1
|
Boratto MH, Graeff CFO, Han S. Highly Stable Flexible Organic Electrochemical Transistors with Natural Rubber Latex Additives. Polymers (Basel) 2024; 16:2287. [PMID: 39204507 PMCID: PMC11359245 DOI: 10.3390/polym16162287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Organic electrochemical transistors (OECTs) have attracted considerable interest in the context of wearable and implantable biosensors due to their remarkable signal amplification combined with seamless integration into biological systems. These properties underlie OECTs' potential utility across a range of bioelectronic applications. One of the main challenges to their practical applications is the mechanical limitation of PEDOT:PSS, the most typical conductive polymer used as a channel layer, when the OECTs are applied to implantable and stretchable bioelectronics. In this work, we address this critical issue by employing natural rubber latex (NRL) as an additive in PEDOT:PSS to improve flexibility and stretchability of the OECT channels. Although the inclusion of NRL leads to a decrease in transconductance, mainly due to a reduced carrier mobility from 0.3 to 0.1 cm2/V·s, the OECTs maintain satisfactory transconductance, exceeding 5 mS. Furthermore, it is demonstrated that the OECTs exhibit excellent mechanical stability while maintaining their performance even after 100 repetitive bending cycles. This work, therefore, suggests that the NRL/PEDOT:PSS composite film can be deployed for wearable/implantable applications, where high mechanical stability is needed. This finding opens up new avenues for practical use of OECTs in more robust and versatile wearable and implantable biosensors.
Collapse
Affiliation(s)
- Miguel Henrique Boratto
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Carlos F. O. Graeff
- Physics and Meteorology Department, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil;
| | - Sanggil Han
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
- Center for Brain-Machine Interface, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Touloupakis E, Calegari Moia I, Zampieri RM, Cocozza C, Frassinelli N, Marchi E, Foderi C, Di Lorenzo T, Rezaie N, Muzzini VG, Traversi ML, Giovannelli A. Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. BIOSENSORS 2024; 14:373. [PMID: 39194602 DOI: 10.3390/bios14080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The development of tools to quickly identify the fate of damaged trees after a stress event such as a wildfire is of great importance. In this context, an innovative approach to assess irreversible physiological damage in trees could help to support the planning of management decisions for disturbed sites to restore biodiversity, protect the environment and understand the adaptations of ecosystem functionality. The vitality of trees can be estimated by several physiological indicators, such as cambium activity and the amount of starch and soluble sugars, while the accumulation of ethanol in the cambial cells and phloem is considered an alarm sign of cell death. However, their determination requires time-consuming laboratory protocols, making the approach impractical in the field. Biosensors hold considerable promise for substantially advancing this field. The general objective of this review is to define a system for quantifying the plant vitality in forest areas exposed to fire. This review describes recent electrochemical biosensors that can detect plant molecules, focusing on biosensors for glucose, fructose, and ethanol as indicators of tree vitality.
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Isabela Calegari Moia
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Raffaella Margherita Zampieri
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Niccolò Frassinelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Enrico Marchi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Cristiano Foderi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Valerio Giorgio Muzzini
- Research Institute on Terrestrial Ecosystems, National Research Council, Research Area of Rome 1, Strada Provinciale 35d n. 9, Montelibretti, 00010 Rome, Italy
| | - Maria Laura Traversi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Meder F, Armiento S, Naselli GA, Mondini A, Speck T, Mazzolai B. Charge generation by passive plant leaf motion at low wind speeds: design and collective behavior of plant-hybrid energy harvesters. BIOINSPIRATION & BIOMIMETICS 2024; 19:056003. [PMID: 38917810 DOI: 10.1088/1748-3190/ad5ba1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Energy harvesting techniques can exploit even subtle passive motion like that of plant leaves in wind as a consequence of contact electrification of the leaf surface. The effect is strongly enhanced by artificial materials installed as 'artificial leaves' on the natural leaves creating a recurring mechanical contact and separation. However, this requires a controlled mechanical interaction between the biological and the artificial component during the complex wind motion. Here, we build and test four artificial leaf designs with varying flexibility and degrees of freedom across the blade operating onNerium oleanderplants. We evaluate the apparent contact area (up to 10 cm2per leaf), the leaves' motion, together with the generated voltage, current and charge in low wind speeds of up to 3.3 m s-1and less. Single artificial leaves produced over 75 V and 1µA current peaks. Softer artificial leaves increase the contact area accessible for energy conversion, but a balance between softer and stiffer elements in the artificial blade is optimal to increase the frequency of contact-separation motion (here up to 10 Hz) for energy conversion also below 3.3 m s-1. Moreover, we tested how multiple leaves operating collectively during continuous wind energy harvesting over several days achieve a root mean square power of ∼6µW and are capable to transfer ∼80µC every 30-40 min to power a wireless temperature and humidity sensor autonomously and recurrently. The results experimentally reveal design strategies for energy harvesters providing autonomous micro power sources in plant ecosystems for example for sensing in precision agriculture and remote environmental monitoring.
Collapse
Affiliation(s)
- Fabian Meder
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Serena Armiento
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Adele Naselli
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Alessio Mondini
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
4
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
5
|
Enrico A, Buchmann S, De Ferrari F, Lin Y, Wang Y, Yue W, Mårtensson G, Stemme G, Hamedi MM, Niklaus F, Herland A, Zeglio E. Cleanroom-Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307042. [PMID: 38225700 PMCID: PMC11251563 DOI: 10.1002/advs.202307042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.
Collapse
Affiliation(s)
- Alessandro Enrico
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
- Synthetic Physiology labDepartment of Civil Engineering and ArchitectureUniversity of PaviaVia Ferrata 3Pavia27100Italy
| | - Sebastian Buchmann
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Fabio De Ferrari
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Yunfan Lin
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
| | - Yazhou Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable DevicesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Wan Yue
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Gustaf Mårtensson
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- Mycronic ABNytorpsvägen 9Täby183 53Sweden
| | - Göran Stemme
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of TechnologyTeknikringen 56Stockholm10044Sweden
| | - Frank Niklaus
- Department of Micro and NanosystemsKTH Royal Institute of TechnologyMalvinas väg 10Stockholm100 44Sweden
| | - Anna Herland
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Erica Zeglio
- Division of NanobiotechnologySciLifeLabDepartment of Protein ScienceKTH Royal Institute of TechnologyTomtebodavägen 23aSolna171 65Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering SciencesDepartment of NeuroscienceKarolinska InstituteStockholm17177Sweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Materials and Environmental ChemistryStockholm UniversityStockholm114 18Sweden
| |
Collapse
|
6
|
Kelly AR, Glover DJ. Information Transmission through Biotic-Abiotic Interfaces to Restore or Enhance Human Function. ACS APPLIED BIO MATERIALS 2024; 7:3605-3628. [PMID: 38729914 DOI: 10.1021/acsabm.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advancements in reliable information transfer across biotic-abiotic interfaces have enabled the restoration of lost human function. For example, communication between neuronal cells and electrical devices restores the ability to walk to a tetraplegic patient and vision to patients blinded by retinal disease. These impactful medical achievements are aided by tailored biotic-abiotic interfaces that maximize information transfer fidelity by considering the physical properties of the underlying biological and synthetic components. This Review develops a modular framework to define and describe the engineering of biotic and abiotic components as well as the design of interfaces to facilitate biotic-abiotic information transfer using light or electricity. Delineating the properties of the biotic, interface, and abiotic components that enable communication can serve as a guide for future research in this highly interdisciplinary field. Application of synthetic biology to engineer light-sensitive proteins has facilitated the control of neural signaling and the restoration of rudimentary vision after retinal blindness. Electrophysiological methodologies that use brain-computer interfaces and stimulating implants to bypass spinal column injuries have led to the rehabilitation of limb movement and walking ability. Cellular interfacing methodologies and on-chip learning capability have been made possible by organic transistors that mimic the information processing capacity of neurons. The collaboration of molecular biologists, material scientists, and electrical engineers in the emerging field of biotic-abiotic interfacing will lead to the development of prosthetics capable of responding to thought and experiencing touch sensation via direct integration into the human nervous system. Further interdisciplinary research will improve electrical and optical interfacing technologies for the restoration of vision, offering greater visual acuity and potentially color vision in the near future.
Collapse
Affiliation(s)
- Alexander R Kelly
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Yan B, Zhang F, Wang M, Zhang Y, Fu S. Flexible wearable sensors for crop monitoring: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1406074. [PMID: 38867881 PMCID: PMC11167128 DOI: 10.3389/fpls.2024.1406074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Crops were the main source of human food, which have met the increasingly diversified demand of consumers. Sensors were used to monitor crop phenotypes and environmental information in real time, which will provide a theoretical reference for optimizing crop growth environment, resisting biotic and abiotic stresses, and improve crop yield. Compared with non-contact monitoring methods such as optical imaging and remote sensing, wearable sensing technology had higher time and spatial resolution. However, the existing crop sensors were mainly rigid mechanical structures, which were easy to cause damage to crop organs, and there were still challenges in terms of accuracy and biosafety. Emerging flexible sensors had attracted wide attention in the field of crop phenotype monitoring due to their excellent mechanical properties and biocompatibility. The article introduced the key technologies involved in the preparation of flexible wearable sensors from the aspects of flexible preparation materials and advanced preparation processes. The monitoring function of flexible sensors in crop growth was highlighted, including the monitoring of crop nutrient, physiological, ecological and growth environment information. The monitoring principle, performance together with pros and cons of each sensor were analyzed. Furthermore, the future opportunities and challenges of flexible wearable devices in crop monitoring were discussed in detail from the aspects of new sensing theory, sensing materials, sensing structures, wireless power supply technology and agricultural sensor network, which will provide reference for smart agricultural management system based on crop flexible sensors, and realize efficient management of agricultural production and resources.
Collapse
Affiliation(s)
- Baoping Yan
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fu Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengyao Wang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yakun Zhang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Sanling Fu
- College of Physical Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Vurro F, Manfrini L, Boini A, Bettelli M, Buono V, Caselli S, Gioli B, Zappettini A, Palermo N, Janni M. Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis. BIOSENSORS 2024; 14:226. [PMID: 38785700 PMCID: PMC11117891 DOI: 10.3390/bios14050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
This manuscript reports the application of sensors for water use efficiency with a focus on the application of an in vivo OECT biosensor. In two distinct experimental trials, the in vivo sensor bioristor was applied in yellow kiwi plants to monitor, in real-time and continuously, the changes in the composition and concentration of the plant sap in an open field during plant growth and development. The bioristor response and physiological data, together with other fruit sensor monitoring data, were acquired and combined in both trials, giving a complete picture of the biosphere conditions. A high correlation was observed between the bioristor index (ΔIgs), the canopy cover expressed as the fraction of intercepted PAR (fi_PAR), and the soil water content (SWC). In addition, the bioristor was confirmed to be a good proxy for the occurrence of drought in kiwi plants; in fact, a period of drought stress was identified within the month of July. A novelty of the bioristor measurements was their ability to detect in advance the occurrence of defoliation, thereby reducing yield and quality losses. A plant-based irrigation protocol can be achieved and tailored based on real plant needs, increasing water use sustainability and preserving high-quality standards.
Collapse
Affiliation(s)
- Filippo Vurro
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Luigi Manfrini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (L.M.); (A.B.)
| | - Alexandra Boini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy; (L.M.); (A.B.)
| | - Manuele Bettelli
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Vito Buono
- Sysman Projects & Services Ltd., 70121 Bari, Italy;
| | - Stefano Caselli
- CIDEA-UNIPR—Center for Energy and Environment, University of Parma, Parco Area delle Scienze, 95, 43124 Parma, Italy;
| | - Beniamino Gioli
- Institute of BioEconomy, National Research Council, 50145 Florence, Italy;
| | - Andrea Zappettini
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Nadia Palermo
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| | - Michela Janni
- Istituto dei Materiali per L’Elettronica e il Magnetismo (IMEM-CNR), Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (F.V.); (M.B.); (A.Z.); (N.P.)
| |
Collapse
|
9
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
10
|
Catacchio M, Caputo M, Sarcina L, Scandurra C, Tricase A, Marchianò V, Macchia E, Bollella P, Torsi L. Spiers Memorial Lecture: Challenges and prospects in organic photonics and electronics. Faraday Discuss 2024; 250:9-42. [PMID: 38380468 DOI: 10.1039/d3fd00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While a substantial amount of research activity has been conducted in fields related to organic photonics and electronics, including the development of devices such as organic field-effect transistors, organic photovoltaics, and organic light-emitting diodes for applications encompassing organic thermoelectrics, organic batteries, excitonic organic materials for photochemical and optoelectronic applications, and organic thermoelectrics, this perspective review will primarily concentrate on the emerging and rapidly expanding domain of organic bioelectronics and neuromorphics. Here we present the most recent research findings on organic transistors capable of sensing biological biomarkers down at the single-molecule level (i.e., oncoproteins, genomes, etc.) for the early diagnosis of pathological states and to mimic biological synapses, paving the way to neuromorphic applications that surpass the limitations of the traditional von Neumann computing architecture. Both organic bioelectronics and neuromorphics exhibit several challenges but will revolutionize human life, considering the development of artificial synapses to counteract neurodegenerative disorders and the development of ultrasensitive biosensors for the early diagnosis of cancer to prevent its development. Moreover, organic bioelectronics for sensing applications have also triggered the development of several wearable, flexible and stretchable biodevices for continuous biomarker monitoring.
Collapse
Affiliation(s)
- Michele Catacchio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Angelo Tricase
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Verdiana Marchianò
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
11
|
Zhou S, Zhou J, Pan Y, Wu Q, Ping J. Wearable electrochemical sensors for plant small-molecule detection. TRENDS IN PLANT SCIENCE 2024; 29:219-231. [PMID: 38071111 DOI: 10.1016/j.tplants.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 02/10/2024]
Abstract
Small molecules in plants - such as metabolites, phytohormones, reactive oxygen species (ROS), and inorganic ions - participate in the processes of plant growth and development, physiological metabolism, and stress response. Wearable electrochemical sensors, known for their fast response, high sensitivity, and minimal plant damage, serve as ideal tools for dynamically tracking these small molecules. Such sensors provide producers or agricultural researchers with noninvasive or minimally invasive means of obtaining plant signals. In this review we explore the applications of wearable electrochemical sensors in detecting plant small molecules, enabling scientific assessment of plant conditions, quantification of environmental stresses, and facilitation of plant health monitoring and disease prediction.
Collapse
Affiliation(s)
- Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yuxiang Pan
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural, Anhui Agricultural University, Anhui, PR China.
| |
Collapse
|
12
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
13
|
Liu Y, Wang Y, Wang B, Shi Q, Mao H. Preliminary study on the diagnosis of NK stress based on the puncture mechanical characteristics of cucumber stem. BMC PLANT BIOLOGY 2024; 24:26. [PMID: 38172661 PMCID: PMC10763222 DOI: 10.1186/s12870-023-04675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
To investigate the relationship between stem puncture mechanical characteristics and NK stress diagnosis, the microstructure, surface morphology, cellulose and lignin content, puncture mechanical characteristics, and epidermal cell morphology of cucumber stems were measured herein. The results indicated that the middle stem, which had a diameter of approximately 7000 μm, was more suitable for puncturing due to its lower amount of epidermal hair, and its gradual regularity in shape. Further, the cucumber stems were protected from puncture damage due to their ability to rapidly heal within 25 h.. The epidermal penetration of the cucumber stems increased with the increase in cellulose and lignin, though cellulose played a more decisive role. The epidermal break distance increased with an increase in N application and decreased with an increase in K+ application, but the change in intercellular space caused by K+ supply was the most critical factor affecting the epidermal break distance. In addition, a decrease in K+ concentration led to a decrease in epidermal brittleness, whereas the factors affecting epidermal toughness were more complex. Finally, we found that although the detection of epidermal brittleness and toughness on nutrient stress was poor under certain treatment, the puncture mechanical characteristics of the stem still had a significant indicative effect on N application rate. Therefore, elucidating of the relationship between the puncture mechanical characteristics of the stems and crop nutritional stress is not only beneficial for promoting stem stress physiology research but also for designing on-site nutritional testing equipment in the future.
Collapse
Affiliation(s)
- Yong Liu
- School of Intelligent Agriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu Province, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yafei Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Bin Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiang Shi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China.
- School of Science and Technology, Shanghai Open University, Shanghai, China.
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
14
|
Diacci C, Burtscher B, Berto M, Ruoko TP, Lienemann S, Greco P, Berggren M, Borsari M, Simon DT, Bortolotti CA, Biscarini F. Organic Electrochemical Transistor Aptasensor for Interleukin-6 Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38141020 DOI: 10.1021/acsami.3c12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
We demonstrate an organic electrochemical transistor (OECT) biosensor for the detection of interleukin 6 (IL6), an important biomarker associated with various pathological processes, including chronic inflammation, inflammaging, cancer, and severe COVID-19 infection. The biosensor is functionalized with oligonucleotide aptamers engineered to bind specifically IL6. We developed an easy functionalization strategy based on gold nanoparticles deposited onto a poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) gate electrode for the subsequent electrodeposition of thiolated aptamers. During this functionalization step, the reduction of sulfide bonds allows for simultaneous deposition of a blocking agent. A detection range from picomolar to nanomolar concentrations for IL6 was achieved, and the selectivity of the device was assessed against Tumor Necrosis Factor (TNF), another cytokine involved in the inflammatory processes.
Collapse
Affiliation(s)
- Chiara Diacci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Bernhard Burtscher
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Marcello Berto
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Tero-Petri Ruoko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Samuel Lienemann
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Pierpaolo Greco
- Department of Neuroscience and Rehabilitation, Università di Ferrara, Via Borsari 46, 44121 Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 17-193, 44100 Ferrara, Italy
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Marco Borsari
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Carlo A Bortolotti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 17-193, 44100 Ferrara, Italy
| |
Collapse
|
15
|
Mareš J, Karjalainen J, Håkansson P, Michaeli S, Liimatainen T. Glucose exchange parameters in a subset of physiological conditions. Phys Chem Chem Phys 2023; 25:22965-22978. [PMID: 37593950 PMCID: PMC10467565 DOI: 10.1039/d3cp01973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
The chemical exchange of labile protons of the hydroxyl groups can be exploited in a variety of magnetic resonance experiments to gain information about the groups and their physicochemical environment. The exchangeable -OH protons provide important contributions to the T2 of water signals thus contributing to the T2-weighted contrast of MRI images. This exchange can be exploited more specifically and sensitively in chemical exchange saturation transfer (CEST) or longitudinal rotating frame relaxation (T1,ρ) experiments. Since glucose is omnipresent in living organisms, it may be seen as a rather universal probe. Even though the potential was first recognized many years ago, practical use has remained scarce due to numerous challenges. The major limitation is the rather low glucose concentration in most tissues. The other obstacles are related to multiple dependencies of the exchange parameters, such as temperature, pH, and concentration of various ions that are not known in sufficient detail for glucose. Thus, we embarked on evaluating the exchange parameters of a model that included every relevant chemical site for all -OH protons in both dominant enantiomers of glucose. We have (1) obtained conventional one-dimensional proton NMR spectra of glucose solutions in suitable temperature ranges, (2) we have iterated through several exchange models with various degrees of freedom determined by the number of distinguishable -OH proton sites and compared their performance, (3) we extrapolated the parameters of the best model of physiological temperature and (4) we demonstrated the use of the parameters in virtual experiments. As the main results, (1) we have obtained the temperature dependence of exchange parameters with reliable confidence intervals in three different pH values, with two of them reaching physiological temperature, and (2) we show how the parameters can be used in virtual experiments, helping to develop new applications for glucose as an NMR/MRI probe.
Collapse
Affiliation(s)
- J Mareš
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland.
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Finland
| | - J Karjalainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Finland
| | - P Håkansson
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland.
| | - S Michaeli
- Center for MR Research, Radiology Department, University of Minnesota, Minneapolis MN55455, USA
| | - T Liimatainen
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Finland
- Department of Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
16
|
Tsong JL, Khor SM. Modern analytical and bioanalytical technologies and concepts for smart and precision farming. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37376849 DOI: 10.1039/d3ay00647f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
Collapse
Affiliation(s)
- Jia Ling Tsong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Perdomo SA, De la Paz E, Del Caño R, Seker S, Saha T, Wang J, Jaramillo-Botero A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens Bioelectron 2023; 231:115300. [PMID: 37058961 DOI: 10.1016/j.bios.2023.115300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(μM·cm2), a limit of detection (LOD) of 9.4 μM, and a limit of quantification (LOQ) of 28.5 μM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Rafael Del Caño
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E- 14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Tamoghna Saha
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States.
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
18
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
19
|
Parmeggiani M, Ballesio A, Battistoni S, Carcione R, Cocuzza M, D’Angelo P, Erokhin VV, Marasso SL, Rinaldi G, Tarabella G, Vurro D, Pirri CF. Organic Bioelectronics Development in Italy: A Review. MICROMACHINES 2023; 14:460. [PMID: 36838160 PMCID: PMC9966652 DOI: 10.3390/mi14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions.
Collapse
Affiliation(s)
- Matteo Parmeggiani
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Alberto Ballesio
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Silvia Battistoni
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Rocco Carcione
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Matteo Cocuzza
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Pasquale D’Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Victor V. Erokhin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Simone Luigi Marasso
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Giorgia Rinaldi
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Davide Vurro
- Camlin Italy Srl, Via Budellungo 2, 43124 Parma, Italy
| | - Candido Fabrizio Pirri
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| |
Collapse
|
20
|
Lo Presti D, Di Tocco J, Massaroni C, Cimini S, De Gara L, Singh S, Raucci A, Manganiello G, Woo SL, Schena E, Cinti S. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture. Biosens Bioelectron 2023; 222:115005. [PMID: 36527829 DOI: 10.1016/j.bios.2022.115005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The devastating effects of global climate change on crop production and exponential population growth pose a major challenge to agricultural yields. To cope with this problem, crop performance monitoring is becoming increasingly necessary. In this scenario, the use of sensors and biosensors capable of detecting changes in plant fitness and predicting the evolution of their morphology and physiology has proven to be a useful strategy to increase crop yields. Flexible sensors and nanomaterials have inspired the emerging fields of wearable and on-plant portable devices that provide continuous and accurate long-term sensing of morphological, physiological, biochemical, and environmental parameters. This review provides an overview of novel plant sensing technologies by discussing wearable and integrated devices proposed for engineering plant and monitoring its morphological traits and physiological processes, as well as plant-environment interactions. For each application scenario, the state-of-the-art sensing solutions are grouped according to the plant organ on which they have been installed highlighting their main technological advantages and features. Finally, future opportunities, challenges and perspectives are discussed. We anticipate that the application of this technology in agriculture will provide more accurate measurements for farmers and plant scientists with the ability to track crop performance in real time. All of this information will be essential to enable rapid optimization of plants development through tailored treatments that improve overall plant health even under stressful conditions, with the ultimate goal of increasing crop productivity in a more sustainable manner.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Joshua Di Tocco
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Sara Cimini
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Laura De Gara
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy
| | - Sima Singh
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Gelsomina Manganiello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Sheridan L Woo
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, Roma, Italy.
| | - Stefano Cinti
- Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055, Naples, Italy.
| |
Collapse
|
21
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
22
|
Ruiz-Gonzalez A, Kempson H, Haseloff J. A Simple Reversed Iontophoresis-Based Sensor to Enable In Vivo Multiplexed Measurement of Plant Biomarkers Using Screen-Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:780. [PMID: 36679574 PMCID: PMC9863583 DOI: 10.3390/s23020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, these methods rely on bulky and expensive equipment, and they are time-consuming. The present work reports for the first time a low-cost sensing device that can be used for the simultaneous determination of sap K+ and pH in living plants by means of reverse iontophoresis. A screen-printed electrode was modified by deposition of a K+-selective membrane, achieving a super-Nernstian sensitivity of 70 mV Log[K+]−1 and a limit of detection within the micromolar level. In addition, the cathode material of the reverse iontophoresis device was modified by electrodeposition of RuOx particles. This electrode could be used for the direct extraction of ions from plant leaves and the amperometric determination of pH within the physiological range (pH 3−8), triggered by the selective reaction of RuOx with H+. A portable and low-cost (<£60) microcontroller-based device was additionally designed to enable its use in low-resource settings. The applicability of this system was demonstrated by measuring the changes in concentration of K+ and pH in tomato plants before and after watering with deionised water. These results represent a step forward in the design of affordable and non-invasive devices for the monitoring of key biomarkers in plants, with a plethora of applications in smart farming and precision agriculture among others.
Collapse
|
23
|
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023; 95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
24
|
Engineered Nanomaterial based Implantable MicroNanoelectrode for in vivo Analysis: Technological Advancement and Commercial Aspects. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Abstract
Time is an often-neglected variable in biological research. Plants respond to biotic and abiotic stressors with a range of chemical signals, but as plants are non-equilibrium systems, single-point measurements often cannot provide sufficient temporal resolution to capture these time-dependent signals. In this article, we critically review the advances in continuous monitoring of chemical signals in living plants under stress. We discuss methods for sustained measurement of the most important chemical species, including ions, organic molecules, inorganic molecules and radicals. We examine analytical and modelling approaches currently used to identify and predict stress in plants. We also explore how the methods discussed can be used for applications beyond a research laboratory, in agricultural settings. Finally, we present the current challenges and future perspectives for the continuous monitoring of chemical signals in plants.
Collapse
|
26
|
Meder F, Baytekin B, Del Dottore E, Meroz Y, Tauber F, Walker I, Mazzolai B. A perspective on plant robotics: from bioinspiration to hybrid systems. BIOINSPIRATION & BIOMIMETICS 2022; 18:015006. [PMID: 36351300 DOI: 10.1088/1748-3190/aca198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
As miscellaneous as the Plant Kingdom is, correspondingly diverse are the opportunities for taking inspiration from plants for innovations in science and engineering. Especially in robotics, properties like growth, adaptation to environments, ingenious materials, sustainability, and energy-effectiveness of plants provide an extremely rich source of inspiration to develop new technologies-and many of them are still in the beginning of being discovered. In the last decade, researchers have begun to reproduce complex plant functions leading to functionality that goes far beyond conventional robotics and this includes sustainability, resource saving, and eco-friendliness. This perspective drawn by specialists in different related disciplines provides a snapshot from the last decade of research in the field and draws conclusions on the current challenges, unanswered questions on plant functions, plant-inspired robots, bioinspired materials, and plant-hybrid systems looking ahead to the future of these research fields.
Collapse
Affiliation(s)
- Fabian Meder
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Bilge Baytekin
- Department of Chemistry and UNAM National Nanotechnology Research Center, Bilkent University, Ankara, Turkey
| | | | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Falk Tauber
- Plant Biomechanics Group (PBG) Freiburg, Botanic Garden of the University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Ian Walker
- Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, United States of America
| | - Barbara Mazzolai
- Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
27
|
Meder F, Naselli GA, Mazzolai B. Wind dynamics and leaf motion: Approaching the design of high-tech devices for energy harvesting for operation on plant leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:994429. [PMID: 36388505 PMCID: PMC9644130 DOI: 10.3389/fpls.2022.994429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
High-tech sensors, energy harvesters, and robots are increasingly being developed for operation on plant leaves. This introduces an extra load which the leaf must withstand, often under further dynamic forces like wind. Here, we took the example of mechanical energy harvesters that consist of flat artificial "leaves" fixed on the petioles of N. oleander, converting wind energy into electricity. We developed a combined experimental and computational approach to describe the static and dynamic mechanics of the natural and artificial leaves individually and join them together in the typical energy harvesting configuration. The model, in which the leaves are torsional springs with flexible petioles and rigid lamina deforming under the effect of gravity and wind, enables us to design the artificial device in terms of weight, flexibility, and dimensions based on the mechanical properties of the plant leaf. Moreover, it predicts the dynamic motions of the leaf-artificial leaf combination, causing the mechanical-to-electrical energy conversion at a given wind speed. The computational results were validated in dynamic experiments measuring the electrical output of the plant-hybrid energy harvester. Our approach enables us to design the artificial structure for damage-safe operation on leaves (avoiding overloading caused by the interaction between leaves and/or by the wind) and suggests how to improve the combined leaf oscillations affecting the energy harvesting performance. We furthermore discuss how the mathematical model could be extended in future works. In summary, this is a first approach to improve the adaptation of artificial devices to plants, advance their performance, and to counteract damage by mathematical modelling in the device design phase.
Collapse
Affiliation(s)
- Fabian Meder
- *Correspondence: Fabian Meder, ; Giovanna Adele Naselli, ; Barbara Mazzolai,
| | | | - Barbara Mazzolai
- *Correspondence: Fabian Meder, ; Giovanna Adele Naselli, ; Barbara Mazzolai,
| |
Collapse
|
28
|
Armada-Moreira A, Diacci C, Dar AM, Berggren M, Simon DT, Stavrinidou E. Benchmarking organic electrochemical transistors for plant electrophysiology. FRONTIERS IN PLANT SCIENCE 2022; 13:916120. [PMID: 35937381 PMCID: PMC9355396 DOI: 10.3389/fpls.2022.916120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 05/21/2023]
Abstract
Plants are able to sense and respond to a myriad of external stimuli, using different signal transduction pathways, including electrical signaling. The ability to monitor plant responses is essential not only for fundamental plant science, but also to gain knowledge on how to interface plants with technology. Still, the field of plant electrophysiology remains rather unexplored when compared to its animal counterpart. Indeed, most studies continue to rely on invasive techniques or on bulky inorganic electrodes that oftentimes are not ideal for stable integration with plant tissues. On the other hand, few studies have proposed novel approaches to monitor plant signals, based on non-invasive conformable electrodes or even organic transistors. Organic electrochemical transistors (OECTs) are particularly promising for electrophysiology as they are inherently amplification devices, they operate at low voltages, can be miniaturized, and be fabricated in flexible and conformable substrates. Thus, in this study, we characterize OECTs as viable tools to measure plant electrical signals, comparing them to the performance of the current standard, Ag/AgCl electrodes. For that, we focused on two widely studied plant signals: the Venus flytrap (VFT) action potentials elicited by mechanical stimulation of its sensitive trigger hairs, and the wound response of Arabidopsis thaliana. We found that OECTs are able to record these signals without distortion and with the same resolution as Ag/AgCl electrodes and that they offer a major advantage in terms of signal noise, which allow them to be used in field conditions. This work establishes these organic bioelectronic devices as non-invasive tools to monitor plant signaling that can provide insight into plant processes in their natural environment.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Chiara Diacci
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Abdul Manan Dar
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
29
|
Ruiz-Gonzalez A, Kempson H, Haseloff J. In Vivo Sensing of pH in Tomato Plants Using a Low-Cost and Open-Source Device for Precision Agriculture. BIOSENSORS 2022; 12:447. [PMID: 35884250 PMCID: PMC9313326 DOI: 10.3390/bios12070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The development of sensing devices for precision agriculture is crucial to boost crop yields and limit shortages in food productions due to the growing population. However, current approaches cannot provide direct information about the physiological status of the plants, reducing sensing accuracy. The development of implanted devices for plant monitoring represents a step forward in this field, enabling the direct assessment of key biomarkers in plants. However, available devices are expensive and cannot be used for long-term applications. The current work presents the application of ruthenium oxide-based nanofilms for the in vivo monitoring of pH in plants. The sensors were manufactured using the low-cost electrodeposition of RuO2 films, and the final device could be successfully incorporated for the monitoring of xylem sap pH for at least 10 h. RuO2 nanoparticles were chosen as the sensing material due to its biocompatibility and chemical stability. To reduce the noise rates and drift of the sensors, a protective layer consisting of a cellulose/PDMS hybrid material was deposited by an aerosol method (>GBP 50), involving off-the-shelf devices, leading to a good control of film thickness. Nanometrically thin films with a thickness of 80 nm and roughness below 3 nm were fabricated. This film led to a seven-fold decrease in drift while preserving the selectivity of the sensors towards H+ ions. The sensing devices were tested in vivo by implantation inside a tomato plant. Environmental parameters such as humidity and temperature were additionally monitored using a low-cost Wio Terminal device, and the data were sent wirelessly to an online server. The interactions between plant tissues and metal oxide-based sensors were finally studied, evidencing the formation of a lignified layer between the sensing film and xylem. Thus, this work reports for the first time a low-cost electrochemical sensor that can be used for the continuous monitoring of pH in xylem sap. This device can be easily modified to improve the long-term performance when implanted inside plant tissues, representing a step forward in the development of precision agriculture technologies.
Collapse
|
30
|
Elli G, Hamed S, Petrelli M, Ibba P, Ciocca M, Lugli P, Petti L. Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22114178. [PMID: 35684798 PMCID: PMC9185402 DOI: 10.3390/s22114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/05/2023]
Abstract
The precise monitoring of environmental contaminants and agricultural plant stress factors, respectively responsible for damages to our ecosystems and crop losses, has nowadays become a topic of uttermost importance. This is also highlighted by the recent introduction of the so-called "Sustainable Development Goals" of the United Nations, which aim at reducing pollutants while implementing more sustainable food production practices, leading to a reduced impact on all ecosystems. In this context, the standard methods currently used in these fields represent a sub-optimal solution, being expensive, laboratory-based techniques, and typically requiring trained personnel with high expertise. Recent advances in both biotechnology and material science have led to the emergence of new sensing (and biosensing) technologies, enabling low-cost, precise, and real-time detection. An especially interesting category of biosensors is represented by field-effect transistor-based biosensors (bio-FETs), which enable the possibility of performing in situ, continuous, selective, and sensitive measurements of a wide palette of different parameters of interest. Furthermore, bio-FETs offer the possibility of being fabricated using innovative and sustainable materials, employing various device configurations, each customized for a specific application. In the specific field of environmental and agricultural monitoring, the exploitation of these devices is particularly attractive as it paves the way to early detection and intervention strategies useful to limit, or even completely avoid negative outcomes (such as diseases to animals or ecosystems losses). This review focuses exactly on bio-FETs for environmental and agricultural monitoring, highlighting the recent and most relevant studies. First, bio-FET technology is introduced, followed by a detailed description of the the most commonly employed configurations, the available device fabrication techniques, as well as the specific materials and recognition elements. Then, examples of studies employing bio-FETs for environmental and agricultural monitoring are presented, highlighting in detail advantages and disadvantages of available examples. Finally, in the discussion, the major challenges to be overcome (e.g., short device lifetime, small sensitivity and selectivity in complex media) are critically presented. Despite the current limitations and challenges, this review clearly shows that bio-FETs are extremely promising for new and disruptive innovations in these areas and others.
Collapse
Affiliation(s)
- Giulia Elli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| | - Saleh Hamed
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mattia Petrelli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pietro Ibba
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Manuela Ciocca
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Luisa Petti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Competence Centre for Plant Health, Free University of Bolzano-Bozen, 39100 Bolzano, Italy
| |
Collapse
|
31
|
In vivo electrochemically-assisted polymerization of conjugated functionalized terthiophenes inside the vascular system of a plant. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
An Ultra-Low-Cost RCL-Meter. SENSORS 2022; 22:s22062227. [PMID: 35336398 PMCID: PMC8950037 DOI: 10.3390/s22062227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
An ultra-low-cost RCL meter, aimed at IoT applications, was developed, and was used to measure electrical components based on standard techniques without the need of additional electronics beyond the AVR® micro-controller hardware itself and high-level routines. The models and pseudo-routines required to measure admittance parameters are described, and a benchmark between the ATmega328P and ATmega32U4 AVR® micro-controllers was performed to validate the resistance and capacitance measurements. Both ATmega328P and ATmega32U4 micro-controllers could measure isolated resistances from 0.5 Ω to 80 MΩ and capacitances from 100 fF to 4.7 mF. Inductance measurements are estimated at between 0.2 mH to 1.5 H. The accuracy and range of the measurements of series and parallel RC networks are demonstrated. The relative accuracy (ar) and relative precision (pr) of the measurements were quantified. For the resistance measurements, typically ar, pr < 10% in the interval 100 Ω−100 MΩ. For the capacitance, measured in one of the modes (fast mode), ar < 20% and pr < 5% in the range 100 fF−10 nF, while for the other mode (transient mode), typically ar < 20% in the range 10 nF−10 mF and pr < 5% for 100 pF−10 mF. ar falls below 5% in some sub-ranges. The combination of the two capacitance modes allows for measurements in the range 100 fF−10 mF (11 orders of magnitude) with ar < 20%. Possible applications include the sensing of impedimetric sensor arrays targeted for wearable and in-body bioelectronics, smart agriculture, and smart cities, while complying with small form factor and low cost.
Collapse
|
33
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
34
|
Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2022; 122:4847-4883. [PMID: 34928592 PMCID: PMC8874897 DOI: 10.1021/acs.chemrev.1c00525] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.
Collapse
Affiliation(s)
- Gwennaël Dufil
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Iwona Bernacka-Wojcik
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Adam Armada-Moreira
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Campus Umeå, SE-901 83 Umeå, Sweden
| |
Collapse
|
35
|
Huo D, Li D, Xu S, Tang Y, Xie X, Li D, Song F, Zhang Y, Li A, Sun L. Disposable Stainless-Steel Wire-Based Electrochemical Microsensor for In Vivo Continuous Monitoring of Hydrogen Peroxide in Vein of Tomato Leaf. BIOSENSORS 2022; 12:bios12010035. [PMID: 35049663 PMCID: PMC8773776 DOI: 10.3390/bios12010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 05/29/2023]
Abstract
As one of the pivotal signal molecules, hydrogen peroxide (H2O2) has been demonstrated to play important roles in many physiological processes of plants. Continuous monitoring of H2O2 in vivo could help understand its regulation mechanism more clearly. In this study, a disposable electrochemical microsensor for H2O2 was developed. This microsensor consists of three parts: low-cost stainless-steel wire with a diameter of 0.1 mm modified by gold nanoparticles (disposable working electrode), an untreated platinum wire with a diameter of 0.1 mm (counter electrode), and an Ag/AgCl wire with a diameter of 0.1 mm (reference electrode), respectively. The microsensor could detect H2O2 in levels from 10 to 1000 µM and exhibited excellent selectivity. On this basis, the dynamic change in H2O2 in the vein of tomato leaf under high salinity was continuously monitored in vivo. The results showed that the production of H2O2 could be induced by high salinity within two hours. This study suggests that the disposable electrochemical microsensor not only suits continuously detecting H2O2 in microscopic plant tissue in vivo but also reduces the damage to plants. Overall, our strategy will help to pave the foundation for further investigation of the generation, transportation, and elimination mechanism of H2O2 in plants.
Collapse
Affiliation(s)
- Doudou Huo
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Daodong Li
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Songzhi Xu
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Yujie Tang
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Xueqian Xie
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China; (D.L.); (F.S.)
| | - Yali Zhang
- School of Medicine, Nantong University, Qixiu Road 19, Nantong 226001, China;
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong 226019, China; (D.H.); (D.L.); (S.X.); (Y.T.); (X.X.)
| |
Collapse
|
36
|
Nawaz A, Liu Q, Leong WL, Fairfull-Smith KE, Sonar P. Organic Electrochemical Transistors for In Vivo Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101874. [PMID: 34606146 DOI: 10.1002/adma.202101874] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors (OECTs) are presently a focus of intense research and hold great potential in expanding the horizons of the bioelectronics industry. The notable characteristics of OECTs, including their electrolyte-gating, which offers intimate interfacing with biological environments, and aqueous stability, make them particularly suitable to be operated within a living organism (in vivo). Unlike the existing in vivo bioelectronic devices, mostly based on rigid metal electrodes, OECTs form a soft mechanical contact with the biological milieu and ensure a high signal-to-noise ratio because of their powerful amplification capability. Such features make OECTs particularly desirable for a wide range of in vivo applications, including electrophysiological recordings, neuron stimulation, and neurotransmitter detection, and regulation of plant processes in vivo. In this review, a systematic compilation of the in vivo applications is presented that are addressed by the OECT technology. First, the operating mechanisms, and the device design and materials design principles of OECTs are examined, and then multiple examples are provided from the literature while identifying the unique device properties that enable the application progress. Finally, one critically looks at the future of the OECT technology for in vivo bioelectronic applications.
Collapse
Affiliation(s)
- Ali Nawaz
- Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, Curitiba, PR, 81531-990, Brazil
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Qian Liu
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
37
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
38
|
Burtscher B, Manco Urbina PA, Diacci C, Borghi S, Pinti M, Cossarizza A, Salvarani C, Berggren M, Biscarini F, Simon DT, Bortolotti CA. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv Healthc Mater 2021; 10:e2100955. [PMID: 34423579 PMCID: PMC11469060 DOI: 10.1002/adhm.202100955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/16/2021] [Indexed: 01/08/2023]
Abstract
An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.
Collapse
Affiliation(s)
- Bernhard Burtscher
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | | | - Chiara Diacci
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Simone Borghi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaVia Campi 287Modena41125Italy
| | - Carlo Salvarani
- Rheumatology UnitUniversity of Modena and Reggio EmiliaMedical SchoolAzienda Ospedaliero‐UniversitariaPoliclinico di ModenaModena41124Italy
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Fabio Biscarini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
- Center for Translation NeurophysiologyIstituto Italiano di TecnologiaVia Fossato di Mortara 17–19Ferrara44100Italy
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Carlo A. Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
39
|
Michela J, Claudia C, Federico B, Sara P, Filippo V, Nicola C, Manuele B, Davide C, Loreto F, Zappettini A. Real-time monitoring of Arundo donax response to saline stress through the application of in vivo sensing technology. Sci Rep 2021; 11:18598. [PMID: 34545124 PMCID: PMC8452760 DOI: 10.1038/s41598-021-97872-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
One of the main impacts of climate change on agriculture production is the dramatic increase of saline (Na+) content in substrate, that will impair crop performance and productivity. Here we demonstrate how the application of smart technologies such as an in vivo sensor, termed bioristor, allows to continuously monitor in real-time the dynamic changes of ion concentration in the sap of Arundo donax L. (common name giant reed or giant cane), when exposed to a progressive salinity stress. Data collected in vivo by bioristor sensors inserted at two different heights into A. donax stems enabled us to detect the early phases of stress response upon increasing salinity. Indeed, the continuous time-series of data recorded by the bioristor returned a specific signal which correlated with Na+ content in leaves of Na-stressed plants, opening a new perspective for its application as a tool for in vivo plant phenotyping and selection of genotypes more suitable for the exploitation of saline soils.
Collapse
Affiliation(s)
- Janni Michela
- National Research Council of Italy, Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy. .,National Research Council of Italy, Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126, Bari, Italy.
| | - Cocozza Claudia
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145, Florence, Italy.
| | - Brilli Federico
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Pignattelli Sara
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, 5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Vurro Filippo
- National Research Council of Italy, Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Coppede Nicola
- National Research Council of Italy, Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Bettelli Manuele
- National Research Council of Italy, Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Calestani Davide
- National Research Council of Italy, Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Francesco Loreto
- National Research Council of Italy - Department of Biology, Agriculture and Food Sciences, (CNR-DISBA), P. Le Aldo Moro, 00185, Roma, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| | - Andrea Zappettini
- National Research Council of Italy, Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| |
Collapse
|
40
|
Roper J, Garcia JF, Tsutsui H. Emerging Technologies for Monitoring Plant Health in Vivo. ACS OMEGA 2021; 6:5101-5107. [PMID: 33681550 PMCID: PMC7931179 DOI: 10.1021/acsomega.0c05850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/02/2021] [Indexed: 05/02/2023]
Abstract
In the coming decades, increasing agricultural productivity is all-important. As the global population is growing rapidly and putting increased demand on food supply, poor soil quality, drought, flooding, increasing temperatures, and novel plant diseases are negatively impacting yields worldwide. One method to increase yields is plant health monitoring and rapid detection of disease, nutrient deficiencies, or drought. Monitoring plant health will allow for precise application of agrichemicals, fertilizers, and water in order to maximize yields. In vivo plant sensors are an emerging technology with the potential to increase agricultural productivity. In this mini-review, we discuss three major approaches of in vivo sensors for plant health monitoring, including genetic engineering, imaging and spectroscopy, and electrical.
Collapse
Affiliation(s)
- Jenna
M. Roper
- Department
of Bioengineering and Department of Mechanical Engineering, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Jose F. Garcia
- Department
of Bioengineering and Department of Mechanical Engineering, University of California, 900 University Avenue, Riverside, California 92521, United States
| | - Hideaki Tsutsui
- Department
of Bioengineering and Department of Mechanical Engineering, University of California, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|