1
|
Sularea VM, Sharma R, Hay DC, O’Farrelly C. Early interferon lambda production is induced by double-stranded RNA in iPS-derived hepatocyte-like cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae004. [PMID: 39193476 PMCID: PMC11219478 DOI: 10.1093/oxfimm/iqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatotropic viruses are amongst the most ubiquitous pathogens worldwide, causing significant morbidity and mortality. As hepatocytes are among the primary targets of these viruses, their ability to mount early effective innate defence responses is of major research interest. Interferon lambda (IFNL) is produced early in response to viral stimulation in other cell types, but hepatocyte production of this interferon is little investigated. Due to the difficulty and significant costs in obtaining and culturing human primary hepatocytes, surrogate systems are widely sought. Here we used induced pluripotent stem (iPS)-derived hepatocyte-like cells (HLCs) to investigate hepatic IFNL expression in response to viral-like ligands. We demonstrate that hepatocytes rely on cytoplasmic pattern recognition receptors (PRRs) such as Protein Kinase RNA-dependent (PKR) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLR) for the detection of double stranded RNA. Stimulation of HLCs by viral-like RNA ligands activating cytosolic RNA sensors resulted in thousand fold increase of type III interferon gene expression. These results are in contrast with type I IFN expression, which was induced to a lower extent. Concomitant induction of interferon stimulated genes, such as interferon-stimulated gene 15 (ISG15) and CXCL10, indicated the ability of HLCs to activate interferon-dependent activity. These results demonstrate that HLCs mount an innate antiviral response upon stimulation with viral-like RNA characterized by the induction of type III IFN.
Collapse
Affiliation(s)
- Vasile Mihai Sularea
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
| | - Ruchi Sharma
- Stemnovate LTD, Cambridge, Maia Building 270, Babraham Research Campus, Cambridge, CB223AT, United Kingdom
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
- School of Medicine, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
| |
Collapse
|
2
|
Mishra A, Dongre S, Kulkarni G, Deshmane R, Thappa D, Ghade N, Lona J, Kokatam S, Deo A, Sonar S, Krishnan A. Comparative assessment of immunogenicity of recombinant insulin Aspart from BioGenomics and its originator NovoRapid® in adult patients with type 2 diabetes mellitus. J Endocrinol Invest 2024; 47:1435-1446. [PMID: 38147290 DOI: 10.1007/s40618-023-02263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES To assess and compare the immunogenicity of recombinant Insulin Aspart [manufactured by BioGenomics Limited (BGL-ASP)] with its originator NovoRapid® (manufactured by Novo Nordisk) in adult patients with type 2 diabetes mellitus. RESEARCH DESIGN AND METHODS BGL-IA-CTP301 study was a randomized, open label, parallel group, multicenter phase-III clinical study to compare the efficacy and safety of recombinant Insulin Aspart 100 U/mL [manufactured by BioGenomics Limited (BGL-ASP)] with its reference medicinal product (RMP); NovoRapid® [manufactured by Novo Nordisk], in adult patients with Type 2 diabetes mellitus (T2DM). The primary objective of the study was to compare the immunogenicity of BGL-ASP and RMP; NovoRapid® in patient serum samples collected from phase-III clinical study. Immunogenicity was studied as the incidence of patients positive for anti-insulin Aspart (AIA) antibodies, developed against BGL-ASP/RMP at baseline, end of 12 week and end of 24 week of the treatment period. The changes in incidence of patients positive for AIA antibodies post-baseline were also studied to assess and compare the treatment-emergent antibody response (TEAR) between the treatment groups (BGL-ASP and RMP). Statistical evaluation was done by Fisher's exact test to compare the overall incidence of patients positive for AIA antibodies and the TEAR positives observed post-baseline in both the treated groups. An in-vitro neutralizing antibody assay (Nab assay) was also performed to study the effect of AIA antibodies in neutralizing the biological activity/metabolic function of the insulin. The neutralizing potential of AIA was studied by its effect on %glucose uptake. We also evaluated the association between AIA antibody levels and its impact on biological activity by studying the correlation between them. RESULTS Analysis of immunogenicity data suggested that the percentage of patients positive for AIA antibodies until week 24 was similar and comparable in both the treatment groups, BGL-ASP and RMP; NovoRapid®. The changes in incidence of patients positive for AIA post-baseline in terms of TEAR positives were also similar and comparable between the treatment groups. The results of the Nab assay with confirmed positive AIA samples from BGL-ASP- and RMP-treated groups did not have any negative impact on %glucose uptake by the cells in Nab assay, confirming the absence of neutralizing antibodies in both the treatment groups. The correlation studies also showed absence of association between AIA antibody levels and percentage glucose uptake in both BGL-ASP and RMP-NovoRapid® treatment groups. CONCLUSIONS: The immunogenicity assessment based on the overall incidence of patients positive for AIA, changes in incidence of patients positive for AIA post-baseline, TEAR rates and absence of neutralizing antibodies, were found to be apparently similar and comparable in both the treatment groups (BGL-ASP and RMP). We conclude from our studies that the immunogenicity of BGL-ASP is similar and comparable to RMP and the observed immunogenicity in terms of anti-insulin Aspart antibody levels had no impact on the biological activity of insulin.
Collapse
Affiliation(s)
| | | | | | | | | | - N Ghade
- BioGenomics Ltd, Thane, India
| | - J Lona
- BioGenomics Ltd, Thane, India
| | | | - A Deo
- BioGenomics Ltd, Thane, India
| | - S Sonar
- BioGenomics Ltd, Thane, India
| | | |
Collapse
|
3
|
Quinn G, Ali RO, Zhang GY, Hill K, Townsend E, Umarova R, Chakraborty M, Ahmad MF, Gewirtz M, Haddad J, Rosenzweig S, Rampertaap S, Schoenfeld M, Yang S, Koh C, Levy E, Kleiner DE, Etzion O, Heller T. Non-selective dampening of the host immune response after hepatitis C clearance and its association with circulating chemokine and endotoxin levels. Liver Int 2023; 43:2701-2712. [PMID: 37752797 DOI: 10.1111/liv.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND & AIMS Direct-acting antiviral (DAA) therapy has revolutionized treatment for the hepatitis C virus (HCV). While DAA therapy is common, little is known about the intrahepatic immunological changes after sustained virologic response (SVR). We aim to describe transcriptional alterations of the gut microbiome and the liver after SVR. METHODS Twenty-two HCV patients were evaluated before and 9 months after 12 weeks of sofosbuvir/velpatasvir treatment. All achieved SVR. A liver biopsy, portal blood (direct portal vein cannulation), peripheral blood and stool samples were obtained. RNA-seq and immunofluorescent staining were performed on liver biopsies. RNA-seq and 16S rRNA metagenomics were performed on stool. RESULTS Differential expression within liver transcription showed 514 downregulated genes (FDR q < .05; foldchange > 2) enriched in inflammatory pathways; of note, GO:0060337, type 1 IFN signalling (p = 8e-23) and GO:0042742, defence response to bacterium (p = 8e-3). Interestingly, microbial products increased in the portal blood and liver after SVR. Due to the increase in microbial products, the gut microbiome was investigated. There was no dysbiosis by Shannon diversity index or Bacteroides/Firmicutes ratio. There was a differential increase in genes responsible for bacterial lipopolysaccharide production after SVR. CONCLUSIONS The decrease in the antiviral interferon pathway expression was expected after SVR; however, there was an unanticipated decrease in the transcription of genes involved in recognition and response to bacteria, which was associated with increased levels of microbial products. Finally, the alterations in the function of the gut microbiome are a promising avenue for further investigation of the gut-liver axis, especially in the context of the significant immunological changes noted after SVR.
Collapse
Affiliation(s)
- Gabriella Quinn
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rabab O Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Y Zhang
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kareen Hill
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Townsend
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Moumita Chakraborty
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maleeha F Ahmad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Meital Gewirtz
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan Schoenfeld
- NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shanna Yang
- NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Wang W, Song X, Lou Y, Du L, Zhu D, Zhou Z. Immunogenicity of LY2963016 insulin glargine and Lantus® insulin glargine in Chinese patients with type 1 or type 2 diabetes mellitus. Diabetes Obes Metab 2022; 24:1094-1104. [PMID: 35187770 PMCID: PMC9314964 DOI: 10.1111/dom.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022]
Abstract
AIMS To evaluate the immunogenicity of LY2963016 insulin glargine (LY IGlar) versus originator insulin glargine (IGlar [Lantus®]) in Chinese patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS ABES and ABET were prospective, randomized, active control, open-label, phase III studies, which enrolled Chinese patients with T1DM (N = 272) and T2DM (N = 536), respectively. Using data from these trials, immunogenicity of LY IGlar and IGlar was evaluated by comparing the proportion of patients with detectable anti-insulin glargine antibodies and the median antibody levels (percent binding) between the treatment groups. The incidence of anti-insulin antibodies and treatment-emergent antibody response (TEAR) were compared using Fisher's exact test or Pearson's chi-squared test. Levels of anti-insulin antibodies were compared using the Wilcoxon rank-sum test. We also evaluated the relationship between antibody formation or TEAR and clinical outcomes using analysis of covariance, negative binomial regression, or partial correlations. RESULTS There were no significant treatment differences in the incidence of detectable anti-insulin antibodies, median antibody levels or TEAR, overall or at Week 24 with last observation carried forward, and median antibody levels were low (<5%) after 24 weeks of treatment, in patients with T1DM or T2DM. Levels of anti-insulin antibodies and development of TEAR were not associated with efficacy (glycated haemoglobin, insulin dose [U/kg/d] and hypoglycaemia) or safety outcomes. CONCLUSIONS The immunogenicity profiles of LY IGlar and IGlar are similar, with low levels of anti-insulin antibodies observed for both insulins. No association was observed between antibody levels or TEAR status and clinical outcomes.
Collapse
Affiliation(s)
- Weimin Wang
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Xiang Song
- Lilly (Shanghai) Management Co., LtdShanghaiChina
| | - Ying Lou
- Lilly Suzhou Pharmaceutical Co., LtdShanghaiChina
| | - Liying Du
- Lilly Suzhou Pharmaceutical Co., LtdShanghaiChina
| | - Dalong Zhu
- Department of EndocrinologyDrum Tower Hospital Affiliated to Nanjing University Medical SchoolNanjingChina
| | - Zhiguang Zhou
- National Clinical Research Centre for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University)Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
5
|
Broadbent L, Bamford CGG, Lopez Campos G, Manzoor S, Courtney D, Ali A, Touzelet O, McCaughey C, Mills K, Power UF. An endogenously activated antiviral state restricts SARS-CoV-2 infection in differentiated primary airway epithelial cells. PLoS One 2022; 17:e0266412. [PMID: 35436306 PMCID: PMC9015133 DOI: 10.1371/journal.pone.0266412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/20/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and caused >5 million deaths by February 2022. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ1) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) culture model derived from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ1 expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ1 secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Connor G. G. Bamford
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sheerien Manzoor
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - David Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Ahlam Ali
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Olivier Touzelet
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Conall McCaughey
- Regional Virus Laboratory, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ultan F. Power
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Liang PC, Chen KY, Huang CH, Chang K, Lu PL, Yeh ML, Huang CF, Huang CI, Hsieh MH, Dai CY, Lin ZY, Chen SC, Chuang WL, Chen YH, Huang JF, Yu ML. Viral Interference Between Dengue Virus and Hepatitis C Virus Infections. Open Forum Infect Dis 2020; 7:ofaa272. [PMID: 32875000 PMCID: PMC7452371 DOI: 10.1093/ofid/ofaa272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/26/2020] [Indexed: 12/03/2022] Open
Abstract
Both dengue virus (DENV) and hepatitis C virus (HCV) belong to the Flaviviridae family and could induce hepatitis. We aimed to investigate the interference between them. In total, 515 patients confirmed with dengue fever (DF) were enrolled. Thirty-two patients (6.21%) were seropositive for anti-HCV; 12 of 32 anti-HCV-positive patients had detectable HCV-RNA at presentation of DF. The proportion of dengue hemorrhagic fever was comparable between patients with or without anti-HCV and between those with or without HCV-RNA. Eleven of 32 patients received HCV-RNA testing during a median interval of 23 months after DF, which revealed significantly increased HCV-RNA levels (5.43 ± 0.77 vs 3.09 ± 1.24 log IU/mL, follow-up vs acute-DF phase; P = .003). Four of 11 patients with baseline HCV-RNA values before DF demonstrated a nadir viremia during acute DF. We also included age-, sex-, and follow-up duration–matched HCV-monoinfected patients as controls; higher delta HCV-RNA changes were demonstrated in patients with DF than in controls during the follow-up period (2.34 ± 1.15 vs –0.27 ± 0.76 log IU/mL; P < .001). Further in vitro experiments showed that HCV nonstructural protein 5A was downregulated in Con1 HCV replicon cells infected by DENV1. These clinical and experimental findings suggested possible viral interference in DENV/HCV. However, HCV viremia did not affect the disease outcomes of DF.
Collapse
Affiliation(s)
- Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuan-Yu Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chung-Hao Huang
- Infectious Diseases Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ko Chang
- Infectious Diseases Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Infectious Diseases Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shinn-Chern Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Infectious Diseases Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Centre for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Internal Medicine and Hepatitis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) and Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| |
Collapse
|
7
|
Guo X, Chen D, Cai Q, Huang Z, Xu W, Peng L, Chen P. Minicircle DNA vector expressing interferon-lambda-3 inhibits hepatitis B virus replication and expression in hepatocyte-derived cell line. BMC Mol Cell Biol 2020; 21:6. [PMID: 32070272 PMCID: PMC7027252 DOI: 10.1186/s12860-020-00250-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interferon-alpha (IFNα) is a first-line treatment option for chronic hepatitis B virus (HBV) infection, but the severe systemic side-effects limited its clinical application. Interferon-lambda (IFNλ) with comparable antiviral activity and less toxic side-effects is thought to be a good alternative interferon to IFNα. Additionally, the gene vector mediated sustainably expression of therapeutic product in the target cells/tissue may overcome the shortcomings resulted from the short half-life of IFNs. RESULTS We constructed a liver-specific IFNλ3-expressing minicircle (MC) vector under the control of a hepatocyte-specific ApoE promoter (MC.IFNλ3) and investigated its anti-HBV activity in a HBV-expressing hepatocyte-derived cell model (HepG2.2.15). As expected, the MC.IFNλ3 vector capable of expressing IFNλ3 in the recipient hepatocytes has demonstrated robust anti-HBV activity, in terms of suppressing viral antigen expression and viral DNA replication, via activation the interferon-stimulated gene (ISG) expression in HepG2.2.15 cells. CONCLUSIONS Given the MC vector can be easily delivered into liver, the liver-targeted IFN gene-transfer (MC.IFNλ3), instead of systemic administrating IFN repeatedly, provides a promising concept for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dianke Chen
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingxian Cai
- Department of Hepatology, The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Zhanlian Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Ping Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Wisgrill L, Wessely I, Netzl A, Pummer L, Sadeghi K, Spittler A, Berger A, Förster‐Waldl E. Diminished secretion and function of IL-29 is associated with impaired IFN-α response of neonatal plasmacytoid dendritic cells. J Leukoc Biol 2019; 106:1177-1185. [PMID: 31211458 PMCID: PMC6852569 DOI: 10.1002/jlb.4a0518-189r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are key players in the antiviral immune response and type III IFNs such as IL-29 appear to play a pivotal role in pDC function. Pronounced susceptibility to viral infections in neonates is partly resulting from diminished antiviral immune mechanisms. Accordingly, the aim of the present study was to investigate the impact of IL-29 in the altered immune response of neonatal pDCs. PBMCs of adult and term newborns were stimulated with CpG-ODN2216 in the presence or absence of IL-29 and assessed for IFN-α production, downstream-signaling, and activation marker expression. A significantly lower IL-29 production after TLR9-specific stimulation was demonstrated in neonatal pDCs. IL-29 enhanced the IFN-α production of pDCs in adults compared to newborns. Newborn pDCs displayed a significantly lower surface expression of IL-10 and IL-28Rα receptor resulting in diminished STAT1 and IRF7 activation. Interestingly, concomitant stimulation with CpG-ODN2216/IL-29 had no impact on the expression of surface activation and maturation markers of pDCs in neither population. The diminished antiviral immune response of neonatal pDCs is associated with reduced production and cellular responses toward IL-29. Potential therapeutic agents enhancing the IL-29 response in neonatal pDCs possibly augment viral protection in newborns.
Collapse
Affiliation(s)
- Lukas Wisgrill
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Isabelle Wessely
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Antonia Netzl
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Linda Pummer
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Kambis Sadeghi
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Andreas Spittler
- Department of Surgery & Core Facility Flow CytometryMedical University of ViennaViennaAustria
| | - Angelika Berger
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
| | - Elisabeth Förster‐Waldl
- Department of Pediatrics and Adolescent MedicineDivision of NeonatologyPediatric Intensive Care & NeuropediatricsMedical University of ViennaViennaAustria
- Center for Congenital ImmunodeficienciesMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Grzegorzewska AE. Genetic Polymorphisms within Interferon-λ Region and Interferon-λ3 in the Human Pathophysiology: Their Contribution to Outcome, Treatment, and Prevention of Infections with Hepatotropic Viruses. Curr Med Chem 2019; 26:4832-4851. [DOI: 10.2174/0929867325666180719121142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
:
Genetic polymorphisms within the interferon λ (IFN-λ) chromosomal region,
mainly rs12979860 of IFN-λ4 gene (IFNL4), are known as associated with spontaneous hepatitis
C virus (HCV) resolution and sustained viral response to therapy with pegylated interferon-
α and ribavirin. Strong linkage disequilibrium of IFNL4 rs12979860 with IFNL4
rs368234815, which is casually associated with HCV spontaneous and therapeutical eradication,
at least partially explains favorable HCV outcomes attributed to major homozygosity in
rs12979860. Effects of IFN-based antiviral treatment are associated with pretreatment expression
of the IFN-λ1 receptor, expression of hepatic IFN-stimulated genes, production of IFN-
λ4, and preactivation of the JAK-STAT signaling. Nowadays direct-acting antivirals (DAAs)
became a potent tool in the treatment of hepatitis C, but IFN-λs are still under investigation as
potential antivirals and might be an option in HCV infection (DAA resistance, recurrent viremia,
adverse effects).
:
Patients with altered immunocompetence are especially prone to infections. In uremic subjects,
polymorphisms within the IFN-λ chromosomal region associate with spontaneous HCV
clearance, similarly like in the non-uremic population. Circulating IFN-λ3 shows a positive
correlation with plasma titers of antibodies to surface antigen of hepatitis B virus (anti-HBs),
which are crucial for protection against hepatitis B virus. More efficient anti-HBs production
in the presence of higher IFN-λ3 levels might occur due to IFN-λ3-induced regulation of indoleamine
2,3-dioxygenase (IDO) expression. IFN-stimulated response element is a part of
IDO gene promoter. It is worth further investigation whether IDO gene, circulating IDO, genetic
polymorphisms within the IFN-λ region, and circulating IFN-λ3 act in concordance in
immunological response to hepatotropic viruses.
Collapse
Affiliation(s)
- Alicja E. Grzegorzewska
- Chair and Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Dyrka K, Miedziaszczyk M, Szałek E, Łącka K. Drugs used in viral diseases – their mechanism of action, selected adverse effects and safety during pregnancy and lactation. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Viruses cause many diseases in humans, from self-resolving diseases to acute fatal diseases. New antiviral drugs are registered and the efficacy and safety of other medicines are evaluated in clinical trials. Antiviral therapy significantly reduces the morbidity and mortality of patients, but may cause numerous adverse effects. The aim of this study is to discuss the mechanism, selected adverse effects of available antivirals and their safety during pregnancy and lactation. The authors refer to the classification of drugs used during pregnancy and recommendations for breastfeeding, which, for example, definitely prohibit the use of ribavirin. The authors also pay attention to the monitoring of selected diagnostic parameters to improve the treatment results. Clinicians should limit adverse effects through an individual, specific to the patient treatment regimen. Physicians should pay special attention to the use of antiviral drugs in pregnant and breast-feeding women. Clinical trials should be continued to increase knowledge about the adverse effects of antiviral medicines.
Collapse
Affiliation(s)
- Kamil Dyrka
- Endocrinological Student’s Scientific Group of Department of Endocrinology, Metabolism and Internal Diseases, Poznań University of Medical Sciences, Poznań, Polska
| | - Miłosz Miedziaszczyk
- Student’s Scientific Group of Clinical Pharmacy of Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Poznań, Polska
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Łącka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznań University of Medical Sciences, Poznań, Polska
| |
Collapse
|
11
|
NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat Commun 2019; 10:1507. [PMID: 30944315 PMCID: PMC6447531 DOI: 10.1038/s41467-019-09212-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 01/23/2023] Open
Abstract
Exhaustion of cytotoxic effector natural killer (NK) and CD8+ T cells have important functions in the establishment of persistent viral infections, but how exhaustion is induced during chronic hepatitis C virus (HCV) infection remains poorly defined. Here we show, using the humanized C/OTg mice permissive for persistent HCV infection, that NK and CD8+ T cells become sequentially exhausted shortly after their transient hepatic infiltration and activation in acute HCV infection. HCV infection upregulates Qa-1 expression in hepatocytes, which ligates NKG2A to induce NK cell exhaustion. Antibodies targeting NKG2A or Qa-1 prevents NK exhaustion and promotes NK-dependent HCV clearance. Moreover, reactivated NK cells provide sufficient IFN-γ that helps rejuvenate polyclonal HCV CD8+ T cell response and clearance of HCV. Our data thus show that NKG2A serves as a critical checkpoint for HCV-induced NK exhaustion, and that NKG2A blockade sequentially boosts interdependent NK and CD8+ T cell functions to prevent persistent HCV infection. Immune cells may become less responsive, or ‘exhausted’, upon chronic viral infection, but the underlying mechanism and crosstalk are still unclear. Here the authors show that, upon chronic hepatitis C virus (HCV) infection, natural killer cell exhaustion is induced by NKG2A signalling to instruct downstream exhaustion of CD8+ T cells and HCV persistence.
Collapse
|
12
|
Ilyushina NA, Dickensheets H, Donnelly RP. A comparison of interferon gene expression induced by influenza A virus infection of human airway epithelial cells from two different donors. Virus Res 2019; 264:1-7. [PMID: 30779949 DOI: 10.1016/j.virusres.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Influenza is an acute respiratory disease that can cause local annual epidemics and worldwide pandemics of different morbidity and mortality. Our understanding of host factors that modulate the frequency and severity of influenza virus infections is less than complete. In this study, we examined the inter-individual variations in the innate immune responses to H1N1 and H3N2 influenza A viruses (IAV) using primary cultures of normal human bronchial epithelial (NHBE) cells derived from two different donors (D1 and D2). Although IAV replication kinetics were similar in cultures derived from these two donors, the levels of type III interferons (IFNs) were significantly higher in D1 cells compared to D2 cells (˜31-fold↑ in D1 cells versus D2 cells; P < 0.05). The levels of IFN-λ1 protein at individual time points as well as the total amounts of IFN-λ1 secreted over 72 h were also significantly higher in D1 than in D2 NHBE cells (0.7-7.7-fold↑, P < 0.05). The relative levels of IFN-stimulated gene (ISG) expression also differed significantly between D1 and D2 cells. Our data indicate that donor-specific differences can result in significant differences in IFN and ISG induction by human airway epithelium.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| | - Harold Dickensheets
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Raymond P Donnelly
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
13
|
Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol 2018; 56:67-75. [PMID: 30399529 PMCID: PMC6541392 DOI: 10.1016/j.coi.2018.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
IFNλs are dual function cytokines mediating antiviral activity and damage control. IFNλs confer initial antimicrobial protection at anatomical barriers without provoking unnecessary inflammation. IFNλs exhibit immune regulatory and host protective actions reminiscent of IL-10. IFNλs form novel therapeutics with the beneficial actions of type I IFNs but lacking their pro-inflammatory side effects.
Lambda interferons (IFNλs, type III IFNs or interleukins-28/29) were described fifteen years ago as novel cytokines sharing structural and functional homology with IL-10 and type I IFNs, respectively. IFNλs engage a unique receptor complex comprising IFNLR1 and IL10R2, nevertheless they share signaling cascade and many functions with type I IFNs, questioning their possible non-redundant roles and overall biological importance. Here, we review the latest evidence establishing the primacy of IFNλs in front line protection at anatomical barriers, mediating antiviral immunity before type I IFNs. We also discuss their emerging role in regulating inflammation and limiting host damage, a major difference to type I IFNs. IFNλs come thus to light as dual function cytokines mediating antiviral immunity and damage control.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1NY, United Kingdom.
| | - Ivan Zanoni
- Division of Gastroenterology, Boston Children's Hospital, Harvard University, Boston, MA 02115, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Ioanna E Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
González-Aldaco K, Torres-Reyes LA, Ojeda-Granados C, José-Ábrego A, Fierro NA, Román S. Immunometabolic Effect of Cholesterol in Hepatitis C Infection: Implications in Clinical Management and Antiviral Therapy. Ann Hepatol 2018; 17:908-919. [PMID: 30600305 DOI: 10.5604/01.3001.0012.7191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a lipid-enveloped virion particle that causes infection to the liver, and as part of its life cycle, it disrupts the host lipid metabolic machinery, particularly the cholesterol synthesis pathway. The innate immune response generated by liver resident immune cells is responsible for successful viral eradication. Unfortunately, most patients fail to eliminate HCV and progress to chronic infection. Chronic infection is associated with hepatic fat accumulation and inflammation that triggers fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Despite that the current direct-acting antiviral agents have increased the cure rate of HCV infection, viral genotype and the host genetic background influence both the immune response and lipid metabolism. In this context, recent evidence has shown that cholesterol and its derivatives such as oxysterols might modulate and potentialize the hepatic innate immune response generated against HCV. The impairment of the HCV life cycle modulated by serum cholesterol could be relevant for the clinical management of HCV-infected patients before and after treatment. Alongside, cholesterol levels are modulated either by genetic variations in IL28B, ApoE, and LDLR or by dietary components. Indeed, some nutrients such as unsaturated fatty acids have demonstrated to be effective against HCV replication. Thus, cholesterol modifications may be considered as a new adjuvant strategy for HCV infection therapy by providing a biochemical tool that guides treatment decisions, an improved treatment response and favoring viral clearance. Herein, the mechanisms by which cholesterol contributes to the immune response against HCV infection and how genetic and environmental factors may affect this role are reviewed.
Collapse
Affiliation(s)
- Karina González-Aldaco
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Luis A Torres-Reyes
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Ojeda-Granados
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alexis José-Ábrego
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nora A Fierro
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Román
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde" and Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
15
|
Faraji F, Karjoo Z, Moghaddam MV, Heidari S, Emameh RZ, Falak R. Challenges related to the immunogenicity of parenteral recombinant proteins: Underlying mechanisms and new approaches to overcome it. Int Rev Immunol 2018; 37:301-315. [PMID: 29851534 DOI: 10.1080/08830185.2018.1471139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune response elicited by therapeutic proteins is an important safety and efficacy issue for regulatory agencies, drug manufacturers, clinicians, and patients. Administration of therapeutic proteins can potentially induce the production of anti-drug antibodies or cell-mediated immune responses. At first, it was speculated that the immunogenicity is related to the non-human origin of these proteins. Later on, it was confirmed that the human proteins may also show immunogenicity. In this review article, we will focus on a number of factors, which play crucial roles in the human protein immunogenicity. These factors are related to the patient's status (or intrinsic properties) and molecular characteristics of the therapeutic protein's (or extrinsic properties). Furthermore, we will discuss available in silico, in vitro, and in vivo methods for the prediction of sequences, which may generate an immune response following parenteral administration of these proteins. In summary, nowadays, it is possible for drug manufacturers to evaluate the risk of immunogenicity of therapeutic proteins and implement a management plan to overcome the problems prior to proceeding to human clinical trials.
Collapse
Affiliation(s)
- Fatemeh Faraji
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Zahra Karjoo
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | | | - Sahel Heidari
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Reza Zolfaghari Emameh
- c Department of Energy and Environmental Biotechnology, Division of Industrial & Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Reza Falak
- a Immunology Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran.,b Department of Immunology, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| |
Collapse
|
16
|
Yudin NS, Barkhash AV, Maksimov VN, Ignatieva EV, Romaschenko AG. Human Genetic Predisposition to Diseases Caused by Viruses from Flaviviridae Family. Mol Biol 2018. [DOI: 10.1134/s0026893317050223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Ilyushina NA, Lugovtsev VY, Samsonova AP, Sheikh FG, Bovin NV, Donnelly RP. Generation and characterization of interferon-lambda 1-resistant H1N1 influenza A viruses. PLoS One 2017; 12:e0181999. [PMID: 28750037 PMCID: PMC5531537 DOI: 10.1371/journal.pone.0181999] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses pose a constant potential threat to human health. In view of the innate antiviral activity of interferons (IFNs) and their potential use as anti-influenza agents, it is important to know whether viral resistance to these antiviral proteins can arise. To examine the likelihood of emergence of IFN-λ1-resistant H1N1 variants, we serially passaged the A/California/04/09 (H1N1) strain in a human lung epithelial cell line (Calu-3) in the presence of increasing concentrations of recombinant IFN-λ1 protein. To monitor changes associated with adaptation of this virus to growth in Calu-3 cells, we also passaged the wild-type virus in the absence of IFN-λ1. Under IFN-λ1 selective pressure, the parental virus developed two neuraminidase (NA) mutations, S79L and K331N, which significantly reduced NA enzyme activity (↓1.4-fold) and sensitivity to IFN-λ1 (↓˃20-fold), respectively. These changes were not associated with a reduction in viral replication levels. Mutants carrying either K331N alone or S79L and K331N together induced weaker phosphorylation of IFN regulatory factor 3 (IRF3), and, as a consequence, much lower expression of the IFN genes (IFNB1, IFNL1 and IFNL2/3) and proteins (IFN-λ1 and IFN-λ2/3). The lower levels of IFN expression correlated with weaker induction of tyrosine-phosphorylated STAT1 and reduced RIG-I protein levels. Our findings demonstrate that influenza viruses can develop increased resistance to the antiviral activity of type III interferons.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- DEAD Box Protein 58/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Dogs
- Drug Resistance, Viral/drug effects
- Enzyme-Linked Immunosorbent Assay
- Gene Expression Regulation/drug effects
- Humans
- Immunity, Innate/drug effects
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H1N1 Subtype/physiology
- Interferon Regulatory Factor-3/metabolism
- Interferons
- Interleukins/pharmacology
- Mutation/genetics
- Neuraminidase/genetics
- Phosphorylation/drug effects
- Receptors, Immunologic
- Receptors, Virus/genetics
- Recombination, Genetic/genetics
- STAT1 Transcription Factor/metabolism
- Sequence Analysis, DNA
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Natalia A. Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anastasia P. Samsonova
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Faruk G. Sheikh
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nicolai V. Bovin
- Carbohydrate Chemistry Laboratory, Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Raymond P. Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
18
|
ZHAO J, YU HY, ZHANG JL, WANG XM, LI JP, HU T, HU Y, WANG ML, SHEN YZ, XU JD, HAN GX, CHEN J. Pharmacokinetic studies of the recombinant chicken interferon-α in broiler chickens. J Vet Med Sci 2017; 79:314-319. [PMID: 27890904 PMCID: PMC5326936 DOI: 10.1292/jvms.15-0681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 11/04/2016] [Indexed: 01/06/2023] Open
Abstract
In this study, 24 male and female broiler chickens at 30-day-old were divided into three groups with 8 animals in each group. The animals were administered with recombinant chicken interferon-α (rChIFN-α) at a dose of 1.0 × 106 IU/kg intravenously, intramuscularly or subcutaneously, respectively. Serum samples were collected at different time points post administration, and the titers of rChIFN-α in the blood were determined by cytopathic effect inhibition assay. The results showed that the pharmacokinetic characteristics of rChIFN-α by intramuscular injection and subcutaneous injection were fitted to one compartment open model, and the Tmax was 3.21 ± 0.79 hr and 3.95 ± 0.85 hr, respectively, and the elimination half-life (T1/2) was 6.20 ± 2.77 hr and 5.03 ± 3.70 hr, respectively. In contrast, the pharmacokinetics of rChIFN-α via intravenous injection was in line with the open model of two-compartment and was eliminated in the first order, and the elimination half-life (T1/2) was 4.61 ± 0.84 hr. In addition, compared with those in the intravenous group and the subcutaneous group, the bioavailability of rChIFN-α in the intramuscular group was 82.80%. In conclusion, rChIFN-α was rapidly absorbed and slowly eliminated after intramuscular administration of single dose of rChIFN-α aqueous formulations. Thus, rChIFN-α can be used as a commonly-used therapeutic agent.
Collapse
Affiliation(s)
- Jun ZHAO
- Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province,
241000, China
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Hai-Yang YU
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Jun-Ling ZHANG
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Xing-Man WANG
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Jin-Pei LI
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Tao HU
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Yong HU
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Ming-Li WANG
- Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province,
241000, China
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
| | - Yong-Zhou SHEN
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province,
241007, China
| | - Jing-Dong XU
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province,
241007, China
| | - Guo-Xiang HAN
- Anhui JiuChuan Biotech Co., Ltd., Wuhu, Anhui Province,
241007, China
| | - Jason CHEN
- Department of Microbiology, Anhui Medical University, Hefei,
Anhui Province, 230032, China
- Department of Pathology & Cell Biology, Columbia
University, New York 10032, U.S.A
| |
Collapse
|
19
|
Li X, Li Y, Fang S, Su J, Jiang J, Liang B, Huang J, Zhou B, Zang N, Ho W, Li J, Li Y, Chen H, Ye L, Liang H. Downregulation of autophagy-related gene ATG5 and GABARAP expression by IFN-λ1 contributes to its anti-HCV activity in human hepatoma cells. Antiviral Res 2017; 140:83-94. [PMID: 28131804 DOI: 10.1016/j.antiviral.2017.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Type-III interferon (IFN-λ), the most recently discovered family of IFNs, shares common features with type I IFNs, but also has many distinctive activities. It is not clear that whether IFN-λ has additional antiviral mechanisms. In this study, we investigated the effects of IFN-λ on autophagy, a cellular process closely related to hepatitis C virus (HCV) infection in human hepatoma Huh7 cells. Our results showed that IFN-λ1 treatment inhibit autophagic activity in Huh7 cells, as evidenced by the decreased expression of microtubule-associated protein 1 light chain 3B (LC3B)-II and conversion of LC3B-I to LC3B-II, decreased formation of GFP-LC3 puncta and accumulation of autophagosomes. IFN-λ1 could also inhibit HCV-induced or tunicamycin (a known inducer of autophagy with similar mechanism to HCV infection) -induced LC3B-II expression and autophagosome formation. Through PCR array, real time RT PCR, and western blot, two autophagy-related genes, ATG5 and GABARAP, were identified and verified to be down-regulated by IFN-λ1 treatment, either in HCV-uninfected Huh7 cells or in HCV JFH-1-infected cells. Overexpression of ATG5 and/or GABARAP could partly recover the IFN-λ1-inhibited HCV replication. Mechanism research demonstrated that IFN-λ1 could induce the expression of miR-181a and miR-214 (targeting ATG5 and GABARAP respectively), by which down-regulates ATG5 and GABARAP expression. Taken together, our results indicate that suppression of the autophagy response by IFN-λ1 contributes to IFN-λ1 anti-HCV activity. The results also provide a theoretical basis for improving the effectiveness of IFN treatment of HCV infection through inhibition of the HCV-induced autophagy response.
Collapse
Affiliation(s)
- Xu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Medical Insurance Department, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shoucai Fang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Division of HIV/AIDS Control and Prevention, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bo Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ning Zang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yiping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Geriatrics Digestion Department of Internal Medicine, The First Affiliated Hospital of GuangXi Medical University, Nanning, 530021, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
20
|
Hamana A, Takahashi Y, Nishikawa M, Takakura Y. Interferon-Inducible Mx Promoter-Driven, Long-Term Transgene Expression System of Interferon-β for Cancer Gene Therapy. Hum Gene Ther 2016; 27:936-945. [DOI: 10.1089/hum.2016.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Atsushi Hamana
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Chen SN, Zhang XW, Li L, Ruan BY, Huang B, Huang WS, Zou PF, Fu JP, Zhao LJ, Li N, Nie P. Evolution of IFN-λ in tetrapod vertebrates and its functional characterization in green anole lizard (Anolis carolinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:208-224. [PMID: 27062970 DOI: 10.1016/j.dci.2016.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
IFN-λ (IFNL), i.e. type III IFN genes were found in a conserved gene locus in tetrapod vertebrates. But, a unique locus containing IFNL was found in avian. In turtle and crocodile, IFNL genes were distributed in these two separate loci. As revealed in phylogenetic trees, IFN-λs in these two different loci and other amniotes were grouped into two different clades. The conservation in gene presence and gene locus was also observed for the receptors of IFN-λ, IFN-λR1 and IL-10RB in tetrapods. It is further revealed that in North American green anole lizard Anolis carolinensis, a single IFNL gene was situated collinearly in the conserved locus as in other tetrapods, together with its receptors IFN-λR1 and IL-10RB also identified in this study. The IFN-λ and its receptors were expressed in all examined organs/tissues, and their expression was stimulated following the injection of polyI:polyC. The ISREs in promoter of IFN-λ in lizard were responsible to IRF3 as demonstrated using luciferase report system, and IFN-λ in lizard functioned through the receptors, IFN-λR1 and IL-10RB, as the up-regulation of ISGs was observed in ligand-receptor transfected, and also in recombinant IFN-λ stimulated, cell lines. Taken together, it is concluded that the mechanisms involved in type III IFN ligand-receptor system, and in its signalling pathway and its down-stream genes may be conserved in green anole lizard, and may even be so in tetrapods from xenopus to human.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Xiao Wen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Bai Ye Ruan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Bei Huang
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Wen Shu Huang
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Peng Fei Zou
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Jian Ping Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Juan Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Lopušná K, Benkóczka T, Lupták J, Matúšková R, Lukáčiková Ľ, Ovečková I, Režuchová I. Murine gammaherpesvirus targets type I IFN receptor but not type III IFN receptor early in infection. Cytokine 2016; 83:158-170. [PMID: 27152708 DOI: 10.1016/j.cyto.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2-4hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection.
Collapse
Affiliation(s)
- Katarína Lopušná
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Tímea Benkóczka
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Jakub Lupták
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Radka Matúšková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ľubomíra Lukáčiková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingrid Ovečková
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic
| | - Ingeborg Režuchová
- Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava 845 05, Slovak Republic.
| |
Collapse
|
23
|
Ferraris P, Chandra PK, Panigrahi R, Aboulnasr F, Chava S, Kurt R, Pawlotsky JM, Wilkens L, Osterlund P, Hartmann R, Balart LA, Wu T, Dash S. Cellular Mechanism for Impaired Hepatitis C Virus Clearance by Interferon Associated with IFNL3 Gene Polymorphisms Relates to Intrahepatic Interferon-λ Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:938-51. [PMID: 26896692 PMCID: PMC5807932 DOI: 10.1016/j.ajpath.2015.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
The single nucleotide polymorphism located within the IFNL3 (also known as IL28B) promoter is one of the host factors associated with hepatitis C virus (HCV) clearance by interferon (IFN)-α therapy; however the mechanism remains unknown. We investigated how IL28B gene polymorphism influences HCV clearance with infected primary human hepatocytes, liver biopsies, and hepatoma cell lines. Our study confirms that the rs12979860-T/T genotype has a strong correlation with ss469415590-ΔG/ΔG single nucleotide polymorphism that produces IFN-λ4 protein. We found that IFN-α and IFN-λ1 antiviral activity against HCV was impaired in IL28B T/T infected hepatocytes compared with C/C genotype. Western blot analysis showed that IL28B TT genotype hepatocytes expressed higher levels of IFN-λ proteins (IL28B, IL-29), preactivated IFN-stimulated gene (ISG) expression, and impaired Stat phosphorylation when stimulated with either IFN-α or IFN-λ1. Furthermore, we showed that silencing IFN-λ1 in T/T cell line reduced basal ISG expression and improved antiviral activity. Likewise, overexpression of IFN-λ (1 to 4) in C/C cells induced basal ISG expression and prevented IFN-α antiviral activity. We showed that IFN-λ4, produced at low level only in T/T cells induced expression of IL28B and IL-29 and prevented IFN-α antiviral activity in HCV cell culture. Our results suggest that IFN-λ4 protein expression associated with the IL28B-T/T variant preactivates the Janus kinase-Stat signaling, leading to impaired HCV clearance by both IFN-α and IFN-λ.
Collapse
Affiliation(s)
- Pauline Ferraris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Rajesh Panigrahi
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Fatma Aboulnasr
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Srinivas Chava
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Ramazan Kurt
- Department of Medicine, Gastroenterology, and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Jean-Michel Pawlotsky
- Department of Molecular Virology and Immunology, Institut Mondor de la Recherche, Creteil, France
| | - Ludwig Wilkens
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pamela Osterlund
- Department of Vaccination and Immune Protection Viral Infections, National Institute for Health and Welfare, Helsinki, Finland
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Luis A Balart
- Department of Medicine, Gastroenterology, and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana; Department of Medicine, Gastroenterology, and Hepatology, Tulane University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
24
|
Aboulnasr F, Hazari S, Nayak S, Chandra PK, Panigrahi R, Ferraris P, Chava S, Kurt R, Song K, Dash A, Balart LA, Garry RF, Wu T, Dash S. IFN-λ Inhibits MiR-122 Transcription through a Stat3-HNF4α Inflammatory Feedback Loop in an IFN-α Resistant HCV Cell Culture System. PLoS One 2015; 10:e0141655. [PMID: 26657215 PMCID: PMC4686105 DOI: 10.1371/journal.pone.0141655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND HCV replication in persistently infected cell culture remains resistant to IFN-α/RBV combination treatment, whereas IFN-λ1 induces viral clearance. The antiviral mechanisms by which IFN-λ1 induces sustained HCV clearance have not been determined. AIM To investigate the mechanisms by which IFN-λ clears HCV replication in an HCV cell culture model. METHODS IFN-α sensitive (S3-GFP) and resistant (R4-GFP) cells were treated with equivalent concentrations of either IFN-α or IFN-λ. The relative antiviral effects of IFN-α and IFN-λ1 were compared by measuring the HCV replication, quantification of HCV-GFP expression by flow cytometry, and viral RNA levels by real time RT-PCR. Activation of Jak-Stat signaling, interferon stimulated gene (ISG) expression, and miRNA-122 transcription in S3-GFP and R4-GFP cells were examined. RESULTS We have shown that IFN-λ1 induces HCV clearance in IFN-α resistant and sensitive replicon cell lines in a dose dependent manner through Jak-Stat signaling, and induces STAT 1 and STAT 2 activation, ISRE-luciferase promoter activation and ISG expression. Stat 3 activation is also involved in IFN-λ1 induced antiviral activity in HCV cell culture. IFN-λ1 induced Stat 3 phosphorylation reduces the expression of hepatocyte nuclear factor 4 alpha (HNF4α) through miR-24 in R4-GFP cells. Reduced expression of HNF4α is associated with decreased expression of miR-122 resulting in an anti-HCV effect. Northern blot analysis confirms that IFN-λ1 reduces miR-122 levels in R4-GFP cells. Our results indicate that IFN-λ1 activates the Stat 3-HNF4α feedback inflammatory loop to inhibit miR-122 transcription in HCV cell culture. CONCLUSIONS In addition to the classical Jak-Stat antiviral signaling pathway, IFN-λ1 inhibits HCV replication through the suppression of miRNA-122 transcription via an inflammatory Stat 3-HNF4α feedback loop. Inflammatory feedback circuits activated by IFNs during chronic inflammation expose non-responders to the risk of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Fatma Aboulnasr
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Sidhartha Hazari
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Satyam Nayak
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Partha K. Chandra
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Rajesh Panigrahi
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Pauline Ferraris
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Srinivas Chava
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Ramazan Kurt
- Department of Medicine, Division of Gastroenterology and Hepatology
| | - Kyongsub Song
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Asha Dash
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Luis A. Balart
- Department of Medicine, Division of Gastroenterology and Hepatology
| | - Robert F. Garry
- Microbiology and Immunology Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Tong Wu
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
| | - Srikanta Dash
- Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA-70112, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology
| |
Collapse
|
25
|
Villenave R, Broadbent L, Douglas I, Lyons JD, Coyle PV, Teng MN, Tripp RA, Heaney LG, Shields MD, Power UF. Induction and Antagonism of Antiviral Responses in Respiratory Syncytial Virus-Infected Pediatric Airway Epithelium. J Virol 2015; 89:12309-18. [PMID: 26423940 PMCID: PMC4665230 DOI: 10.1128/jvi.02119-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/21/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Airway epithelium is the primary target of many respiratory viruses. However, virus induction and antagonism of host responses by human airway epithelium remains poorly understood. To address this, we developed a model of respiratory syncytial virus (RSV) infection based on well-differentiated pediatric primary bronchial epithelial cell cultures (WD-PBECs) that mimics hallmarks of RSV disease in infants. RSV is the most important respiratory viral pathogen in young infants worldwide. We found that RSV induces a potent antiviral state in WD-PBECs that was mediated in part by secreted factors, including interferon lambda 1 (IFN-λ1)/interleukin-29 (IL-29). In contrast, type I IFNs were not detected following RSV infection of WD-PBECs. IFN responses in RSV-infected WD-PBECs reflected those in lower airway samples from RSV-hospitalized infants. In view of the prominence of IL-29, we determined whether recombinant IL-29 treatment of WD-PBECs before or after infection abrogated RSV replication. Interestingly, IL-29 demonstrated prophylactic, but not therapeutic, potential against RSV. The absence of therapeutic potential reflected effective RSV antagonism of IFN-mediated antiviral responses in infected cells. Our data are consistent with RSV nonstructural proteins 1 and/or 2 perturbing the Jak-STAT signaling pathway, with concomitant reduced expression of antiviral effector molecules, such as MxA/B. Antagonism of Jak-STAT signaling was restricted to RSV-infected cells in WD-PBEC cultures. Importantly, our study provides the rationale to further explore IL-29 as a novel RSV prophylactic. IMPORTANCE Most respiratory viruses target airway epithelium for infection and replication, which is central to causing disease. However, for most human viruses we have a poor understanding of their interactions with human airway epithelium. Respiratory syncytial virus (RSV) is the most important viral pathogen of young infants. To help understand RSV interactions with pediatric airway epithelium, we previously developed three-dimensional primary cell cultures from infant bronchial epithelium that reproduce several hallmarks of RSV infection in infants, indicating that they represent authentic surrogates of RSV infection in infants. We found that RSV induced a potent antiviral state in these cultures and that a type III interferon, interleukin IL-29 (IL-29), was involved. Indeed, our data suggest that IL-29 has potential to prevent RSV disease. However, we also demonstrated that RSV efficiently circumvents this antiviral immune response and identified mechanisms by which this may occur. Our study provides new insights into RSV interaction with pediatric airway epithelium.
Collapse
Affiliation(s)
- Rémi Villenave
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| | - Lindsay Broadbent
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| | - Isobel Douglas
- The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Jeremy D Lyons
- The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Peter V Coyle
- The Regional Virus Laboratory, Belfast Trust, Belfast, Northern Ireland
| | - Michael N Teng
- Joy McCann Culverhouse Airway Disease Research Center, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Liam G Heaney
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| | - Michael D Shields
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland The Royal Belfast Hospital for Sick Children, Belfast, Northern Ireland
| | - Ultan F Power
- Centre for Infection and Immunity, School of Medicine, Dentistry, and Biomedical Sciences, Queens University Belfast, Belfast, Northern Ireland
| |
Collapse
|
26
|
Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S, Abrignani S. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets. Front Immunol 2015; 6:527. [PMID: 26528289 PMCID: PMC4603245 DOI: 10.3389/fimmu.2015.00527] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against persistent infections or cancer.
Collapse
Affiliation(s)
- Jens Geginat
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Giulia Nizzoli
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Stefano Maglie
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich , Zurich , Switzerland
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM) , Milan , Italy ; DISCCO, Department of Clinical Sciences and Community Health, University of Milano , Milan , Italy
| |
Collapse
|
27
|
Fredlund P, Hillson J, Gray T, Shemanski L, Dimitrova D, Srinivasan S. Peginterferon Lambda-1a Is Associated with a Low Incidence of Autoimmune Thyroid Disease in Chronic Hepatitis C. J Interferon Cytokine Res 2015; 35:841-3. [PMID: 26376344 DOI: 10.1089/jir.2014.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peginterferon alfa (alfa) increases the risk of autoimmune disease. Peginterferon lambda-1a (Lambda) acts through a receptor with a more liver-specific distribution compared to the alfa receptor. In a phase-2b study, 525 treatment-naive patients with chronic hepatitis C virus (HCV) infection received ribavirin and Lambda interferon (120, 180, or 240 μg) or alfa interferon (180 μg) for 24 (genotypes 2 and 3) or 48 (genotypes 1 and 4) weeks. Retrospective analysis found that adverse events of MedDRA-coded thyroid dysfunction and abnormal levels of thyroid-stimulating hormone (TSH) were significantly more frequent with alfa versus Lambda (12% versus 2.6% and 15.2% versus 3.4%, respectively, both P<0.0001). Most Lambda recipients with abnormal TSH had levels below the lower limit of normal; the frequency of low and high TSH was similar in alfa recipients with abnormal TSH. Blinded review by an endocrinologist found that new-onset primary hypothyroidism or painless thyroiditis was less frequent with Lambda versus alfa (0.5% and 1.8% versus 5.3% and 7.5%, respectively, P<0.0001). Most TSH elevations reflected new-onset hypothyroidism requiring treatment, while most markedly suppressed TSH values reflected probable painless thyroiditis and resolved without sequelae. In conclusion, HCV-infected patients treated with Lambda/ribavirin experienced fewer adverse events of thyroid dysfunction compared with patients treated with alfa/ribavirin.
Collapse
Affiliation(s)
- Paul Fredlund
- 1 Zymogenetics, Bristol-Myers Squibb , Seattle, Washington
| | - Jan Hillson
- 1 Zymogenetics, Bristol-Myers Squibb , Seattle, Washington
| | - Todd Gray
- 1 Zymogenetics, Bristol-Myers Squibb , Seattle, Washington
| | - Lynn Shemanski
- 1 Zymogenetics, Bristol-Myers Squibb , Seattle, Washington
| | - Dessislava Dimitrova
- 2 Global Pharmacovigilance and Epidemiology, Bristol-Myers Squibb , Hopewell, New Jersey
| | | |
Collapse
|
28
|
Miot C, Beaumont E, Duluc D, Le Guillou-Guillemette H, Preisser L, Garo E, Blanchard S, Hubert Fouchard I, Créminon C, Lamourette P, Fremaux I, Calès P, Lunel-Fabiani F, Boursier J, Braum O, Fickenscher H, Roingeard P, Delneste Y, Jeannin P. IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells. Gut 2015; 64:1466-75. [PMID: 25183206 DOI: 10.1136/gutjnl-2013-306604] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/16/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interleukin-26 (IL-26) is a member of the IL-10 cytokine family, first discovered based on its peculiar expression by virus-transformed T cells. IL-26 is overexpressed in chronic inflammation (rheumatoid arthritis and Crohn's disease) and induces proinflammatory cytokines by myeloid cells and some epithelial cells. We thus investigated the expression and potential role of IL-26 in chronic HCV infection, a pathology associated with chronic inflammation. DESIGN IL-26 was quantified in a cohort of chronically HCV-infected patients, naive of treatment and its expression in the liver biopsies investigated by immunohistochemistry. We also analysed the ability of IL-26 to modulate the activity of natural killer (NK) cells, which control HCV infection. RESULTS The serum levels of IL-26 are enhanced in chronically HCV-infected patients, mainly in those with severe liver inflammation. Immunohistochemistry reveals an intense IL-26 staining in liver lesions, mainly in infiltrating CD3+ cells. We also show that NK cells from healthy subjects and from HCV-infected patients are sensitive to IL-26. IL-26 upregulates membrane tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression on CD16- CD56(bright) NK cells, enabling them to kill HCV-infected hepatoma cells, with the same efficacy as interferon (IFN)-α-treated NK cells. IL-26 also induces the expression of the antiviral cytokines IFN-β and IFN-γ, and of the proinflammatory cytokines IL-1β and TNF-α by NK cells. CONCLUSIONS This study highlights IL-26 as a new player in the inflammatory and antiviral immune responses associated with chronic HCV infection.
Collapse
Affiliation(s)
- Charline Miot
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| | - Elodie Beaumont
- Université de Tours, Tours, France Inserm, Unité 966, Tours, France
| | - Dorothée Duluc
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | | | - Laurence Preisser
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | - Erwan Garo
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | - Simon Blanchard
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| | | | - Christophe Créminon
- Service de Pharmacologie et d'Immunoanalyse, Commissariat à l'Energie Atomique Saclay, iBiTec-S, Gif sur Yvette, France
| | - Patricia Lamourette
- Service de Pharmacologie et d'Immunoanalyse, Commissariat à l'Energie Atomique Saclay, iBiTec-S, Gif sur Yvette, France
| | - Isabelle Fremaux
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France
| | - Paul Calès
- Université d'Angers, UPRES 3859, Angers, France Service d'Hépato-Gastroentérologie, CHU Angers, Angers, France
| | - Françoise Lunel-Fabiani
- Laboratoire de Bactériologie-Virologie, CHU Angers, Angers, France Université d'Angers, UPRES 3859, Angers, France
| | - Jérôme Boursier
- Service d'Hépato-Gastroentérologie, CHU Angers, Angers, France
| | - Oliver Braum
- Institute for Infection Medicine, Christian Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Yves Delneste
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| | - Pascale Jeannin
- Université d'Angers, Angers, France Inserm, Unité 892, Angers, France CNRS, Unité 6299, Angers, France Laboratoire d'Immunologie et Allergologie, CHU Angers, Angers, France
| |
Collapse
|
29
|
Abstract
Cytokines are intercellular mediators involved in viral control and liver damage being induced by infection with hepatitis C virus (HCV). The complex cytokine network operating during initial infection allows a coordinated, effective development of both innate and adaptive immune responses. However, HCV interferes with cytokines at various levels and escapes immune response by inducing a T-helper (Th)2/T cytotoxic 2 cytokine profile. Inability to control infection leads to the recruitment of inflammatory infiltrates into the liver parenchyma by interferon (IFN)-γ-inducible CXC chemokine ligand (CXCL)9, -10, and -11 chemokines, which results in sustained liver damage and eventually in liver cirrhosis. The most important systemic HCV-related extrahepatic diseases-mixed cryoglobulinemia, lymphoproliferative disorders, thyroid autoimmune disorders, and type 2 diabetes-are associated with a complex dysregulation of the cytokine/chemokine network, involving proinflammatory and Th1 chemokines. The therapeutical administration of cytokines such as IFN-α may result in viral clearance during persistent infection and revert this process. Theoretically agents that selectively neutralize CXCL10 could increase patient responsiveness to traditional IFN-based HCV therapy. Several studies have reported IL-28B polymorphisms and circulating CXCL10 may be a prognostic markers for HCV treatment efficacy in HCV genotype 1 infection.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126, Pisa, Italy,
| | | | | | | |
Collapse
|
30
|
Abstract
When type III interferon (IFN-λ; also known as interleukin-28 [IL-28] and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to that of type I IFNs (IFN-α and IFN-β) via the induction of IFN-stimulated genes (ISGs). Although IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Viral infection models using mice lacking IFN-λ signaling and SNP associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into IFN-λ functions, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Xu Y, Zhang YG, Wang X, Qi WQ, Qin SY, Liu ZH, Jiao J, Wang JB. Long-term antiviral efficacy of entecavir and liver histology improvement in Chinese patients with hepatitis B virus-related cirrhosis. World J Gastroenterol 2015; 21:7869-76. [PMID: 26167087 PMCID: PMC4491974 DOI: 10.3748/wjg.v21.i25.7869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/04/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the clinical outcomes of 240-wk treatment with entecavir (0.5 mg) in Chinese nucleoside-naive patients with cirrhosis. METHODS A total of 204 nucleoside-naive patients with compensated (n = 96) or decompensated (n = 108) hepatitis B virus (HBV)-induced cirrhosis at the Department of Gastroenterology of the China-Japan Union Hospital (Jilin University, Changchun, China) who were treated with entecavir (0.5 mg) for 240 wk were enrolled in this study. Liver biopsy samples obtained from 38 patients prior to treatment (baseline) and at week 240 were evaluated by different independent histopathologists. Efficacy assessments included the proportions of patients who achieved an HBV DNA level < 500 copies/mL, the association of interleukin-28B genetic variation with antivirus therapy, clinical outcomes, and histologic improvement. Changes in liver disease severity were analyzed, and liver histologic evaluation was performed in 38 patients with paired biopsies. Student t tests were used to compare the means of continuous variables between the groups, and the proportions of patients who achieved the endpoints were compared using the χ(2) test. RESULTS At week 240, 87.5% of the patients with compensated cirrhosis and 92.6% of the patients with decompensated cirrhosis achieved a HBV DNA level < 500 copies/mL. Three patients had genotypic entecavir resistance within the 240-wk period. No significant association was observed between virologic response and interleukin-28 genotype (CT, 88.2% vs CC, 90.6%). The proportion of patients with Child-Pugh class A disease was significantly increased at week 240 (68%) from the baseline (47%; P < 0.01). The proportion of patients with Child-Pugh class B disease was significantly decreased at week 240 (25%) from the baseline (39%; P = 0.02). In the patients with paired liver biopsies, the mean reduction in the Knodell necroinflammatory score from the baseline was 3.58 ± 1.03 points (7.11 ± 1.80 vs 3.53 ± 1.35, P < 0.01). The mean reduction in Ishak fibrosis score from the baseline was 1.26 ± 0.64 points (5.58 ± 0.50 vs 4.32 ± 0.81, P < 0.01). CONCLUSION Entecavir is an effective treatment option for patients with HBV-related compensated or decompensated cirrhosis that can result in sustained virologic suppression and histologic improvement.
Collapse
|
32
|
|
33
|
Renn LA, Theisen TC, Navarro MB, Mane VP, Schramm LM, Kirschman KD, Fabozzi G, Hillyer P, Puig M, Verthelyi D, Rabin RL. High-throughput quantitative real-time RT-PCR assay for determining expression profiles of types I and III interferon subtypes. J Vis Exp 2015:52650. [PMID: 25867042 PMCID: PMC4401384 DOI: 10.3791/52650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Described in this report is a qRT-PCR assay for the analysis of seventeen human IFN subtypes in a 384-well plate format that incorporates highly specific locked nucleic acid (LNA) and molecular beacon (MB) probes, transcript standards, automated multichannel pipetting, and plate drying. Determining expression among the type I interferons (IFN), especially the twelve IFN-α subtypes, is limited by their shared sequence identity; likewise, the sequences of the type III IFN, especially IFN-λ2 and -λ3, are highly similar. This assay provides a reliable, reproducible, and relatively inexpensive means to analyze the expression of the seventeen interferon subtype transcripts.
Collapse
Affiliation(s)
- Lynnsey A Renn
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Terence C Theisen
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Maria B Navarro
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Viraj P Mane
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Lynnsie M Schramm
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Kevin D Kirschman
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Giulia Fabozzi
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Philippa Hillyer
- Center for Biologics Evaluation and Research, US Food and Drug Administration
| | - Montserrat Puig
- Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Daniela Verthelyi
- Center for Drug Evaluation and Research, US Food and Drug Administration
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration;
| |
Collapse
|
34
|
Zdrenghea MT, Makrinioti H, Muresan A, Johnston SL, Stanciu LA. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma. Rev Med Virol 2014; 25:33-49. [PMID: 25430775 PMCID: PMC4316183 DOI: 10.1002/rmv.1817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/25/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10-IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Ion Chiricuta Oncology InstituteCluj-Napoca, Romania
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Heidi Makrinioti
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Adriana Muresan
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Sebastian L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Luminita A Stanciu
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
- *
Correspondence to: Dr. L. A. Stanciu, MD, PhD, Airway Disease Infection Section, Imperial College London, London, UK., E-mail:
| |
Collapse
|
35
|
Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Sci Rep 2014; 4:7176. [PMID: 25417801 PMCID: PMC5384105 DOI: 10.1038/srep07176] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/05/2014] [Indexed: 01/13/2023] Open
Abstract
Glucocorticosteroids (GCS) are used on a daily basis to reduce airway inflammation in asthma and chronic obstructive pulmonary disease (COPD). This treatment is usually escalated during acute disease exacerbations, events often associated with virus infections. We examined the impact of GCS on anti-viral defences and virus replication and assessed supplementary interferon (IFN) treatment. Here, we report that treatment of primary human airway cells in vitro with GCS prior to rhinovirus (RV) or influenza A virus (IAV) infection significantly reduces the expression of innate anti-viral genes and increases viral replication. Mice given intranasal treatment with GCS prior to IAV infection developed more severe disease associated with amplified virus replication and elevated inflammation in the airways. Adjuvant IFN treatment markedly reduced GCS-amplified infections in human airway cells and in mouse lung. This study demonstrates that GCS cause an extrinsic compromise in anti-viral defences, enhancing respiratory virus infections and provides a rationale for adjuvant IFN treatment.
Collapse
|
36
|
Ilyushina NA, Donnelly RP. In vitro anti-influenza A activity of interferon (IFN)-λ1 combined with IFN-β or oseltamivir carboxylate. Antiviral Res 2014; 111:112-20. [PMID: 25245230 DOI: 10.1016/j.antiviral.2014.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
Abstract
Influenza viruses, which can cross species barriers and adapt to new hosts, pose a constant potential threat to human health. The influenza pandemic of 2009 highlighted the rapidity with which an influenza virus can spread worldwide. Currently available antivirals have a number of limitations against influenza, and novel antiviral strategies, including novel drugs and drug combinations, are urgently needed. Here, we evaluated the in vitro effects of interferon (IFN)-β, IFN-λ1, oseltamivir carboxylate (a neuraminidase (NA) inhibitor), and combinations of these agents against two seasonal (i.e., H1N1 and H3N2) influenza A viruses. We observed that A/California/04/09 (H1N1) and A/Panama/2007/99 (H3N2) isolates were equally sensitive to the antiviral activity of IFN-β and oseltamivir carboxylate in A549 and Calu-3 cells. In contrast, IFN-λ1 exhibited substantially lower protective potential against the H1N1 strain (64-1030-fold ↓, P<0.05), and was ineffective against H3N2 virus in both cell lines. Three dimensional analysis of drug-drug interactions revealed that IFN-λ1 interacted with IFN-β and oseltamivir carboxylate in an additive or synergistic manner, respectively, to inhibit influenza A virus replication in human airway epithelial cells. Overall, the present study demonstrated that anti-influenza agents with different mechanisms of action (e.g., a NA inhibitor combined with IFN-λ1) exerted a significantly greater (P<0.05) synergistic effect compared to co-treatment with drugs that target the same signaling pathway (i.e., IFN-β plus IFN-λ1) in vitro. Our findings provide support for the combined use of interferon plus oseltamivir as a potential means for treating influenza infections.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
37
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: catalytic receptors. Br J Pharmacol 2014; 170:1676-705. [PMID: 24528241 PMCID: PMC3892291 DOI: 10.1111/bph.12449] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Catalytic receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meissner EG, Wu D, Osinusi A, Bon D, Virtaneva K, Sturdevant D, Porcella S, Wang H, Herrmann E, McHutchison J, Suffredini AF, Polis M, Hewitt S, Prokunina-Olsson L, Masur H, Fauci AS, Kottilil S. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome. J Clin Invest 2014; 124:3352-63. [PMID: 24983321 PMCID: PMC4109554 DOI: 10.1172/jci75938] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND. Hepatitis C virus (HCV) infects approximately 170 million people worldwide and may lead to cirrhosis and hepatocellular carcinoma in chronically infected individuals. Treatment is rapidly evolving from IFN-α-based therapies to IFN-α-free regimens that consist of directly acting antiviral agents (DAAs), which demonstrate improved efficacy and tolerability in clinical trials. Virologic relapse after DAA therapy is a common cause of treatment failure; however, it is not clear why relapse occurs or whether certain individuals are more prone to recurrent viremia. METHODS. We conducted a clinical trial using the DAA sofosbuvir plus ribavirin (SOF/RBV) and performed detailed mRNA expression analysis in liver and peripheral blood from patients who achieved either a sustained virologic response (SVR) or relapsed. RESULTS. On-treatment viral clearance was accompanied by rapid downregulation of IFN-stimulated genes (ISGs) in liver and blood, regardless of treatment outcome. Analysis of paired pretreatment and end of treatment (EOT) liver biopsies from SVR patients showed that viral clearance was accompanied by decreased expression of type II and III IFNs, but unexpectedly increased expression of the type I IFN IFNA2. mRNA expression of ISGs was higher in EOT liver biopsies of patients who achieved SVR than in patients who later relapsed. CONCLUSION. These results suggest that restoration of type I intrahepatic IFN signaling by EOT may facilitate HCV eradication and prevention of relapse upon withdrawal of SOF/RBV. TRIAL REGISTRATION. ClinicalTrials.gov NCT01441180.
Collapse
Affiliation(s)
- Eric G. Meissner
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - David Wu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Anu Osinusi
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Dimitra Bon
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Kimmo Virtaneva
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Dan Sturdevant
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Steve Porcella
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Honghui Wang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Eva Herrmann
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - John McHutchison
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Anthony F. Suffredini
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Michael Polis
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Stephen Hewitt
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Henry Masur
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| | - Shyamasundaran Kottilil
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, Maryland, USA. Division of Infectious Diseases, Institute of Human Virology, University of Maryland Medical School, Baltimore, Maryland, USA. Institute of Biostatistics and Mathematical Modeling, Johann Wolfgang Goethe University, Frankfurt, Germany. Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA. Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland, USA. Gilead Sciences, Foster City, California, USA. Department of Pathology, NCI, NIH, Bethesda, Maryland, USA. Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Abstract
The interferons (IFNs) are glycoproteins with strong antiviral activities that represent one of the first lines of host defense against invading pathogens. These proteins are classified into three groups, Type I, II and III IFNs, based on the structure of their receptors on the cell surface. Due to their ability to modulate immune responses, they have become attractive therapeutic options to control chronic virus infections. In combination with other drugs, Type I IFNs are considered as "standard of care" in suppressing Hepatitis C (HCV) and Hepatitis B (HBV) infections, while Type III IFN has generated encouraging results as a treatment for HCV infection in phase III clinical trials. However, though effective, using IFNs as a treatment is not without the need for caution. IFNs are such powerful cytokines that affect a wide array of cell types; as a result, patients usually experience unpleasant symptoms, with a percentage of patients suffering system wide effects. Thus, constant monitoring is required for patients treated with IFN in order to reach the treatment goals of suppressing virus infection and maintaining quality of life.
Collapse
Affiliation(s)
- Fan-ching Lin
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer, Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer, Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
40
|
Al-Qahtani AA, Al-Anazi MR, Abdo AA, Sanai FM, Al-Hamoudi WK, Alswat KA, Al-Ashgar HI, Khalaf NZ, Viswan NA, Al Ahdal MN. Genetic variation in interleukin 28B and correlation with chronic hepatitis B virus infection in Saudi Arabian patients. Liver Int 2014; 34:e208-16. [PMID: 24118788 DOI: 10.1111/liv.12347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 09/25/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Several genome-wide association studies have shown that genetic variations in the chromosomal region containing interleukin-28B (IL28B) gene are associated with response to treatment in hepatitis C virus (HCV) infection. This study was conducted to examine the role of genetic variations in IL28B on disease progression in Saudi Arabian patients chronically infected with hepatitis B virus (HBV). METHODS The study included 1128 subjects divided into four categories; 304 clearance subjects, 518 inactive carriers, 212 active carriers and 94 cirrhosis/HCC. RESULTS Three single nucleotide polymorphisms (SNPs), rs12979860 (OR=1.307; 95% CI 1.046-1.634, χ2=5.57 and P=0.0183), rs12980275 (OR=0.642; CI 0.517-0.798, χ2=16.17 and P=0.0001) and rs8105790 (OR=0.746; CI 0.592-0.941, χ2=6.12 and P=0.0133), were found to be strongly associated with HBV clearance. The frequency of the G allele of rs12980275 and the C allele of rs8105790 were found to be more in clearance group than in patients and could contribute to protection against the disease. On the other hand, only rs12979860 showed significant difference in distribution when inactive group was compared to other groups (OR=1.285; CI 1.030-1.603, χ2=4.95, P=0.0261). No significant association was evident for any of the variants when active carriers were compared to cirrhosis/HCC patients. Haplotype analysis showed that a combination of A-T-T-G of rs12980275, rs8105790, rs8099917, and rs7248668, respectively, was associated with clearance of the virus (frequency=67.5% and P=0.015). CONCLUSION genetic variations in IL28B gene region may influence the clearance of HBV infection.
Collapse
Affiliation(s)
- Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Liver Disease Research Center, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Freeman J, Baglino S, Friborg J, Kraft Z, Gray T, Hill M, McPhee F, Hillson J, Lopez-Talavera JC, Wind-Rotolo M. Pegylated interferons Lambda-1a and alfa-2a display different gene induction and cytokine and chemokine release profiles in whole blood, human hepatocytes and peripheral blood mononuclear cells. J Viral Hepat 2014; 21:e1-9. [PMID: 24827902 DOI: 10.1111/jvh.12243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pegylated interferon-lambda-1a (Lambda), a type III interferon (IFN) in clinical development for the treatment of chronic HCV infection, has shown comparable efficacy and an improved safety profile to a regimen based on pegylated IFN alfa-2a (alfa). To establish a mechanistic context for this improved profile, we investigated the ex vivo effects of Lambda and alfa on cytokine and chemokine release, and on expression of IFN-stimulated genes (ISGs) in primary human hepatocytes and peripheral blood mononuclear cells (PBMCs) from healthy subjects. Our findings were further compared with changes observed in blood analysed from HCV-infected patients treated with Lambda or alfa in clinical studies. mRNA transcript and protein expression of the IFN-λ-limiting receptor subunit was lower compared with IFN-α receptor subunits in all cell types. Upon stimulation, alfa and Lambda induced ISG expression in hepatocytes and PBMCs, although in PBMCs Lambda-induced ISG expression was modest. Furthermore, alfa and Lambda induced release of cytokines and chemokines from hepatocytes and PBMCs, although differences in their kinetics of induction were observed. In HCV-infected patients, alfa treatment induced ISG expression in whole blood after single and repeat dosing. Lambda treatment induced modest ISG expression after single dosing and showed no induction after repeat dosing. Alfa and Lambda treatment increased IP-10, iTAC, IL-6, MCP-1 and MIP-1β levels in serum, with alfa inducing higher levels of all mediators compared with Lambda. Overall, ex vivo and in vivo induction profiles reported in this analysis strongly correlate with clinical observations of fewer related adverse events for Lambda vs those typically associated with alfa.
Collapse
Affiliation(s)
- J Freeman
- Zymogenetics, Bristol Myers-Squibb, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Andersen H, Meyer J, Freeman J, Doyle SE, Klucher K, Miller DM, Hausman D, Hillson JL. Peginterferon Lambda-1a, a New Therapeutic for Hepatitis C Infection, from Bench to Clinic. J Clin Transl Hepatol 2013; 1:116-24. [PMID: 26357610 PMCID: PMC4521278 DOI: 10.14218/jcth.2013.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is estimated to affect approximately 3% of the world's population and cause 350,000 deaths each year. For a number of years, the standard of care has been combination therapy with recombinant alfa interferons-originally as native proteins but more recently as polyethyleneglycol-modified derivatives-and ribavirin, with the recent addition of an NS3 protease inhibitor for HCV genotype 1. However, therapeutic alfa interferons are associated with a significant burden of treatment-limiting adverse events, including musculoskeletal and influenza-like symptoms, hematologic cytopenias, autoimmune disease, fatigue, and other neurologic events. In 2003, a team at ZymoGenetics (now a fully owned subsidiary of Bristol-Myers Squibb) and a second, independent group simultaneously identified a new class of interferons-the type III lambda interferons-with near-identical activity to the type I alfa interferons in hepatocytes but with an unrelated and less ubiquitous receptor. Subsequent evaluation of the type III interferon system demonstrated antiviral activity against HCV in vitro with limited activity in peripheral blood mononuclear cells and other nonhepatocyte cell types, supporting its development as a potentially better-tolerated therapy for viral hepatitis. Peginterferon lambda-1a (Lambda) is an investigational type III therapeutic agent originally developed at ZymoGenetics that is currently in Phase 3 studies for the treatment of HCV. In this review, we describe the selection of the Lambda molecule and its preclinical and early clinical development, and how the resulting data have helped to establish the differentiated safety profile for Lambda-with fewer influenza-like and musculoskeletal symptoms and less hematologic toxicity than the alfa interferons-that was seen in later studies.
Collapse
Affiliation(s)
| | - Jeff Meyer
- ZymoGenetics/Bristol-Myers Squibb, Seattle, WA 98102, USA
| | | | - Sean E. Doyle
- ZymoGenetics/Bristol-Myers Squibb, Seattle, WA 98102, USA
| | | | | | | | - Jan L. Hillson
- ZymoGenetics/Bristol-Myers Squibb, Seattle, WA 98102, USA
| |
Collapse
|
43
|
Raglow Z, Thoma-Perry C, Gilroy R, Wan YJY. IL28B genotype and the expression of ISGs in normal liver. Liver Int 2013; 33:991-8. [PMID: 23522062 PMCID: PMC7231429 DOI: 10.1111/liv.12148] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Both polymorphisms in the IL28B gene locus and ISG expression levels are associated with the outcome of hepatitis C virus (HCV) infection. The two are also interrelated, although the mechanism is unknown. Favourable CC genotype at rs12979860 expresses lower baseline ISG levels and responds better to treatment than unfavourable CT and TT genotypes. Little is known about this relationship in normal, uninfected liver. This study sought to explore this relationship. METHODS Normal human liver specimens (64) and HCV positive human liver specimens (95) were genotyped for IL28B rs12979860 C > T. mRNA levels of ISGs and other relevant genes were studied by qPCR. RESULTS Most studied ISGs had significantly different expression by IL28B genotype in normal liver. CC genotype expressed the highest levels, CT intermediate and TT the lowest. This is opposite to the pattern seen in HCV patients. Principal component analysis of IL28B genotype and ISG expression further revealed a distinct set of genes correlated with the C allele (ISG15, HTATIP2, LGALS3BP, IRF2 and BCL2) and T allele (IFNα, β, γ, λ3 and CD80). CONCLUSION A subset of ISGs was found to be differentially expressed in normal liver by IL28B genotype. This suggests a relationship between IL28B genotype and gene expression before HCV infection.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Carly Thoma-Perry
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Richard Gilroy
- Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yu-Jui Y. Wan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Medical Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
44
|
|
45
|
Dickensheets H, Sheikh F, Park O, Gao B, Donnelly RP. Interferon-lambda (IFN-λ) induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes. J Leukoc Biol 2013; 93:377-85. [PMID: 23258595 PMCID: PMC3579021 DOI: 10.1189/jlb.0812395] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/26/2012] [Accepted: 12/01/2012] [Indexed: 01/14/2023] Open
Abstract
This study compared the ability of IFN-α and IFN-λ to induce signal transduction and gene expression in primary human hepatocytes, PBLs, and monocytes. IFN-α drug products are widely used to treat chronic HCV infection; however, IFN-α therapy often induces hematologic toxicities as a result of the broad expression of IFNARs on many cell types, including most leukocytes. rIFN-λ1 is currently being tested as a potential alternative to IFN-α for treating chronic HCV. Although IFN-λ has been shown to be active on hepatoma cell lines, such as HepG2 and Huh-7, its ability to induce responses in primary human hepatocytes or leukocytes has not been examined. We found that IFN-λ induces activation of Jak/STAT signaling in mouse and human hepatocytes, and the ability of IFN-λ to induce STAT activation correlates with induction of numerous ISGs. Although the magnitude of ISG expression induced by IFN-λ in hepatocytes was generally lower than that induced by IFN-α, the repertoire of regulated genes was quite similar. Our findings demonstrate that although IFN-α and IFN-λ signal through distinct receptors, they induce expression of a common set of ISGs in hepatocytes. However, unlike IFN-α, IFN-λ did not induce STAT activation or ISG expression by purified lymphocytes or monocytes. This important functional difference may provide a clinical advantage for IFN-λ as a treatment for chronic HCV infection, as it is less likely to induce the leukopenias that are often associated with IFN-α therapy.
Collapse
Affiliation(s)
- Harold Dickensheets
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA; and
| | - Faruk Sheikh
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA; and
| | - Ogyi Park
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Raymond P. Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, USA; and
| |
Collapse
|
46
|
Abstract
Genome-wide association studies have identified polymorphisms located near the gene encoding IL28B, which turned out to be the best predictor of response to pegylated interferon plus ribavirin for chronic hepatitis C virus (HCV) genotype 1 infection. This association was extended to spontaneous clearance of HCV, suggesting shared mechanisms of treatment and natural control of this virus. In addition to the biologic implications for innate immunity and HCV, a variety of clinical studies have suggested possible translation to a useful genetic test for practitioners. This article reviews the discovery, biology, and potential clinical applications that have stemmed from the seminal observation that IL28B polymorphisms are a main predictor of HCV clearance.
Collapse
Affiliation(s)
- Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School
- Department of Internal Medicine and Department of Biomedicine, University Hospital Basel, Switzerland
| | - Arthur Y. Kim
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
47
|
Dolganiuc A, Kodys K, Marshall C, Saha B, Zhang S, Bala S, Szabo G. Type III interferons, IL-28 and IL-29, are increased in chronic HCV infection and induce myeloid dendritic cell-mediated FoxP3+ regulatory T cells. PLoS One 2012; 7:e44915. [PMID: 23071503 PMCID: PMC3468613 DOI: 10.1371/journal.pone.0044915] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/09/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is difficult to eradicate and type III interferons (IFN-λ, composed of IL-28A, IL-28B and IL-29) are novel therapeutic candidates. We hypothesized that IFN-λ have immunomodulatory effects in HCV- infected individuals. MATERIALS AND METHODS We analyzed the expression of IFN-λ and its receptor (composed of IL-10R2 and IFN-λR subunits) in the blood and livers of patients with chronic (c)HCV infection compared to controls (those who cleared HCV by sustained virological response, SVR, and those with liver inflammation of non-viral origin, non-alcoholic steatohepatitis, NASH). We also compared the proliferative capacity of dendritic cells (DCs) obtained from healthy individuals and those with chronic HCV using a mixed leukocyte reaction combined with 3H-Td incorporation. In addition, the composition of the IFN-λ receptor (IFN-λR) on myeloid DCs, plasmacytoid DCs, PBMCs, and T cells was determined by FACS analysis. RESULTS We report that the expression of IFN-λ protein in serum and mRNA in liver is increased in cHCV patients, but not in those with HCV SVR or NASH, compared to controls. Liver level of IFN-λR mirrored the expression of serum IFN-λ and was higher in cHCV, compared to controls and HCV-SVR patients, suggesting that elevation of IFN-λ and IFN-λR are HCV-dependent. We further identified that innate immune cell populations expressed complete IFN-λ receptor. In vitro, recombinant IFN-λ promoted differentiation of monocyte-derived dendritic cells (DCs) into a phenotype with low T cell stimulatory capacity and high PD-L1 expression, which further promoted expansion of existing regulatory T cells. IFN-λ-DCs failed to induce de novo generation of regulatory T cells. The inhibitory capacity of IFN-λ-DCs was counteracted by recombinant IL-12 and by neutralization of the PD-1/PD-L1 system. CONCLUSIONS Our novel findings of the immunomodulatory effect of IFN-λ contribute to the understanding of the anti-inflammatory and/or anti-viral potential of IFN-λ in cHCV.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christopher Marshall
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Banishree Saha
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shuye Zhang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
48
|
Effect of different interferonα2 preparations on IP10 and ET-1 release from human lung cells. PLoS One 2012; 7:e46779. [PMID: 23056449 PMCID: PMC3466308 DOI: 10.1371/journal.pone.0046779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/05/2012] [Indexed: 01/24/2023] Open
Abstract
Background Alfa-interferons (IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b) are effective treatments for chronic hepatitis C infection. However, their usage has been associated with a variety of adverse events, including interstitial pneumonitis and pulmonary arterial hypertension. Although rare, these adverse events can be severe and potentially life-threatening, emphasizing the need for simple biomarkers of IFN-induced lung toxicity. Methods Human lung microvascular endothelial cells (HLMVEC), human pulmonary artery smooth muscle (HPASM) cells and A549 cells were grown under standard conditions and plated into 96- or 6-well plates. Cells were stimulated with various concentrations of different IFNs in hydrocortisone-free medium. After 24 and 48 hours, IP10 and ET-1 were measured by ELISA in conditioned medium. In a second set of experiments, cells were pre-treated with tumour necrosis factor-α (TNF-α) (10 ng/mL). Results IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b, but not IFNλ, induced IP10 (CXCL10) release and increased IP10 gene induction in HLMVEC. In addition, all four IFNα preparations induced IP10 release from HPASM cells and A549 cells pre-treated with TNFα. In each of these cell types, 40KDa-PEGIFNα2a was significantly less active than the native forms of IFNα2a, IFNα2b or 12KDa-PEGIFNα2b. Similarly, IFNα2a, IFNα2b and 12KDa-PEGIFNα2b, but not 40KDa-PEGIFNα2a, induced endothelin (ET)-1 release from HPASM cells. Conclusions Consistent with other interstitial pulmonary diseases, both IP10 and ET1 may serve as markers to monitor IFN-induced lung toxicity in patients. In addition, both markers may also serve to help characterize the risk associated with IFNα preparations to induce lung toxicity.
Collapse
|
49
|
Bellanti F, Vendemiale G, Altomare E, Serviddio G. The impact of interferon lambda 3 gene polymorphism on natural course and treatment of hepatitis C. Clin Dev Immunol 2012; 2012:849373. [PMID: 22966241 PMCID: PMC3433716 DOI: 10.1155/2012/849373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023]
Abstract
Host genetic factors may predict the outcome and treatment response in hepatitis C virus (HCV) infection. Very recently, three landmark genome-wide association studies identified single nucleotide polymorphisms near the interleukin 28B (IL28B) region which were more frequent in responders to treatment. IL28B encodes interferon (IFN)λ3, a type III IFN involved in host antiviral immunity. Favourable variants of the two most widely studied IL28B polymorphisms, rs12979860 and rs8099917, are strong pretreatment predictors of early viral clearance and sustained viral response in patients with genotype 1 HCV infection. Further investigations have implicated IL28B in the development of chronic HCV infection versus spontaneous resolution of acute infection and suggest that IL28B may be a key factor involved in host immunity against HCV. This paper presents an overview about the biological activity and clinical applications of IL28B, summarizing the available data on its impact on HCV infection. Moreover, the potential usefulness of IFNλ in the treatment and natural history of this disease is also discussed.
Collapse
Affiliation(s)
- F Bellanti
- Department of Medical and Occupational Sciences, C.U.R.E. Centre for Liver Disease Research and Treatment, University of Foggia, Italy
| | | | | | | |
Collapse
|
50
|
Gao B, Wang H, Lafdil F, Feng D. STAT proteins - key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol 2012; 57:430-41. [PMID: 22504331 PMCID: PMC3399024 DOI: 10.1016/j.jhep.2012.01.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/15/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Since its discovery in the early 1990s, the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway has been found to play key roles in regulating many key cellular processes such as survival, proliferation, and differentiation. There are seven known mammalian STAT family members: STAT1, 2, 3, 4, 5a, 5b, and 6. In the liver, activation of these STAT proteins is critical for anti-viral defense against hepatitis viral infection and for controlling injury, repair, inflammation, and tumorigenesis. The identification of functions for these STAT proteins has increased our understanding of liver disease pathophysiology and treatments, while also suggesting new therapeutic modalities for managing liver disease.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Fouad Lafdil
- Laboratory of Liver Pathophysiology, INSERM, U955, Créteil, F-94000 France,Université Paris-Est, Faculté de Médecine, UMR-S955, Créteil, F-94000 France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA, 20892
| |
Collapse
|