics. We offer a holistic perspective bridging disciplinary expertise from natural and social sciences to achieve effective plastic governance and risk management of plastics and associated chemicals that protect the Earth, its ecosystems and human health from the plastics crisis.
Collapse
Affiliation(s)
- Christian Schmidt
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Dušan Materić
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Jessica Stubenrauch
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Kristin Schubert
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Anran Luo
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany
| | - Katrin Wendt-Potthoff
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.
| |
Collapse
|
8
|
Pitt JA, Gallager SM, Youngs S, Michel APM, Hahn ME, Aluru N. The abundance and localization of environmental microplastics in gastrointestinal tract and muscle of Atlantic killifish ( Fundulus heteroclitus): a pilot study. MICROPLASTICS AND NANOPLASTICS 2024; 4:23. [PMID: 39493281 PMCID: PMC11527914 DOI: 10.1186/s43591-024-00101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Microplastics (MPs) have been found in a diverse range of organisms across trophic levels. While a majority of the information on organismal exposure to plastics in the environment comes from gastrointestinal (GI) data, the prevalence of MP particles in other tissues is not well understood. Additionally, many studies have not been able to detect the smallest, most prevalent, MPs (1 µm - 5 mm) that are the most likely to distribute to tissues in the body. To address these knowledge gaps, MPs in the GI tract and muscle of Atlantic killifish (Fundulus heteroclitus) collected from two sites (Falmouth and Bourne) on Buzzards Bay, Cape Cod, MA were quantified down to 2 µm in size. Eight fish from Falmouth and 10 fish Bourne site were analyzed. Fourier-transform infrared spectroscopy and Raman spectroscopy were used to identify all particles. The mean concentrations of MPs in the GI tract and muscle from fish collected from Falmouth was 85.5 ± 70.2 and 11 ± 12.5 particles per gram wet weight, respectively. Fish collected from Bourne site had mean particle concentrations of 12.2 ± 18.1 and 1.69 ± 5.36 particles per gram wet weight. Of the 2,008 particles analyzed in various fish tissue samples, only 3.4% (69 particles) were identified as plastic; polymers included nylon, polyethylene, polypropylene, and polyurethane. MPs detected in the GI tract samples also tended to be more diverse in both size and polymer type than those found in the muscle. We found that MPs < 50 µm, which are often not analyzed in the literature, were the most common in both the GI tract and muscle samples. There was not a significant correlation between the MP content in the muscle compared to the GI tract, indicating that GI tract MP abundance cannot be used to predict non-GI tract tissue MP content; however, MP abundance in muscle correlated with fish total length, suggesting potential bioaccumulation of these small MPs. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s43591-024-00101-w.
Collapse
Affiliation(s)
- Jordan A. Pitt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
- Massachusetts Institute of Technology (MIT) – Woods Hole Oceanographic Institution (WHOI), Joint Graduate Program in Oceanography and Oceanographic Engineering, Woods Hole, MA 02543 USA
- Present address: Exponent Inc, 1075 Worcester Street, Natick, MA 01760 USA
| | - Scott M. Gallager
- CoastalOceanVision, Inc, 10 Edgerton Drive, North Falmouth, MA 02556 USA
| | - Sarah Youngs
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Anna P. M. Michel
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| |
Collapse
|
9
|
Visentin E, Niero G, Benetti F, Perini A, Zanella M, Pozza M, De Marchi M. Preliminary characterization of microplastics in beef hamburgers. Meat Sci 2024; 217:109626. [PMID: 39137452 DOI: 10.1016/j.meatsci.2024.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The diffusion of microplastics in meat products is an emerging topic, as their impact on animal and human health is still largely unknown. The present study aimed to preliminarily determine the number and the quality of microplastics diffusion in beef hamburgers (n = 10) through Fourier-transformed infrared micro-spectroscopy in attenuated total reflectance mode analysis. Microplastics were detected in all analyzed samples. The abundance of microplastics ranged from 200.00 to 30,300.00 MP/kg. Microplastics observed in the analyzed samples were mainly characterized by irregular shapes (95.99%), grey color (70.16%), and dimensions comprised between 51 and 100 μm (57.46%). Eighteen different polymers were detected, with polycarbonate (30,300.00 MP/kg), polyethylene (1580.00 MP/kg) and polypropylene (750.00 MP/kg) being the most abundant classes. Results demonstrate an extensive diffusion of microplastics in the analyzed samples, which may be originated from various sources, including animal body, industrial processing, and packaging. Findings from this study will aid in pinpointing the source of microplastics contamination, enabling the creation of targeted guidelines to mitigate microplastics spread in processed meat food.
Collapse
Affiliation(s)
- E Visentin
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Niero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - F Benetti
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - A Perini
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - M Zanella
- European Center for the Sustainable Impact of Nanotechnology, EcamRicert S.r.l., Corso Stati Uniti 4, 35127 Padova (PD), Italy
| | - M Pozza
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
10
|
Brander SM, Senathirajah K, Fernandez MO, Weis JS, Kumar E, Jahnke A, Hartmann NB, Alava JJ, Farrelly T, Almroth BC, Groh KJ, Syberg K, Buerkert JS, Abeynayaka A, Booth AM, Cousin X, Herzke D, Monclús L, Morales-Caselles C, Bonisoli-Alquati A, Al-Jaibachi R, Wagner M. The time for ambitious action is now: Science-based recommendations for plastic chemicals to inform an effective global plastic treaty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174881. [PMID: 39047828 DOI: 10.1016/j.scitotenv.2024.174881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential "pillars" necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.
Collapse
Affiliation(s)
- Susanne M Brander
- Oregon State University, Dept. Fisheries, Wildlife, Conservation Sciences; Coastal Oregon Marine Experiment Station, Newport, OR, USA.
| | - Kala Senathirajah
- School of Engineering, University of Newcastle, Callaghan, Australia
| | - Marina O Fernandez
- Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Argentina
| | - Judith S Weis
- Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, Germany
| | - Nanna B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Trisia Farrelly
- School of People, Environment and Planning, Massey University, New Zealand
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Duebendorf, Switzerland
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanna Sophie Buerkert
- Centre for Climate Change Law and Governance, Faculty of Law, University of Copenhagen, Denmark
| | - Amila Abeynayaka
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark; Moore Institute for Plastic Pollution Research, Long Beach, CA, USA
| | | | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Dorte Herzke
- NILU & Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Laura Monclús
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Rana Al-Jaibachi
- Department of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Remigante A, Spinelli S, Gambardella L, Bozzuto G, Vona R, Caruso D, Villari V, Cappello T, Maisano M, Dossena S, Marino A, Morabito R, Straface E. Internalization of nano- and micro-plastics in human erythrocytes leads to oxidative stress and estrogen receptor-mediated cellular responses. Free Radic Biol Med 2024; 223:1-17. [PMID: 39038767 DOI: 10.1016/j.freeradbiomed.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Plastic material versatility has resulted in a substantial increase in its use in several sectors of our everyday lives. Consequently, concern regarding human exposure to nano-plastics (NPs) and micro-plastics (MPs) has recently increased. It has been shown that plastic particles entering the bloodstream may adhere to the erythrocyte surface and exert adverse effects following erythrocyte aggregation and adhesion to blood vessels. Here, we explored the effects of polystyrene nano-plastics (PS-NPs) and micro-plastics (PS-MPs) on human erythrocytes. Cellular morphology, binding/internalization of PS-NPs and PS-MPs, oxidative stress parameters, as well as the distribution and anion exchange capability of band 3 (anion exchanger 1; SLC4A1) have been analyzed in human erythrocytes exposed to 1 μg/mL PS-NPs or PS-MPs for 3 and 24 h, respectively. The data obtained showed significant modifications of the cellular shape after exposure to PS-NPs or PS-MPs. In particular, a significantly increased number of acanthocytes, echinocytes and leptocytes were detected. However, the percentage of eryptotic cells (<1 %) was comparable to physiological conditions. Analytical cytology and confocal microscopy showed that PS-NPs and PS-MPs bound to the erythrocyte plasma membrane, co-localized with estrogen receptors (Erα/ERβ), and were internalized. An increased trafficking from the cytosol to the erythrocyte plasma membrane and abnormal distribution of ERs were also observed, consistent with ERα-mediated binding and internalization of PS-NPs. An increased phosphorylation of ERK1/2 and AKT kinases indicated that an activation of the ER-modulated non-genomic pathway occurred following exposure to PS-NPs and PS-MPs. Interestingly, PS-NPs or PS-MPs caused a significant production of reactive oxygen species, resulting in an increased lipid peroxidation and protein sulfhydryl group oxidation. Oxidative stress was also associated with an altered band 3 ion transport activity and increased oxidized haemoglobin, which led to abnormal clustering of band 3 on the plasma membrane. Taken together, these findings identify cellular events following the internalization of PS-NPs or PS-MPs in human erythrocytes and contribute to elucidating potential oxidative stress-related harmful effects, which may affect erythrocyte and systemic homeostasis.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy.
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, 98166, Italy
| | - Valentina Villari
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Messina, 98158, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98166, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, 00161, Italy
| |
Collapse
|
13
|
Belmaker I, Anca ED, Rubin LP, Magen-Molho H, Miodovnik A, van der Hal N. Adverse health effects of exposure to plastic, microplastics and their additives: environmental, legal and policy implications for Israel. Isr J Health Policy Res 2024; 13:44. [PMID: 39256853 PMCID: PMC11385141 DOI: 10.1186/s13584-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/17/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Israel is a regional "hotspot" of plastic pollution, with little discussion of potential adverse health effects from exposure to plastic. This review aims to stimulate discussion and drive policy by focusing on these adverse health effects. MAIN BODY Plastics are synthetic polymers containing additives which can leach from food- and beverage-contact plastic into our food and beverages, and from plastic textiles onto our skin. Plastics persist in the environment for generations, fragmenting into MNPs: Micro (1 micron-5 mm)-Nano (1 nm-1 micron)-Plastic, which contaminate our atmosphere, water, and food chain. MNP can enter the human body through ingestion, inhalation and touch. MNP < 10 microns can cross epithelial barriers in the respiratory and gastrointestinal systems, and fragments < 100 nm can cross intact skin, enabling entry into body tissues. MNP have been found in multiple organs of the human body. Patients with MNP in atheromas of carotid arteries have increased risk of a combined measure of stroke, cardiovascular disease, and death. Toxic additives to plastics include bisphenols, phthalates, and PFAS, endocrine-disrupting chemicals (EDCs) which cause dysregulation of thyroid function, reproduction, and metabolism, including increased risk of obesity, diabetes, endometriosis, cancer, and decreased fertility, sperm count and quality. Fetal exposure to EDCs is associated with increased rates of miscarriages, prematurity and low birth weight. There is likely no safe level of exposure to EDCs, with increasing evidence of trans-generational and epigenetic effects. There are several existing Israeli laws to reduce plastic use and waste. Taxes on single-use plastic (SUP) were recently cancelled. There are many gaps in regulatory standards for food-, beverage- and child- safe plastic. Existing standards are poorly enforced. CONCLUSION Reduction in production and use of plastic, promotion of recycling and reduction of leaching of toxic additives into our food and beverages are essential policy goals. Specific recommendations: Periodic monitoring of MNP in bottled beverages, food, indoor air; Strengthen enforcement of standards for food-, beverage-, and child-safe plastic; Renew tax on SUPs; National ban on SUP at public beaches, nature reserves and parks; Ban products manufactured with MNP; Increase research on sources and health outcomes of exposure to MNP and EDCs.
Collapse
Affiliation(s)
- Ilana Belmaker
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka Campus, Building M7, 8410501, Beer-Sheva, Israel.
| | | | - Lisa P Rubin
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., 3103301, Mount Carmel, Haifa, Israel
| | - Hadas Magen-Molho
- Hebrew University Center for Sustainability, The Hebrew University, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Anna Miodovnik
- Israel Plastic Pollution Prevention Coalition (IPPPC), Tel Aviv, Israel
| | - Noam van der Hal
- Department of Maritime Civilizations, Charney School for Marine Science, University of Haifa, 199 Aba Khoushy Ave., 3498838, Mount Carmel, Haifa, Israel
| |
Collapse
|
14
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
15
|
Nitzberg EJ, Parmar S, Arbuckle-Keil G, Saba GK, Chant RJ, Fahrenfeld NL. Microplastic concentration, characterization, and size distribution in the Delaware Bay estuary. CHEMOSPHERE 2024; 361:142523. [PMID: 38838865 DOI: 10.1016/j.chemosphere.2024.142523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Microplastic (MP) pollution has been widely reported across water matrices including in estuaries, which are important for the understanding of oceanic MPs. Estuaries can greatly alter the fate, transport, size distribution, and abundance of plastic pollution. The aim of this study was to quantify and characterize MP pollution in the Delaware Bay estuary USA, including the size distribution. Samples (N = 31) were collected from the mouth of the Delaware River to the coastal ocean including multiple frontal zones across two sampling campaigns (2019 and 2022). MP were extracted from the collected particles using wet peroxide oxidation and density separation with saturated sodium chloride. Particles collected on 500 μm mesh sieves were analyzed via Fourier transform infrared (FTIR) spectroscopy. Across all samples, 324 of the 1015 particles analyzed were MP, and 11 macroplastics were observed. MP concentrations ranged from below detection to 4.12 MP/m3 (mean 0.34 ± 0.80 MP/m3). No significant differences were observed between sampling sites; nonetheless, the two highest MP concentrations were observed when sampling along frontal zones with visible debris including macroplastics. Polyethylene (53%) and polypropylene (43%) were the most abundant polymers observed. The majority of the non-plastic particles were classified as particulate natural organic matter (82% of non-plastics). Particles from samples collected during 2022 (N = 864) also had color, morphology, and two size dimensions recorded. MP particle size was significantly associated with sampling site, with the coastal ocean sampling site generally having the smallest MPs. A correlation between total post-extraction particles and total plastic particles was observed. Aspect ratios for the plastics ranged from one to 40.7, with larger ratios for fibers, with a mean (±standard deviation) of 3.39 ± 4.72 (unitless). These aspect ratios can be used to select shape factors used to estimate the total volume of MP in the studied size range. Overall, these results can help inform fate, transport, and risk assessments related to estuarine plastic pollution.
Collapse
Affiliation(s)
- Erik J Nitzberg
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Swaraj Parmar
- Department of Chemistry, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Georgia Arbuckle-Keil
- Department of Chemistry, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Grace K Saba
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Robert J Chant
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
16
|
Arribas Arranz J, Villacorta A, Rubio L, García-Rodríguez A, Sánchez G, Llorca M, Farre M, Ferrer JF, Marcos R, Hernández A. Kinetics and toxicity of nanoplastics in ex vivo exposed human whole blood as a model to understand their impact on human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174725. [PMID: 39009158 DOI: 10.1016/j.scitotenv.2024.174725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
The ubiquitous presence of nanoplastics (NPLs) in the environment is considered of great health concern. Due to their size, NPLs can cross both the intestinal and pulmonary barriers and, consequently, their presence in the blood compartment is expected. Understanding the interactions between NPLs and human blood components is required. In this study, to simulate more adequate real exposure conditions, the whole blood of healthy donors was exposed to five different NPLs: three polystyrene NPLs of approximately 50 nm (aminated PS-NH2, carboxylated PS-COOH, and pristine PS- forms), together with two true-to-life NPLs from polyethylene terephthalate (PET) and polylactic acid (PLA) of about 150 nm. Internalization was determined in white blood cells (WBCs) by confocal microscopy, once the different main cell subtypes (monocytes, polymorphonucleated cells, and lymphocytes) were sorted by flow cytometry. Intracellular reactive oxygen species (iROS) induction was determined in WBCs and cytokine release in plasma. In addition, hemolysis, coagulation, and platelet activation were also determined. Results showed a differential uptake between WBC subtypes, with monocytes showing a higher internalization. Regarding iROS, lymphocytes were those with higher levels, which was observed for different NPLs. Changes in cytokine release were also detected, with higher effects observed after PLA- and PS-NH2-NPL exposure. Hemolysis induction was observed after PS- and PS-COOH-NPL exposure, but no effects on platelet functionality were observed after any of the treatments. To our knowledge, this is the first study comprehensively evaluating the bloodstream kinetics and toxicity of NPL from different polymeric types on human whole blood, considering the role played by the cell subtype and the NPLs physicochemical characteristics in the effects observed after the exposures.
Collapse
Affiliation(s)
- J Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - L Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - A García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - G Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - M Llorca
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - M Farre
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034 Barcelona, Spain
| | - J F Ferrer
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, 46980 Paterna, Spain
| | - R Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - A Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
17
|
Saudrais F, Schvartz M, Renault JP, Vieira J, Devineau S, Leroy J, Taché O, Boulard Y, Pin S. The Impact of Virgin and Aged Microstructured Plastics on Proteins: The Case of Hemoglobin Adsorption and Oxygenation. Int J Mol Sci 2024; 25:7047. [PMID: 39000151 PMCID: PMC11241625 DOI: 10.3390/ijms25137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.
Collapse
Affiliation(s)
- Florent Saudrais
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Marion Schvartz
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | | | - Jorge Vieira
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Stéphanie Devineau
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, 75013 Paris, France
| | - Jocelyne Leroy
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Olivier Taché
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| | - Yves Boulard
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Serge Pin
- NIMBE, CNRS, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (F.S.)
| |
Collapse
|
18
|
Tsochatzis ED, Gika H, Theodoridis G, Maragou N, Thomaidis N, Corredig M. Microplastics and nanoplastics: Exposure and toxicological effects require important analysis considerations. Heliyon 2024; 10:e32261. [PMID: 38882323 PMCID: PMC11180319 DOI: 10.1016/j.heliyon.2024.e32261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) pervade both the environment and the food chain, originating from the degradation of plastic materials from various sources. Their ubiquitous presence raises concerns for ecosystem safety, as well as the health of animals and humans. While evidence suggests their infiltration into mammalian and human tissues and their association with several diseases, the precise toxicological effects remain elusive and require further investigation. MPs and NPs sample preparation and analytical methods are quite scattered without harmonized strategies to exist at the moment. A significant challenge lies in the limited availability of methods for the chemical characterization and quantification of these contaminants. MPs and NPs can undergo further degradation, driven by abiotic or biotic factors, resulting in the formation of cyclic or linear oligomers. These oligomers can serve as indicative markers for the presence or exposure to MPs and NPs. Moreover, recent finding concerning the aggregation of oligomers to form NPs, makes their analysis as markers very important. Recent advancements have led to the development of sensitive and robust analytical methods for identifying and (semi)quantifying these oligomers in environmental, food, and biological samples. These methods offer a valuable complementary approach for determining the presence of MPs and NPs and assessing their risk to human health and the environment.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Niki Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Milena Corredig
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
| |
Collapse
|
19
|
Adler MY, Issoual I, Rückert M, Deloch L, Meier C, Tschernig T, Alexiou C, Pfister F, Ramsperger AF, Laforsch C, Gaipl US, Jüngert K, Paulsen F. Effect of micro- and nanoplastic particles on human macrophages. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134253. [PMID: 38642497 DOI: 10.1016/j.jhazmat.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.
Collapse
Affiliation(s)
- Maike Y Adler
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Insaf Issoual
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Chair of Machine Learning and Data Analytics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Christian Laforsch
- Animal Ecology I and Bay CEER, University of Bayreuth, Bayreuth, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Jüngert
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Wohlschläger M, Versen M, Löder MGJ, Laforsch C. Identification of different plastic types and natural materials from terrestrial environments using fluorescence lifetime imaging microscopy. Anal Bioanal Chem 2024; 416:3543-3554. [PMID: 38649517 PMCID: PMC11156735 DOI: 10.1007/s00216-024-05305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Environmental pollution by plastics is a global issue of increasing concern. However, microplastic analysis in complex environmental matrices, such as soil samples, remains an analytical challenge. Destructive mass-based methods for microplastic analysis do not determine plastics' shape and size, which are essential parameters for reliable ecological risk assessment. By contrast, nondestructive particle-based methods produce such data but require elaborate, time-consuming sample preparation. Thus, time-efficient and reliable methods for microplastic analysis are needed. The present study explored the potential of frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) for rapidly and reliably identifying as well as differentiating plastics and natural materials from terrestrial environments. We investigated the fluorescence spectra of ten natural materials from terrestrial environments, tire wear particles, and eleven different transparent plastic granulates <5 mm to determine the optimal excitation wavelength for identification and differentiation via FD-FLIM under laboratory conditions. Our comparison of different excitation wavelengths showed that 445 nm excitation exhibited the highest fluorescence intensities. 445 nm excitation was also superior for identifying plastic types and distinguishing them from natural materials from terrestrial environments with a high probability using FD-FLIM. We could demonstrate that FD-FLIM analysis has the potential to contribute to a streamlined and time-efficient direct analysis of microplastic contamination. However, further investigations on size-, shape-, color-, and material-type detection limitations are necessary to evaluate if the direct identification of terrestrial environmental samples of relatively low complexity, such as a surface inspection soil, is possible.
Collapse
Affiliation(s)
- Maximilian Wohlschläger
- Faculty of Engineering Sciences, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024, Rosenheim, Germany.
| | - Martin Versen
- Faculty of Engineering Sciences, Rosenheim Technical University of Applied Sciences, Hochschulstraße 1, 83024, Rosenheim, Germany
| | - Martin G J Löder
- Animal Ecology I and BayCEER, University Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
21
|
Chen Y, Meng Y, Liu G, Huang X, Chai G. Probabilistic Estimation of Airborne Micro- and Nanoplastic Intake in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9071-9081. [PMID: 38748887 DOI: 10.1021/acs.est.3c09189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Little research exists on the magnitude, variability, and uncertainty of human exposure to airborne micro- and nanoplastics (AMNPs), despite their critical role in human exposure to MNPs. We probabilistically estimate the global intake of AMNPs through three main pathways: indoor inhalation, outdoor inhalation, and ingestion during indoor meals, for both children and adults. The median inhalation of AMPs is 1,207.7 (90% CI, 42.5-8.48 × 104) and 1,354.7 (90% CI, 47.4-9.55 × 104) N/capita/day for children and adults, respectively. The annual intake of AMPs is 13.18 mg/capita/a for children and 19.10 mg/capita/a for adults, which is approximately one-fifth and one-third of the mass of a standard stamp, assuming a consistent daily intake of medians. The majority of AMP number intake occurs through inhalation, while the ingestion of deposited AMPs during meals contributes the most in terms of mass. Furthermore, the median ANP intake through outdoor inhalation is 9,638.1 N/day (8.23 × 10-6 μg/d) and 5,410.6 N/day (4.62 × 10-6 μg/d) for children and adults, respectively, compared to 5.30 × 105 N/day (5.79 × 10-4 μg/d) and 6.00 × 105 N/day (6.55 × 10-4 μg/d) via indoor inhalation. Considering the increased toxicity of smaller MNPs, the significant number of ANPs inhaled warrants great attention. Collaborative efforts are imperative to further elucidate and combat the current MPN risks.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Guodong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Xiaohua Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Guangming Chai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Zhao X, You F. Microplastic Human Dietary Uptake from 1990 to 2018 Grew across 109 Major Developing and Industrialized Countries but Can Be Halved by Plastic Debris Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8709-8723. [PMID: 38656828 PMCID: PMC11112738 DOI: 10.1021/acs.est.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm, are now a growing environmental and public health issue, as they are detected pervasively in freshwater and marine environments, ingested by organisms, and then enter the human body. Industrial development drives this environmental burden caused by MP formation and human uptake by elevating plastic pollution levels and shaping the domestic dietary structure. We map the MP human uptake across 109 global countries on five continents from 1990 to 2018, focusing on the world's major coastlines that are affected by plastic pollution that affects the United Nations' Sustainable Development Goals (SDGs): SDG 6 (Clean Water and Sanitation), SDG 14 (Life Below Water), and SDG 15 (Life on Land). Amid rapid industrial growth, Indonesia tops the global per capita MP dietary intake at 15 g monthly. In Asian, African, and American countries, including China and the United States, airborne and dietary MP uptake increased over 6-fold from 1990 to 2018. Eradicating 90% of global aquatic plastic debris can help decrease MP uptake by more than 48% in Southeast Asian countries that peak MP uptake. To reduce MP uptake and potential public health risks, governments in developing and industrialized countries in Asia, Europe, Africa, and North and South America should incentivize the removal of free plastic debris from freshwater and saltwater environments through advanced water treatment and effective solid waste management practices.
Collapse
Affiliation(s)
- Xiang Zhao
- Systems
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fengqi You
- Systems
Engineering, Cornell University, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Atkinson Center for Sustainability, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
23
|
Domenech J, Villacorta A, Ferrer JF, Llorens-Chiralt R, Marcos R, Hernández A, Catalán J. In vitro cell-transforming potential of secondary polyethylene terephthalate and polylactic acid nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134030. [PMID: 38493621 DOI: 10.1016/j.jhazmat.2024.134030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Continuous exposure to plastic pollutants may have serious consequences on human health. However, most toxicity assessments focus on non-environmentally relevant particles and rarely investigate long-term effects such as cancer induction. The present study assessed the carcinogenic potential of two secondary nanoplastics: polyethylene terephthalate (PET) particles generated from plastic bottles, and a biodegradable polylactic acid material, as respective examples of environmentally existing particles and new bioplastics. Pristine polystyrene nanoplastics were also included for comparison. A broad concentration range (6.25-200 μg/mL) of each nanoplastic was tested in both the initiation and promotion conditions of the regulatory assessment-accepted in vitro Bhas 42 cell transformation assay. Parallel cultures allowed confirmation of the efficient cellular internalisation of the three nanoplastics. Cell growth was enhanced by polystyrene in the initiation assay, and by PET in both conditions. Moreover, the number of transformed foci was significantly increased only by the highest PET concentration in the promotion assay, which also showed dose-dependency, indicating that nano PET can act as a non-genotoxic tumour promotor. Together, these findings support the carcinogenic risk assessment of nanoplastics and raise concerns regarding whether real-life co-exposure of PET nanoplastics and other environmental pollutants may result in synergistic transformation capacities.
Collapse
Affiliation(s)
- Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Aliro Villacorta
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | | | | | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
24
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
25
|
Hossain S, Shukri ZNA, Waiho K, Ibrahim YS, Kamaruzzan AS, Rahim AIA, Draman AS, Wahab W, Khatoon H, Kasan NA. Biodegradation of polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics by floc-forming bacteria, Bacillus cereus strain SHBF2, isolated from a commercial aquafarm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32225-32245. [PMID: 38644425 DOI: 10.1007/s11356-024-33337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
The ubiquitous proximity of the commonly used microplastic (MP) particles particularly polyethylene (PE), polypropylene (PP), and polystyrene (PS) poses a serious threat to the environment and human health globally. Biological treatment as an environment-friendly approach to counter MP pollution has recent interest when the bio-agent has beneficial functions in their ecosystem. This study aimed to utilize beneficial floc-forming bacteria Bacillus cereus SHBF2 isolated from an aquaculture farm in reducing the MP particles (PE, PP, and PS) from their environment. The bacteria were inoculated for 60 days in a medium containing MP particle as a sole carbon source. On different days of incubation (DOI), the bacterial growth analysis was monitored and the MP particles were harvested to examine their weight loss, surface changes, and alterations in chemical properties. After 60 DOI, the highest weight loss was recorded for PE, 6.87 ± 0.92%, which was further evaluated to daily reduction rate (k), 0.00118 day-1, and half-life (t1/2), 605.08 ± 138.52 days. The OD value (1.74 ± 0.008 Abs.) indicated the higher efficiency of bacteria for PP utilization, and so for the colony formation per define volume (1.04 × 1011 CFU/mL). Biofilm formation, erosions, cracks, and fragments were evident during the observation of the tested MPs using the scanning electron microscope (SEM). The formation of carbonyl and alcohol group due to the oxidation and hydrolysis by SHBF2 strain were confirmed using the Fourier transform infrared spectroscopic (FTIR) analysis. Additionally, the alterations of pH and CO2 evolution from each of the MP type ensures the bacterial activity and mineralization of the MP particles. The findings of this study have confirmed and indicated a higher degree of biodegradation for all of the selected MP particles. B. cereus SHBF2, the floc-forming bacteria used in aquaculture, has demonstrated a great potential for use as an efficient MP-degrading bacterium in the biofloc farming system in the near future to guarantee a sustainable green aquaculture production.
Collapse
Affiliation(s)
- Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wahidah Wahab
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Helena Khatoon
- Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
26
|
He X, Xie X, Xiang J, Yang M. Convenient Size Analysis of Nanoplastics on a Microelectrode. Anal Chem 2024; 96:6180-6185. [PMID: 38593062 DOI: 10.1021/acs.analchem.3c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemical recycling is a promising approach to reduce plastic pollution. Timely and accurate size analysis of produced nanoplastics is necessary to monitor the process and assess the quality of chemical recycling. In this work, a sandwich-type microelectrode sensor was developed for the size assessment of nanoplastics. β-Mercaptoethylamine was modified on the microelectrode to enhance its surface positive charge density. Polystyrene (PS) nanoplastics were captured on the sensor through electrostatic interactions. Ferrocene was used as an electrochemical beacon and attached to PS via hydrophobic interactions. The results show a nonlinear dependence of the sensor's current response on the PS particle size. The size resolving ability of the microelectrode is mainly attributed to the small size of the electrode and the resulting attenuation of the electric field strength. For mixed samples with different particle sizes, this method can provide accurate average particle sizes. Through an effective pretreatment process, the method can be applied to PS nanoplastics with different surface properties, ensuring its application in evaluating different chemical recycling methods.
Collapse
Affiliation(s)
- Xuan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Xin Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| |
Collapse
|
27
|
Chen CY, Lin Z. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles. ENVIRONMENT INTERNATIONAL 2024; 186:108617. [PMID: 38599027 DOI: 10.1016/j.envint.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States.
| |
Collapse
|
28
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Li Y, Liu Y, Chen Y, Yao C, Yu S, Qu J, Chen G, Wei H. Combined effects of polystyrene nanoplastics and lipopolysaccharide on testosterone biosynthesis and inflammation in mouse testis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116180. [PMID: 38458071 DOI: 10.1016/j.ecoenv.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs), as a source and vector of pathogenic bacteria, are widely distributed in the natural environments. Here, we investigated the combined effects of polystyrene NPs (PS-NPs) and lipopolysaccharides (LPS) on testicular function in mice for the first time. 24 male mice were randomly assigned into 4 groups, control, PS-NPs, LPS, and PS-NPs + LPS, respectively. Histological alterations of the testes were observed in mice exposed to PS-NPs, LPS or PS-NPs + LPS. Total sperm count, the levels of testosterone in plasma and testes, the expression levels of steroidogenic acute regulatory (StAR) decreased more remarkable in testes of mice treated with PS-NPs and LPS than the treatment with LPS or PS-NPs alone. Compared with PS-NPs treatment, LPS treatment induced more sever inflammatory response in testes of mice. Moreover, PS-NPs combined with LPS treatment increased the expression of these inflammatory factors more significantly than LPS treatment alone. In addition, PS-NPs or LPS treatment induced oxidative stress in testes of mice, but their combined effect is not significantly different from LPS treatment alone. These results suggest that PS-NPs exacerbate LPS-induced testicular dysfunction. Our results provide new evidence for the threats to male reproductive function induced by both NPs and bacterial infection in human health.
Collapse
Affiliation(s)
- Yanli Li
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yingqi Liu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China; Wujiang Center for Disease Control and Prevention, Suzhou, Jiangsu 215299, China
| | - Yanhong Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chenjuan Yao
- Department of Molecular Oral Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima-Shi, Tokushima 770-8504, Japan
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, College of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
30
|
Jo HH, Yuk H, Kim YU, Jin D, Jeong SG, Kim S. Evaluation of particle generation due to deterioration of flooring in schools. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123340. [PMID: 38224763 DOI: 10.1016/j.envpol.2024.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Particulate matter is harmful to humans. An important indoor source of such particles is the deterioration of floor materials brought about by occupants walking. Accordingly, an experiment was conducted to simulate the deterioration of floor material spacing. Considering a school schedule with repeated semesters and vacations, the experiment was conducted by repeating heat-and-rest cycles. Similar results were obtained for particle emission rates under each condition during the first and second deterioration periods. The PVC tiles generated more particles under aged conditions than under non-aged conditions, whereas the wood generated fewer particles under aged conditions. In addition to the quantitative results, a study was conducted on the characteristics of the generated particles, and the particulate matter found in plastic was confirmed in the PVC tiles. Schools where children are present for more than 6 h a day may be exposed to more particulate matter. Therefore, replacing plastic-based materials with eco-friendly building materials is expected to have long-term health benefits for children.
Collapse
Affiliation(s)
- Ho Hyeon Jo
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeonseong Yuk
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dongchan Jin
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Su-Gwang Jeong
- Department of Architectural Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
31
|
Li P, Liu J. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315819 DOI: 10.1021/acs.est.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
Collapse
Affiliation(s)
- Penghui Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfu Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
32
|
Baysal A, Soyocak A, Saygin H, Saridag AM. Exposure to phagolysosomal simulated fluid altered the cytotoxicity of PET micro(nano)plastics to human lung epithelial cells. Toxicol Mech Methods 2024; 34:72-97. [PMID: 37697451 DOI: 10.1080/15376516.2023.2256847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The occurrence of micro(nano)plastics into various environmental and biological settings influences their physicochemical and toxic behavior. Simulated body fluids are appropriate media for understanding the degradation, stability, and interaction with other substances of any material in the human body. When the particles enter the human body via inhalation, which is one of the avenues for micro(nano)plastics, they first come into contact with the lung lining fluid under neutral conditions and then are phagocytosed under acidic conditions to be removed. Therefore, it is important to examine the physicochemical transformation and toxicity characteristics after interaction with phagolysosomal simulant fluid (PSF). Here, we focused on exploring how the physicochemical differences (e.g. surface chemistry, elemental distribution, and surface charge) of micro(nano)plastics under pH 4.5 phagolysosome conditions impact cytotoxicity and the oxidative characteristics of lung epithelia cells. The cytotoxicity of lung epithelia cells to those treated with PSF and non-treated micro(nano)plastics was tested by various viability indicators including cell counting kit-8 (CCK-8), MTT, and LDH. Furthermore, the cytotoxicity background was examined through the oxidative processes (e.g. reactive oxygen species, antioxidant, superoxide dismutase (SOD), catalase, and reduced glutathione). The results showed that all tested surface physicochemical characteristics were significantly influenced by the phagolysosome conditions. The staged responses were observed with the treatment duration, and significant changes were calculated in carbonyl, carbon-nitrogen, and sulfonyl groups. Moreover, the negativity of the zeta potentials declined between exposure of 2-40 h and then increased at 80 h compared to control owing to the chemical functional groups and elemental distribution of the plastic particles. The tested viability indicators showed that the micro(nano)plastics treated with PSF were cytotoxic to the lung epithelia cells compared to non-treated micro(nano)plastics, and SOD was the dominant enzyme triggering cytotoxicity due to the particle degradation and instability.
Collapse
Affiliation(s)
- Asli Baysal
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Turkey
| | - Ahu Soyocak
- Department of Medical Biology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul Turkey
| | - Ayse Mine Saridag
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
33
|
Saygin H, Baysal A, Zora ST, Tilkili B. A characterization and an exposure risk assessment of microplastics in settled house floor dust in Istanbul, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121030-121049. [PMID: 37947931 DOI: 10.1007/s11356-023-30543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The presence of microplastics in the indoor environment presents growing environmental and human health risks because of their physicochemical and toxic characteristics. Therefore, we aimed to isolate, identify, and characterize plastic debris in settled house floor dusts. This study is a rare study which assess the risks of plastic debris in settled house dust through multiple approaches including the estimated daily intake, pollution loading index, and polymer hazard index. The results indicated that polyethylene and polypropylene were the predominate polymer type of plastic debris in settled house dust with various shapes and colors. The risk assessment results also indicated the serious impact of microplastics in terms of extremely dangerous contamination as well as the fact that they present a polymer hazard. Results indicated that humans have a higher risk of exposure to microplastics via ingestion rather than inhalation. In addition, infants had a higher risk of potential intake compared to other age groups.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye.
| | - Asli Baysal
- Faculty of Science and Letters, Chemistry Dept., Istanbul Technical University, Maslak, 34467, Istanbul, Türkiye
| | - Sevilay Tarakci Zora
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye
| |
Collapse
|
34
|
Jiménez-Arroyo C, Tamargo A, Molinero N, Reinosa JJ, Alcolea-Rodriguez V, Portela R, Bañares MA, Fernández JF, Moreno-Arribas MV. Simulated gastrointestinal digestion of polylactic acid (PLA) biodegradable microplastics and their interaction with the gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166003. [PMID: 37549707 DOI: 10.1016/j.scitotenv.2023.166003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
The accumulation of microplastics (MPs) in the environment as well as their presence in foods and humans highlight the urgent need for studies on the effects of these particles on humans. Polylactic acid (PLA) is the most widely used bioplastic in the food industry and medical field. Despite its biodegradability, biocompatibility, and "Generally Recognized As Safe" (GRAS) status, recent animal model studies have shown that PLA MPs can alter the intestinal microbiota; however, to date, no studies have been reported on the possible gut and health consequences of its intake by humans. This work simulates the ingestion of a realistic daily amount of PLA MPs and their pass through the gastrointestinal tract by combining the INFOGEST method and the gastrointestinal simgi® model to evaluate possible effects on the human colonic microbiota composition (16S rRNA gene sequencing analysis) and metabolic functionality (lactic acid and short-chain fatty acids (SCFA) production). Although PLA MPs did not clearly alter the microbial community homeostasis, increased Bifidobacterium levels tended to increase in presence of millimetric PLA particles. Furthermore, shifts detected at the functional level suggest an alteration of microbial metabolism, and a possible biotransformation of PLA by the human microbial colonic community. Raman spectroscopy and field emission scanning electron microscopy (FESEM) characterization revealed morphological changes on the PLA MPs after the gastric phase of the digestion, and the adhesion of organic matter as well as a microbial biofilm, with surface biodegradation, after the intestinal and colonic phases. With this evidence and the emerging use of bioplastics, understanding their impact on humans and potential biodegradation through gastrointestinal digestion and the human microbiota merits critical investigation.
Collapse
Affiliation(s)
- C Jiménez-Arroyo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - A Tamargo
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - N Molinero
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - J J Reinosa
- Instituto de Cerámica y Vidrio, CSIC, c/ Kelsen, 28049 Madrid, Spain; Encapsulae S.L., c/Lituania 10, 12006 Castellón de la Plana, Spain
| | - V Alcolea-Rodriguez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - R Portela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - M A Bañares
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie, 2, 28049 Madrid, Spain
| | - J F Fernández
- Encapsulae S.L., c/Lituania 10, 12006 Castellón de la Plana, Spain
| | - M V Moreno-Arribas
- Institute of Food Science Research, CIAL, CSIC-UAM, C/ Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Panizzolo M, Martins VH, Ghelli F, Squillacioti G, Bellisario V, Garzaro G, Bosio D, Colombi N, Bono R, Bergamaschi E. Biomarkers of oxidative stress, inflammation, and genotoxicity to assess exposure to micro- and nanoplastics. A literature review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115645. [PMID: 37922781 DOI: 10.1016/j.ecoenv.2023.115645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Vitor Hugo Martins
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Davide Bosio
- Unit of Occupational Medicine, A.O.U Città della Salute e della Scienza di Torino, Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine "F. Rossi", University of Turin, 10126 Turin, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy.
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
36
|
Hiranphinyophat S, Hiraoka T, Kobayashi M, Fujii S, Kishida A, Tanabe T, Kimura T, Yamamoto M. Fabrication of Polypropylene Nanoplastics Via Thermal Oxidation Reaction for Human Cells Responsiveness Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15563-15571. [PMID: 37882450 DOI: 10.1021/acs.langmuir.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
With the current worldwide increasing use of plastics year by year, nanoplastics (NPs) have become a global threat to environmental and public health concerns. Among plastics, polypropylene (PP) is widely used in industrial and medical applications. Owing to the lack of validated detection methods and standard materials for PP NPs, understanding the impact of PP NPs on the environmental and biological systems is still limited. Here, isotactic polypropylene (iPP) was fabricated into oxidized polypropylene micro/nanoplastics (OPPs) via a thermal oxidation using hydrogen peroxide (H2O2) under various heating temperatures. The resulting OPPs were investigated in terms of the size distribution, surface chemistry, morphology, and thermal property as well as their concentration-dependent cytotoxicity to a human intestinal epithelial cell line (Caco-2), which could be a route to uptake NPs into the body through the food chain. The average diameters of the OPPs decrease with increasing reaction temperature. The OPPs obtained at 175 °C (OPP175) were spherical in shape and had a rough surface, with size distributions of approximately 0.14 ± 0.02 μm. A significant increase in the carbonyl content of the oxidized product was confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy analyses. Caco-2 cells were exposed to OPP175 in a dose-dependent manner, and a significant loss of cell viability occurred at the concentration of 100 μg/mL. Thus, this study provides a fundamental approach for the fabrication of a model of NPs for the urgently demanded in vitro and in vivo studies to assess the potential impact of NPs on biological systems.
Collapse
Affiliation(s)
- Suphatra Hiranphinyophat
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tomoki Hiraoka
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mako Kobayashi
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Sho Fujii
- Department of Natural Sciences, National Institute of Technology, Kisarazu College, 2-11-1 Kiyomidai Higashi, Kisarazu, Chiba 292-0041, Japan
| | - Akio Kishida
- Department of Material-based Medical Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tadao Tanabe
- School of Engineering and Design, Shibaura Institute of Technology, 3-9-14 Shibaura, Minato-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Department of Material-based Medical Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masaya Yamamoto
- Graduate School of Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-2 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
37
|
Gaß H, Sarcletti M, Müller L, Hübner S, Yokosawa T, Park H, Przybilla T, Spiecker E, Halik M. A Sustainable Method for Removal of the Full Range of Liquid and Solid Hydrocarbons from Water Including Up- and Recycling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302495. [PMID: 37807816 PMCID: PMC10646276 DOI: 10.1002/advs.202302495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/29/2023] [Indexed: 10/10/2023]
Abstract
Beyond their CO2 emittance when burned as fuels, hydrocarbons (HCs) serve as omnipresent raw materials and commodities. No matter if as liquid oil spills or the endless amounts of plastic roaming the oceans, HCs behave as persistent pollutants with water as main carrier to distribute. Even if their general chemical structure [-(CH2 )n -] is quite simple, the endless range of n leads to contaminations of different appearances and properties. A water remediation method based on superparamagnetic iron oxide nanoparticles (SPIONs) modified with self-assembled monolayers of alkyl phosphonic acid derivatives is presented. These molecules enable the SPIONs to non-covalently bind HCs, independently from the molecular weight, size and morphology. The attractive interaction is mainly based on hydrophobic and Coulomb interaction, which allows recycling of the SPIONs. The superparamagnetic core allows a simple magnetic collection and separation from the water phase which makes it a promising addition to wastewater treatment. Agglomerates of collected plastic "waste" even exhibit superior adsorption properties for crude oil, another hydrocarbon waste which gives these collected wastes a second life. This upcycling approach combined with presented recycling methods enables a complete recycling loop.
Collapse
Affiliation(s)
- Henrik Gaß
- Organic Materials & DevicesInstitute of Polymer MaterialsFriedrich‐Alexander‐University Erlangen Nürnberg91058ErlangenGermany
| | - Marco Sarcletti
- Organic Materials & DevicesInstitute of Polymer MaterialsFriedrich‐Alexander‐University Erlangen Nürnberg91058ErlangenGermany
| | - Lukas Müller
- Organic Materials & DevicesInstitute of Polymer MaterialsFriedrich‐Alexander‐University Erlangen Nürnberg91058ErlangenGermany
| | - Sabine Hübner
- Institute of Micro‐ and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐University Erlangen‐Nürnberg91058ErlangenGermany
| | - Tadahiro Yokosawa
- Institute of Micro‐ and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐University Erlangen‐Nürnberg91058ErlangenGermany
| | - Hyoungwon Park
- Organic Materials & DevicesInstitute of Polymer MaterialsFriedrich‐Alexander‐University Erlangen Nürnberg91058ErlangenGermany
| | - Thomas Przybilla
- Institute of Micro‐ and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐University Erlangen‐Nürnberg91058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐University Erlangen‐Nürnberg91058ErlangenGermany
| | - Marcus Halik
- Organic Materials & DevicesInstitute of Polymer MaterialsFriedrich‐Alexander‐University Erlangen Nürnberg91058ErlangenGermany
| |
Collapse
|
38
|
Di Fiore C, Carriera F, Russo MV, Avino P. Are Microplastics a Macro Issue? A Review on the Sources of Contamination, Analytical Challenges and Impact on Human Health of Microplastics in Food. Foods 2023; 12:3915. [PMID: 37959034 PMCID: PMC10647536 DOI: 10.3390/foods12213915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, human populations' exposure to microplastics via foods is becoming a topic of concern. Although microplastics have been defined as "emerging contaminants", their occurrence in the environment and food is quite dated. This systematic review aims to investigate the discrepancies which are characterizing the research in the microplastics field in foods, with particular regard to sample preparations, microplastics' concentrations and their effect on humans. For the selection of papers, the PRISMA methodology was followed. Discrepancies in the methodological approaches emerged and in the expression of the results as well, underlying the urgency in the harmonization of the methodological approaches. Uncertainties are still present regarding the adverse effects of microplastics on the human body. The scientific evidence obtained thus far is, in fact, not sufficient to demonstrate a concrete negative effect. This review has clearly underlined the need to standardise laboratory approaches to obtain useful results for better food safety management.
Collapse
Affiliation(s)
- Cristina Di Fiore
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (F.C.); (M.V.R.); (P.A.)
| | - Fabiana Carriera
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (F.C.); (M.V.R.); (P.A.)
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Mario Vincenzo Russo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (F.C.); (M.V.R.); (P.A.)
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, 86100 Campobasso, Italy; (F.C.); (M.V.R.); (P.A.)
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, 00147 Rome, Italy
| |
Collapse
|
39
|
Geppner L, Karaca J, Wegner W, Rados M, Gutwald T, Werth P, Henjakovic M. Testing of Different Digestion Solutions on Tissue Samples and the Effects of Used Potassium Hydroxide Solution on Polystyrene Microspheres. TOXICS 2023; 11:790. [PMID: 37755800 PMCID: PMC10536618 DOI: 10.3390/toxics11090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Microplastic particles are ubiquitous in our environment, having entered the air, the water, the soil, and ultimately our food chain. Owing to their small size, these particles can potentially enter the bloodstream and accumulate in the organs. To detect microplastics using existing methods, they must first be isolated. The aim of this study was to develop a non-destructive method for efficiently and affordably isolating plastic particles. We investigated the digestion of kidney, lung, liver, and brain samples from pigs. Kidney samples were analyzed using light microscopy after incubation with proteinase K, pepsin/pancreatin, and 10% potassium hydroxide (KOH) solution. Various KOH:tissue ratios were employed for the digestion of lung, liver, and brain samples. Additionally, we examined the effect of 10% KOH solution on added polystyrene microplastics using scanning electron microscopy. Our findings revealed that a 10% KOH solution is the most suitable for dissolving diverse organ samples, while enzymatic methods require further refinement. Moreover, we demonstrated that commonly used 1 µm polystyrene particles remain unaffected by 10% KOH solution even after 76 h of incubation. Digestion by KOH offers a simple and cost-effective approach for processing organ samples and holds potential for isolating plastic particles from meat products.
Collapse
Affiliation(s)
- Liesa Geppner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Jakob Karaca
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Wencke Wegner
- Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Moritz Rados
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Tobias Gutwald
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Philemon Werth
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| | - Maja Henjakovic
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500 Krems, Austria
| |
Collapse
|
40
|
Sun A, Wang WX. Human Exposure to Microplastics and Its Associated Health Risks. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:139-149. [PMID: 39473618 PMCID: PMC11504042 DOI: 10.1021/envhealth.3c00053] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 12/20/2024]
Abstract
Microplastics are a globally emerging contaminant in the environment, but little is known about the potential risks of microplastics to human health. Possible exposure routes of microplastics to humans include ingestion, inhalation, and dermal penetration, with the last of these needing equal attention as the other two main routes. Evidence showed the presence of microplastics in human-derived biological samples (i.e., excrement, biofluids, and tissues). Most of the toxicological studies of microplastics on humans were based on laboratory rodents and human-derived cells. Energy homeostasis, intestinal microflora, and the reproductive, immune, and nervous systems were regarded as targets of microplastics. The toxicity of microplastics on microstructures including lysosomes, mitochondria, endoplasmic reticulum, and the nucleus further revealed the potential risks of microplastics on human health at the cellular levels. As a carrier, microplastics also had the potential to magnify the toxicity of other contaminants in the environment (e.g., plasticizer, metals, antibiotics, and microorganisms). Studies of microplastics at environmentally realistic conditions are still in their infancy with many unsolved questions to predict their risks on human health.
Collapse
Affiliation(s)
- Anqi Sun
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
41
|
Pontecorvi P, Ceccarelli S, Cece F, Camero S, Lotti LV, Niccolai E, Nannini G, Gerini G, Anastasiadou E, Scialis ES, Romano E, Venneri MA, Amedei A, Angeloni A, Megiorni F, Marchese C. Assessing the Impact of Polyethylene Nano/Microplastic Exposure on Human Vaginal Keratinocytes. Int J Mol Sci 2023; 24:11379. [PMID: 37511139 PMCID: PMC10380279 DOI: 10.3390/ijms241411379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women's health which has not been scientifically addressed yet. By using polyethyl ene (PE) particles (200 nm to 9 μm), we showed that acute exposure to a high concentration of N/MPLs induced cell toxicity in vaginal keratinocytes after effective cellular uptake, as viability and apoptosis data suggest, along with transmission electron microscopy (TEM) observations. The internalised N/MPLs altered the expression of junctional and adherence proteins and the organisation of the actin cortex, influencing the level of genes involved in oxidative stress signalling pathways and that of miRNAs related to epithelial barrier function. When the exposure to PE N/MPLs was discontinued or became chronic, cells were able to recover from the negative effects on viability and differentiation/proliferation gene expression in a few days. However, in all cases, PE N/MPL exposure prompted a sustained alteration of DNA methyltransferase and DNA demethylase expression, which might impact epigenetic regulation processes, leading to accelerated cell ageing and inflammation, or the occurrence of malignant transformation.
Collapse
Affiliation(s)
- Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Fabrizio Cece
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Simona Camero
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lavinia Vittoria Lotti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giulia Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Elena Sofia Scialis
- Department of Innovative Technologies in Medicine and Dentistry, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Enrico Romano
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
42
|
Barceló D, Picó Y, Alfarhan AH. Microplastics: Detection in human samples, cell line studies, and health impacts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104204. [PMID: 37391049 DOI: 10.1016/j.etap.2023.104204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Microplastics (MPs) are in all environmental compartments, including atmosphere, terrestrial, and aquatic environments as well as in marine organisms, foods, drinking water, and indoor and outdoor environments. MPs can enter the human body through the food chain and contaminated environment. Ingestion, inhalation, and dermal contact are the routes of their entry into the human body. Recent studies reporting the detection of MPs within the human body have raised concern among the scientific community as the knowledge about human exposure is still very limited and their impact on health is not well-understood yet. In this review article, we briefly cover the reports evidencing MP detection within the human body, e.g., stool, placenta, lungs, liver, sputum, breast milk, and blood. A concise synopsis of sample preparation and analysis of such human matrices is also provided. This article also presents a summary of the effect of MPs on human cell lines and human health.
Collapse
Affiliation(s)
- Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Spain; Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Ahmed H Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Wang T, Qu L, Luo D, Ji X, Ma Z, Wang Z, Dahlgren RA, Zhang M, Shang X. Microplastic pollution characteristics and its future perspectives in the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131711. [PMID: 37257387 DOI: 10.1016/j.jhazmat.2023.131711] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Microplastics are an emerging and persistent pollutant due to their threat to global ecological systems and human health. Recent studies showed that microplastics have infiltrated the remote Third Pole - the Tibetan Plateau. Here, we summarize the current evidence for microplastic pollution in the different environments (rivers/lakes, sediment, soil, ice/snow and atmosphere) of the Tibetan Plateau. We assess the spatial distribution, source, fate, and potential ecological effects of microplastics in this broad plateau. The integrated results show that microplastics were pervasive in biotic and abiotic components of the Tibetan Plateau, even at the global highest-altitude, Mt. Everest. Although the concentration of microplastics in the Tibetan Plateau was far below that found in the densely populated lowlands, it showed a higher concentration than that in the ocean system. Tourist populations are identified as a substantial source of anthropogenic plastic input rather than local residents due to the rapid development of the tourism industry. In the sparsely inhabited remote area of the Tibetan Plateau, long-range atmospheric transport facilitates allochthonous microplastic diffusion. Robust solar radiation in the Tibetan Plateau might enhanced production of secondary microplastics by weathering (UV-photooxidation) of abandoned plastic waste. A rough estimation showed that the microplastic export flux from melting glaciers was higher than that measured in most of the world's largest rivers, which affects local and downstream areas. Since the Tibetan Plateau is vital for Asian water supply and numerous endangered wildlife, the potential human and ecological risk of microplastics to these fragile ecosystems needs to be fully evaluated within the context of climate-change impacts.
Collapse
Affiliation(s)
- Ting Wang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Institute of Eco-Environmental Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou 325006, Zhejiang, China
| | - Liyin Qu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Dehua Luo
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Zhonggen Wang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy A Dahlgren
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xu Shang
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
44
|
Alava JJ, Jahnke A, Bergmann M, Aguirre-Martínez GV, Bendell L, Calle P, Domínguez GA, Faustman EM, Falman J, Kazmiruk TN, Klasios N, Maldonado MT, McMullen K, Moreno-Báez M, Öberg G, Ota Y, Price D, Shim WJ, Tirapé A, Vandenberg JM, Zoveidadianpour Z, Weis J. A Call to Include Plastics in the Global Environment in the Class of Persistent, Bioaccumulative, and Toxic (PBT) Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216429 DOI: 10.1021/acs.est.3c02476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Juan José Alava
- Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Annika Jahnke
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, Leipzig DE-04318, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen DE-52074, Germany
| | - Melanie Bergmann
- Alfred-Wegener-Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven DE-16227570, Germany
| | - Gabriela V Aguirre-Martínez
- Química y Farmacia. Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avenida Arturo Prat Chacón, Iquique 2120, Chile
| | - Leah Bendell
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Paola Calle
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 00000, Ecuador
| | - Gustavo A Domínguez
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 00000, Ecuador
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite #100, Seattle 98105, Washington, United States
| | - Jill Falman
- Institute for Risk Analysis and Risk Communication, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite #100, Seattle 98105, Washington, United States
| | - Tamara N Kazmiruk
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Natasha Klasios
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Maria T Maldonado
- Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - Karly McMullen
- Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
| | - Marcia Moreno-Báez
- The Fletcher School/Tufts Technology Services, Tufts University, 35 Lower Campus Rd, Medford 02155, Massachusetts, United States
| | - Gunilla Öberg
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL 2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
| | - Yoshitaka Ota
- Nippon Foundation Ocean Nexus Center, School of Marine and Environmental Affairs EarthLab, University of Washington, Box 355674, Seattle 98195-5674, Washington, United States
| | - Dana Price
- Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
| | - Won Joon Shim
- Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
- University of Science and Technology, Daejeon, 34113, South Korea
| | - Ana Tirapé
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 00000, Ecuador
| | - Jessica M Vandenberg
- Nippon Foundation Ocean Nexus Center, School of Marine and Environmental Affairs EarthLab, University of Washington, Box 355674, Seattle 98195-5674, Washington, United States
| | - Zeinab Zoveidadianpour
- Ocean Pollution Research Unit & Nippon Foundation-Ocean Litter Project, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Judith Weis
- Department of Biological Sciences, Rutgers University, Newark 07102, New Jersey, United States
| |
Collapse
|
45
|
Choudhury A, Simnani FZ, Singh D, Patel P, Sinha A, Nandi A, Ghosh A, Saha U, Kumari K, Jaganathan SK, Kaushik NK, Panda PK, Suar M, Verma SK. Atmospheric microplastic and nanoplastic: The toxicological paradigm on the cellular system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115018. [PMID: 37216859 DOI: 10.1016/j.ecoenv.2023.115018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
The increasing demand for plastic in our daily lives has led to global plastic pollution. The improper disposal of plastic has resulted in a massive amount of atmospheric microplastics (MPs), which has further resulted in the production of atmospheric nanoplastics (NPs). Because of its intimate relationship with the environment and human health, microplastic and nanoplastic contamination is becoming a problem. Because microplastics and nanoplastics are microscopic and light, they may penetrate deep into the human lungs. Despite several studies demonstrating the abundance of microplastics and nanoplastics in the air, the potential risks of atmospheric microplastics and nanoplastics remain unknown. Because of its small size, atmospheric nanoplastic characterization has presented significant challenges. This paper describes sampling and characterization procedures for atmospheric microplastics and nanoplastics. This study also examines the numerous harmful effects of plastic particles on human health and other species. There is a significant void in research on the toxicity of airborne microplastics and nanoplastics upon inhalation, which has significant toxicological potential in the future. Further study is needed to determine the influence of microplastic and nanoplastic on pulmonary diseases.
Collapse
Affiliation(s)
- Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Saravana Kumar Jaganathan
- School of Engineering, College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
46
|
Kaum Sicheres zum Effekt von Mikroplastik. Dtsch Med Wochenschr 2023. [DOI: 10.1055/a-1985-3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|