1
|
Herzog N, Hartmann H, Janssen LK, Kanyamibwa A, Waltmann M, Kovacs P, Deserno L, Fallon S, Villringer A, Horstmann A. Working memory gating in obesity is moderated by striatal dopaminergic gene variants. eLife 2024; 13:RP93369. [PMID: 39431987 PMCID: PMC11493406 DOI: 10.7554/elife.93369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Everyday life requires an adaptive balance between distraction-resistant maintenance of information and the flexibility to update this information when needed. These opposing mechanisms are proposed to be balanced through a working memory gating mechanism. Prior research indicates that obesity may elevate the risk of working memory deficits, yet the underlying mechanisms remain elusive. Dopaminergic alterations have emerged as a potential mediator. However, current models suggest these alterations should only shift the balance in working memory tasks, not produce overall deficits. The empirical support for this notion is currently lacking, however. To address this gap, we pooled data from three studies (N = 320) where participants performed a working memory gating task. Higher BMI was associated with overall poorer working memory, irrespective of whether there was a need to maintain or update information. However, when participants, in addition to BMI level, were categorized based on certain putative dopamine-signaling characteristics (single-nucleotide polymorphisms [SNPs]; specifically, Taq1A and DARPP-32), distinct working memory gating effects emerged. These SNPs, primarily associated with striatal dopamine transmission, appear to be linked with differences in updating, specifically, among high-BMI individuals. Moreover, blood amino acid ratio, which indicates central dopamine synthesis capacity, combined with BMI shifted the balance between distractor-resistant maintenance and updating. These findings suggest that both dopamine-dependent and dopamine-independent cognitive effects exist in obesity. Understanding these effects is crucial if we aim to modify maladaptive cognitive profiles in individuals with obesity.
Collapse
Affiliation(s)
- Nadine Herzog
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- International Max Planck Research School NeuroComLeipzigGermany
| | - Hendrik Hartmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Collaborative Research Centre 1052, University of LeipzigLeipzigGermany
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Lieneke Katharina Janssen
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Institute of Psychology, Otto von Guericke University MagdeburgMagdeburgGermany
| | - Arsene Kanyamibwa
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Maria Waltmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Department of Child and Adolescent Psychiatry, University of WürzburgWürzburgGermany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical CenterLeipzigGermany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, University of WürzburgWürzburgGermany
- Department of Psychiatry and Psychotherapy, Technische Universität DresdenDresdenGermany
| | - Sean Fallon
- School of Psychology, University of PlymouthPlymouthUnited Kingdom
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive & Brain SciencesLeipzigGermany
- Collaborative Research Centre 1052, University of LeipzigLeipzigGermany
- Department of Psychology and Logopedics, Faculty of Medicine, University of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Poplawska-Domaszewicz K, Limbachiya N, Qamar M, Batzu L, Jones S, Sauerbier A, Rota S, Lau YH, Chaudhuri KR. Addressing the Ethnicity Gap in Catechol O-Methyl Transferase Inhibitor Trials in Parkinson's Disease: A Review of Available Global Data. J Pers Med 2024; 14:939. [PMID: 39338193 PMCID: PMC11433619 DOI: 10.3390/jpm14090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Catechol-O-methyltransferase inhibitors (COMT-Is) have significantly improved the quality of life and symptom management for those at advanced stages of Parkinson's Disease (PD). Given that PD is one of the fastest-growing neurodegenerative diseases worldwide, there is a need to establish a clear framework for the systematic distribution of COMT-Is, considering inter-individual and intra-individual variations in patient response. One major barrier to this is the underrepresentation of ethnic minority participants in clinical trials investigating COMT-Is. To investigate this, we performed a narrative review. We searched PubMed for clinical trials investigating COMT-Is in patients with PD and examined the ethnic diversity of cohorts. A total of 63 articles were identified, with 34 trials found to match our inclusion criteria. Among the 34 trials meeting our inclusion criteria, only 8 reported participants' ethnic backgrounds. Our findings reveal a consistent underrepresentation of ethnic minority groups in trials investigating COMT-Is in PD cohorts-a trend that reflects broader concerns across clinical research. In this review, we explore potential reasons for the underrepresentation of ethnic minorities in clinical trials and propose strategies to address this issue.
Collapse
Affiliation(s)
- Karolina Poplawska-Domaszewicz
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Naomi Limbachiya
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Mubasher Qamar
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Lucia Batzu
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Shelley Jones
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Anna Sauerbier
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, 50937 Cologne, Germany
| | - Silvia Rota
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Yue Hui Lau
- Division of Neurology, Medical Department, Tengku Ampuan Rahimah Hospital, Klang 41200, Malaysia
| | - K Ray Chaudhuri
- Basic and Clinical Neuroscience Department, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
3
|
Factors related to the development of executive functions: A cumulative dopamine genetic score and environmental factors predict performance of kindergarten children in a go/nogo task. Trends Neurosci Educ 2023; 30:100200. [PMID: 36925267 DOI: 10.1016/j.tine.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND This study aimed at investigating the interaction between genetic and environmental factors in predicting executive function in children aged four to six years. METHODS Response inhibition as index of EF was assessed in 197 children using a go/nogo task. A cumulative dopamine (DA) genetic score was calculated, indexing predisposition of low DA activity. Dimensions of parenting behavior and parental education were assessed. RESULTS Parental education was positively related to accuracy in nogo trials. An interaction between the cumulative genetic score and the parenting dimension Responsiveness predicted go RT indicating that children with a high cumulative genetic score and high parental responsiveness exhibited a careful response mode. CONCLUSION The development of EF in kindergarten children is related to parental education as well as to an interaction between the molecular-genetics of the DA system and parenting behavior.
Collapse
|
4
|
Sanwald S, Montag C, Kiefer M. Cumulative Genetic Score of DRD2 Polymorphisms Is Associated with Impulsivity and Masked Semantic Priming. J Mol Neurosci 2022; 72:1682-1694. [PMID: 35635675 PMCID: PMC9374629 DOI: 10.1007/s12031-022-02019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
Individual differences in the magnitude of semantic priming effects are associated with executive functions (EF). Striatal dopamine has been shown to be associated with EF as well as impulsivity and could therefore be associated with differences in the magnitude of semantic priming. We investigated n = 155 individuals in an unmasked as well as in a masked semantic priming paradigm. We additionally assessed self-reported impulsivity and a cumulative genetic score (CGS) comprising six polymorphisms that have been found to be functionally relevant for the expression of the DRD2 gene. We found a significantly negative association between the DRD2 CGS and reaction time priming in the masked semantic priming paradigm. In addition, the DRD2 CGS was positively associated with self-reported impulsivity. Our findings complement previous research by showing a role of the DRD2 gene for masked semantic priming. Therefore, the investigation of genes within the dopamine system might improve our understanding of the genetic basis of impulsivity and semantic processing. Thus, the DRD2 CGS is of interest for clinical as well as experimental psychological research.
Collapse
Affiliation(s)
- Simon Sanwald
- Department of Psychiatry and Psychotherapy III, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, 89075, Ulm, Germany.
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Markus Kiefer
- Department of Psychiatry and Psychotherapy III, Section for Cognitive Electrophysiology, Ulm University, Leimgrubenweg 12, 89075, Ulm, Germany
| |
Collapse
|
5
|
Wiegand A, Blickle A, Brückmann C, Weller S, Nieratschker V, Plewnia C. Dynamic DNA Methylation Changes in the COMT Gene Promoter Region in Response to Mental Stress and Its Modulation by Transcranial Direct Current Stimulation. Biomolecules 2021; 11:1726. [PMID: 34827724 PMCID: PMC8615564 DOI: 10.3390/biom11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Changes in epigenetic modifications present a mechanism how environmental factors, such as the experience of stress, can alter gene regulation. While stress-related disorders have consistently been associated with differential DNA methylation, little is known about the time scale in which these alterations emerge. We investigated dynamic DNA methylation changes in whole blood of 42 healthy male individuals in response to a stressful cognitive task, its association with concentration changes in cortisol, and its modulation by transcranial direct current stimulation (tDCS). We observed a continuous increase in COMT promotor DNA methylation which correlated with higher saliva cortisol levels and was still detectable one week later. However, this lasting effect was suppressed by concurrent activity-enhancing anodal tDCS to the dorsolateral prefrontal cortex. Our findings support the significance of gene-specific DNA methylation in whole blood as potential biomarkers for stress-related effects. Moreover, they suggest alternative molecular mechanisms possibly involved in lasting behavioral effects of tDCS.
Collapse
Affiliation(s)
- Ariane Wiegand
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Hospital Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; (A.B.); (C.B.); (V.N.)
- International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Arne Blickle
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Hospital Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; (A.B.); (C.B.); (V.N.)
| | - Christof Brückmann
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Hospital Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; (A.B.); (C.B.); (V.N.)
| | - Simone Weller
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University Hospital Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; (S.W.); (C.P.)
| | - Vanessa Nieratschker
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Hospital Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; (A.B.); (C.B.); (V.N.)
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Christian Plewnia
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University Hospital Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; (S.W.); (C.P.)
| |
Collapse
|
6
|
Amiel Castro R, Kunovac Kallak T, Sundström Poromaa I, Willebrand M, Lager S, Ehlert U, Skalkidou A. Pregnancy-related hormones and COMT genotype: Associations with maternal working memory. Psychoneuroendocrinology 2021; 132:105361. [PMID: 34333317 DOI: 10.1016/j.psyneuen.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
Women experience different degrees of subjective cognitive changes during pregnancy. The exact mechanism underlying these changes is unknown, although endocrine alterations and genetics may be contributing factors. We investigated whether multiple pregnancy-related hormones were associated with working memory function assessed with the Digit Span Test (DST) in late pregnancy. Moreover, we examined whether the catechol-O-methyltransferase (COMT) genotype, previously related to working memory, was an effect modifier in this association. In this population-based panel study, we recorded psychiatric history, medication use, socio-demographic characteristics, and psychological well-being, gathered blood and saliva samples, and administered the DST at gestational weeks 35-39 (N = 216). We conducted multivariate linear regressions with DST as outcome, with different hormones and COMT genotype, adjusting for covariates including maternal age, BMI, education, depressive symptoms, and parity. We repeated these analyses excluding women with elevated depressive symptoms. Higher DST total scores were associated with increased free estradiol concentrations (B = 0.01, p = 0.03; B = 0.01, p = 0.02) in all participants and in participants without depressive symptoms, respectively, whereas DST forward was positively associated with free estradiol only in women without depressive symptoms (B = 0.01, p = 0.04). Lower total testosterone concentrations (B = -0.03, p = 0.01) enhanced DST backward performance in non-depressed women. Maternal higher education was significantly associated with the DST subscales in all participants. No significant differences emerged when considering the COMT genotype. Our results suggest differential associations of free estradiol and total testosterone levels with working memory function in late pregnancy.
Collapse
Affiliation(s)
- Rita Amiel Castro
- University of Zurich, Institute of Psychology, Department of Clinical Psychology and Psychotherapy, Binzmühlestrasse 14/26, 8050 Zurich, Switzerland.
| | - Theodora Kunovac Kallak
- Uppsala University, Department of Women's and Children's Health, Dag Hammarskjölds väg 14B, 1 tr, 75237 Uppsala, Sweden
| | - Inger Sundström Poromaa
- Uppsala University, Department of Women's and Children's Health, Dag Hammarskjölds väg 14B, 1 tr, 75237 Uppsala, Sweden
| | - Mimmie Willebrand
- Uppsala University, Department of Neuroscience, Akademiska sjukhuset 75185 Uppsala, Sweden
| | - Susanne Lager
- Uppsala University, Department of Women's and Children's Health, Dag Hammarskjölds väg 14B, 1 tr, 75237 Uppsala, Sweden
| | - Ulrike Ehlert
- University of Zurich, Institute of Psychology, Department of Clinical Psychology and Psychotherapy, Binzmühlestrasse 14/26, 8050 Zurich, Switzerland
| | - Alkistis Skalkidou
- Uppsala University, Department of Women's and Children's Health, Dag Hammarskjölds väg 14B, 1 tr, 75237 Uppsala, Sweden
| |
Collapse
|
7
|
Hollerbach P, Olderbak S, Wilhelm O, Montag C, Jung S, Neumann CS, Habermeyer E, Mokros A. Associations of the MAOA uVNTR genotype and 5-HTTLPR/rs25531 haplotype with psychopathic traits. Psychoneuroendocrinology 2021; 131:105275. [PMID: 34102427 DOI: 10.1016/j.psyneuen.2021.105275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Previous studies have linked polymorphisms of the monoamine oxidase A (MAOA uVNTR) and serotonin transporter gene (5-HTTLPR) to individual differences in the expression of psychopathic traits, but findings remain inconsistent. One possible reason is that these studies have treated psychopathy as a unitary construct when there is accumulating evidence that there are variants or subtypes. We used a variable-centered and a person-centered approach by (a) examining putative genetic correlates of psychopathy across individuals and (b) comparing the frequencies of the MAOA uVNTR genotype and 5-HTTLPR/rs25531 haplotype between empirically derived subtypes of psychopathy, respectively. Notably, we included the often neglected rs25531 polymorphism, which is closely connected to the 5-HTTLPR. Based on data from male offenders and community volunteers, structural equation modeling indicated that the 5-HTTLPR/rs25531 haplotype was specifically associated with interpersonal deficits beyond the overarching psychopathy construct. Latent profile analysis revealed four clusters that were labeled non-psychopaths, sociopaths, callous-conning, and psychopaths. The low-activity variant of the 5-HTTLPR/rs25531 haplotype was significantly more frequent in the callous-conning compared to the non-psychopathic subtype. There were no effects for the MAOA uVNTR. The results illustrate that psychopathy should not be treated as a unitary construct but that there are variants with specific profiles of psychopathic traits, and that the 5-HTTLPR/rs25531 haplotype plays a role in the manifestation of interpersonal deficits from a variable-centered as well as from a person-centered view.
Collapse
Affiliation(s)
- Pia Hollerbach
- Institute for Sex Research, Sexual Medicine & Forensic Psychiatry, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Forensic Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Sally Olderbak
- Ulm University, Institute of Psychology and Education, Ulm, Germany.
| | - Oliver Wilhelm
- Ulm University, Institute of Psychology and Education, Ulm, Germany.
| | - Christian Montag
- Ulm University, Institute of Psychology and Education, Ulm, Germany; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, School of Life Science and Technology, Chengdu, China.
| | - Sonja Jung
- Ulm University, Institute of Psychology and Education, Ulm, Germany.
| | - Craig S Neumann
- Department of Psychology, University of North Texas, Denton, TX, USA.
| | - Elmar Habermeyer
- Department of Forensic Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Andreas Mokros
- Department of Psychology, FernUniversität in Hagen (University of Hagen), Hagen, Germany.
| |
Collapse
|
8
|
Platelet MAO activity and COMT Val158Met genotype interaction predicts visual working memory updating efficiency. Behav Brain Res 2021; 407:113255. [PMID: 33745984 DOI: 10.1016/j.bbr.2021.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
The exact mechanism how serotonergic and dopaminergic systems relate to one another in working memory (WM) updating is unknown. Platelet monoamine oxidase (MAO) has been used as a marker for central serotonergic capacity, and catechol-O-methyltransferase (COMT) as a marker for central dopaminergic capacity. This study aimed to describe the interaction of platelet MAO activity and COMT Val158Met genotype in visual working memory updating: the ability to replace old information with new within hundreds of milliseconds. Previous studies suggest that platelet MAO activity and COMT Val158Met genotype could have an interaction effect on working memory. However, there are no studies that have directly examined the interaction of these biomarkers in WM updating. We used a 2-back updating task with facial expressions and defined updating efficiency as response times for correct responses. 455 subjects from a population representative sample were included. Mixed models were used for data analysis with an aim to study the interaction of COMT Val158Met genotype (Val/Val, Val/Met and Met/Met) and the level of MAO activity (high vs low). Education, IQ, sex, simple reaction times, and overall updating accuracy were included as covariates. We found that the effect of COMT Val158Met on updating efficiency depends on the level of platelet MAO activity. Low MAO in contrast to high MAO was associated with an increase in updating efficiency in Val/Met but a decrease in Met/Met. The results are discussed in the context of serotonin and dopamine functions in brain regions related to WM. The findings support the view that serotonin modulates dopaminergic activation in updating and contribute to understanding the role of serotonin in PFC, top-down inhibitory signals, and its interactions with dopamine in WM processes.
Collapse
|
9
|
Fan J, Yang C, Liu Z, Li H, Han Y, Chen K, Chen C, Wang J, Zhang Z. Female-specific effects of the catechol-O-methyl transferase Val 158Met gene polymorphism on working memory-related brain function. Aging (Albany NY) 2020; 12:23900-23916. [PMID: 33221753 PMCID: PMC7762470 DOI: 10.18632/aging.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Abstract
The catechol-O-methyltransferase (COMT) Val158Met polymorphism has been associated with working memory (WM) in many studies, but the results have not been consistent. One plausible explanation is sex-specific effects of this polymorphism as reported in several studies. The current study aimed to explore the sex-specific effects of the COMT Val158Met polymorphism on WM-related brain function in an elderly sample. We found that Val homozygotes outperformed Met allele carriers on the backward digit span subtest for both males and females. The triangular part of the left inferior frontal gyrus and the left inferior temporal gyrus exhibited higher activation in Met allele carriers compared with Val homozygotes during the n-back task, while the background functional connectivity (bFC) between the left angular gyrus (ANG) and the right ANG was enhanced in Val homozygotes as compared to Met allele carriers. Finally, the associations between brain activation, bFC (among various regions), and WM performance were identified only in specific genotype groups of the female participants. These findings provide new insights into the role of COMT Val158Met gene polymorphism in brain function, particularly its female-specific nature.
Collapse
Affiliation(s)
- Jialing Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Zhen Liu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, USA
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,BABRI Centre, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Roca M, Williams IH. Transition-State Vibrational Analysis and Isotope Effects for COMT-Catalyzed Methyl Transfer. J Am Chem Soc 2020; 142:15548-15559. [PMID: 32812761 PMCID: PMC7498148 DOI: 10.1021/jacs.0c07344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotopic partition-function ratios (IPFRs) computed for transition structures (TSs) of the methyl-transfer reaction catalyzed by catechol O-methyltransferase and modeled by hybrid QM/MM methods are analyzed. The ability of smaller Hessians to reproduce trends in α-3H3 and 14Cα IPFRs as obtained using the much larger subset QM/MM Hessians from which they are extracted is investigated critically. A 6-atom-extracted Hessian reproduces perfectly the α-T3 IPFR values from the full-subset Hessians of all the TSs but not the α-14CIPFRs. Average AM1/OPLS-AA harmonic frequencies and mean-square amplitudes are presented for the 12 normal modes of the α-CH3 moiety within the active site of several enzymic transition structures, together with QM/MM potential energy scans along each of these modes to assess the degree of anharmonicity. A novel investigation of ponderal effects upon IPFRs suggests that the value for α-14C tends toward a limiting minimum whereas that for α-T3 tends toward a limiting maximum as the mass of the rest of the system increases. The transition vector is dominated by motions of atoms within the donor and acceptor moieties and is very well described as a simple combination of Walden-inversion "umbrella" bending and asymmetric stretching of the SCα and CαO bonds. The contribution of atoms of the protein residues Met40, Tyr68, and Asp141 to the transition vector is extremely small. Average valence force constants for the COMT TS show significant differences from early BEBOVIB estimates which were used in support of the compression hypothesis for catalysis. There is no correlation between TS IPFRs and the nonbonded distances for close contacts between the S atom of SAM and Tyr68 or between any of the H atoms of the transferring methyl group and either Met40 or Asp141.
Collapse
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Ian H Williams
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
11
|
Klein SD, Shekels LL, McGuire KA, Sponheim SR. Neural anomalies during vigilance in schizophrenia: Diagnostic specificity and genetic associations. Neuroimage Clin 2020; 28:102414. [PMID: 32950905 PMCID: PMC7502576 DOI: 10.1016/j.nicl.2020.102414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 09/02/2020] [Indexed: 01/26/2023]
Abstract
Impaired vigilance is a core cognitive deficit in schizophrenia and may serve as an endophenotype (i.e., mark genetic liability). We used a continuous performance task with perceptually degraded stimuli in schizophrenia patients (N = 48), bipolar disorder patients (N = 26), first-degree biological relatives of schizophrenia patients (N = 55) and bipolar disorder patients (N = 28), as well as healthy controls (N = 68) to clarify whether previously reported vigilance deficits and abnormal neural functions were indicative of genetic liability for schizophrenia as opposed to a generalized liability for severe psychopathology. We also examined variation in the Catechol-O-methyltransferase gene to evaluate whether brain responses were related to genetic variation associated with higher-order cognition. Relatives of schizophrenia patients had an increased rate of misidentification of nontarget stimuli as targets when they were perceptually similar, suggestive of difficulties with contour perception. Larger early visual responses (i.e., N1) were associated with better task performance in patients with schizophrenia consistent with enhanced N1 responses reflecting beneficial neural compensation. Additionally, reduced N2 augmentation to target stimuli was specific to schizophrenia. Both patients with schizophrenia and first-degree relatives displayed reduced late cognitive responses (P3b) that predicted worse performance. First-degree relatives of bipolar patients exhibited performance deficits, and displayed aberrant neural responses that were milder than individuals with liability for schizophrenia and dependent on sex. Variation in the Catechol-O-methyltransferase gene was differentially associated with P3b in schizophrenia and bipolar groups. Poor vigilance in schizophrenia is specifically predicted by a failure to enhance early visual responses, weak augmentation of mid-latency brain responses to targets, and limited engagement of late cognitive responses that may be tied to genetic variation associated with prefrontal dopaminergic availability. Experimental results illustrate specific neural functions that distinguish schizophrenia from bipolar disorder and provides evidence for a putative endophenotype that differentiates genetic liability for schizophrenia from severe mental illness more broadly.
Collapse
Affiliation(s)
- Samuel D Klein
- University of Minnesota Clinical Science and Psychopathology Research Program, University of Minnesota-Twin Cities, 75 East River Road, Minneapolis, MN 55455, USA
| | - Laurie L Shekels
- Minneapolis Veterans Affairs Health Care System, 1 Veterans Dr. Minneapolis, MN 55417, USA
| | - Kathryn A McGuire
- Minneapolis Veterans Affairs Health Care System, 1 Veterans Dr. Minneapolis, MN 55417, USA
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System, 1 Veterans Dr. Minneapolis, MN 55417, USA; University of Minnesota, Department of Psychiatry and Behavioral Science, 606 24th Ave S, Minneapolis, MN 55454, USA.
| |
Collapse
|
12
|
Papalini S, Beckers T, Vervliet B. Dopamine: from prediction error to psychotherapy. Transl Psychiatry 2020; 10:164. [PMID: 32451377 PMCID: PMC7248121 DOI: 10.1038/s41398-020-0814-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dopamine, one of the main neurotransmitters in the mammalian brain, has been implicated in the coding of prediction errors that govern reward learning as well as fear extinction learning. Psychotherapy too can be viewed as a form of error-based learning, because it challenges erroneous beliefs and behavioral patterns in order to induce long-term changes in emotions, cognitions, and behaviors. Exposure therapy, for example, relies in part on fear extinction principles to violate erroneous expectancies of danger and induce novel safety learning that inhibits and therefore reduces fear in the long term. As most forms of psychotherapy, however, exposure therapy suffers from non-response, dropout, and relapse. This narrative review focuses on the role of midbrain and prefrontal dopamine in novel safety learning and investigates possible pathways through which dopamine-based interventions could be used as an adjunct to improve both the response and the long-term effects of the therapy. Convincing evidence exists for an involvement of the midbrain dopamine system in the acquisition of new, safe memories. Additionally, prefrontal dopamine is emerging as a key ingredient for the consolidation of fear extinction. We propose that applying a dopamine prediction error perspective to psychotherapy can inspire both pharmacological and non-pharmacological studies aimed at discovering innovative ways to enhance the acquisition of safety memories. Additionally, we call for further empirical investigations on dopamine-oriented drugs that might be able to maximize consolidation of successful fear extinction and its long-term retention after therapy, and we propose to also include investigations on non-pharmacological interventions with putative prefrontal dopaminergic effects, like working memory training.
Collapse
Affiliation(s)
- Silvia Papalini
- Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Centre for the Psychology of Learning and Experimental Psychopathology (CLEP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Wu C, Zhen Z, Huang L, Huang T, Liu J. COMT-Polymorphisms Modulated Functional Profile of the Fusiform Face Area Contributes to Face-Specific Recognition Ability. Sci Rep 2020; 10:2134. [PMID: 32034175 PMCID: PMC7005682 DOI: 10.1038/s41598-020-58747-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/15/2020] [Indexed: 12/03/2022] Open
Abstract
Previous studies have shown that face-specific recognition ability (FRA) is heritable; however, the neural basis of this heritability is unclear. Candidate gene studies have suggested that the catechol-O-methyltransferase (COMT) rs4680 polymorphism is related to face perception. Here, using a partial least squares (PLS) method, we examined the multivariate association between 12 genotypes of 4 COMT polymorphisms (rs6269-rs4633-rs4818-rs4680) and multimodal MRI phenotypes in the human fusiform face area (FFA), which selectively responds to face stimuli, in 338 Han Chinese adults (mean age 20.45 years; 135 males). The MRI phenotypes included gray matter volume (GMV), resting-state fractional amplitude of low-frequency fluctuations (fALFF), and face-selective blood-oxygen-level-dependent (BOLD) responses (FS). We found that the first COMT-variant component (PLS1) was positively associated with the FS but negatively associated with the fALFF in the FFA. Moreover, participants with the COMT heterozygous-HEA-haplotype showed higher PLS1 FFA-MRI scores, which were positively associated with the FRA in an old/new face recognition task, than those with the COMT homozygous HEA haplotype and HEA non-carriers, suggesting that individuals with an appropriate (intermediate) level of dopamine activity in the FFA might have better FRA. In summary, our study provides empirical evidence for the genetic and neural basis for the heritability of face recognition and informs the formation of neural module functional specificity.
Collapse
Affiliation(s)
- Chao Wu
- School of Nursing, Peking University Health Science Centre, Beijing, 100191, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Lijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Taicheng Huang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Deslauriers J, Toth M, Zhou X, Risbrough VB. Heritable Differences in Catecholamine Signaling Modulate Susceptibility to Trauma and Response to Methylphenidate Treatment: Relevance for PTSD. Front Behav Neurosci 2019; 13:111. [PMID: 31164811 PMCID: PMC6534065 DOI: 10.3389/fnbeh.2019.00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Abstract
Alterations in cortical catecholamine signaling pathways can modulate acute and enduring responses to trauma. Heritable variation in catecholamine signaling is produced by a common functional polymorphism in the catechol-O-methyltransferase (COMT), with Val carriers exhibiting greater degradation of catecholamines than Met carriers. Furthermore, it has recently been suggested that drugs enhancing cortical catecholamine signaling may be a new therapeutic approach for posttraumatic stress disorder (PTSD) patients. We hypothesized that heritable differences in catecholamine signaling regulate the behavioral response to trauma, and that methylphenidate (MPD), a drug that preferentially blocks catecholamine reuptake in the prefrontal cortex (PFC), exerts COMT-dependent effects on trauma-induced behaviors. We first examined the contribution of the functional mutation COMTval158met to modulate enduring behavioral responses to predator stress in a unique "humanized" COMTval158met mouse line. Animals were exposed to a predator (cat) for 10 min and enduring avoidance behaviors were examined in the open field, light-dark box, and "trauma-reminder" tests 1-2 weeks later. Second, we examined the efficacy of chronic methylphenidate to reverse predator stress effects and if these effects were modulated by COMTval158met genotype. Mice were exposed to predator stress and began treatment with either saline or methylphenidate (3 mg/kg/day) 1 week after stress until the end of the testing [avoidance behaviors, working memory, and social preference (SP)]. In males, predator stress and COMTval158met had an additive effect on enduring anxiety-like behavior, with Val stressed mice showing the strongest avoidance behavior after stress compared to Met carriers. No effect of COMT genotype was observed in females. Therefore methylphenidate effects were investigated only in males. Chronic methylphenidate treatment reversed the stress-induced avoidance behavior and increased social investigation independently of genotype. Methylphenidate effects on working memory, however, were genotype-dependent, decreasing working memory in non-stressed Met carriers, and improving stress-induced working memory deficit in Val carriers. These results suggest that heritable variance in catecholamine signaling modulates the avoidance response to an acute trauma. This work supports recent human findings that methylphenidate might be a therapeutic alternative for PTSD patients and suggests that methylphenidate effects on anxiety (generalized avoidance, social withdrawal) vs. cognitive (working memory) symptoms may be modulated through COMT-independent and dependent mechanisms, respectively.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States.,Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States
| | - Mate Toth
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Xianjin Zhou
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, United States.,Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Du Y, Ning Y, Wen Y, Liu L, Liang X, Li P, Ding M, Zhao Y, Cheng B, Ma M, Zhang L, Cheng S, Yu W, Hu S, Guo X, Zhang F. A genome-wide pathway enrichment analysis identifies brain region related biological pathways associated with intelligence. Psychiatry Res 2018; 268:238-242. [PMID: 30071386 DOI: 10.1016/j.psychres.2018.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 07/17/2018] [Indexed: 01/15/2023]
Abstract
Intelligence is an important quantitative trait associated with human cognitive ability. The genetic basis of intelligence remains unclear now. Utilizing the latest chromosomal enhancer maps of brain regions, we explored brain region related biological pathways associated with intelligence. Summary data was derived from a large scale genome-wide association study (GWAS) of human, involving 78,308 unrelated individuals from 13 cohorts. The chromosomal enhancer maps of 8 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for intelligence. Gene set enrichment analysis was then conducted to identify the biological pathways associated with intelligence for 8 brain regions, respectively. A total of 178 KEGG pathways was analyzed in this study. We detected multiple biological pathways showing cross brain regions or brain region specific association signals for human intelligence. For instance, KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS pathway presented association signals for intelligence across 8 brain regions (all P value < 0.01). KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES was detected for 5 brain regions. We also identified several brain region specific pathways, such as AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM for Germinal Matrix (P value = 0.009) and FRUCTOSE_AND_MANNOSE_METABOLISM for Anterior Caudate (P value = 0.005). Our study results provided novel clues for understanding the genetic mechanism of intelligence.
Collapse
Affiliation(s)
- Yanan Du
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China.
| | - Yujie Ning
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Ping Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Mei Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Lu Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Shiqiang Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Wenxing Yu
- Department of Osteonecrosis and Joint Reconstruction, Xi'an Red Cross Hospital, Xi'an Jiaotong University, Shaanxi Province, PR China
| | - Shouye Hu
- Department of Osteonecrosis and Joint Reconstruction, Xi'an Red Cross Hospital, Xi'an Jiaotong University, Shaanxi Province, PR China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No., 76 Yan Ta West Road, Xi'an 710061, PR China.
| |
Collapse
|