1
|
Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A, Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev 2024; 40:3408-3437. [PMID: 36123811 DOI: 10.1080/02648725.2022.2122303] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/20/2022] [Indexed: 11/02/2022]
Abstract
Quinic acid is a cyclohexanecarboxylic acid contained in the extracts of several parts of medicinal plants including Haematocarpus validus, Hypericum empetrifolium, Achillea pseudoaleppica, Rumex nepalensis, Phagnalon saxatile subsp. saxatile, Coffea arabica, Ziziphus lotus L, and Artemisia annua L … etc. Currently, in vitro and in vivo pharmacological studies showed that quinic acid exhibits various biological activities, such as antioxidant, antidiabetic, anticancer activity, antimicrobial, antiviral, aging, protective, anti-nociceptive and analgesic effects. Indeed, QA possesses an important antibacterial effect which could be explained by the fact that this molecule modules the functions of ribosomes and the synthesis of aminoacyl-tRNAs, modifications the levels of glycerophospholipids and fatty acids and disruption of the oxidative phosphorylation pathway thereby causing interference with membrane fluidity. The antidiabetic activity of AQ is achieved by stimulation of insulin secretion via the mobilization of Ca2+ from intracellular reserves and the increase in the NAD(P)H/NAD(P)+ ratio. Its anticancer effect is through the promotion of apoptosis, inhibition of activator protein 1 (AP-1) and signaling pathways involving protein kinase C (PKC) and certain mitogen-activated protein kinases (MAPKs), resulting in the downregulation of matrix metallopeptidase 9 (MMP-9) expression. Therefore, this review describes the main research work carried out on the biological properties of AQ and the mechanism of action underlying some of these effects, as well as the investigations of the main pharmacokinetic studies.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Saad Bakrim
- Molecular Engineering, Valorization, and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr 19 University, Agadir, Morocco
| | - Rokaia Ghchime
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Nisrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Doaue Taha
- Department 16 of Chemistry, Faculty of Sciences, Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory institution, Mohammed V University in Rabat, Rabat, Morocco
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center 11 of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Fioccardi A, Donno D, Razafindrakoto ZR, Tombozara N, Henintsoa S, Mahitasoa E, Torti V, Solofoniaina M, Rosso L, Gamba G, Andrianjara C, Ramanitrahasimbola D, Beccaro GL. Assessing a "Least-Concern" Red List Tree Species from Madagascar Used in Traditional Medicine: Morella spathulata (Myricaceae) Phyto-Compounds and Anti-Inflammatory Properties. PLANTS (BASEL, SWITZERLAND) 2024; 13:2899. [PMID: 39458846 PMCID: PMC11511485 DOI: 10.3390/plants13202899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Morella spathulata (Myricaceae family) is a common plant from Madagascar and is present on the IUCN Red List of threatened species classified at the 'least concern' level, used by the local population to treat numerous illnesses and pain. Despite its frequent use, comprehensive phytochemical and pharmacological research on the species is limited. This study evaluated the antioxidant, analgesic, and anti-inflammatory properties, as well as the toxicity of methanol extracts from the leaves (MS_L) and bark (MS_B) of M. spathulata. The research involved the analysis of nutritional traits such as sugars, organic acids, vitamin C, polyphenolic content (TPC) and the main phytochemicals by HPLC analysis. Antioxidant capacity was assessed through DPPH and FRAP assays. Analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing and carrageenan-induced paw oedema tests in mice. The results showed a high content of phenolic and bioactive components in the leaf and bark extracts, associated with antioxidant, analgesic and anti-inflammatory properties. The interaction of key compounds such as ferulic acid and ellagic acid with proteins involved in pH regulation and immune modulation provides clues to the mechanisms underlying the therapeutic effects. However, conservation efforts are crucial due to habitat loss and illegal logging, and further studies are needed to fully explore the plant's therapeutic potential.
Collapse
Affiliation(s)
- Annachiara Fioccardi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, TO, Italy; (D.D.); (S.H.); (L.R.); (G.G.); (G.L.B.)
| | - Dario Donno
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, TO, Italy; (D.D.); (S.H.); (L.R.); (G.G.); (G.L.B.)
| | - Zoarilala Rinah Razafindrakoto
- Institut Malgache de Recherches Appliquées, B.P. 3833, Antananarivo 101, Madagascar; (Z.R.R.); (N.T.); (E.M.); (M.S.); (C.A.); (D.R.)
| | - Nantenaina Tombozara
- Institut Malgache de Recherches Appliquées, B.P. 3833, Antananarivo 101, Madagascar; (Z.R.R.); (N.T.); (E.M.); (M.S.); (C.A.); (D.R.)
| | - Sylvia Henintsoa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, TO, Italy; (D.D.); (S.H.); (L.R.); (G.G.); (G.L.B.)
| | - Elyna Mahitasoa
- Institut Malgache de Recherches Appliquées, B.P. 3833, Antananarivo 101, Madagascar; (Z.R.R.); (N.T.); (E.M.); (M.S.); (C.A.); (D.R.)
| | - Valeria Torti
- Dipartimento Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10123 Torino, TO, Italy;
| | - Marcellin Solofoniaina
- Institut Malgache de Recherches Appliquées, B.P. 3833, Antananarivo 101, Madagascar; (Z.R.R.); (N.T.); (E.M.); (M.S.); (C.A.); (D.R.)
| | - Lorenzo Rosso
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, TO, Italy; (D.D.); (S.H.); (L.R.); (G.G.); (G.L.B.)
| | - Giovanni Gamba
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, TO, Italy; (D.D.); (S.H.); (L.R.); (G.G.); (G.L.B.)
| | - Charles Andrianjara
- Institut Malgache de Recherches Appliquées, B.P. 3833, Antananarivo 101, Madagascar; (Z.R.R.); (N.T.); (E.M.); (M.S.); (C.A.); (D.R.)
| | - David Ramanitrahasimbola
- Institut Malgache de Recherches Appliquées, B.P. 3833, Antananarivo 101, Madagascar; (Z.R.R.); (N.T.); (E.M.); (M.S.); (C.A.); (D.R.)
| | - Gabriele Loris Beccaro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, TO, Italy; (D.D.); (S.H.); (L.R.); (G.G.); (G.L.B.)
| |
Collapse
|
3
|
Iftikhar K, Niaz M, Shahid M, Zehra S, Afzal T, Faizi S, Simjee SU. Hippocampal neurogenesis modulated by Quinic acid: A therapeutic strategy for the neurodegenerative disorders. Hippocampus 2024; 34:540-550. [PMID: 39105359 DOI: 10.1002/hipo.23630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Neural progenitor cells (NPCs) reside in the brain and participate in the mechanism of neurogenesis that permits the brain to generate the building blocks for enhancement of cognitive abilities and acquisition of new skills. The existence of NPCs in brain has opened a novel dimension of research to explore their potential for treatment of various neurodegenerative disorders. The present study provides novel insights into the intracellular mechanisms in neuronal cells proliferation, maturation and differentiation regulated by Quinic acid (QA). Furthermore, this study might help in discovery and development of lead molecule that can overcome the challenges in the treatment of neurodegenerative diseases. The growth supporting effect of QA was studied using MTT assay. For that purpose, hippocampal cell cultures of neonatal rats were treated with different concentrations of QA and incubated for 24, 48 and 72 h. Gene and protein expressions of the selected molecular markers nestin, neuron-specific class III beta-tubulin (Tuj-1), neuronal nuclear protein (NeuN), neuronal differentiation 1 (NeuroD1), glial fibrillary acidic protein (GFAP), neuroligin (NLGN) and vimentin were analyzed. QA-induced cell proliferation and differentiation of hippocampal progenitor cells was also accompanied by significantly increased expression of progenitor and immature neuronal marker, mature neuronal marker and differentiating factor, that is, nestin, Tuj-1, NeuN and NeuroD1, respectively. On the other hand, vimentin downregulation and constant GFAP expression were observed following QA treatment. Additionally, the effects of QA on the recovery of stressed cells was studied using in vitro model of oxygen glucose deprivation (OGD). It was observed that hippocampal cells were able to recover from OGD following the treatment with QA. These findings suggest that QA treatment promotes hippocampal neurogenesis by proliferating and differentiating of NPCs and recovers neurons from stress caused by OGD. Thus, the neurogenic potential of QA can be explored for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Kanwal Iftikhar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maryam Niaz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maha Shahid
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sumbul Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Taj Afzal
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Tripathi T, Chandra Gupta S, Akhtar Khan Y, Shankar Bhunia S, Gupta A, Sarvendra Kumar K, Ralli T, Singh S, Rao CV, Roy R, Sidhu OP, Kanta Barik S. Metabolomics and anti-inflammatory activity of Commiphora madagascariensis jacq. leaves extract using in vitro and in vivo models. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124214. [PMID: 39032480 DOI: 10.1016/j.jchromb.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/11/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
C. madagascariensis, an unexplored species of Burseraceae is used by local population for the management of inflammation and throat pain. The disease alleviation by this plant could be due to the presence of rich repository of active compounds with various pharmacological importances. In this study, therefore, the profiling of metabolites and isolation of active compounds of C. madagascariensis was performed. Furthermore, the ethanol, ethyl acetate extracts and a selected active compound was subjected for in vitro and in vivo anti-inflammatory activities. Metabolomic analysis identified and quantified 116 metabolites from leaves, young stem and gum-resins of C. madagascariensis (Burseraceae) followed by multivariate PCA analysis. NMR, GC-MS and HPLC were used to analyze primary and secondary metabolites. Subsequently, five main isolated compounds were identified as trimethoxy tetrahydrobenzo dioxolo isochromene (TTDI), butyl phenol, butyl propionate phenol, germacrone and β-elemenone. Amongst them, TTDI was found to be a novel compound. Hence, a process was developed to obtain the enriched fraction of TTDI in ethanol and ethyl acetate extracts of leaves. Furthermore, TTDI and extracts were subjected for their in vitro anti-inflammatory activity in LPS sensitized murine splenocytes. The results showed that TTDI and both extracts significantly suppressed the levels of pro-inflammatorycytokines (TNF-α, IFN-γ). Interestingly, the suppression of pro-inflammatory cytokines was evenmore significant by the similar concentration of TTDI when compared with colchicine. However, the level of anti-inflammatory cytokine (IL-10) was found to be unchanged. Additionally, in vivo anti-inflammatory study revealed a significant reduction in carrageenan induced paw edema by TTDI and both the extracts. In the docking study, TTDI was more active than colchicine with strong binding affinity to COX-2, PLA2, and 5β reductase. Our results highlighted that the presence of metabolites with medicinal and nutraceutical importance in C. madagascariensis, could provide opportunities for the development of a new plant-based therapeutics for inflammation.
Collapse
Affiliation(s)
- Tusha Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India.
| | - Sateesh Chandra Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yasir Akhtar Khan
- CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow-226031, UP, India; Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Shome Shankar Bhunia
- CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow-226031, UP, India
| | - Annie Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| | - Kunwar Sarvendra Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| | - Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suruchi Singh
- Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, UP, India
| | - Chandana V Rao
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| | - Raja Roy
- Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, UP, India.
| | - Om P Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Kanta Barik
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226 001, UP, India
| |
Collapse
|
5
|
de Souza AA, Ortíz BLS, Borges SF, Pinto AVP, Ramos RDS, Pena IC, Rocha Koga RDC, Batista CE, de Souza GC, Ferreira AM, Duvoisin Junior S, Tavares Carvalho JC. Acute Toxicity and Anti-Inflammatory Activity of Trattinnickia rhoifolia Willd (Sucuruba) Using the Zebrafish Model. Molecules 2022; 27:7741. [PMID: 36431841 PMCID: PMC9699319 DOI: 10.3390/molecules27227741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022] Open
Abstract
The species Trattinnickia rhoifolia Willd, (T. rhoifolia), which belongs to the Burseraceae family, is widely used in ethnopharmacological cultural practices by traditional Amazonian people for anti-inflammatory purposes, sometimes as their only therapeutic resource. Although it is used in teas, infusions, macerations and in food, the species is still unexplored in regard to its pharmacophoric potential and chemical profile. Therefore, the aim of this study was to conduct a phytochemical characterization of the hydroethanolic extract of T. rhoifolia leaves (HELTr) and to evaluate the acute toxicity and anti-inflammatory activity of this species using zebrafish (Danio rerio). The extract was analyzed by gas chromatography−mass spectrometry (GC-MS). The evaluation of the acute toxicity of the HELTr in adult zebrafish was determined using the limit test (2000 mg/kg), with behavioral and histopathological evaluations, in addition to the analysis of the anti-inflammatory potential of HELTr in carrageenan-induced abdominal edema, followed by the use of the computational method of molecular docking. The phytochemical profile of the species is chemically diverse, suggesting the presence of the fatty acids, ester, alcohol and benzoic acid classes, including propanoic acid, ethyl ester and hexadecanoic acid. In the studies of zebrafish performed according to the index of histopathological changes (IHC), the HELTr did not demonstrate toxicity in the behavioral and histopathological assessments, since the vital organs remained unchanged. Carrageenan-induced abdominal edema was significantly reduced at all HELTr doses (100, 200 and 500 mg/kg) in relation to the negative control, dimethyl sulfoxide (DMSO), while the 200 mg/kg dose showed significant anti-inflammatory activity in relation to the positive control (indomethacin). With these activities being confirmed by molecular docking studies, they showed a good profile for the inhibition of the enzyme Cyclooxygenase-2 (COX-2), as the interactions established at the sites of the receptors used in the docking study were similar to the controls (RCX, IMN and CEL). Therefore, the HELTr has an acceptable degree of safety for acute toxicity, defined in the analysis of behavioral changes, mortality and histopathology, with a significant anti-inflammatory action in zebrafish at all doses, which demonstrates the high pharmacophoric potential of the species. These results may direct future applications and drug development but still require further elucidation.
Collapse
Affiliation(s)
- Agerdânio Andrade de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Indigenous Intercultural Licensing Course, Binational Campus, Federal University of Amapá, Rodovia BR 156, No. 3051, Universidade, Oiapoque CEP 68980-000, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Brenda Lorena Sánchez Ortíz
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Swanny Ferreira Borges
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Andria Vanessa Pena Pinto
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Ryan da Silva Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá CEP 68903-419, Amapá, Brazil
| | - Igor Colares Pena
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá CEP 68902-280, Amapá, Brazil
| | - Rosemary de Carvalho Rocha Koga
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Carla Estefani Batista
- School of Technology, University of the State of Amazonas–UEA, Manaus CEP 69050-020, Amazonas, Brazil
| | - Gisele Custódio de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Adriana Maciel Ferreira
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Sergio Duvoisin Junior
- School of Technology, University of the State of Amazonas–UEA, Manaus CEP 69050-020, Amazonas, Brazil
| | - José Carlos Tavares Carvalho
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
- University Hospital of the Federal University of Amapá, R. do Estádio Zerão, Macapá CEP 68902-336, Amapá, Brazil
| |
Collapse
|
6
|
Shokry AA, El-Shiekh RA, Kamel G, Bakr AF, Sabry D, Ramadan A. Anti-arthritic activity of the flavonoids fraction of ivy leaves (Hedera helix L.) standardized extract in adjuvant induced arthritis model in rats in relation to its metabolite profile using LC/MS. Biomed Pharmacother 2021; 145:112456. [PMID: 34839259 DOI: 10.1016/j.biopha.2021.112456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022] Open
Abstract
Ivy leaves (Hedera helix) is a traditional plant used for common cold, cough, and bronchial disorders and can be used for rheumatoid arthritis (RA) as an attempt in alternative medicine. RA is a chronic autoimmune disease characterized by its increasing frequency and adverse consequences. There is an urgent need for a long-term therapy that has favorable biological effects and is less expensive than the already authorized synthetic medicines. This study aimed to determine the anti-arthritic potentials of Hedera helix with determination of the bioactive fraction and discovery of its second-generation metabolites by means of LC/MS. The total ivy ethanolic extract (TIE-E), saponins fraction (Sap-F) and flavonoids fraction (Flav-F) were investigated for their in-vitro anti-arthritic effects and in-vivo by Adjuvant-induced arthritis (AIA) using Complete Freund's Adjuvant (0.1 mL, CFA) intradermal relative to the usual dose of ibuprofen (5 mg/kg). We examined the physical alterations, rheumatoid biomarkers, cytokines that cause and inhibit inflammation, markers of oxidative stress, hyaluronidase and β-glucuronidase enzyme activity. Each paw's histopathology was also evaluated. The chemical profiles of TIE-E were studied using LC/MS in both positive and negative ionization modes. TIE-E (200 mg/kg) and Flav-F (100 mg/kg) significantly (P < 0.05) lowered the edema of the paws, serum immunological indicators, inflammatory cytokines, degenerative enzymes, and indicators of reactive oxygen species with increasing in the anti-inflammatory cytokines. Our findings suggest that extracts of ivy leaves might be used effectively to treat rheumatoid arthritis, where its flavonoid content is responsible for that, and it is able to repress biochemical, oxidative, and pathological changes associated with (AIA) Adjuvant-induced arthritis.
Collapse
Affiliation(s)
- Aya A Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Gehan Kamel
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Rico D, Peñas E, del Carmen García M, Rai DK, Martínez-Villaluenga C, Frias J, Martín-Diana AB. Development of Antioxidant and Nutritious Lentil ( Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods 2021; 10:2924. [PMID: 34945474 PMCID: PMC8700479 DOI: 10.3390/foods10122924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Germination is an efficient and natural strategy that allows the modification of the nutritional value and the nutraceutical properties of seeds, enabling one to tailor the process according to its final use. This study aimed at optimization of germination conditions to produce novel lentil flours with improved nutritional and functional features. Response Surface Methodology (RSM) was applied to model the effect of temperature (15-27 °C) and time (1-5 days) on different nutritional and quality parameters of lentil flours including proximate composition, content and profile of fatty acids, content of phytic acid, ascorbic acid and γ-aminobutyric acid (GABA), content and profile of phenolic compounds, antioxidant activity, expected glycemic index (GI) and color during germination. As shown by RSM polynomial models, sprouting promoted the reduction of phytic acid content and enhanced the levels of ascorbic acid, GABA, insoluble phenolic compounds, antioxidant activity and expected GI, and modified the color of the resultant lentil flours. RSM optimization of germination temperature and time using desirability function revealed that the optimal process conditions to maximize the nutritional, bioactive and quality properties of sprouted lentil flours were 21 °C for 3.5 days.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - María del Carmen García
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland;
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - Ana B. Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| |
Collapse
|
8
|
Motyleva S, Upadysheva G, Tumaeva T. Influence of rootstocks on the productivity and chemical composition of Prunus domestica L. fruits. POTRAVINARSTVO 2021. [DOI: 10.5219/1650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of seedling and clonal rootstocks of different spreads on Prunus domestica L. plum fruits quality and productivity of Yaichnaya Sinyaya and Utro varieties was studied. The significant change of productivity and the fruit weight of the varieties under study was to determine under the influence of the rootstock. Depending on the scion-stock combination the plum tree's productivity varied from 7.5 kg/tr. (Utro/140-1) to 15.1 kg/tr. (Yаichnaya Sinyaya /Novinka) at the mean value of 11.5 kg/tr. Medium-growing rootstocks Novinka and OPA-15-2 provided the maximum value of the varieties productivity The significant productivity decrease relatively to seedling rootstock was stated for the combinations with low-growing rootstock 140-1. Soluble solids content in the fruits of Yаichnaya Sinyaya variety is higher than in the fruits of Utro variety, moreover, the highest values were determined on Novinka and OPA-15-2 rootstocks: on 4 – 4.5% higher in comparison with the fruits on the seeding rootstock at average. The rootstock causes less influence on titratable acids. The antioxidant activity of Yаichnaya Sinyaya variety fruits is 30% higher than that of Utro variety fruits on average. The maximum values of antioxidant activity in Yаichnaya Sinyaya variety fruits were fixed on OPA-15-2 rootstock (16.37%), the minimal ones – on Skorospelka Krasnaya rootstocks (14.68%). In the fruits of Utro variety the highest values were stated on OP-23-23 rootstock (13.16%), and the lowest ones – on the seedling rootstock (10.93%). The content of phenolic compounds sum is 60% higher in the fruits of Yаichnaya Sinyaya variety than in Utro variety ones on average. The decrease of the content of phenolic compounds sum was stated in the fruits of Utro variety on all the rootstocks in comparison with the combination Utro/seedling rootstock. The decreasing series of ash elements accumulation (K > P > Ca > Mg > Mo > S > Zn > Si) was determined. The strongest variety differences on total mineral element content were overvalued on medium-growing clonal rootstocks (Novinka, OP-23-23 and OPA-15-2). OPA-15-2 and OP-23-23 rootstocks provided the highest fruit quality on the combination of economic and biochemical parameters.
Collapse
|
9
|
Treatment with Uncaria tomentosa Promotes Apoptosis in B16-BL6 Mouse Melanoma Cells and Inhibits the Growth of B16-BL6 Tumours. Molecules 2021; 26:molecules26041066. [PMID: 33670520 PMCID: PMC7922471 DOI: 10.3390/molecules26041066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/02/2023] Open
Abstract
Uncaria tomentosa is a medicinal plant native to Peru that has been traditionally used in the treatment of various inflammatory disorders. In this study, the effectiveness of U. tomentosa as an anti-cancer agent was assessed using the growth and survival of B16-BL6 mouse melanoma cells. B16-BL6 cell cultures treated with both ethanol and phosphate-buffered saline (PBS) extracts of U. tomentosa displayed up to 80% lower levels of growth and increased apoptosis compared to vehicle controls. Treatment with ethanolic extracts of Uncaria tomentosa were much more effective than treatment with aqueous extracts. U. tomentosa was also shown to inhibit B16-BL6 cell growth in C57/bl mice in vivo. Mice injected with both the ethanolic and aqueous extracts of U. tomentosa showed a 59 ± 13% decrease in B16-BL6 tumour weight and a 40 ± 9% decrease in tumour size. Histochemical analysis of the B16-BL6 tumours showed a strong reduction in the Ki-67 cell proliferation marker in U. tomentosa-treated mice and a small, but insignificant increase in terminal transferase dUTP nick labelling (TUNEL) staining. Furthermore, U. tomentosa extracts reduced angiogenic markers and reduced the infiltration of T cells into the tumours. Collectively, the results in this study concluded that U. tomentosa has potent anti-cancer activity that significantly inhibited cancer cells in vitro and in vivo.
Collapse
|
10
|
Madić V, Petrović A, Jušković M, Jugović D, Djordjević L, Stojanović G, Vasiljević P. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113210. [PMID: 32795501 DOI: 10.1016/j.jep.2020.113210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE One of the commonly prescribed 'anti-diabetic' polyherbal mixtures by European herbalists is made of Rubus fruticosus and Vaccinium myrtillus leaves, Potentilla erecta roots, Geum urbanum aerial parts and Phaseolus vulgaris pods. AIM OF THE STUDY This study aimed to evaluate the phytochemical composition, antioxidant capacity, potential toxicity, hypoglycemic, hypolipidemic, nephroprotective and hepatoprotective activities of this polyherbal mixture decoction. MATERIALS AND METHODS The phytochemical composition was evaluated using HPLC-UV. The antioxidant activity was assessed using the DPPH test. Potential toxicity was evaluated using the acute and sub-chronic oral toxicity method. Diabetes was induced in Wistar female rats with a single intraperitoneal injection of alloxan monohydrate (150 mg/kg). The animals whose blood glucose was >20 mmol/L for 14 consecutive days were considered diabetic. For the next 14 days, D-10 and D-20 groups were treated with the polyherbal mixture (10 and 20 g of dry plant material/kg, respectively). I and M were control groups treated with insulin glargine (13 IU/kg) and metformin (150 mg/kg), respectively. Healthy control (HC) and diabetic control (DC) groups were treated with water. The blood glucose level was measured on days 14, 21 and 28. Lipid profile analysis was done on day 28. Pancreas, kidney and liver histopathology was evaluated using the H&E and Masson's trichrome staining. The liver tissue was additionally tested for PAS-positive cells. RESULTS The HPLC-UV analysis revealed the presence of quinic, gallic and caftaric acid, arbutin, rutin, trifolin, astragalin, hyperoside, isoquercetin and quercitrin. The antioxidant activity of the extract was higher than the reference's one (p < 0.01). Treatment with the polyherbal mixture (10 and 20 g/kg) has shown no toxic effects. No major decline in blood sugar was recorded in I and M groups compared to the DC one (22.86 ± 2.58, 28.5 ± 0.42 and 27.82 ± 0.9 mmol/L, respectively). The polyherbal mixture lowered the blood glucose level to the normal value (8.64 ± 4.09, 5.26 ± 1.3 and 6.76 ± 1.54 mmol/L in D-10, D-20 and HC groups, respectively). Furthermore, it decreased the levels of total cholesterol, triglycerides, VLDL, LDL, atherogenic and cardiovascular risk indices (p < 0.001) compared to the DC group. In addition, the extract restored histopathological changes of the pancreas, kidneys and liver to the healthy animal level. CONCLUSION Treatment with the polyherbal mixture extract was more effective than the standard drugs (insulin and metformin) in the amelioration of hyperglycemia, hyperlipidemia, and histopathological changes of the pancreas, kidney and liver tissue.
Collapse
Affiliation(s)
- Višnja Madić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Aleksandra Petrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Marina Jušković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Dragana Jugović
- Laboratory for Cytogenetics and Immunology, Clinical Center of Niš, Bulevar Dr. Zorana Đinđića 48, 18000, Niš, Serbia.
| | - Ljubiša Djordjević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Gordana Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| |
Collapse
|
11
|
Tsamo AT, Mohammed M, Dakora FD. Metabolite Fingerprinting of Kersting's Groundnut [ Macrotyloma geocarpum (Harms) Maréchal & Baudet] Seeds Using UPLC-qTOF-MS Reveals the Nutraceutical and Antioxidant Potentials of the Orphan Legume. Front Nutr 2021; 7:593436. [PMID: 33385005 PMCID: PMC7770220 DOI: 10.3389/fnut.2020.593436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
The identification and subsequent quantification of phenolic compounds in plants is the first step toward harnessing their associated nutritional and health benefits. Due to their diverse phenolic compound compositions, grain legumes are known for their high nutritional and health values. The aim of this study was to assess the inter-variations in chemical composition, phytochemical content, and antioxidant capacity of seed extracts from eight Kersting's groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] landraces. The chemical profiles were evaluated using UPLC-qTOF-MS. Total phenolics and flavonoids content were determined by the Folin-Ciocalteu and aluminum chloride methods, respectively. The antioxidant capacities in the forms of DPPH and ABTS were evaluated using spectrophotometric methods. Principal component analysis was used to define similarities/differences between the landraces. Based on untargeted metabolomics analysis, 57 metabolites were identified, with phenolics, triterpenes, fatty acids, and sphingolipids being the most predominant. The results showed that the black seeded KG1 (Puffeun) had the highest total phenolic (9.44 mg GAE/g) and flavonoid (3.01 mg QE/g) contents, as well as antioxidant capacity (9.17 μg/mL and 18.44 μg/mL based on DDPH and ABTS assays, respectively). The concentrations of ferulic acid hexoside, procyanidin B2, eryodictyiol-7-rutinoside and quercetin pentoside ranged from 51.78–441.31, 1.86–18.25, 3.26–13.95 to 5.44–63.85 μg/mg, respectively. This study presents a useful report on the phytochemical characterization of Kersting's groundnuts and shows that the grains can be used as a source of nutraceuticals for human consumption.
Collapse
Affiliation(s)
- Armelle Tontsa Tsamo
- Department of Organic Chemistry, University of Yaoundé I, Yaounde, Cameroon.,Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Mustapha Mohammed
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa.,Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Felix Dapare Dakora
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
12
|
Peron G, Hošek J, Prasad Phuyal G, Raj Kandel D, Adhikari R, Dall’Acqua S. Comprehensive Characterization of Secondary Metabolites from Colebrookea oppositifolia (Smith) Leaves from Nepal and Assessment of Cytotoxic Effect and Anti-Nf-κB and AP-1 Activities In Vitro. Int J Mol Sci 2020; 21:ijms21144897. [PMID: 32664524 PMCID: PMC7402322 DOI: 10.3390/ijms21144897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Here we report the comprehensive characterization of the secondary metabolites from the leaves of Colebrookea oppositifolia Smith, a species used as medicinal plant in the traditional medicine of Nepal. Phytochemical screening of bioactives was performed using an integrated LC-MSn and high resolution MS (Mass Spectrometry) approach. Forty-three compounds were tentatively identified, mainly aglyconic and glycosilated flavonoids and phenolic acids, as well as other bioactives such as coumarins and terpenes were detected. Furthermore, the NF-κB and AP-1 inhibitory activity of C. oppositifolia extract were evaluated, as well as its cytotoxicity against THP-1 cells, in order to assess the potential use of this herb as a source of anti-inflammatory and cytotoxic compounds. The results so far obtained indicate that C. oppositifolia leaves extract could significantly reduce the viability of THP-1 cells (IC50 = 6.2 ± 1.2 µg/mL), as well as the activation of both NF-κB and AP-1 at the concentration of 2 μg/mL. Our results indicate that Nepalese C. oppositifolia is a valuable source of anti-inflammatory and cytotoxic compounds. The phytochemical composition reported here can partially justify the traditional uses of C. oppositifolia in Nepal, especially in the treatment of inflammatory diseases, although further research will be needed to assess the full potential of this species.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
- Correspondence:
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Ganga Prasad Phuyal
- Research Centre for Applied Science and Technology, Tribhuvan University, Kiritipur, 44613 Kathmandu, Nepal; (G.P.P.); (D.R.K.); (R.A.)
| | - Dharma Raj Kandel
- Research Centre for Applied Science and Technology, Tribhuvan University, Kiritipur, 44613 Kathmandu, Nepal; (G.P.P.); (D.R.K.); (R.A.)
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology, Tribhuvan University, Kiritipur, 44613 Kathmandu, Nepal; (G.P.P.); (D.R.K.); (R.A.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
13
|
Peron G, Hošek J, Rajbhandary S, Pant DR, Dall'Acqua S. LC-MS n and HR-MS characterization of secondary metabolites from Hypericum japonicum Thunb. ex Murray from Nepalese Himalayan region and assessment of cytotoxic effect and inhibition of NF-κB and AP-1 transcription factors in vitro. J Pharm Biomed Anal 2019; 174:663-673. [PMID: 31288189 DOI: 10.1016/j.jpba.2019.06.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
Abstract
Hypericum japonicum Thunb. ex Murray is traditionally used in Nepal to treat several diseases, among whom inflammation and acute pain. Although several secondary metabolites from the same Hypericum species have been already characterized and considered for their pharmacological use, an exhaustive phytochemical characterization of H. japonicum from Nepal is lacking, as well as the assessment of its potential pharmacological properties. Hence, the aims of this study were the characterization of a methanolic extract of H. japonicum (HJME) collected from the Northern region of Nepal by LC-MSn and UPLC-QTOF. The assessment of in vitro inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) transcription factors and HJME's cytotoxic effect on human cell lines was performed to evaluate the potential use of this herb as a source of anti-inflammatory and cytotoxic lead compounds. Fifty-seven phytoconstituents were identified, being mainly flavonoids, phloroglucinols, phenolic acids and xanthones. Although compounds characteristic of H. japonicum were detected (quercetin, quercetin-7-O-α-l-rhamnoside, quercitrin and hyperoside), several others are here reported for the first time in this species. The results from bioassays indicated that HJME could significantly reduce the viability of human THP-1 cells (IC50 = 5.4 ± 1.1 μg mL-1), showing the promising potential of HJME as anti-tumor agent. Furthermore, HJME significantly decreased the activation of both NF-κB and AP-1 at the concentration of 2 μg mL-1. Overall, these data suggest that H. japonicum from Nepal could be used as a source of potential natural anti-inflammatory and anti-tumor lead compounds.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Sangeeta Rajbhandary
- Central Department of Botany, Tribhuvan University, 44600 Kirtipur, Kathmandu, Nepal.
| | - Deepak Raj Pant
- Central Department of Botany, Tribhuvan University, 44600 Kirtipur, Kathmandu, Nepal.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
14
|
do Carmo Ota E, Honorato CA, Heredia-Vieira SC, Flores-Quintana CI, de Castro Silva TS, Inoue LAKA, Cardoso CAL. Hepatic and gastroprotective activity of Serjania marginata leaf aqueous extract in Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1051-1065. [PMID: 31089991 DOI: 10.1007/s10695-019-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to assess the leaf aqueous extract composition of Serjania marginata and the effects of its inclusion on the diet of Nile tilapia (Oreochromis niloticus), with respect to the activity of digestive enzymes and enzymes associated with the metabolism of the liver and intestine and liver histopathology. Fish (initial mean weight, 54.36 ± 17.04 g) were divided into groups: fasting (without feeding), control (commercial feed), and treatment (commercial feed with leaf aqueous extract of Serjania marginata), and in each aquarium, there were five individuals and the fish fed ad libitum for 15 days. Treatment fish had ingested on average 224.3 mg of extract/kg of fish/day. In the extract analysis by mass spectrometry, quercitrin, isoquercitrin, A-type proanthocyanidin trimer, and quinic acid were identified. In the enzymatic activity, fish from the treatment group showed higher level of alkaline phosphatase, while the hepatotoxic markers (AST and ALT) and levels of lipase, amylase, and nonspecific protease did not differ (p > 0.05). In liver histopathological analysis, it was observed that fish from the treatment showed normal structure, while abnormalities were associated with control (fibrosis, loss of cordonal architecture, vacuolated hepatocytes with nucleus displaced to the periphery) and fasting (reduction in hepatocyte size and sinusoidal space). The intestine histopathology evidenced that the extract favored the development of goblet cells and intestinal fold height. The results indicated that the leaf aqueous extract of S. marginata assists in the structural maintenance of the liver and intestine and stimulates intestinal alkaline phosphatase production in Nile tilapia, suggesting that the identified compounds act on the liver and intestine, showing hepatoprotective effects and stimulating intestinal digestion.
Collapse
Affiliation(s)
- Erika do Carmo Ota
- Center of Studies on Natural Resources, Mato Grosso do Sul State University (UEMS), Cidade Universitária de Dourados, Rod. Dourados-Itahúm, Km 12, C.P. 351, Dourados, Mato Grosso do Sul, 79804-970, Brazil.
| | | | | | | | | | | | - Claudia Andrea Lima Cardoso
- Center of Studies on Natural Resources, Mato Grosso do Sul State University (UEMS), Cidade Universitária de Dourados, Rod. Dourados-Itahúm, Km 12, C.P. 351, Dourados, Mato Grosso do Sul, 79804-970, Brazil
| |
Collapse
|
15
|
Snow AD, Castillo GM, Nguyen BP, Choi PY, Cummings JA, Cam J, Hu Q, Lake T, Pan W, Kastin AJ, Kirschner DA, Wood SG, Rockenstein E, Masliah E, Lorimer S, Tanzi RE, Larsen L. The Amazon rain forest plant Uncaria tomentosa (cat's claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci Rep 2019; 9:561. [PMID: 30728442 PMCID: PMC6365538 DOI: 10.1038/s41598-019-38645-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
Brain aging and Alzheimer's disease both demonstrate the accumulation of beta-amyloid protein containing "plaques" and tau protein containing "tangles" that contribute to accelerated memory loss and cognitive decline. In the present investigation we identified a specific plant extract and its constituents as a potential alternative natural solution for preventing and reducing both brain "plaques and tangles". PTI-00703 cat's claw (Uncaria tomentosa from a specific Peruvian source), a specific and natural plant extract from the Amazon rain forest, was identified as a potent inhibitor and reducer of both beta-amyloid fibrils (the main component of "plaques") and tau protein paired helical filaments/fibrils (the main component of "tangles"). PTI-00703 cat's claw demonstrated both the ability to prevent formation/aggregation and disaggregate preformed Aβ fibrils (1-42 and 1-40) and tau protein tangles/filaments. The disaggregation/dissolution of Aβ fibrils occurred nearly instantly when PTI-00703 cat's claw and Aβ fibrils were mixed together as shown by a variety of methods including Thioflavin T fluorometry, Congo red staining, Thioflavin S fluorescence and electron microscopy. Sophisticated structural elucidation studies identified the major fractions and specific constituents within PTI-00703 cat's claw responsible for both the observed "plaque" and "tangle" inhibitory and reducing activity. Specific proanthocyanidins (i.e. epicatechin dimers and variants thereof) are newly identified polyphenolic components within Uncaria tomentosa that possess both "plaque and tangle" reducing and inhibitory activity. One major identified specific polyphenol within PTI-00703 cat's claw was epicatechin-4β-8-epicatechin (i.e. an epicatechin dimer known as proanthocyanidin B2) that markedly reduced brain plaque load and improved short-term memory in younger and older APP "plaque-producing" (TASD-41) transgenic mice (bearing London and Swedish mutations). Proanthocyanidin B2 was also a potent inhibitor of brain inflammation as shown by reduction in astrocytosis and gliosis in TASD-41 transgenic mice. Blood-brain-barrier studies in Sprague-Dawley rats and CD-1 mice indicated that the major components of PTI-00703 cat's claw crossed the blood-brain-barrier and entered the brain parenchyma within 2 minutes of being in the blood. The discovery of a natural plant extract from the Amazon rain forest plant (i.e. Uncaria tomentosa or cat's claw) as both a potent "plaque and tangle" inhibitor and disaggregator is postulated to represent a potential breakthrough for the natural treatment of both normal brain aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Alan D Snow
- Cognitive Clarity Inc., Edmonds, WA, USA.
- ProteoTech Inc., Kirkland, WA, USA.
| | | | - Beth P Nguyen
- ProteoTech Inc., Kirkland, WA, USA
- Healthcare Legacy Consulting LLC, Dallas, TX, USA
| | | | - Joel A Cummings
- Cognitive Clarity Inc., Edmonds, WA, USA
- ProteoTech Inc., Kirkland, WA, USA
| | - Judy Cam
- ProteoTech Inc., Kirkland, WA, USA
- Preclinical GPS, Washington University, St. Louis, MO, USA
| | - Qubai Hu
- ProteoTech Inc., Kirkland, WA, USA
| | - Thomas Lake
- Cognitive Clarity Inc., Edmonds, WA, USA
- ProteoTech Inc., Kirkland, WA, USA
| | - Weihong Pan
- Blood-Brain Barrier Laboratory, Pennington Biomedical Research Center at Louisiana State University, Baton Rouge, Louisiana, USA
- Biopotentials Sleep Center, Baton Rouge, LA, USA
| | - Abba J Kastin
- Blood-Brain Barrier Laboratory, Pennington Biomedical Research Center at Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Steven G Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Edward Rockenstein
- Departments of Neurosciences and Pathology, University of California- San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California- San Diego, La Jolla, CA, USA
- Division of Neurosciences, National Institute on Aging, Bethesda, MD, USA
| | - Stephen Lorimer
- Department of Chemistry, University of Otago, Dunedin, New Zealand
- VicLink Ltd., Wellington, New Zealand
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lesley Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Tripathi T, Bhatia A, Singh S, Sarvendra K, Khan AR, Sidhu OP, Roy R. Metabolite Profiling of Commiphora wightii (Guggul) with Respect to Seasons. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim of the study was to undertake comprehensive metabolic profiling of plant parts of Commiphora wightii during two contrasting seasons i.e. summer and winter; compared seasonal metabolic variations; and assess antioxidant activity of fractions for commercial applications. Leaves, young stems and gum-resin extracts from summer and winter seasons were analyzed using GC-MS, HPLC and NMR spectroscopy. The antioxidant activity on each set was determined by DPPH free radical scavenging assay. Complete metabolic profiling from two contrasting seasons identified one hundred and four major known and unknown metabolites. Also, two alkylated phenols, 2,4-di- tert-butyl phenol and 3-(3,5-di- tert-butyl-4-hydroxyphenyl) propanoic acid not reported earlier from this taxon were isolated from the vegetative part. Comparative analysis of seasonal metabolic profiles of leaves, young stems and gum-resin revealed significant variations in concentrations of several metabolites. Multivariate principal component analysis (PCA) showed significant qualitative and quantitative variations in the polar (glycine, quinic acid and myo-inositol) and non-polar metabolites (alkylated phenols, guggulsterones and α-tocopherol) between the two seasons. Variation amongst metabolites such as myo-inositol, quinic acid α- tocopherol and alkylated phenols that are important for nutraceutical industry in the two contrasting seasons is a useful finding. These metabolites are of medicinal and nutraceutical importance and are commonly used in nutraceuticals and dietary supplement industry. DPPH radical scavenging activity (IC50 values) of polar and non-polar extracts varied significantly between summer and winter seasons. The antioxidant activity can be attributed to major polar metabolite, quinic acid biosynthesized in excess during winter, and to non-polar metabolites like alkylated phenols and α-tocopherol present during the summer season. The study shall be useful for medicinal, nutraceutical and dietary supplement industry for selection of polar or non-polar extracts from a particular season for obtaining targeted products with optimized functionality.
Collapse
Affiliation(s)
- Tusha Tripathi
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
- Department of Chemistry, Integral University, Lucknow-226 026, UP, India
| | - Anil Bhatia
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
- Present address, MU Metabolomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Suruchi Singh
- Centre of Biomedical Research, formerly known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226 014, UP, India
| | - Kunwar Sarvendra
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow-226 026, UP, India
| | - Om P. Sidhu
- CSIR–National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Raja Roy
- Centre of Biomedical Research, formerly known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226 014, UP, India
| |
Collapse
|
17
|
Azevedo BC, Morel LJF, Carmona F, Cunha TM, Contini SHT, Delprete PG, Ramalho FS, Crevelin E, Bertoni BW, França SC, Borges MC, Pereira AMS. Aqueous extracts from Uncaria tomentosa (Willd. ex Schult.) DC. reduce bronchial hyperresponsiveness and inflammation in a murine model of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2018; 218:76-89. [PMID: 29432856 DOI: 10.1016/j.jep.2018.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria tomentosa (Willd. Ex Schult) DC is used by indigenous tribes in the Amazonian region of Central and South America to treat inflammation, allergies and asthma. The therapeutic properties of U. tomentosa have been attributed to the presence of tetracyclic and pentacyclic oxindole alkaloids and to phenolic acids. AIMS OF THE STUDY To characterize aqueous bark extracts (ABE) and aqueous leaf extracts (ALE) of U. tomentosa and to compare their anti-inflammatory effects. MATERIALS AND METHODS Constituents of the extracts were identified by ultra performance liquid chromatography-mass spectrometry. Anti-inflammatory activities were assessed in vitro by exposing lipopolysaccharide-stimulated macrophage cells (RAW264.7-Luc) to ABE, ALE and standard mitraphylline. In vivo assays were performed using a murine model of ovalbumin (OVA)-induced asthma. OVA-sensitized animals were treated with ABE or ALE while controls received dexamethasone or saline solution. Bronchial hyperresponsiveness, production of Th1 and Th2 cytokines, total and differential counts of inflammatory cells in the bronchoalveolar lavage (BAL) and lung tissue were determined. RESULTS Mitraphylline, isomitraphylline, chlorogenic acid and quinic acid were detected in both extracts, while isorhyncophylline and rutin were detected only in ALE. ABE, ALE and mitraphylline inhibited the transcription of nuclear factor kappa-B in cell cultures, ALE and mitraphylline reduced the production of interleukin (IL)-6, and mitraphylline reduced production of tumor necrosis factor-alpha. Treatment with ABE and ALE at 50 and 200 mg kg-1, respectively, reduced respiratory elastance and tissue damping and elastance. ABE and ALE reduced the number of eosinophils in BAL, while ALE at 200 mg kg-1 reduced the levels of IL-4 and IL-5 in the lung homogenate. Peribronchial inflammation was significantly reduced by treatment with ABE and ALE at 50 and 100 mg kg-1 respectively. CONCLUSION The results clarify for the first time the anti-inflammatory activity of U. tomentosa in a murine model of asthma. Although ABE and ALE exhibited distinct chemical compositions, both extracts inhibited the production of pro-inflammatory cytokines in vitro. In vivo assays revealed that ABE was more effective in treating asthmatic inflammation while ALE was more successful in controlling respiratory mechanics. Both extracts may have promising applications in the phytotherapy of allergic asthma.
Collapse
Affiliation(s)
- Bruna Cestari Azevedo
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Av. Costábile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Lucas Junqueira Freitas Morel
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Av. Costábile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Fábio Carmona
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Thiago Mattar Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Silvia Helena Taleb Contini
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Av. Costábile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Piero Giuseppe Delprete
- Herbier de Guyane, Institut de Recherche pour le Développement, 275 Route de Montabo, BP 90165, 97323 Cayenne Cedex, French Guiana
| | - Fernando Silva Ramalho
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Eduardo Crevelin
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Bianca Waléria Bertoni
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Av. Costábile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Suzelei Castro França
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Av. Costábile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil
| | - Marcos Carvalho Borges
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Av. Costábile Romano 2201, 14096-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Bagwe SM, Kale PP, Bhatt LK, Prabhavalkar KS. Herbal approach in the treatment of pancytopenia. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 14:/j/jcim.ahead-of-print/jcim-2016-0053/jcim-2016-0053.xml. [PMID: 28195548 DOI: 10.1515/jcim-2016-0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/18/2016] [Indexed: 11/15/2022]
Abstract
Pancytopenia is a health condition in which there is a reduction in the amount of leucocytes, erythrocytes and thrombocytes. If more than one of the blood cells is low then the condition is called as bicytopenia. The pancytopenic condition is observed in treatment of diseased conditions like thalassemia and hepatitis C. Iatrogenically pancytopenia is caused by some antibiotics and anti-HCV drugs. Medical conditions like aplastic anaemia, lymphoma, copper deficiency, and so forth can also cause pancytopenia. Pancytopenia can in turn decrease the immunity of the person and thereby can be fatal. Current therapies for pancytopenia include bone marrow stimulant drugs, blood transfusion and bone marrow transplant. The current therapies are very excruciating and have long-term side-effects. Therefore, treating these condition using herbal drugs is very important. Herbs like wheatgrass, papaya leaves and garlic are effective in treating single lineage cytopenias. The present review is focused on the potential effects of natural herbs for the treatment of pancytopenia.
Collapse
|
19
|
Uncaria tomentosa Leaves Decoction Modulates Differently ROS Production in Cancer and Normal Cells, and Effects Cisplatin Cytotoxicity. Molecules 2017; 22:molecules22040620. [PMID: 28417940 PMCID: PMC6154711 DOI: 10.3390/molecules22040620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 11/22/2022] Open
Abstract
Uncaria tomentosa is a woody vine with a long history of use in traditional Peruvian medicine and nowadays supplements containing this vine as ingredient are available. Immunomodulating, anti-inflammatory and anticancer properties of Uncaria tomentosa have been suggested and attributed mainly to the presence of tetracyclic or pentacyclic oxindole alkaloids. However, the synergic action of different compounds occurring in extracts and modulation of redox processes may significantly influence the anticancer activity of Uncaria tomentosa. The aim of the present study was to investigate for the first time the cytotoxic effects of the tetracyclic alkaloids free aqueous extract (decoction) of dried Uncaria tomentosa leaf blades in normal and cancer cells, and to assess the effect of the tested extract on cisplatin (CDDP) cytotoxicity. Tested Uncaria tomentosa extract was not cytotoxic for NHDF cells, but demonstrated cytotoxic effect against HepG2 cells. The extract increased ROS production in HepG2 cells, which resulted in decreased GSH level, leading to apoptosis of these cells through activation of caspase-3 and caspase-7. A reduction of NF-κB active form was observed in cancer cells. In normal cells the extract did not affect ROS production, GSH level and NF-κB activity, and maintained cell viability. HepG2 cells incubation with Uncaria tomentosa decoction and simultaneously with CDDP resulted in an increase in CDPP cytotoxic activity against HepG2, while under the same conditions Uncaria tomentosa prevents NHDF cell viability reduction due to CDDP. The results indicate that Uncaria tomentosa leaves decoction modulates differently cancer and normal cells oxidative metabolism and, enhanced cytotoxicity of CDDP against cancer cells and at the same time increased normal healthy cells resistance to cisplatin. Further studies are needed to confirm our observations and to describe underlying molecular mechanism, and the potential usefulness of Uncaria tomentosa decoction in adjuvant therapy for cancer.
Collapse
|
20
|
Assoah B, Veiros LF, Afonso CAM, Candeias NR. Biomass-Based and Oxidant-Free Preparation of Hydroquinone from Quinic Acid. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benedicta Assoah
- Department of Chemistry and Bioengineering; Tampere University of Technology; Korkeakoulunkatu 8 33101 Tampere Finland
| | - Luis F. Veiros
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais No. 1 1049-001 Lisboa Portugal
| | - Carlos A. M. Afonso
- The Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; University of Lisbon; Av. Prof. Gama Pinto Lisboa Portugal
| | - Nuno R. Candeias
- Department of Chemistry and Bioengineering; Tampere University of Technology; Korkeakoulunkatu 8 33101 Tampere Finland
| |
Collapse
|
21
|
Yunis-Aguinaga J, Claudiano GS, Marcusso PF, Manrique WG, de Moraes JRE, de Moraes FR, Fernandes JBK. Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2015; 47:630-638. [PMID: 26434713 DOI: 10.1016/j.fsi.2015.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia.
Collapse
Affiliation(s)
| | - Gustavo S Claudiano
- Department of Veterinary Pathology, School of Agrarian and Veterinary Sciences, Unesp, Jaboticabal, SP, Brazil
| | - Paulo F Marcusso
- Department of Veterinary Pathology, School of Agrarian and Veterinary Sciences, Unesp, Jaboticabal, SP, Brazil
| | - Wilson Gómez Manrique
- Department of Veterinary Pathology, School of Agrarian and Veterinary Sciences, Unesp, Jaboticabal, SP, Brazil
| | - Julieta R Engrácia de Moraes
- Aquaculture Center of UNESP, Jaboticabal, SP, Brazil; Department of Veterinary Pathology, School of Agrarian and Veterinary Sciences, Unesp, Jaboticabal, SP, Brazil
| | - Flávio R de Moraes
- Aquaculture Center of UNESP, Jaboticabal, SP, Brazil; Department of Veterinary Pathology, School of Agrarian and Veterinary Sciences, Unesp, Jaboticabal, SP, Brazil.
| | | |
Collapse
|
22
|
Castilhos LG, Rezer JFP, Ruchel JB, Thorstenberg ML, Jaques JADS, Schlemmer JB, Doleski PH, Rossato MF, da Silva MA, Casalli EA, da Cruz RC, Ferreira J, Athayde ML, Gonçalves JF, Leal DBR. Effect of Uncaria tomentosa extract on purinergic enzyme activities in lymphocytes of rats submitted to experimental adjuvant arthritis model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:189. [PMID: 26088322 PMCID: PMC4474424 DOI: 10.1186/s12906-015-0694-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Considering that adjuvant arthritis is an experimental model of arthritis widely used for preclinical testing of numerous anti-arthritic agents, which were taken by a large number of patients worldwide, it is of great interest to investigate the therapeutic action of compounds with anti-inflammatory properties, such as Uncaria tomentosa extract. Moreover, there are no studies demonstrating the effect of U. tomentosa on the metabolism of adenine nucleotides published so far. Thus, the purpose of the present study is to investigate the effects of U. tomentosa extract on E-NTPDase and E-ADA activities in lymphocytes of Complete Freund's Adjuvant (CFA) arthritis induced rats. METHODS To evaluate the effect of U. tomentosa extract on the activity of E-NTPDase and ADA in lymphocytes, the rats were submitted to an experimental adjuvant arthritis model. Peripheral lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Data were analyzed by a one- or two-way ANOVA. Post hoc analyses were carried out by the Student-Newman-Keuls (SNK) Multiple Comparison Test. RESULTS E-NTPDase activity was increased in arthritic untreated. Arthritic rats which received U. tomentosa extract, presented similar results to the control group. However, results obtained for adenosine hydrolysis by E-ADA were not altered in arthritic rats. U. tomentosa extract did not alter E-NTPDase and E-ADA activity in healthy animals. CONCLUSIONS The present investigation supports the hypothesis that the increased E-NTPDase activity verified in arthritic rats might be an attempt to maintain basal levels of ATP and ADP in the extracellular medium, since the arthritis induction causes tissue damage and, consequently, large amounts of ATP are released into this milieu. Also, it highlights the possibility to use U. tomentosa extract as an adjuvant to treat arthritis.
Collapse
Affiliation(s)
- Lívia G Castilhos
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
| | - João F P Rezer
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Jader B Ruchel
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Maria Luiza Thorstenberg
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Jeandre A dos S Jaques
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Josiane B Schlemmer
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Pedro H Doleski
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
| | - Mateus F Rossato
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Mariane A da Silva
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Emerson André Casalli
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, UFRGS, Laboratório de Estudos Sobre as Alterações Celulares e Teciduais, Porto Alegre, RS, Brazil.
- Laboratório de Enzimologia Aplicada ao Sistema Purinérgico, Departamento de Bioquímica, Instituto deCiências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| | - Ritiel Corrêa da Cruz
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Juliano Ferreira
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Margareth L Athayde
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Jamile F Gonçalves
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal deSanta Maria, Av. Roraima, Prédio 20 - Sala 4102, 97105-900, Santa Maria, RS, Brazil.
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
23
|
Bhatia A, Bharti SK, Tripathi T, Mishra A, Sidhu OP, Roy R, Nautiyal CS. Metabolic profiling of Commiphora wightii (guggul) reveals a potential source for pharmaceuticals and nutraceuticals. PHYTOCHEMISTRY 2015; 110:29-36. [PMID: 25561401 DOI: 10.1016/j.phytochem.2014.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Guggul gum resin from Commiphora wightii (syn. Commiphoramukul) has been used for centuries in Ayurveda to treat a variety of ailments. The NMR and GC-MS based non-targeted metabolite profiling identified 118 chemically diverse metabolites including amino acids, fatty acids, organic acids, phenolic acids, pregnane-derivatives, steroids, sterols, sugars, sugar alcohol, terpenoids, and tocopherol from aqueous and non-aqueous extracts of leaves, stem, roots, latex and fruits of C. wightii. Out of 118, 51 structurally diverse aqueous metabolites were characterized by NMR spectroscopy. For the first time quinic acid and myo-inositol were identified as the major metabolites in C. wightii. Very high concentration of quinic acid was found in fruits (553.5 ± 39.38 mg g(-1) dry wt.) and leaves (212.9 ± 10.37 mg g(-1) dry wt.). Similarly, high concentration of myo-inositol (168.8 ± 13.84 mg g(-1) dry wt.) was observed from fruits. The other metabolites of cosmeceutical, medicinal, nutraceutical and industrial significance such as α-tocopherol, n-methylpyrrolidone (NMP), trans-farnesol, prostaglandin F2, protocatechuic, gallic and cinnamic acids were identified from non-aqueous extracts using GC-MS. These important metabolites have thus far not been reported from this plant. Isolation of a fungal endophyte, (Nigrospora sps.) from this plant is the first report. The fungal endophyte produced a substantial quantity of bostrycin and deoxybostrycin known for their antitumor properties. Very high concentrations of quinic acid and myo-inositol in leaves and fruits; a substantial quantity of α-tocopherol and NMP in leaves, trans-farnesol in fruits, bostrycin and deoxybostrycin from its endophyte makes the taxa distinct, since these metabolites with medicinal properties find immense applications as dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Anil Bhatia
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, UP, India; School of Vocational Studies and Applied Sciences, Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201308, UP, India
| | - Santosh K Bharti
- Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226 014, UP, India
| | - Tusha Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, UP, India
| | - Anuradha Mishra
- School of Vocational Studies and Applied Sciences, Department of Applied Chemistry, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201308, UP, India
| | - Om P Sidhu
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, UP, India.
| | - Raja Roy
- Centre of Biomedical Research, Formerly Known as Centre of Biomedical Magnetic Resonance, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226 014, UP, India.
| | | |
Collapse
|
24
|
Link LA, Lonnecker AT, Hearon K, Maher CA, Raymond JE, Wooley KL. Photo-cross-linked poly(thioether-co-carbonate) networks derived from the natural product quinic acid. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17370-17375. [PMID: 25289727 DOI: 10.1021/am506087e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polycarbonate networks derived from the natural product quinic acid that can potentially return to their natural building blocks upon hydrolytic degradation are described herein. Solvent-free thiol-ene chemistry was utilized in the copolymerization of tris(alloc)quinic acid and a variety of multifunctional thiol monomers to obtain poly(thioether-co-carbonate) networks with a wide range of achievable thermomechanical properties including glass transition temperatures from -18 to +65 °C and rubbery moduli from 3.8 to 20 MPa. The network containing 1,2-ethanedithiol expressed an average toughness at 25 and 63 °C of 1.08 and 2.35 MJ/m(3), respectively, and an order-of-magnitude increase in the average toughness at 37 °C of 15.56 MJ/m(3).
Collapse
Affiliation(s)
- Lauren A Link
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Materials Science and Engineering, and ⊥Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77842-3012, United States
| | | | | | | | | | | |
Collapse
|
25
|
Thompson KE, Zeng K, Wilson CM, Gaber MW, Miller DD, Yates CR. Quinic acid derivative KZ-41 exhibits radiomitigating activity in preclinical models of radiation injury. Drug Dev Res 2013; 75:29-36. [PMID: 24648047 DOI: 10.1002/ddr.21164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acute radiation syndrome is induced when a significant portion of the body receives high-dose, as well as high-dose rate, radiation. We have previously identified a quinic acid-based derivative, KZ-41, that protects from radiation injury. Further preclinical efficacy studies were conducted to determine the radiomitigating activity of KZ-41. C57BL/6 mice received total body irradiation (TBI-LD₈₀/₃₀, ¹³⁷Cs; ∼2 min) followed by either normal saline or KZ-41 (100 mg/kg sc ∼26 h post-TBI). KZ-41 increased 30-day survival by approximately 45% compared with vehicle controls (P < 0.05). To further investigate the potential radiomodulating mechanisms of KZ-41, we developed a combined radiation and vascular injury model. C57BL/6 mice surgically fixed with dorsal windows for dermal vasculature imaging received either sham or TBI (¹³⁷Cs; 6 Gray). Postcapillary venule injury was induced (24, 48, 72, and 96 h post-TBI) followed by imaging at 5 min and 24 h to assess clot formation and blood flow. Impairment in flow (P < 0.05) and clot formation (P < 0.05) were observed as early as 48 and 72 h, respectively. Thus, vascular injury 72 h post-TBI was used to evaluate intervention (KZ-41; 100 mg/kg i.p. at 12, 36, and 60 h post-TBI) on radiation-induced changes in both flow and clot formation. KZ-41, although not improving flow, increased clot formation (P < 0.05). Platelet counts were lower in both irradiated groups compared with sham controls (P < 0.05). In summary, KZ-41 exerts radiomitigating activity in lethally irradiated mice. Imaging results suggest KZ-41 exerts radiomitigating activity through mechanisms involving promotion of initial clot formation and vascular flow restoration. The imaging model described herein is useful for further examination of radiation-induced vascular injury repair mechanisms.
Collapse
Affiliation(s)
- Karin E Thompson
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | | | | | | | | | |
Collapse
|
26
|
Urdanibia I, Michelangeli F, Ruiz MC, Milano B, Taylor P. Anti-inflammatory and antitumoural effects of Uncaria guianensis bark. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:1154-1162. [PMID: 24212077 DOI: 10.1016/j.jep.2013.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/16/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria guianensis (Aublet) Gmell (Rubiaceae) is a medicinal plant from the jungles of South and Central America, used to treat cancer, arthritis, diabetes, and inflammation. Evaluate the anti-inflammatory and anti-tumor effects of Uncaria guianensis preparations. MATERIALS AND METHODS Bio-guided fractionation of a hydroethanolic extract of Uncaria guianensis was performed, evaluating the fractions and subfractions for their effect on inflammatory mediators, tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and prostaglandin E2 (PGE2) by ELISA and nitric oxide (NO) by the Griess reaction in cultured supernatant from RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). The expression of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS) and inhibitor of κB (IκB) were investigated in RAW 264.7 macrophages by flow cytometry. The activity of NF-κB in HeLa cells transfected with a luciferase reporter system was determined. The effect of Uncaria guianensis on the inflammatory response in vivo was assessed in BALB/c mice stimulated with LPS, on rat paw oedema induced by carrageenan, and on tumour growth and lung metastasis in BALB/c mice inoculated with 4T1 mammary tumour cells. Immune cell infiltrates and inflammatory mediators were evaluated in the tumour by immunohistochemistry. RESULTS Sub-fraction Ug AIV inhibited, to varying degrees, NO, TNF-α, IL-6 and PGE2 production by macrophages in vitro (30 μg/ml) and in the serum of LPS-challenged mice (5 mg/kg). Macrophage expression of Cox-2 was inhibited (35%), IκB degradation was completely inhibited and NF-κB activation was inhibited (70%) by Ug AIV at 30 μg/ml. Ug AIV decreased paw oedema by 86% (5 mg/kg) and serum NO and TNF-α by 45% and 65% respectively. Ug AIV reduced 4T1 mammary tumour growth by 91% on day 33 post-inoculation as well as the levels of serum NO, IL-6 and TNF-α in the same animals. Ug AIV decreased the number of tumour-infiltrating T lymphocytes, macrophages and neutrophils as well as the number of cells positive for COX-2, iNOS, IL-6, TNF-α and p65. CONCLUSIONS As Ug AIV was not cytotoxic for tumour cells or macrophages, its anti-tumour effect may be due to a reduction in pro-tumoural inflammatory processes in the tumour microenvironment, possibly mediated through NF-κB.
Collapse
Affiliation(s)
- I Urdanibia
- Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020-A, Venezuela
| | | | | | | | | |
Collapse
|
27
|
Dos Reis GO, Vicente G, de Carvalho FK, Heller M, Micke GA, Pizzolatti MG, Fröde TS. Croton antisyphiliticus Mart. attenuates the inflammatory response to carrageenan-induced pleurisy in mice. Inflammopharmacology 2013; 22:115-26. [PMID: 23990384 DOI: 10.1007/s10787-013-0184-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the anti-inflammatory effect of the crude hydroalcoholic extract (CHE) from the aerial parts of Croton antisyphiliticus, its fractions and isolated compounds derived from it on the mouse model of pleurisy induced by carrageenan. The aerial parts of C. antisyphiliticus were dried, macerated and extracted with ethanol to obtain the CHE, which was fractionated by liquid-liquid extraction using solvents with increasing polarity to obtain hexane (Hex), ethyl acetate (EA) and aqueous (Aq) fractions. Vitexin and quinic acid were isolated from Aq fraction. Capillary electrophoresis analysis, physical characteristics and spectral data produced by infrared (IR), nuclear magnetic resonance ((1)H and (13)C NMR) and mass spectrometry analyses were used to identify and elucidate the structure of the isolated compounds. The experimental model of pleurisy was induced in mice by a single intrapleural injection of carrageenan (1 %). Leukocytes, exudate concentrations, myeloperoxidase (MPO) and adenosine-deaminase (ADA) activities and nitrate/nitrite (NOx), tumor necrosis factor-α (TNF-α) and interleukin-17 (IL-17) levels were determined in the pleural fluid leakage at 4 h after pleurisy induction. Animals pre-treated with CHE, Hex, EA, Aq, vitexin and quinic acid exhibited decreases in leukocytes, exudate concentrations, MPO and ADA activities and NOx levels (p < 0.05). Also CHE, Hex, EA and vitexin but not quinic acid inhibited TNF-α and IL-17 levels (p < 0.05). C. antisyphiliticus caused anti-inflammatory effect by inhibiting the activated leukocytes, exudate concentrations, NOx, TNF-α, and IL-17 levels. The compounds vitexin and quinic acid may be responsible for this anti-inflammatory action.
Collapse
Affiliation(s)
- Gustavo Oliveira Dos Reis
- Department of Clinical Analysis, Centre of Health Sciences, Federal University of Santa Catarina, Campus Universitário-Trindade, Florianópolis, Santa Catarina, 88040-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee JE, Lee BJ, Hwang JA, Ko KS, Chung JO, Kim EH, Lee SJ, Hong YS. Metabolic dependence of green tea on plucking positions revisited: a metabolomic study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10579-85. [PMID: 21899366 DOI: 10.1021/jf202304z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dependence of global green tea metabolome on plucking positions was investigated through (1)H nuclear magnetic resonance (NMR) analysis coupled with multivariate statistical data set. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), were employed for a finding metabolic discrimination among fresh green tea leaves plucked at different positions from young to old leaves. In addition to clear metabolic discrimination among green tea leaves, elevations in theanine, caffeine, and gallic acid levels but reductions in catechins, such as epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and epigallocatechin-3-gallate (EGCG), glucose, and sucrose levels were observed, as the green tea plant grows up. On the other hand, the younger the green tea leaf is, the more theanine, caffeine, and gallic acid but the lesser catechins accumlated in the green tea leaf, revealing a reverse assocation between theanine and catechins levels due to incorporaton of theanine into catechins with growing up green tea plant. Moreover, as compared to the tea leaf, the observation of marked high levels of theanine and low levels of catechins in green tea stems exhibited a distinct tea plant metabolism between the tea leaf and the stem. This metabolomic approach highlights taking insight to global metabolic dependence of green tea leaf on plucking position, thereby providing distinct information on green tea production with specific tea quality.
Collapse
Affiliation(s)
- Jang-Eun Lee
- School of Life Science and Biotechnology, Korea University , Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Domingues A, Sartori A, Golim MA, Valente LMM, da Rosa LC, Ishikawa LLW, Siani AC, Viero RM. Prevention of experimental diabetes by Uncaria tomentosa extract: Th2 polarization, regulatory T cell preservation or both? JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:635-642. [PMID: 21718770 DOI: 10.1016/j.jep.2011.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/26/2011] [Accepted: 06/12/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria tomentosa (Willd.) DC (Rubiaceae) is a species native to the Amazon rainforest and surrounding tropical areas that is endowed with immunomodulatory properties and widely used around the world. In this study we investigated the immunomodulatory potential of Uncaria tomentosa (UT) aqueous-ethanol extract on the progression of immune-mediated diabetes. MATERIALS AND METHODS C57BL/6 male mice were injected with MLDS (40 mg/kg) and orally treated with UT at 10-400mg/kg during 21 days. Control groups received MLDS alone or the respective dilution vehicle. Pancreatic mononuclear infiltrate and β-cell insulin content were analyzed by HE and immunohistochemical staining, respectively, and measured by digital morphometry. Lymphocyte immunophenotyping and cytokine production were determined by flow cytometry analysis. RESULTS Treating the animals with 50-400mg/kg of UT caused a significant reduction in the glycemic levels, as well as in the incidence of diabetes. The morphometric analysis of insulitis revealed a clear protective effect. Animals treated with UT at 400mg/kg presented a higher number of intact islets and a significant inhibition of destructive insulitis. Furthermore, a significant protection against the loss of insulin-secreting presented β-cells was achieved, as observed by a careful immunohistochemical evaluation. The phenotypic analysis indicated that the groups treated with higher doses (100-400mg/kg) presented CD4(+) and CD8(+) T-cell values similar to those observed in healthy animals. These same higher doses also increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T-cells. Moreover, the extract modulated the production of Th1 and Th2, with increased levels of IL-4 and IL-5. CONCLUSIONS The extract was effective to prevent the progression of immune-mediated diabetes by distinct pathways.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cat's Claw/chemistry
- Cell Polarity/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Dose-Response Relationship, Drug
- Ethanol/chemistry
- Flow Cytometry
- Forkhead Transcription Factors/metabolism
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Immunohistochemistry
- Immunophenotyping/methods
- Insulin/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-4/metabolism
- Interleukin-5/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Solvents/chemistry
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Time Factors
- Water/chemistry
Collapse
Affiliation(s)
- Alexandre Domingues
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zeng K, Thompson KE, Presley CS, Miller DD, Yates CR. Preclinical pharmacokinetics of the radiomitigator KZ-41 in rats. Xenobiotica 2011; 41:1006-12. [PMID: 21864202 DOI: 10.3109/00498254.2011.603387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
KZ-41, a quinic acid derivative, significantly reduces mortality in a murine model of hematopoietic acute radiation syndrome. The purpose of this study was to evaluate the systemic pharmacokinetics, elimination, and oral bioavailability of KZ-41 in rats. Male Sprague-Dawley rats (n = 6 per group) received a single dose (10 mg/kg) of KZ-41 administered either intravenously via the jugular vein or orally via gavage. In vitro stability was determined using both rat liver microsomes and the bacteria Gluconobacter oxydans. KZ-41 concentrations were determined using LC-MS/MS (liquid chromatography tandom mass spectrometry). Half-life of KZ-41 was ≈3 hr after either intravenous or oral administration. Mean volume of distribution was 3.3 L/kg. Extent of absorption (F) after oral administration was estimated to be ~100%, which was consistent with the finding that KZ-41 was stable to liver microsomal and bacterial degradation. Following intravenous administration, KZ-41 demonstrated a medium clearance and volume of distribution with a terminal half-life of ≈3 hr. KZ-41 was rapidly and completely absorbed (F ≅ 1), which was consistent with the findings that KZ-41 is resistant to presystemic elimination mechanisms (i.e. enteric bacterial degradation and hepatic metabolism). Thus, KZ-41 represents an excellent candidate for further development as an orally available agent for the mitigation of radiation injury.
Collapse
Affiliation(s)
- Kui Zeng
- Kronos Science Laboratory Inc., Phoenix, AZ, USA
| | | | | | | | | |
Collapse
|
31
|
Carboxy alkyl esters of Uncaria tomentosa augment recovery of sensorineural functions following noise injury. Brain Res 2011; 1407:97-106. [DOI: 10.1016/j.brainres.2011.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/25/2011] [Accepted: 06/17/2011] [Indexed: 11/21/2022]
|
32
|
Domingues A, Sartori A, Valente LMM, Golim MA, Siani AC, Viero RM. Uncaria tomentosa aqueous-ethanol extract triggers an immunomodulation toward a Th2 cytokine profile. Phytother Res 2011; 25:1229-35. [PMID: 21656603 DOI: 10.1002/ptr.3549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/07/2011] [Indexed: 11/08/2022]
Abstract
Uncaria tomentosa (Willd.) DC (Rubiaceae) is a large woody vine that is native to the Amazon and Central American rainforests and is used widely in traditional medicine for its immunomodulatory and antiinflammatory activities. The present work used in vivo immunotoxic and in vitro immunomodulatory experiments to investigate the effects of a pentacyclic oxindole alkaloid extract from U. tomentosa bark on lymphocyte phenotype, Th1/Th2 cytokine production, cellular proliferation and cytotoxicity. For the in vivo immunotoxicity testing, BALB/c male mice were treated once a day with 125, 500 or 1250 mg/kg of U. tomentosa extract for 28 days. For the in vitro protocol, lymphocytes were cultured with 10-500 μg/mg of the extract for 48 h. The extract increased the cellularity of splenic white pulp and the thymic medulla and increased the number of T helper lymphocytes and B lymphocytes. Also, a large stimulatory effect on lymphocyte viability was observed. However, mitogen-induced T lymphocyte proliferation was significantly inhibited at higher concentrations of U. tomentosa extract. Furthermore, an immunological polarization toward a Th2 cytokine profile was observed. These results suggest that the U. tomentosa aqueous-ethanol extract was not immunotoxic to mice and was able to modulate distinct patterns of the immune system in a dose-dependent manner.
Collapse
Affiliation(s)
- Alexandre Domingues
- Department of Pathology, Medical School, São Paulo State University, Botucatu, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Besset CJ, Lonnecker AT, Streff JM, Wooley KL. Polycarbonates from the Polyhydroxy Natural Product Quinic Acid. Biomacromolecules 2011; 12:2512-7. [DOI: 10.1021/bm2003048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Céline J. Besset
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Alexander T. Lonnecker
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Jennifer M. Streff
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Karen L. Wooley
- Department of Chemistry and Department of Chemical Engineering, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
34
|
Pilarski R, Filip B, Wietrzyk J, Kuraś M, Gulewicz K. Anticancer activity of the Uncaria tomentosa (Willd.) DC. preparations with different oxindole alkaloid composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:1133-1139. [PMID: 20576410 DOI: 10.1016/j.phymed.2010.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/23/2010] [Accepted: 04/30/2010] [Indexed: 05/29/2023]
Abstract
The activity of Uncaria tomentosa preparations on cancer cells was studied using in vitro and in vivo models. IC (50) values were calculated for preparations with different quantitative and qualitative oxindole alkaloid composition: B/W(37) --bark extracted in water at 37 °C, B/W(b)--bark extracted in boiling water, B/50E(37) --bark extracted in 50% ethanol at 37 °C, B/E(b)--bark extracted in boiling 96% ethanol, B/96E(37) --bark extracted in 96% ethanol at 37 °C and B/SRT--bark extracted in water and dichloromethane. Generally, the results obtained showed a high correlation between the total oxindole alkaloid content (from 0.43% to 50.40% d.m.) and the antiproliferative activity of the preparations (IC(50) from >1000 μg/ml to 23.57 μg/ml). B/96E(37) and B/SRT were the most cytotoxic preparations, whereas the lowest toxicity was observed for B/W(37). B/96E(37) were shown to be active against Lewis lung carcinoma (LL/2) [IC(50) =25.06 μg/ml], cervical carcinoma (KB) [IC(50) =35.69 μg/ml] and colon adenocarcinoma (SW707) [IC(50) =49.06 μg/ml]. B/SRT was especially effective in inhibiting proliferation of cervical carcinoma (KB) [IC(50) =23.57 μg/ml], breast carcinoma (MCF-7) [IC(50) =29.86 μg/ml] and lung carcinoma (A-549) [IC(50) =40.03 μg/ml]. Further animal studies on mice bearing Lewis lung carcinoma showed significant inhibition of tumor growth by B/W(37) administered for 21 days at daily doses of 5 and 0.5 mg (p=0.0009). There were no significant changes in the cell cycles of tumor cells with the exception of cell decrease at the G₂/M phase after the administration of B/96E(37) at a daily dose of 0.5 mg and the G(1)/G(0) cells cycle arrest demonstrated after the B/SRT therapy at a daily-dose of 0.05 mg. All tested preparations were non-toxic and well tolerated.
Collapse
Affiliation(s)
- Radosław Pilarski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 str., 61-704 Poznań, Poland
| | | | | | | | | |
Collapse
|
35
|
The Neuroprotective Effect of Batch-2, an Aqueous Extract From Cat′s Claw( Uncaria tomentosa) on 6-OHDA-Induced SH-SY5Y Cell Damage*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Osman AGM, Koutb M, Sayed AEDH. Use of hematological parameters to assess the efficiency of quince (Cydonia oblonga Miller) leaf extract in alleviation of the effect of ultraviolet--A radiation on African catfish Clarias gariepinus (Burchell, 1822). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2010; 99:1-8. [PMID: 20206545 DOI: 10.1016/j.jphotobiol.2010.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023]
Abstract
The present study aimed to elucidate the negative impacts of UVA on some biochemical and hematological variables of the economically important African catfish, Clarias gariepinus and investigates the putative role of quince (Cydonia oblonga Miller) leaf extract in protection and/or alleviation of such negative impacts. Changes in the hematological and blood biochemical values often reflect alteration of physiological state. Blood parameters can be useful for the measurement of physiological disturbances in stressed fish and thus provide information about the level of damage in the fish. We found a significant (P<0.05) decrease in the red blood cell counts, hemoglobin and hematocrit in the groups exposed to UVA compared to the control groups. Exposure to UVA induced marked red cell shrinkage (increased mean cell hemoglobin concentration) and showed an elevation in mean cell volume and mean cell hemoglobin in the blood of the exposed fish compared to the control. A significant (P<0.05) reduction in the total white blood cells was recorded in the exposed fish compared to the control. The biochemical parameters (blood glucose, total plasma protein, blood cholesterol, plasma creatinine, aspartic amino transferase and alanine amino transferase) exhibited a significant increase in the blood of fish exposed to UVA. Methanolic extract of quince leaf before ripening of the fruits was analyzed by GC/MS. To investigate the biological impact of this extract and its biologically active components, this extract was tested for its putative role in alleviation of UVA effect on catfish. Quince leaf extract had the ability to prevent hematotoxic stress induced by UVA and resulted in enhancement of the immune system of catfish represented by significant (P<0.05) increase in the number of white blood cells and lymphocytes of the catfish. Quince extract also protected the red blood cells from UVA damage. To our knowledge this is the first report of the effect of quince leaf extract on an aquatic organism.
Collapse
Affiliation(s)
- Alaa G M Osman
- Zoology Department, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt.
| | | | | |
Collapse
|
37
|
Endringer DC, Pezzuto JM, Braga FC. NF-kappaB inhibitory activity of cyclitols isolated from Hancornia speciosa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:1064-1069. [PMID: 19423310 DOI: 10.1016/j.phymed.2009.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/23/2009] [Indexed: 05/27/2023]
Abstract
Hancornia speciosa Gomes (Apocynaceae) is a Brazilian plant traditionally employed to treat inflammatory conditions, among other uses. The chemopreventive effect of an ethanol extract from H. speciosa leaves (EHS) was evaluated in a battery of in vitro tests [inhibition of aromatase, NF-kappaB and ornithine decarboxylase (ODC), antioxidant response elements (ARE) induction and cell proliferation assays]. Bioassay-directed fractionation of EHS following by inhibition of 12-O-tetradecanoyl-13-acetate (TPA)-mediated NF-kB activation led to the isolation of the cyclitols quinic acid (1) (85.0+/-12.3 microM) and l-(+)-bornesitol (2) (IC(50)=27.5+/-3.8 microM), along with rutin (26.8+/-6.3 microM). Based on these lead compounds, the cyclitols per-O-acetyl-1l-(+)-bornesitol (3) (IC(50)=38.4+/-6.2 microM), myo-inositol (4) (>180.2 microM), scyllo-inositol (5) (83.0+/-13.7 microM) and beta-d-galactoside-myo-inositol (6) (52.4+/-8.4 microM) were evaluated in the assay, but found to be somewhat less active than 1 and 2. None of the compounds was active in the ARE, aromatase or ODC assays and did not inhibit proliferation of MCF-7, LNCaP, HepG2 or LU-1 cell lines at a final concentration of 20 microg/ml (equivalent to 104.07-32.76 microM).This work identifies l-(+)-bornesitol, quinic acid and rutin as NF-kappaB inhibitors of H. speciosa and suggests cyclitols, in addition to myo-inositol, are potentially useful as chemopreventive agents.
Collapse
Affiliation(s)
- Denise C Endringer
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | | | | |
Collapse
|
38
|
Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents. Bioorg Med Chem Lett 2009; 19:5458-60. [DOI: 10.1016/j.bmcl.2009.07.096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 11/17/2022]
|
39
|
Pero RW, Lund H, Leanderson T. Antioxidant metabolism induced by quinic acid. increased urinary excretion of tryptophan and nicotinamide. Phytother Res 2008; 23:335-46. [DOI: 10.1002/ptr.2628] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
De Leonardis A, Pizzella L, Macciola V. Evaluation of chlorogenic acid and its metabolites as potential antioxidants for fish oils. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Cheng AC, Jian CB, Huang YT, Lai CS, Hsu PC, Pan MH. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food Chem Toxicol 2007; 45:2206-18. [PMID: 17619071 DOI: 10.1016/j.fct.2007.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 04/12/2007] [Accepted: 05/17/2007] [Indexed: 12/01/2022]
Abstract
Uncaria tomentosa (Wild.) DC., found in the Amazon rain forest in South-America and known commonly as cat's claw, has been used in traditional medicine to prevent and treat inflammation and cancer. Recently, it has been found to possess potent anti-inflammation activities. In this study, we extracted cat's claw using four different solvents of different polarities and compared their relative influence on proliferation in human premyelocytic leukemia HL-60 cell lines. Cat's claw n-hexane extracts (CC-H), ethyl acetate extracts (CC-EA) and n-butanol extracts (CC-B) had a greater anti-cancer effect on HL-60 cells than those extracted with methanol (CC-M). Furthermore, CC-EA induced DNA fragmentation in HL-60 cells in a clearly more a concentration- and time-dependent manner than the other extracts. CC-EA-induced cell death was characterized by cell body shrinkage and chromatin condensation. Further investigating the molecular mechanism behind CC-EA-induced apoptosis, sells treated with CC-EA underwent a rapid loss of mitochondrial transmembrane (DeltaPsi(m)) potential, stimulation of phosphatidylserine flip-flop, release of mitochondrial cytochrome c into cytosol, induction of caspase-3 activity in a time-dependent manner, and induced the cleavage of DNA fragmentation factor (DFF-45) and PARP poly-(ADP-ribose) polymerase (PARP). CC-EA promoted the up-regulation of Fas before the processing and activation of procaspase-8 and cleavage of Bid. In addition, the apoptosis induced by CC-EA was accompanied by up-regulation of Bax, down-regulation of Bcl-X(L) and cleavage of Mcl-1, suggesting that CC-EA may have some compounds that have anti-cancer activities and that further studies using cat's claw extracts need to be pursued. Taken together, the results of our studies show clearly that CC-EA's induction of apoptosis in HL-60 cells may make it very important in the development of medicine that can trigger chemopreventive actions in the body.
Collapse
Affiliation(s)
- An-Chin Cheng
- Department of Nutrition and Health Science, Toko University, Chia-Yi County 613, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Mammone T, Akesson C, Gan D, Giampapa V, Pero RW. A water soluble extract from Uncaria tomentosa (Cat's Claw) is a potent enhancer of DNA repair in primary organ cultures of human skin. Phytother Res 2006; 20:178-83. [PMID: 16521105 DOI: 10.1002/ptr.1827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cat's Claw (Uncaria tomentosa) water extracts, essentially free of oxindole alkaloids, have been shown to possess a broad spectrum of biological activity including DNA repair enhancement and antiinflammatory properties. These two biological mechanisms are key molecular targets to develop treatments that protect skin exposed to ultraviolet light from the sun. Because C-Med-100, a Cat's Claw water extract, is the only documented natural source of components that can up-regulate simultaneously both DNA repair and antiinflammation, its ability to modulate DNA repair in human skin organ cultures was undertaken. For this purpose skin cultures were treated with or without 5 mg/mL C-Med-100, irradiated with 0-100 mJ/cm2 UVB, and microscopically analysed for necrosis as well as the level of pyrimidine dimers using immunofluorescent TT-dimer antibody staining. The data clearly demonstrated that co-incubation with C-Med-100 reduced skin cell death from UV exposure, and this protection was accounted for by a concomitant increase in DNA repair. Based on these results, it was concluded that C-Med-100 was a natural plant extract worthy of further consideration as a sunscreen product.
Collapse
Affiliation(s)
- Thomas Mammone
- Laboratory of Skin Biology Group, The Estee Lauder Companies Inc, 125 Pinelawn Road, Melville, NY 11747, USA
| | | | | | | | | |
Collapse
|
43
|
Eberlin S, dos Santos LMB, Queiroz MLS. Uncaria tomentosa extract increases the number of myeloid progenitor cells in the bone marrow of mice infected with Listeria monocytogenes. Int Immunopharmacol 2005; 5:1235-46. [PMID: 15914328 DOI: 10.1016/j.intimp.2005.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2003] [Revised: 01/09/2004] [Accepted: 03/03/2005] [Indexed: 11/17/2022]
Abstract
In this study, we demonstrated that Uncaria tomentosa extract (UTE) protects mice from a lethal dose of Listeria monocytogenes when administered prophylactically at 50, 100, 150 and 200 mg/kg for 7 days, with survival rates up to 35%. These doses also prevented the myelosuppression and the splenomegaly caused by a sublethal infection with L. monocytogenes, due to increased numbers of granulocyte-macrophage progenitors (CFU-GM) in the bone marrow. Non-infected mice treated with 100 mg/kg UTE also presented higher numbers of CFU-GM in the bone marrow than the controls. Investigation of the production of colony-stimulating factors revealed increased colony-stimulating activity (CSA) in the serum of normal and infected mice pre-treated with UTE. Moreover, stimulation of myelopoiesis and CSA occurred in a dose-dependent manner, a plateaux being reached with the dose of 100 mg/kg. Further studies to investigate the levels of factors such as IL-1 and IL-6 were undertaken. We observed increases in the levels of IL-1 and IL-6 in mice infected with L. monocytogenes and treated with 100 mg/kg of UTE. White blood cells (WBC) and differential counting were also performed, and our results demonstrated no significant changes in these data, when infected mice were pre-treated with 100 mg/kg of UTE. All together, our results suggest that UTE indirectly modulates immune activity and probably disengages Listeria-induced supression of these responses by inducing a higher reserve of myeloid progenitors in the bone marrow in consequence of biologically active cytokine release (CSFs, IL-1 and IL-6).
Collapse
Affiliation(s)
- Samara Eberlin
- Departamento de Farmacologia/Hemocentro, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), C.P. 6111, CEP 13083-970, Campinas, SP, Brazil
| | | | | |
Collapse
|