1
|
Liu K, Wang L, Pang T. Research progress of small-molecule natural medicines for the treatment of ischemic stroke. Chin J Nat Med 2025; 23:21-30. [PMID: 39855828 DOI: 10.1016/s1875-5364(25)60801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 01/27/2025]
Abstract
Stroke is the second leading cause of disability and mortality worldwide, imposing a substantial socioeconomic burden on individuals and healthcare systems. Annually, approximately 14 million people experience stroke, with ischemic stroke comprising nearly 85% of cases, of which 10% to 20% involve large vessel occlusions. Currently, recombinant tissue plasminogen activator (tPA) remains the only approved pharmacological intervention. However, its utility is limited due to a narrow therapeutic window and low recanalization rates, making it applicable to only a minority of patients. Therefore, there is an urgent need for novel therapeutic strategies, including pharmacological advancements and combinatory treatments. Small-molecule natural medicines, particularly those derived from traditional Chinese herbs, have demonstrated significant therapeutic potential in ischemic stroke management. These compounds exert multiple neuroprotective effects, such as antioxidation, anti-inflammatory action, and inhibition of apoptosis, all of which are critical in mitigating stroke-induced cerebral damage. This review comprehensively examines the pathophysiology of acute ischemic stroke (AIS) and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Hu Y, Nan Y, Lin H, Zhao Q, Chen T, Tao X, Ding B, Lu L, Chen S, Zhu J, Guo X, Lin Z. Celastrol ameliorates hypoxic-ischemic brain injury in neonatal rats by reducing oxidative stress and inflammation. Pediatr Res 2024; 96:1681-1692. [PMID: 38763946 PMCID: PMC11772252 DOI: 10.1038/s41390-024-03246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is caused by perinatal hypoxia and subsequent reductions in cerebral blood flow and is one of the leading causes of severe disability or death in newborns. Despite its prevalence, we currently lack an effective drug therapy to combat HIE. Celastrol (Cel) is a pentacyclic triterpene extracted from Tripterygium Wilfordi that can protect against oxidative stress, inflammation, and cancer. However, whether Cel can alleviate neonatal hypoxic-ischemic (HI) brain damage remains unclear. METHODS Here, we established both in vitro and in vivo models of HI brain damage using CoCl2-treated PC12 cells and neonatal rats, respectively, and explored the neuroprotective effects of Cel in these models. RESULTS Analyses revealed that Cel administration reduced brain infarction size, microglia activation, levels of inflammation factors, and levels of oxidative stress markers by upregulating levels of p-AMPKα, Nrf2, HO-1, and by downregulating levels of TXNIP and NLRP3. Conversely, these beneficial effects of Cel on HI brain damage were largely inhibited by AMPKα inhibitor Compound C and its siRNA. CONCLUSIONS We present compelling evidence that Cel decreases inflammation and oxidative stress through the AMPKα/Nrf2/TXNIP signaling pathway, thereby alleviating neonatal HI brain injury. Cel therefore represents a promising therapeutic agent for treating HIE. IMPACT We firstly report that celastrol can ameliorate neonatal hypoxic-ischemic brain injury both in in vivo and in vitro, which represents a promising therapeutic agent for treating related brain injuries. Celastrol activates the AMPKα/Nrf2/TXNIP signaling pathway to relieve oxidative stress and inflammation and thereby alleviates neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Nan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhou Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianlei Zhao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyue Tao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingqing Ding
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liying Lu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zeng ZJ, Lin X, Yang L, Li Y, Gao W. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol 2024; 61:10792-10804. [PMID: 38789893 DOI: 10.1007/s12035-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
As the brain's resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Filannino FM, Ruggiero M, Panaro MA, Lofrumento DD, Trotta T, Benameur T, Cianciulli A, Calvello R, Zoila F, Porro C. Irisin Attenuates Neuroinflammation Targeting the NLRP3 Inflammasome. Molecules 2024; 29:5623. [PMID: 39683782 DOI: 10.3390/molecules29235623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Neuroinflammation is defined as an immune response involving various cell types, particularly microglia, which monitor the neuroimmune axis. Microglia activate in two distinct ways: M1, which is pro-inflammatory and capable of inducing phagocytosis and releasing pro-inflammatory factors, and M2, which has anti-inflammatory properties. Inflammasomes are large protein complexes that form in response to internal danger signals, activating caspase-1 and leading to the release of pro-inflammatory cytokines such as interleukin 1β. Irisin, a peptide primarily released by muscles during exercise, was examined for its effects on BV2 microglial cells in vitro. Even at low concentrations, irisin was observed to influence the NLRP3 inflammasome, showing potential as a neuroprotective and anti-inflammatory agent after stimulation with lipopolysaccharides (LPSs). Irisin helped maintain microglia in their typical physiological state and reduced their migratory capacity. Irisin also increased Arg-1 protein expression, a marker of M2 polarization, while downregulating NLRP3, Pycard, caspase-1, IL-1β, and CD14. The results of this study indicate that irisin may serve as a crucial mediator of neuroprotection, thus representing an innovative tool for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, I-73100 Lecce, Italy
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, I-70125 Bari, Italy
| | - Federico Zoila
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, I-71100 Foggia, Italy
| |
Collapse
|
5
|
Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer's disease with compounds from natural products. Int Immunopharmacol 2024; 141:112936. [PMID: 39163684 DOI: 10.1016/j.intimp.2024.112936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is difficult to cure and of global concern. Neuroinflammation is closely associated with the onset and progression of AD, making its treatment increasingly important. Compounds from natural products, with fewer side effects than synthetic drugs, are of high research interest. STAT3, a multifunctional transcription factor, is involved in various cellular processes including inflammation, cell growth, and apoptosis. Its activation and inhibition can have different effects under various pathological conditions. In AD, the STAT3 protein plays a crucial role in promoting neuroinflammation and contributing to disease progression. This occurs primarily through the JAK2-STAT3 signaling pathway, which impacts microglia, astrocytes, and hippocampal neurons. This paper reviews the STAT3 signaling pathway in AD and 25 compounds targeting STAT3 up to 2024. Notably, Rutin, Paeoniflorin, and Geniposide up-regulate STAT3 in hippocampal and cortex neurons, showing neuroprotective effects in various AD models. Other 23 compounds downregulate AD by suppressing neuroinflammation through inhibition of STAT3 activation in microglia and astrocytes. These findings highlight the potential of compounds from natural products in improving AD by targeting STAT3, offering insights into the prevention and management of AD.
Collapse
Affiliation(s)
- Xiyue Wen
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Jinyue Hu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| |
Collapse
|
6
|
Li S, Zhang J, Zhao Y, Kang L, Jie H, Dong B. (Pro)renin receptor aggravates myocardial pyroptosis in diabetic cardiomyopathy through AMPK-NLRP3 pathway. Front Pharmacol 2024; 15:1453647. [PMID: 39545058 PMCID: PMC11560785 DOI: 10.3389/fphar.2024.1453647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction As one of the most common complications of diabetes, diabetic cardiomyopathy (DCM) is the main cause of heart failure in patients with diabetes. However, the lack of effective treatments for DCM remains a clinical challenge. (Pro) renin receptor (PRR) is a member of renin angiotensin aldosterone system (RAAS). Here, we aim to determine whether PRR is involved in myocardial pyroptosis in diabetic cardiomyopathy. Methods We established diabetic rats model by intraperitoneal injection of streptozotocin (STZ). PRR overexpression adenovirus or PRR knockdown adenovirus was injected into the tail vein. Western blot, histopathology and immunohistochemistry staining, ELISA and Echocardiography were used to detect cardiac function changes and myocardial injury levels of DCM rats. Primary cardiomyocytes were stimulated with high glucose and PRR overexpression or PRR knockdown was achieved by adenovirus transfection, we also used the inhibitor of AMPK to decrease the activity of AMPK. Western blot, Real-time PCR, Immunofluorescence and ELISA were used to detect the level of PRR and pyroptosis in cardiomyocyte. Results We found that high glucose increased the expression of PRR in heart. After overexpression of PRR, the expression of the pyroptosis related proteins such as Caspase-1, IL-1β, IL-18, and NLRP3 was significantly increased, the phosphorylation level of AMPK was significantly decreased, and the fibrosis level was significantly increased, thus aggravating the cardiac function injury of DCM. On the contrary, PRR knockdown can alleviate the level of myocardial pyroptosis in DCM and improve cardiac function. The related mechanism was that PRR could inhibit AMPK phosphorylation and promote the activation of NLRP3 inflammasome. Discussion PRR aggravated pyroptosis of cardiomyocyte, increased the dysfunction of cardiomyocyte, and may be related to the decrease of AMPK phosphorylation and the overactivation of NLRP3. This may provide new ideas and targets for the treatment of DCM.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuewen Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Kang
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Kumari S, Dhapola R, Sharma P, Nagar P, Medhi B, HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev 2024; 78:105-119. [PMID: 39004599 DOI: 10.1016/j.cytogfr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
Collapse
Affiliation(s)
- Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pushank Nagar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
8
|
Zhang J, Xie D, Jiao D, Zhou S, Liu S, Ju Z, Hu L, Qi L, Yao C, Zhao C. From inflammatory signaling to neuronal damage: Exploring NLR inflammasomes in ageing neurological disorders. Heliyon 2024; 10:e32688. [PMID: 38975145 PMCID: PMC11226848 DOI: 10.1016/j.heliyon.2024.e32688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The persistence of neuronal degeneration and damage is a major obstacle in ageing medicine. Nucleotide-binding oligomerization domain (NOD)-like receptors detect environmental stressors and trigger the maturation and secretion of pro-inflammatory cytokines that can cause neuronal damage and accelerate cell death. NLR (NOD-like receptors) inflammasomes are protein complexes that contain NOD-like receptors. Studying the role of NLR inflammasomes in ageing-related neurological disorders can provide valuable insights into the mechanisms of neurodegeneration. This includes investigating their activation of inflammasomes, transcription, and capacity to promote or inhibit inflammatory signaling, as well as exploring strategies to regulate NLR inflammasomes levels. This review summarizes the use of NLR inflammasomes in guiding neuronal degeneration and injury during the ageing process, covering several neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and peripheral neuropathies. To improve the quality of life and slow the progression of neurological damage, NLR-based treatment strategies, including inhibitor-related therapies and physical therapy, are presented. Additionally, important connections between age-related neurological disorders and NLR inflammasomes are highlighted to guide future research and facilitate the development of new treatment options.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Xie
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, 200030, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
9
|
Bao X, He Y, Huang L, Li H, Li Q, Huang Y. Sinomenine exerts a neuroprotective effect on PD mouse model through inhibiting PI3K/AKT/mTOR pathway to enhance autophagy. Int J Neurosci 2024; 134:301-309. [PMID: 35815397 DOI: 10.1080/00207454.2022.2100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD), as a chronic and progressive neurodegenerative disease, is associated with autophagy. This study focused on the regulation of sinomenine (SN) on autophagy in PD and its related mechanism. METHODS The PD mouse model was constructed by MPTP inducement, and the mouse motor function after modeling and SN treatment was examined by rotarod, grip strength, and foot printing tests. Tyrosine hydroxylase (TH)/LC3B-positive neurons in the substantia nigra pars compacta of mouse brains were detected by immunofluorescence. The expressions of proteins related to autophagy (Beclin1, p62, LC3-I and LC3-II) and phosphorylated phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin kinase (mTOR) signaling pathway were measured by western blot. Rescue experiments were performed to determine the effects of MHY1485 (mTOR activator) on SN-treated PD mice. RESULTS SN potentiated the motor ability in PD mice, promoted the survival of dopaminergic neurons, increased the protein expression level of Beclin1, LC3-II/LC3-I ratio and LC3B-positive neurons, lowered the protein expression level of p62 and inactivated PI3K/AKT/mTOR pathway in the substantia nigra tissue of mouse brains. Moreover, MHY1485 reversed the above effects of SN on PD mice via reactivating PI3K/AKT/mTOR pathway. CONCLUSION SN augments the autophagy of dopaminergic neurons via inhibiting the PI3K/AKT/mTOR pathway and exerts a neuroprotective effect on PD mice.
Collapse
Affiliation(s)
- Xi Bao
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yingchun He
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lin Huang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haichang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiang Li
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yun Huang
- Department of Chinese Medicine Gynecology, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wu W, Song L, Wang H, Feng L, Li Z, Li Y, Li L, Peng L. Supercritical CO 2 fluid extract from Stellariae Radix ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis by inhibit M1 macrophages polarization via AMPK activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3188-3197. [PMID: 38356236 DOI: 10.1002/tox.24145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1β in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1β and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.
Collapse
Affiliation(s)
- Wei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Le Song
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Hong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Lu Feng
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yanqing Li
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Le Li
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
11
|
Pinoșanu EA, Pîrșcoveanu D, Albu CV, Burada E, Pîrvu A, Surugiu R, Sandu RE, Serb AF. Rhoa/ROCK, mTOR and Secretome-Based Treatments for Ischemic Stroke: New Perspectives. Curr Issues Mol Biol 2024; 46:3484-3501. [PMID: 38666949 PMCID: PMC11049286 DOI: 10.3390/cimb46040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.
Collapse
Affiliation(s)
- Elena Anca Pinoșanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| | - Denisa Pîrșcoveanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Andrei Pîrvu
- Dolj County Regional Centre of Medical Genetics, Clinical Emergency County Hospital Craiova, St. Tabaci, No. 1, 200642 Craiova, Romania;
| | - Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Alina Florina Serb
- Department of Biochemistry and Pharmacology, Biochemistry Discipline, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
12
|
Tan Z, Dong F, Wu L, Xu G, Zhang F. Transcutaneous electrical acupoint stimulation attenuated neuroinflammation and oxidative stress by activating SIRT1-induced signaling pathway in MCAO/R rat models. Exp Neurol 2024; 373:114658. [PMID: 38141805 DOI: 10.1016/j.expneurol.2023.114658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Silent information regulator 1 (SIRT1) plays a beneficial role in cerebral ischemic injury. Previous reports have demonstrated that transcutaneous electrical acupoint stimulation (TEAS) exerts a beneficial effect on ischemic stroke; however, whether SIRT1 participates in the underlying mechanism for the neuroprotective effects of TEAS against ischemic brain damage has not been confirmed. METHODS The rat models of middle cerebral artery occlusion/reperfusion (MCAO/R) were utilized in the current experiment. After MCAO/R surgery, rats in TEAS, EC and EX group received TEAS intervention with or without the injection of EX527, the SIRT1 inhibitor. Neurological deficit scores, infarct volume, hematoxylin eosin (HE) staining and apoptotic cell number were measured. The results of RNA sequencing were analyzed to determine the differential expression changes of genes among sham, MCAO and TEAS groups, in order to investigate the possible pathological processes involved in cerebral ischemia and explore the protective mechanisms of TEAS. Moreover, oxidative stress markers including MDA, SOD, GSH and GSH-Px were measured with assay kits. The levels of the proinflammatory cytokines, such as IL-6, IL-1β and TNF-α, were detected by ELISA assay, and Iba-1 (the microglia marker protein) positive cells was measured by immunofluorescence (IF). Western blot and IF were utilized to examine the levels of key molecules in SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways. RESULTS TEAS significantly decreased brain infarcted size and apoptotic neuronal number, and alleviated neurological deficit scores and morphological injury by activating SIRT1. The results of RNA-seq and bioinformatic analysis revealed that oxidative stress and inflammation were the key pathological mechanisms, and TEAS alleviated oxidative injury and inflammatory reactions following ischemic stroke. Then, further investigation indicated that TEAS notably attenuated neuronal apoptosis, neuroinflammation and oxidative stress damage in the hippocampus of rats with MCAO/R surgery. Moreover, TEAS intervention in the MCAO/R model significantly elevated the expressions of SIRT1, FOXO3a, CAT, BRCC3, NLRP3 in the hippocampus. Furthermore, EX527, as the inhibitor of SIRT1, obviously abolished the anti-oxidative stress and anti-neuroinflammatory roles of TEAS, as well as reversed the TEAS-mediated elevation of SIRT1, FOXO3a, CAT and reduction of BRCC3 and NLRP3 mediated by following MCAO/R surgery. CONCLUSIONS In summary, these findings clearly suggested that TEAS attenuated brain damage by suppressing apoptosis, oxidative stress and neuroinflammation through modulating SIRT1/FOXO3a and SIRT1/BRCC3/NLRP3 signaling pathways following ischemic stroke, which can be a promising treatment for stroke patients.
Collapse
Affiliation(s)
- Zixuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, PR China
| | - Linyu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
13
|
Ni H, Liu M, Cao M, Zhang L, Zhao Y, Yi L, Li Y, Liu L, Wang P, Du Q, Zhou H, Dong Y. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF-κB pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer's disease mice. Biomed Pharmacother 2024; 171:116190. [PMID: 38278026 DOI: 10.1016/j.biopha.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Muqiu Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Mindie Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingyu Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yijing Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peixun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
14
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
15
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
16
|
Jabbar AA, Abdul-Aziz Ahmed K, Abdulla MA, Abdullah FO, Salehen NA, Mothana RA, Houssaini J, Hassan RR, Hawwal MF, Fantoukh OI, Hasson S. Sinomenine accelerate wound healing in rats by augmentation of antioxidant, anti-inflammatory, immunuhistochemical pathways. Heliyon 2024; 10:e23581. [PMID: 38173533 PMCID: PMC10761791 DOI: 10.1016/j.heliyon.2023.e23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Sinomenine (SN) is a well-documented unique plant alkaloid extracted from many herbal medicines. The present study evaluates the wound healing potentials of SN on dorsal neck injury in rats. A uniform cut was created on Sprague Dawley rats (24) which were arbitrarily aligned into 4 groups receiving two daily topical treatments for 14 days as follows: A, rats had gum acacia; B, rats addressed with intrasite gel; C and D, rats had 30 and 60 mg/ml of SN, respectively. The acute toxicity trial revealed the absence of any toxic signs in rats after two weeks of ingestion of 30 and 300 mg/kg of SN. SN-treated rats showed smaller wound areas and higher wound closure percentages compared to vehicle rats after 5, 10, and 15 days of skin excision. Histological evaluation of recovered wound tissues showed increased collagen deposition, fibroblast content, and decreased inflammatory cells in granulated tissues in SN-addressed rats, which were statistically different from that of gum acacia-treated rats. SN treatment caused positive augmentation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, denoting a higher conversion rate of fibroblast into myofibroblast (angiogenesis) that results in faster wound healing action. Increased antioxidant enzymes (SOD and CAT), as well as decreased MDA contents in recovered wound tissues of SN-treated rats, suggest the antioxidant potentials of SN that aid in faster wound recovery. Wound tissue homogenates showed higher hydroxyproline amino acid (collagen content) values in SN-treated rats than in vehicle rats. SN treatment suppressed the production of pro-inflammatory cytokines and increased anti-inflammatory cytokines in the serum of wounded rats. The outcomes present SN as a viable pharmaceutical agent for wound healing evidenced by its positive modulation of the antioxidant, immunohistochemically proteins, hydroxyproline, and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed A.j. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal Houssaini
- Department of Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 5UG, UK
| |
Collapse
|
17
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
18
|
Petrasca A, Hambly R, Kearney N, Smith CM, Pender EK, Mac Mahon J, O'Rourke AM, Ismaiel M, Boland PA, Almeida JP, Kennedy C, Zaborowski A, Murphy S, Winter D, Kirby B, Fletcher JM. Metformin has anti-inflammatory effects and induces immunometabolic reprogramming via multiple mechanisms in hidradenitis suppurativa. Br J Dermatol 2023; 189:730-740. [PMID: 37648653 DOI: 10.1093/bjd/ljad305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Targeting immunometabolism has shown promise in treating autoimmune and inflammatory conditions. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease involving painful lesions in apocrine gland-bearing skin. Therapeutic options for HS are limited and often ineffective; thus, there is a pressing need for improved treatments. To date, metabolic dysregulation has not been investigated in HS. As HS is highly inflammatory, we hypothesized that energy metabolism is dysregulated in these patients. Metformin, an antidiabetic drug, which is known to impact on cellular metabolic and signalling pathways, has been shown to have anti-inflammatory effects in cancer and arthritis. While metformin is not licensed for use in HS, patients with HS taking metformin show improved clinical symptoms. OBJECTIVE To assess the effect and mechanism of action of metformin in HS. METHODS To assess the effect of metformin in vivo, we compared the immune and metabolic profiles of peripheral blood mononuclear cells (PBMCs) of patients with HS taking metformin vs. those not taking metformin. To examine the effect of metformin treatment ex vivo, we employed a skin explant model on skin biopsies from patients with HS not taking metformin, which we cultured with metformin overnight. We used enzyme-linked immunosorbent assays, multiplex cytokine assays and quantitative real-time polymerase chain reaction (RT-PCR) to measure inflammatory markers, and Seahorse flux technology and quantitative RT-PCR to assess glucose metabolism. RESULTS We showed that metabolic pathways are dysregulated in the PBMCs of patients with HS vs. healthy individuals. In metformin-treated patients, these metabolic pathways were restored and their PBMCs had reduced inflammatory markers following long-term metformin treatment. In the skin explant model, we found that overnight culture with metformin reduced inflammatory cytokines and chemokines and glycolytic genes in lesions and tracts of patients with HS. Using in vitro assays, we found that metformin may induce these changes via the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway, which is linked to glycolysis and protein synthesis. CONCLUSIONS Our study provides insight into the mechanisms of action of metformin in HS. The anti-inflammatory effects of metformin support its use as a therapeutic agent in HS, while its effects on immunometabolism suggest that targeting metabolism is a promising therapeutic option in inflammatory diseases, including HS.
Collapse
Affiliation(s)
- Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Roisin Hambly
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Niamh Kearney
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Conor M Smith
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily K Pender
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Julie Mac Mahon
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Aoife M O'Rourke
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohamed Ismaiel
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | | | - Jose P Almeida
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | - Czara Kennedy
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | | | - Siun Murphy
- Department of Plastic Reconstructive and Aesthetic Surgery, Blackrock Clinic, Dublin, Ireland
| | - Desmond Winter
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | - Brian Kirby
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Zhang Q, Jiang Q, Sa K, Liang J, Sun D, Li H, Chen L. Research progress of plant-derived natural alkaloids in central nervous system diseases. Phytother Res 2023; 37:4885-4907. [PMID: 37455555 DOI: 10.1002/ptr.7955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/14/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) disease is one of the most important causes of human death. Because of their complex pathogenesis, more and more attention has been paid to them. At present, drug treatment of the CNS is the main means; however, most drugs only relieve symptoms, and some have certain toxicity and side effects. Natural compounds derived from plants can provide safer and more effective alternatives. Alkaloids are common nitrogenous basic organic compounds found in nature, which exist widely in many kinds of plants and have unique application value in modern medicine. For example, Galantamine and Huperzine A from medicinal plants are widely used drugs on the market to treat Alzheimer's disease. Therefore, the main purpose of this review is to provide the available information on natural alkaloids with the activity of treating central nervous system diseases in order to explore the trends and perspectives for the further study of central nervous system drugs. In this paper, 120 alkaloids with the potential effect of treating central nervous system diseases are summarized from the aspects of sources, structure types, mechanism of action and structure-activity relationship.
Collapse
Affiliation(s)
- Qingqing Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuiru Sa
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Junming Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
20
|
Du X, Amin N, Xu L, Botchway BOA, Zhang B, Fang M. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke. Front Pharmacol 2023; 14:1249644. [PMID: 37915409 PMCID: PMC10616488 DOI: 10.3389/fphar.2023.1249644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic-induced neuronal injury arises due to low oxygen/nutrient levels and an inflammatory response that exacerbates neuronal loss. NOD-like receptor family pyrin domain-containing 3 (NLRP3) is an important regulator of inflammation after ischemic stroke, with its inhibition being involved in nerve regeneration. Curcumin, a main active ingredient in Chinese herbs, plays a positive role in neuronal repair and neuroprotection by regulating the NLRP3 signaling pathway. Nevertheless, the signaling mechanisms relating to how curcumin regulates NLRP3 inflammasome in inflammation and neural restoration following ischemic stroke are unknown. In this report, we summarize the main biological functions of the NLRP3 inflammasome along with the neuroprotective effects and underlying mechanisms of curcumin via impairment of the NLRP3 pathway in ischemic brain injury. We also discuss the role of medicinal interventions that target the NLRP3 and potential pathways, as well as possible directions for curcumin therapy to penetrate the blood-brain barrier (BBB) and hinder inflammation in ischemic stroke. This report conclusively demonstrates that curcumin has neuroprotective properties that inhibit inflammation and prevent nerve cell loss, thereby delaying the progression of ischemic brain damage.
Collapse
Affiliation(s)
- Xiaoxue Du
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt
| | - Linhao Xu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O. A. Botchway
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
- Pharmacy Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Marong Fang
- Department of Neurology, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou, China
| |
Collapse
|
21
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
22
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
24
|
Torices S, Daire L, Simon S, Mendoza L, Daniels D, Joseph JA, Fattakhov N, Naranjo O, Teglas T, Toborek M. The NLRP3 inflammasome and gut dysbiosis as a putative link between HIV-1 infection and ischemic stroke. Trends Neurosci 2023; 46:682-693. [PMID: 37330380 PMCID: PMC10554647 DOI: 10.1016/j.tins.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
HIV-associated comorbidities, such as ischemic stroke, are prevalent in people with HIV (PWH). Several studies both in animal models and humans have revealed an association between activation of the inflammasome in HIV-1 infection and stroke. The gut microbiota is an important component in controlling neuroinflammation in the CNS. It has also been proposed to be involved in the pathobiology of HIV-1 infection, and has been associated with an increase in activation of the inflammasome. In this review, we provide an overview of the microbiota-gut-inflammasome-brain axis, focusing on the NLRP3 inflammasome and dysregulation of the microbiome as risk factors that may contribute to the outcome of ischemic stroke and recovery in PWH. We also focus on the potential of targeting the NLRP3 inflammasome as a novel therapeutic approach for PWH who are at risk of developing cerebrovascular diseases.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Destiny Daniels
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Joelle-Ann Joseph
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Bldg., Suite 528, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
25
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
26
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
27
|
Thiolutin attenuates ischemic stroke injury via inhibition of NLRP3 inflammasome: an in vitro and in vivo study. Exp Brain Res 2023; 241:839-849. [PMID: 36749359 DOI: 10.1007/s00221-023-06566-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
A recent study confirmed that thiolutin is effective in the treatment of nucleotide-binding domain-like receptor protein 3 (NLRP3)-related inflammatory diseases. Nevertheless, whether thiolutin (THL) is involved in the regulation of NLRP3 inflammasome in ischemic stroke is not known. The murine neuronal cell oxygen-glucose deprivation (OGD) model was first established, and then different concentrations (25 nM and 50 nM) of THL were administered for 48 h incubation, respectively. Subsequently, cell viability and toxicity, and the levels of intracellular inflammatory factors interleukin-1β (IL-1β), interleukin-18 (IL-18), oxidative stress factors superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA), and NLRP3 inflammasome activation-related proteins pro-caspase, caspase-1, apoptosis-associated speck like-protein (ASC) and NLRP3 were examined, respectively. We further established the mouse middle cerebral artery occlusion (MCAO) model to evaluate the therapeutic effects of THL on cerebral infarction like behaviors in mice and the preventive effects on NLRP3 inflammasome activation in vivo. Cell cytotoxic, and the levels of inflammatory factors and oxidative stress were conspicuously increased, and NLRP3 inflammasome was materially activated in the OGD-induced cell model and MCAO-established mouse model, which were partially countered by THL treatment. Besides, intraperitoneal injection of THL could prominently reduce the cerebral infarct volume and neuromotor deficit scores in MCAO mice. The present study confirmed that THL attenuated neuronal and cerebral inflammatory injury caused by OGD and MCAO models in mice through restraining NLRP3 inflammasome activation in vitro and in vivo.
Collapse
|
28
|
Zhang D, Jin C, Han T, Chen J, Ali Raza M, Li B, Wang L, Yan H. Sinomenine promotes flap survival by upregulating eNOS and eNOS-mediated autophagy via PI3K/AKT pathway. Int Immunopharmacol 2023; 116:109752. [PMID: 36739833 DOI: 10.1016/j.intimp.2023.109752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 02/05/2023]
Abstract
Large skin defects and surgical tissue reconstructions are frequently covered utilizing random flaps. The flap has the advantage of being designed according to the size and shape of a surgical wound. However, the necrosis of the distal part of the flap restricts the clinical application of flaps. Sinomenine (SIN) is the major active component of sinomenium acutum. SIN has been demonstrated to inhibit oxidative stress and stimulate autophagy in a cell, animal, and clinical studies. The protective and proliferative effects of sinomenium on HUVECs were evaluated by scratched test, CCK-8, and EDU assays. For the flap survival, we established a mouse random pattern flap model and observed the effects of SIN injected intraperitoneally. The survival area and blood flow intensity of the flap in sinomenium group were significantly increased compared to the control group. Our results demonstrate that SIN promotes flap survival. Sinomenium enhances eNOS expression in the flap and reduces the level of oxidative stress, promotes autophagy flux increase, reduces apoptosis, and promotes angiogenesis. Having a therapeutic benefit of SIN, Autophagy inhibitor 3-MA shows its critical role by reversing the beneficial effects of SIN, and the nitric oxide synthase inhibitor l-NAME both stimulated HUVECs that explore the relationship between autophagy flux and nitric oxide synthase. Furthermore, the mechanism in our study reveals the changes in the signal pathway of PI3K/AKT, the protective effect of SIN during antioxidant activity, the activation of eNOS through PI3K/AKT signaling pathway affects autophagy through the eNOS system, and promote the random flap survival.
Collapse
Affiliation(s)
- Dupiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chen Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Han
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianpeng Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Baolong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China; The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hede Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
30
|
Long JX, Tian MZ, Chen XY, Yu HH, Ding H, Liu F, Du K. The role of NLRP3 inflammasome-mediated pyroptosis in ischemic stroke and the intervention of traditional Chinese medicine. Front Pharmacol 2023; 14:1151196. [PMID: 37153784 PMCID: PMC10160381 DOI: 10.3389/fphar.2023.1151196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Ischemic stroke (IS) is the second leading cause of death and disability in the world. Pyroptosis, a form of programmed cell death initiated by caspases, participates in the occurrence and development of IS. Because it can increase cell membrane permeability, mediate the release of inflammatory factors, and aggravate inflammation, inhibiting this process can significantly reduce the pathological injury of IS. The nucleotide binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3) is a multiprotein complex whose activation is the core link of pyroptosis. In recent years, studies have reported that traditional Chinese medicine (TCM) could regulate pyroptosis mediated by NLRP3 inflammasome through multi-channel and multi-target networks and thus exert the effect against IS. This article reviews 107 papers published in recent years in PubMed, Chinese National Knowledge Infrastructure (CNKI), and WanFang Data in recent years. It has found that the activation factors of NLRP3 inflammasome include ROS, mitochondrial dysfunction, K+, Ca2+, lysosome rupture, and trans-Golgi breakdown. TLR4/NF-κB/NLRP3, ROS/TXNIP/NLRP3, AMPK/Nrf2/NLRP3, DRP1/NLRP3, TAK1/JNK/NLRP3 signaling pathways regulate the initiation and assembly of the NLRP3 inflammasome, subsequently induce pyroptosis, affecting the occurrence and development of IS. TCM can affect the above signaling pathways and regulate the pyroptosis mediated by NLRP3 inflammasome, so as to play a protective role against IS, which provides a new entry point for discussing the pathological mechanism of IS and a theoretical basis for developing TCM treasure house.
Collapse
Affiliation(s)
- Jia-Xin Long
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meng-Zhi Tian
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiao-Yi Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huang-He Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Ke Du,
| |
Collapse
|
31
|
Lai WD, Wang S, You WT, Chen SJ, Wen JJ, Yuan CR, Zheng MJ, Jin Y, Yu J, Wen CP. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front Cell Dev Biol 2022; 10:1041006. [PMID: 36619869 PMCID: PMC9813792 DOI: 10.3389/fcell.2022.1041006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is a disease of long-lasting pain with unpleasant feelings mediated by central and (or) peripheral sensitization, its duration usually lasts more than 3 months or longer than the expected recovery time. The patients with chronic pain are manifested with enhanced sensitivity to noxious and non-noxious stimuli. Due to an incomplete understanding of the mechanisms, patients are commonly insensitive to the treatment of first line analgesic medicine in clinic. Thus, the exploration of non-opioid-dependent analgesia are needed. Recent studies have shown that "sinomenine," the main active ingredient in the natural plant "sinomenium acutum (Thunb.) Rehd. Et Wils," has a powerful inhibitory effect on chronic pain, but its underlying mechanism still needs to be further elucidated. A growing number of studies have shown that various immune cells such as T cells, B cells, macrophages, astrocytes and microglia, accompanied with the relative inflammatory factors and neuropeptides, are involved in the pathogenesis of chronic pain. Notably, the interaction of the immune system and sensory neurons is essential for the development of central and (or) peripheral sensitization, as well as the progression and maintenance of chronic pain. Based on the effects of sinomenine on immune cells and their subsets, this review mainly focused on describing the potential analgesic effects of sinomenine, with rationality of regulating the neuroimmune interaction.
Collapse
Affiliation(s)
- Wei-Dong Lai
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Si-Jia Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Jun Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cun-Rui Yuan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Jia Zheng
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| | - Cheng-Ping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| |
Collapse
|
32
|
Fan Y, Zhu C, Zhang S, Zhang L, Wang Q, Wang F. Efficient and selective extraction of sinomenine by deep eutectic solvents. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
33
|
Chiang MC, Nicol CJB, Lo SS, Hung SW, Wang CJ, Lin CH. Resveratrol Mitigates Oxygen and Glucose Deprivation-Induced Inflammation, NLRP3 Inflammasome, and Oxidative Stress in 3D Neuronal Culture. Int J Mol Sci 2022; 23:ijms231911678. [PMID: 36232980 PMCID: PMC9570351 DOI: 10.3390/ijms231911678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Oxygen glucose deprivation (OGD) can produce hypoxia-induced neurotoxicity and is a mature in vitro model of hypoxic cell damage. Activated AMP-activated protein kinase (AMPK) regulates a downstream pathway that substantially increases bioenergy production, which may be a key player in physiological energy and has also been shown to play a role in regulating neuroprotective processes. Resveratrol is an effective activator of AMPK, indicating that it may have therapeutic potential as a neuroprotective agent. However, the mechanism by which resveratrol achieves these beneficial effects in SH-SY5Y cells exposed to OGD-induced inflammation and oxidative stress in a 3D gelatin scaffold remains unclear. Therefore, in the present study, we investigated the effect of resveratrol in 3D gelatin scaffold cells to understand its neuroprotective effects on NF-κB signaling, NLRP3 inflammasome, and oxidative stress under OGD conditions. Here, we show that resveratrol improves the expression levels of cell viability, inflammatory cytokines (TNF-α, IL-1β, and IL-18), NF-κB signaling, and NLRP3 inflammasome, that OGD increases. In addition, resveratrol rescued oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf2), and Nrf2 downstream antioxidant target genes (e.g., SOD, Gpx GSH, catalase, and HO-1). Treatment with resveratrol can significantly normalize OGD-induced changes in SH-SY5Y cell inflammation, oxidative stress, and oxidative defense gene expression; however, these resveratrol protective effects are affected by AMPK antagonists (Compounds C) blocking. These findings improve our understanding of the mechanism of the AMPK-dependent protective effect of resveratrol under 3D OGD-induced inflammation and oxidative stress-mediated cerebral ischemic stroke conditions.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Christopher J. B. Nicol
- Departments of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
- Departments of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shy-Shyong Lo
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Shiang-Wei Hung
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei 10341, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
- Correspondence:
| |
Collapse
|
34
|
Puleo MG, Miceli S, Di Chiara T, Pizzo GM, Della Corte V, Simonetta I, Pinto A, Tuttolomondo A. Molecular Mechanisms of Inflammasome in Ischemic Stroke Pathogenesis. Pharmaceuticals (Basel) 2022; 15:1168. [PMID: 36297283 PMCID: PMC9612213 DOI: 10.3390/ph15101168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (also called cerebral ischemia) is one of the leading causes of death and severe disability worldwide. NLR inflammasomes play a crucial role in sensing cell damage in response to a harmful stimuli and modulating the inflammatory response, promoting the release of pro-inflammatory cytokines such as IL-18 and IL-1β following ischemic injury. Therefore, a neuroprotective effect is achieved by inhibiting the expression, assembly, and secretion of inflammasomes, thus limiting the extent of brain detriment and neurological sequelae. This review aims to illustrate the molecular characteristics, expression levels, and assembly of NLRP3 (nucleotide-binding oligomerization domain-like receptor [NLR] family pyrin-domain-containing 3) inflammasome, the most studied in the literature, in order to discover promising therapeutic implications. In addition, we provide some information regarding the contribution of NLRP1, NLRP2, and NLRC4 inflammasomes to ischemic stroke pathogenesis, highlighting potential therapeutic strategies that require further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
35
|
Hong H, Lu X, Lu Q, Huang C, Cui Z. Potential therapeutic effects and pharmacological evidence of sinomenine in central nervous system disorders. Front Pharmacol 2022; 13:1015035. [PMID: 36188580 PMCID: PMC9523510 DOI: 10.3389/fphar.2022.1015035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sinomenine is a natural compound extracted from the medicinal plant Sinomenium acutum. Its supplementation has been shown to present benefits in a variety of animal models of central nervous system (CNS) disorders, such as cerebral ischemia, intracerebral hemorrhage, traumatic brain injury (TBI), Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, depression, multiple sclerosis, morphine tolerance, and glioma. Therefore, sinomenine is now considered a potential agent for the prevention and/or treatment of CNS disorders. Mechanistic studies have shown that inhibition of oxidative stress, microglia- or astrocyte-mediated neuroinflammation, and neuronal apoptosis are common mechanisms for the neuroprotective effects of sinomenine. Other mechanisms, including activation of nuclear factor E2-related factor 2 (Nrf2), induction of autophagy in response to inhibition of protein kinase B (Akt)-mammalian target of rapamycin (mTOR), and activation of cyclic adenosine monophosphate-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), may also mediate the anti-glioma and neuroprotective effects of sinomenine. Sinomenine treatment has also been shown to enhance dopamine receptor D2 (DRD2)-mediated nuclear translocation of αB-crystallin (CRYAB) in astrocytes, thereby suppressing neuroinflammation via inhibition of Signal Transducer and Activator of Transcription 3 (STAT3). In addition, sinomenine supplementation can suppress N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx and induce γ-aminobutyric acid type A (GABAA) receptor-mediated Cl− influx, each of which contributes to the improvement of morphine dependence and sleep disturbance. In this review, we outline the pharmacological effects and possible mechanisms of sinomenine in CNS disorders to advance the development of sinomenine as a new drug for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
36
|
Zhao R, Ma C, Wang M, Li X, Liu W, Shi L, Yu N. Killer or helper? The mechanism underlying the role of adenylate activated kinase in sound conditioning. Front Synaptic Neurosci 2022; 14:940788. [PMID: 36160917 PMCID: PMC9490174 DOI: 10.3389/fnsyn.2022.940788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate whether sound conditioning influences auditory system protection by activating adenylate activated kinase (AMPK), and if such adaption protects ribbon synapses from high-intensity noise exposure.Materials and methodsCBA mice (12 weeks old) were randomly divided into four groups (n = 24 mice per group): control, sound conditioning (SC), sound conditioning plus noise exposure (SC+NE), and noise exposure (NE). Hearing thresholds were assessed before testing, after sound conditioning, and 0, 3, 7, and 14 days after 110 dB noise exposure. Amplitudes and latencies of wave I at 90 dB intensity were assessed before test, after conditioning, and at 0 and 14 days after 110 dB noise exposure. One cochlea from each mouse was subjected to immunofluorescence staining to assess synapse numbers and AMPK activation, while the other cochlea was analyzed for phosphorylated adenylate activated kinase (p-AMPK) protein expression by western blot.ResultsThere was no significant difference in auditory brainstem response (ABR) threshold between SC and control mice. The degree of hearing loss of animals in the two SC groups was significantly reduced compared to the NE group after 110 dB noise exposure. Animals in the SC group showed faster recovery to normal thresholds, and 65 dB SPL sound conditioning had a stronger auditory protection effect. After sound conditioning, the amplitude of ABR I wave in the SC group was higher than that in the control group. Immediately after noise exposure (D0), the amplitudes of ABR I wave decreased significantly in all groups; the most significant decrease was in the NE group, with amplitude in 65SC+NE group significantly higher than that in the 85SC+NE group. Wave I latency in the SC group was significantly shorter than that in the control group. At D0, latency was prolonged in the NE group compared with the control group. In contrast, there was no significant difference in latency between the 65SC+NE and 85SC+NE groups. Further, at D14, there was no significant difference between the NE and control groups, while latency remained significantly shorter in the 65SC+NE and 85SC+NE groups compared with controls. Number of ribbon synapses in SC mice did not differ significantly from that in controls. After 110 dB noise exposure, there were significantly more ribbon synapses in the SC+NE group than the NE group. Ribbon synapses of all groups were recovered 14 days after the noise exposure, while the SC group had a shorter recovery time than the non-SC groups (p < 0.05). AMPK was highly activated in the SC group, and p-AMPK expression was detected; however, after 110 dB noise exposure, the strongest protein expression was detected in the NE group, followed by the SC+NE groups, and the lowest protein expression was detected in the control group.ConclusionSound conditioning animals were more noise resistant and recovered hearing faster than non-SC animals. Further, 65 dB SPL SC offered better hearing protection than 85 dB SPL SC. Early AMPK activation may protect hearing by increasing ATP storage and reducing the release of large quantities of p-AMPK, which could help to inhibit synapse damage.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changhong Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minjun Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinxin Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Shi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Lin Shi,
| | - Ning Yu
- Department of Otolaryngology-Head and Neck Surgery, Ministry of Education, National Clinical Research Center for Otolaryngologic Diseases, The Sixth Medical Center of People’s Liberation Army (PLA) General Hospital, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
- Ning Yu,
| |
Collapse
|
37
|
Cell Death Mechanisms in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2022; 47:3525-3542. [PMID: 35976487 DOI: 10.1007/s11064-022-03697-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality, affecting millions of people worldwide. Inevitably, the interruption of cerebral blood supply after ischemia may promote a cascade of pathophysiological processes. Moreover, the subsequent restoration of blood flow and reoxygenation may further aggravate brain tissue injury. Although recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for restoring blood perfusion, the reperfusion injury and the narrow therapeutic time window restrict its application for most stroke patients. Increasing evidence indicates that multiple cell death mechanisms are relevant to cerebral ischemia-reperfusion injury, including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, ferroptosis, and so on. Therefore, it is crucial to comprehend various cell death mechanisms and their interactions. In this review, we summarize the various signaling pathways underlying cerebral ischemia-reperfusion injury and elaborate on the crosstalk between the different mechanisms.
Collapse
|
38
|
Tao YW, Yang L, Chen SY, Zhang Y, Zeng Y, Wu JS, Meng XL. Pivotal regulatory roles of traditional Chinese medicine in ischemic stroke via inhibition of NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115316. [PMID: 35513214 DOI: 10.1016/j.jep.2022.115316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have demonstrated the powerful neuroprotection abilities of multiple traditional Chinese medicines (TCMs) against NLRP3 inflammasome-mediated ischemic cerebral injury. These TCMs may be in the form of TCM prescriptions, Chinese herbal medicines and their extracts, and TCM monomers. AIM OF THE STUDY This review aimed to analyze and summarize the existing knowledge on the assembly and activation of the NLRP3 inflammasome and its role in the pathogenesis of ischemic stroke (IS). We also summarized the mechanism of action of the various TCMs on the NLRP3 inflammasome, which may provide new insights for the management of IS. MATERIALS AND METHODS We reviewed recently published articles by setting the keywords "NLRP3 inflammasome" and "traditional Chinese medicines" along with "ischemic stroke"; "NLRP3 inflammasome" and "ischemic stroke" along with "natural products" and so on in Pubmed and GeenMedical. RESULTS According to recent studies, 16 TCM prescriptions (officially authorized products and clinically effective TCM prescriptions), 7 Chinese herbal extracts, and 29 TCM monomers show protective effects against IS through anti-inflammatory, anti-oxidative stress, anti-apoptotic, and anti-mitochondrial autophagy effects. CONCLUSIONS In this review, we analyzed studies on the involvement of NLRP3 in IS therapy. Further, we comprehensively and systematically summarized the current knowledge to provide a reference for the further application of TCMs in the treatment of IS.
Collapse
Affiliation(s)
- Yi-Wen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shi-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia-Si Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xian-Li Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
39
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
40
|
Li H, Yang DH, Zhang Y, Zheng F, Gao F, Sun J, Shi G. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin Med 2022; 17:73. [PMID: 35715805 PMCID: PMC9205109 DOI: 10.1186/s13020-022-00616-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND NLRP3 inflammasome activation and pyroptosis play a significant role in myocardial ischemia reperfusion injury (MI/RI). Geniposide was reported to show potential therapeutic use for MI/RI with its anti-inflammatory and anti-oxidative properties. However, research on the specific mechanism of geniposide has not been reported. METHODS The MIRI model of animal was created in male C57BL/6J mice and the hypoxia reoxygenation (H/R) model was established for the in vitro experiments. Neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown of TXNIP or NLRP3 were used. Geniposide was administered to mice before vascular ligation. HE staining, 2,3,5-triphenyltetrazolium chloride (TTC) staining, echocardiography, oxidative stress and myocardial enzyme detection were used to evaluate the cardioprotective effect of geniposide. Meanwhile, pharmacological approaches of agonist and inhibitor were used to observe potential pathway for geniposide cardioprotective in vitro and in vivo. Moreover, ELISA kits were adopted to detect the levels of inflammatory factors, such as IL-1β and IL-18. The gene and protein expression of NLRP3 and pyroptosis-related factors in heart tissue were performed by RT-PCR, western blotting and immunofluorescence in vivo and in vitro, respectively. RESULTS Our results indicate that geniposide can reduce the area of myocardial infarction, improve heart function, and inhibit the inflammatory response in mice after MI/RI. In addition, RT-PCR and western blotting shown geniposide promoting AMPK phosphorylation to activate myocardium energy metabolism and reducing the levels of genes and proteins expression of NLRP3, ASC, N-GSDMD and cleaved caspase-1, IL-1β, IL-18. Meanwhile, geniposide improved NRVMs energy metabolism, which decreased ROS levels and the protein expression of TXNIP and thus suppressed the expression of NLRP3. AMPK antagonist or agonist and siRNA downregulation of TXNIP or NLRP3 were also verify the effect of geniposide against H/R injury. Further research found that geniposide promoted the translocation of TXNIP and reduce the binding of TXNIP and NLRP3. CONCLUSIONS In our study, geniposide can significantly inhibit NLRP3 inflammasome activation via the AMPK signaling pathway and inhibit pyroptosis of cardiomyocytes in myocardial tissues.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Fuchun Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Jiajia Sun
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
41
|
Peptidomimetic Lipid-Nanoparticle-Mediated Knockdown of TLR4 in CNS Protects against Cerebral Ischemia/Reperfusion Injury in Mice. NANOMATERIALS 2022; 12:nano12122072. [PMID: 35745411 PMCID: PMC9228890 DOI: 10.3390/nano12122072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke activates toll-like receptor 4 (TLR4) signaling, resulting in proinflammatory polarization of microglia and secondary neuronal damage. Herein, we report a novel lipid-nanoparticle (LNP)-mediated knockdown of TLR4 in microglia and amelioration of neuroinflammation in a mouse model of transient middle cerebral artery occlusion (tMCAO). siRNA against TLR4 (siTLR4) complexed to the novel LNP (siTLR4/DoGo310), which was based on a dioleoyl-conjugated short peptidomimetic (denote DoGo310), was readily internalized by the oxygen–glucose-deprived (OGD) mouse primary microglia, knocked-down TLR4, and polarized the cell to the anti-inflammatory phenotype in vitro. Systemic administration of siTLR4/DoGo310 LNPs in the tMCAO mice model resulted in the accumulation of siRNA mainly in the Iba1 positive cells in the peri-infarct. Analysis of the peri-infarct brain tissue revealed that a single injection of siTLR4/DoGo310 LNPs led to significant knockdown of TLR4 gene expression, reversing the pattern of cytokines expression, and improving the neurological functions in tMCAO model mice. Our data demonstrate that DoGo310 LNPs could be a promising nanocarrier for CNS-targeted siRNA delivery for the treatment of CNS disorders.
Collapse
|
42
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
43
|
Wang MZ, Wang J, Cao DW, Tu Y, Liu BH, Yuan CC, Li H, Fang QJ, Chen JX, Fu Y, Wan BY, Wan ZY, Wan YG, Wu GW. Fucoidan Alleviates Renal Fibrosis in Diabetic Kidney Disease via Inhibition of NLRP3 Inflammasome-Mediated Podocyte Pyroptosis. Front Pharmacol 2022; 13:790937. [PMID: 35370636 PMCID: PMC8972405 DOI: 10.3389/fphar.2022.790937] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Fucoidan (FPS) has been widely used to treat renal fibrosis (RF) in patients with diabetic kidney disease (DKD); however, the precise therapeutic mechanisms remain unclear. Recently, research focusing on inflammation-derived podocyte pyroptosis in DKD has attracted increasing attention. This phenomenon is mediated by the activation of the nucleotide-binding oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, leading to RF during DKD progression. Therefore, we designed a series of experiments to investigate the ameliorative effects of FPS on RF in DKD and the mechanisms that are responsible for its effect on NLRP3 inflammasome-mediated podocyte pyroptosis in the diabetic kidney.Methods: The modified DKD rat models were subjected to uninephrectomy, intraperitoneal injection of streptozotocin, and a high-fat diet. Following induction of renal injury, the animals received either FPS, rapamycin (RAP), or a vehicle for 4 weeks. For in vitro research, we exposed murine podocytes to high glucose and MCC950, an NLRP3 inflammasome inhibitor, with or without FPS or RAP. Changes in the parameters related to RF and inflammatory podocyte injury were analyzed in vivo. Changes in podocyte pyroptosis, NLRP3 inflammasome activation, and activation of the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/NLRP3 signaling axis involved in these changes were analyzed in vivo and in vitro.Results: FPS and RAP ameliorated RF and inflammatory podocyte injury in the DKD model rats. Moreover, FPS and RAP attenuated podocyte pyroptosis, inhibited NLRP3 inflammasome activation, and regulated the AMPK/mTORC1/NLRP3 signaling axis in vivo and in vitro. Notably, our data showed that the regulative effects of FPS, both in vivo and in vitro, on the key signaling molecules, such as p-AMPK and p-raptor, in the AMPK/mTORC1/NLRP3 signaling axis were superior to those of RAP, but similar to those of metformin, an AMPK agonist, in vitro.Conclusion: We confirmed that FPS, similar to RAP, can alleviate RF in DKD by inhibiting NLRP3 inflammasome-mediated podocyte pyroptosis via regulation of the AMPK/mTORC1/NLRP3 signaling axis in the diabetic kidney. Our findings provide an in-depth understanding of the pathogenesis of RF, which will aid in identifying precise targets that can be used for DKD treatment.
Collapse
Affiliation(s)
- Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine, Nanjing University, Nanjing, China
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine, Nanjing University, Nanjing, China
| | - Dong-Wei Cao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bu-Hui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Li
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Chinese Medicine, Nanjing University, Nanjing, China
| | - Jia-Xin Chen
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Fu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Ying Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Graduate School of Social Sciences, Faculty of Social Sciences, Hitotsubashi University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Yi-Gang Wan, ; Guo-Wen Wu,
| | - Guo-Wen Wu
- Jilin Province Huinan Chonglong Bio-Pharmacy Co., Ltd., Huinan, China
- *Correspondence: Yi-Gang Wan, ; Guo-Wen Wu,
| |
Collapse
|
44
|
Che Mohd Nassir CMN, Zolkefley MKI, Ramli MD, Norman HH, Abdul Hamid H, Mustapha M. Neuroinflammation and COVID-19 Ischemic Stroke Recovery—Evolving Evidence for the Mediating Roles of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis and NLRP3 Inflammasome. Int J Mol Sci 2022; 23:ijms23063085. [PMID: 35328506 PMCID: PMC8949282 DOI: 10.3390/ijms23063085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Cerebrovascular events, notably acute ischemic strokes (AIS), have been reported in the setting of novel coronavirus disease (COVID-19) infection. Commonly regarded as cryptogenic, to date, the etiology is thought to be multifactorial and remains obscure; it is linked either to a direct viral invasion or to an indirect virus-induced prothrombotic state, with or without the presence of conventional cerebrovascular risk factors. In addition, patients are at a greater risk of developing long-term negative sequelae, i.e., long-COVID-related neurological problems, when compared to non-COVID-19 stroke patients. Central to the underlying neurobiology of stroke recovery in the context of COVID-19 infection is reduced angiotensin-converting enzyme 2 (ACE2) expression, which is known to lead to thrombo-inflammation and ACE2/angiotensin-(1–7)/mitochondrial assembly receptor (MasR) (ACE2/Ang-(1-7)/MasR) axis inhibition. Moreover, after AIS, the activated nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome may heighten the production of numerous proinflammatory cytokines, mediating neuro-glial cell dysfunction, ultimately leading to nerve-cell death. Therefore, potential neuroprotective therapies targeting the molecular mechanisms of the aforementioned mediators may help to inform rehabilitation strategies to improve brain reorganization (i.e., neuro-gliogenesis and synaptogenesis) and secondary prevention among AIS patients with or without COVID-19. Therefore, this narrative review aims to evaluate the mediating role of the ACE2/Ang- (1-7)/MasR axis and NLRP3 inflammasome in COVID-19-mediated AIS, as well as the prospects of these neuroinflammation mediators for brain repair and in secondary prevention strategies against AIS in stroke rehabilitation.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (C.M.N.C.M.N.); (M.M.)
| | - Mohd K. I. Zolkefley
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan 26300, Pahang, Malaysia;
| | - Muhammad Danial Ramli
- Department of Diagnostic and Allied Health Science, Management and Science University (MSU), Shah Alam 40100, Selangor, Malaysia;
| | - Haziq Hazman Norman
- Anatomy Unit, International Medical School (IMS), Management and Science University (MSU), Shah Alam 40100, Selangor, Malaysia;
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muzaimi Mustapha
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang Kuantan 26300, Pahang, Malaysia;
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: (C.M.N.C.M.N.); (M.M.)
| |
Collapse
|
45
|
Zeng J, Bao T, Yang K, Zhu X, Wang S, Xiang W, Ge A, Zeng L, Ge J. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: A review. Front Immunol 2022; 13:1047550. [PMID: 36818470 PMCID: PMC9933144 DOI: 10.3389/fimmu.2022.1047550] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.
Collapse
Affiliation(s)
- Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.,Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
46
|
AMPK inhibitor BML-275 induces neuroprotection through decreasing cyt c and AIF expression after transient brain ischemia. Bioorg Med Chem 2021; 52:116522. [PMID: 34837819 DOI: 10.1016/j.bmc.2021.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022]
Abstract
Stroke is a major public health problem with an imperative need for a more effective and tolerated therapy. Neuroprotective therapy may be an effective therapeutic intervention for stroke. The morbidity and mortality of stroke-induced secondary brain injury is mainly caused by neuronal apoptosis, which can be executed in a caspase-dependent or apoptosis inducing factor (AIF)-dependent manner. As apoptosis is an energy-dependent process with a relative time delay, abnormal energy metabolism could be a significant and fundamental pathophysiological basis of stroke. To our knowledge, convincible evidences that AMPK inhibition exerts neuroprotection in cerebral ischemia injury via anti-apoptosis remain to be investigated. Accordingly, the aims of this study were to investigate the protective effects of AMPK inhibitor BML-275 on cerebral ischemic/reperfusion (I/R) injury and to elucidate the underlying mechanisms. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in male C57BL/6 mice. The therapeutic effects of BML-275 were evaluated by infarct sizes, neurological scores and the proportion of apoptotic neurons after 24 h of reperfusion. The cell apoptosis markers cyt c and AIF were also evaluated. The results showed that intraperitoneally administration of BML-275 alleviate the cerebral infarction, neurological deficit and neuronal apoptosis induced by MCAO. BML-275 simultaneously induces anti-apoptosis and decreases the expression of cyt c and AIF. This study supports the hypothesis that anti-apoptosis is one of potential neuroprotective strategies for the treatment of stroke.
Collapse
|
47
|
Luo J, Chen J, Yang C, Tan J, Zhao J, Jiang N, Zhao Y. 6-Gingerol protects against cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome and apoptosis via TRPV1 / FAF1 complex dissociation-mediated autophagy. Int Immunopharmacol 2021; 100:108146. [PMID: 34537481 DOI: 10.1016/j.intimp.2021.108146] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous studies demonstrated that autophagy alleviates cerebral I/R injury by inhibiting NLRP3 inflammasome-mediated inflammation. 6-Gingerol, a phenolic compound extracted from ginger, was reported to possess potent antiapoptotic and anti-inflammatory activities and is associated with autophagy. However, the effects of 6-Gingerol in cerebral I/R injury have not been elucidated, and whether they involve autophagy-induced NLRP3 inflammasome inhibition remains unclear. METHODS Adult male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion (MCAO) for 1 h, followed by reperfusion for 24 h. 6-Gingerol and 3-methyladenine (3-MA) were injected intraperitoneally, and si-TRPV1 was injected via the lateral ventricle. Cerebral infarct volume, brain edema, neurological deficits, HE and Nissl were used to evaluate the morphological and functional changes of brain tissue, respectively. TRPV1, FAF1, autophagy related (LC3II/I, P62, Beclin1), inflammation related (NLRP3, cleaved-caspase-1, caspase-1, cleaved-IL-1β, IL-1β, cleaved-IL-18, IL-18) and apoptosis related (Bcl-2, Bax, cleaved-caspase-3) proteins were assessed by Western blot, immunofluorescence staining and coimmunoprecipitation, respectively. Enzyme linked immunosorbent assay (ELISA) was used to evaluate the changes in the expression levels of interleukin-1 (IL-1β) and interleukin-18(IL-18), respectively. The degree of neuronal apoptosis was evaluated by TUNEL staining. Neuronal ultrastructure was examined by transmission electron microscopy. RESULT 6-Gingerol treatment significantly reduced cerebral infarct volume, improved brain edema and neurological scores, and reversed brain histomorphological damage after I/R injury. In addition, 6-Gingerol significantly reduced NLRP3 inflammasome-derived inflammation and neuronal apoptosis and upregulated autophagy. The autophagy inhibitor 3-MA rescued the effects of 6-Gingerol on the NLRP3 inflammasome and apoptosis. Moreover, the findings illustrated that 6-Gingerol inhibited autophagy-induced NLRP3 inflammasome activation and apoptosis through the dissociation of TRPV1 from FAF1. CONCLUSION In brief, 6-Gingerol exerts antiapoptotic and anti-inflammatory effects via TRPV1/FAF1 complex dissociation-mediated autophagy during cerebral I/R injury. Therefore, 6-Gingerol may be an effective drug for the treatment of I/R injury.
Collapse
Affiliation(s)
- Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- Department of First Clinical College, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Junyi Tan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
48
|
Zhang MW, Wang XH, Shi J, Yu JG. Sinomenine in Cardio-Cerebrovascular Diseases: Potential Therapeutic Effects and Pharmacological Evidences. Front Cardiovasc Med 2021; 8:749113. [PMID: 34660748 PMCID: PMC8517137 DOI: 10.3389/fcvm.2021.749113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardio-cerebrovascular diseases, as a major cause of health loss all over the world, contribute to an important part of the global burden of disease. A large number of traditional Chinese medicines have been proved effective both clinically and in pharmacological investigations, with the acceleration of the modernization of Chinese medicine. Sinomenine is the main active constituent of sinomenium acutum and has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties of pharmacological effects of sinomenine in cardio-cerebrovascular system have been discovered recently, suggesting an inspiring application prospect of sinomenine in cardio-cerebrovascular diseases. Sinomenine may retard the progression of atherosclerosis by attenuating endothelial inflammation, regulating immune cells function, and inhibiting the proliferation of vascular smooth muscle cells. Sinomenine also alleviates chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic activities and suppresses autoimmune myocarditis by immunosuppression. Prevention of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative stress. The regulatory effects on vasodilation and electrophysiology make sinomenine a promising drug to treat hypertension and arrhythmia. Here, in this review, we will illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system and elaborate the underlying mechanisms, as well as give an overview of the potential therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide clues and bases for its clinical usage.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Wang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Yu Q, Zhao T, Liu M, Cao D, Li J, Li Y, Xia M, Wang X, Zheng T, Liu C, Mu X, Sun P. Targeting NLRP3 Inflammasome in Translational Treatment of Nervous System Diseases: An Update. Front Pharmacol 2021; 12:707696. [PMID: 34526897 PMCID: PMC8435574 DOI: 10.3389/fphar.2021.707696] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammatory response is the immune response mechanism of the innate immune system of the central nervous system. Both primary and secondary injury can activate neuroinflammatory response. Among them, the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a key role in the inflammatory response of the central system. Inflammasome is a type of pattern recognition receptor, a cytoplasmic polyprotein complex composed of members of the Nod-like receptor (NLR) family and members of the pyrin and HIN domain (PYHIN) family, which can be affected by a variety of pathogen-related molecular patterns or damage-related molecular patterns are activated. As one of the research hotspots in the field of medical research in recent years, there are increasing researches on immune function abnormalities in the onset of neurological diseases such as depression, AD, ischemic brain injury and cerebral infarction, the NLRP3 inflammasome causes the activated caspase-1 to cleave pre-interleukin-1β and pre-interleukin-18 into mature interleukin-1β and interleukin-18, in turn, a large number of inflammatory factors are produced, which participate in the occurrence and development of the above-mentioned diseases. Targeted inhibition of the activation of inflammasomes can reduce the inflammatory response, promote the survival of nerve cells, and achieve neuroprotective effects. This article reviews NLRP3 inflammasome's role in neurological diseases and related regulatory mechanisms, which providing references for future research in this field.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhao
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Molin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Duo Cao
- College of Life Science, Yan’an University, Yan’an, China
| | - Jiaxin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyao Xia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Mu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
50
|
Das B, Sarkar C, Rawat VS, Kalita D, Deka S, Agnihotri A. Promise of the NLRP3 Inflammasome Inhibitors in In Vivo Disease Models. Molecules 2021; 26:4996. [PMID: 34443594 PMCID: PMC8399941 DOI: 10.3390/molecules26164996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Nucleotide-binding oligomerization domain NOD-like receptors (NLRs) are conserved cytosolic pattern recognition receptors (PRRs) that track the intracellular milieu for the existence of infection, disease-causing microbes, as well as metabolic distresses. The NLRP3 inflammasome agglomerates are consequent to sensing a wide spectrum of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Certain members of the NLR family have been documented to lump into multimolecular conglomerates called inflammasomes, which are inherently linked to stimulation of the cysteine protease caspase-1. Following activation, caspase-1 severs the proinflammatory cytokines interleukin (IL)-1β and IL-18 to their biologically active forms, with consequent commencement of caspase-1-associated pyroptosis. This type of cell death by pyroptosis epitomizes a leading pathway of inflammation. Accumulating scientific documentation has recorded overstimulation of NLRP3 (NOD-like receptor protein 3) inflammasome involvement in a wide array of inflammatory conditions. IL-1β is an archetypic inflammatory cytokine implicated in multiple types of inflammatory maladies. Approaches to impede IL-1β's actions are possible, and their therapeutic effects have been clinically demonstrated; nevertheless, such strategies are associated with certain constraints. For instance, treatments that focus on systemically negating IL-1β (i.e., anakinra, rilonacept, and canakinumab) have been reported to result in an escalated peril of infections. Therefore, given the therapeutic promise of an NLRP3 inhibitor, the concerted escalated venture of the scientific sorority in the advancement of small molecules focusing on direct NLRP3 inflammasome inhibition is quite predictable.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Chayna Sarkar
- Department of Clinical Pharmacology & Therapeutics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Mawdiangdiang, Shillong 793018, Meghalaya, India;
| | - Vikram Singh Rawat
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| | - Deepjyoti Kalita
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Sangeeta Deka
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India; (D.K.); (S.D.)
| | - Akash Agnihotri
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Virbhadra Road, Rishikesh 249203, Uttarakhand, India;
| |
Collapse
|