1
|
Lusta KA, Summerhill VI, Khotina VA, Sukhorukov VN, Glanz VY, Orekhov AN. The Role of Bacterial Extracellular Membrane Nanovesicles in Atherosclerosis: Unraveling a Potential Trigger. Curr Atheroscler Rep 2024; 26:289-304. [PMID: 38805145 DOI: 10.1007/s11883-024-01206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we explore the intriguing and evolving connections between bacterial extracellular membrane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis. RECENT FINDINGS Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has attracted special attention. We provide some general insights into how the immune system responds to potential threats such as BEMNs during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Volha I Summerhill
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| | - Victoria A Khotina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Victor Y Glanz
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia.
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| |
Collapse
|
2
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
3
|
Ma Q, Chen J, Kong X, Zeng Y, Chen Z, Liu H, Liu L, Lu S, Wang X. Interactions between CNS and immune cells in tuberculous meningitis. Front Immunol 2024; 15:1326859. [PMID: 38361935 PMCID: PMC10867975 DOI: 10.3389/fimmu.2024.1326859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
The central nervous system (CNS) harbors its own special immune system composed of microglia in the parenchyma, CNS-associated macrophages (CAMs), dendritic cells, monocytes, and the barrier systems within the brain. Recently, advances in the immune cells in the CNS provided new insights to understand the development of tuberculous meningitis (TBM), which is the predominant form of Mycobacterium tuberculosis (M.tb) infection in the CNS and accompanied with high mortality and disability. The development of the CNS requires the protection of immune cells, including macrophages and microglia, during embryogenesis to ensure the accurate development of the CNS and immune response following pathogenic invasion. In this review, we summarize the current understanding on the CNS immune cells during the initiation and development of the TBM. We also explore the interactions of immune cells with the CNS in TBM. In the future, the combination of modern techniques should be applied to explore the role of immune cells of CNS in TBM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Xiaomin Wang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zhang X, Lan Q, Zhang M, Wang F, Shi K, Li X, Kuang E. Inhibition of AIM2 inflammasome activation by SOX/ORF37 promotes lytic replication of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 2023; 120:e2300204120. [PMID: 37364111 PMCID: PMC10318979 DOI: 10.1073/pnas.2300204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Mingyu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Keyi Shi
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong510080, China
| |
Collapse
|
5
|
Pacifici N, Cruz-Acuña M, Diener A, Tu A, Senthil N, Han H, Lewis JS. Vomocytosis of Cryptococcus neoformans cells from murine, bone marrow-derived dendritic cells. PLoS One 2023; 18:e0280692. [PMID: 36928392 PMCID: PMC10019626 DOI: 10.1371/journal.pone.0280692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 03/18/2023] Open
Abstract
Cryptococcus neoformans (CN) cells survive within the acidic phagolysosome of macrophages (MΦ) for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined 'vomocytosis'. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition-Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on MΦ, as alveolar MΦ within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as 'vomocytes'. Presciently, this report shows that vomocytosis of CN indeed occurs from murine, bone marrow-derived DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from MΦ and further, are independent of the presence of the CN capsule and infection ratios. Moreover, the phagosome-altering drug bafilomycin A inhibits this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in murine, bone marrow-derived MΦ. This work not only demonstrates the vomocytic ability of DCs, but also investigates the complexity of vomocytosis regulation in this cell type and MΦ under multiple modulatory conditions. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Melissa Cruz-Acuña
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Agustina Diener
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Allen Tu
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Neeraj Senthil
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Hyunsoo Han
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
6
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
7
|
Aqdas M, Maurya SK, Pahari S, Singh S, Khan N, Sethi K, Kaur G, Agrewala JN. Immunotherapeutic Role of NOD-2 and TLR-4 Signaling as an Adjunct to Antituberculosis Chemotherapy. ACS Infect Dis 2021; 7:2999-3008. [PMID: 34613696 DOI: 10.1021/acsinfecdis.1c00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tuberculosis (TB) treatment is lengthy and inflicted with severe side-effects. Here, we attempted a novel strategy to reinforce host immunity through NOD-like receptor (NOD-2) and Toll-like receptor (TLR-4) signaling in the murine model of TB. Intriguingly, we noticed that it not only bolstered the immunity but also reduced the dose and duration of rifampicin and isoniazid therapy. Further, we observed expansion in the pool of effector (CD44hi, CD62Llo, CD127hi) and central (CD44hi, CD62Lhi, CD127hi) memory CD4 T cells and CD8 T cells and increased the intracellular killing of Mycobacterium tuberculosis (Mtb) by activated dendritic cells [CD86hi, CD40hi, IL-6hi, IL-12hi, TNF-αhi, nitric oxide (NO)hi] with significant reduction in Mtb load in the lungs and spleen of infected animals. We infer that the signaling through NOD-2 and TLR-4 may be an important approach to reduce the dose and duration of the drugs to treat TB.
Collapse
Affiliation(s)
- Mohammad Aqdas
- CSIR-Institute of Microbial Technology, Chandigarh − 160036, India
| | | | - Susanta Pahari
- CSIR-Institute of Microbial Technology, Chandigarh − 160036, India
| | - Sanpreet Singh
- CSIR-Institute of Microbial Technology, Chandigarh − 160036, India
| | - Nargis Khan
- CSIR-Institute of Microbial Technology, Chandigarh − 160036, India
| | - Kanupriya Sethi
- CSIR-Institute of Microbial Technology, Chandigarh − 160036, India
| | - Gurpreet Kaur
- Indian Institute of Technology, Ropar − 140001, India
| | - Javed Naim Agrewala
- CSIR-Institute of Microbial Technology, Chandigarh − 160036, India
- Indian Institute of Technology, Ropar − 140001, India
| |
Collapse
|
8
|
The Crucial Role of NLRP3 Inflammasome in Viral Infection-Associated Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms221910447. [PMID: 34638790 PMCID: PMC8509020 DOI: 10.3390/ijms221910447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most common fibrosing interstitial lung diseases (ILD), is a chronic-age-related respiratory disease that rises from repeated micro-injury of the alveolar epithelium. Environmental influences, intrinsic factors, genetic and epigenetic risk factors that lead to chronic inflammation might be implicated in the development of IPF. The exact triggers that initiate the fibrotic response in IPF remain enigmatic, but there is now increasing evidence supporting the role of chronic exposure of viral infection. During viral infection, activation of the NLRP3 inflammasome by integrating multiple cellular and molecular signaling implicates robust inflammation, fibroblast proliferation, activation of myofibroblast, matrix deposition, and aberrant epithelial-mesenchymal function. Overall, the crosstalk of the NLRP3 inflammasome and viruses can activate immune responses and inflammasome-associated molecules in the development, progression, and exacerbation of IPF.
Collapse
|
9
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
10
|
Harikrishnan R, Devi G, Balasundaram C, Van Doan H, Jaturasitha S, Ringø E, Faggio C. Effect of chrysophanic acid on immune response and immune genes transcriptomic profile in Catla catla against Aeromonas hydrophila. Sci Rep 2021; 11:612. [PMID: 33436677 PMCID: PMC7804155 DOI: 10.1038/s41598-020-79629-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The effect of chrysophanic acid (CA) (2, 4, and 8 mg kg-1) on the immunity and immune-related gene profile of Catla catla against Aeromonas hydrophila is reported. In both control and treated groups fed with 2 mg kg-1 (2 CA), the phagocytosis, hemolytic, myeloperoxidase content, and superoxide anion production decreased significantly between 6th and 8th weeks, whereas when fed with 4 mg kg-1 CA (4 CA) the H2O2 production and nitric oxide synthase increased significantly between 4th and 8th week. When fed with 2 CA and 4 CA diets, the total protein, bactericidal, and antibody titer increased significantly from the 4th week onwards. When fed with 2 CA, the IL-1β and IL-10 mRNA expression of head kidney leucocytes were significant between weeks 6 and 8. The expressions of toll-like receptors significantly increased when fed with a 4 CA diet from 4th week onwards. The 4 CA group significantly increased in TNF-α, TNF receptor-associated factor 6 (NOD), which influences protein expression, after the 4th week. The mRNA transcription of MHCI, lysozyme-chicken and goose type expressions significantly increased in 4 CA group within the 4th week. In summary, the dietary administration of 4 mg kg-1 of CA (4 CA) provides better immunity and enhances the up-regulation of immune-related genes in Catla against A. hydrophila.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, Tamil Nadu, 631 501, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, Tamil Nadu, 621 007, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, Tamil Nadu, 613 005, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Sanchai Jaturasitha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Piazza Pugliatti, Italy
| |
Collapse
|
11
|
A noncanonical role of NOD-like receptor NLRP14 in PGCLC differentiation and spermatogenesis. Proc Natl Acad Sci U S A 2020; 117:22237-22248. [PMID: 32839316 PMCID: PMC7486727 DOI: 10.1073/pnas.2005533117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NOD-like receptors (NLRs) are traditionally recognized as key surveillance pattern recognition receptors (PRRs) during innate immune regulation. Several NLRs exhibit highly restricted expression in mammalian germline, where their physiological functions are largely unknown. Here we report that Nlrp14, an NLR specifically expressed in testis and ovary, plays a critical role in regulating germ cell differentiation and reproduction. Nlrp14 deficiency led to decreased primordial germ cell-like cell (PGCLC) differentiation in vitro and reproduction failure in both male and female mice in vivo. In the male mice, Nlrp14 knockout strongly compromised differentiation of spermatogonial stem cells and meiosis. Mechanistically, NLRP14 protected HSPA2 from proteasome-mediated degradation by recruiting BAG2, loss of which was further confirmed in a human mutation associated with male sterility. NOD-like receptors (NLRs) are traditionally recognized as major inflammasome components. The role of NLRs in germ cell differentiation and reproduction is not known. Here, we identified the gonad-specific Nlrp14 as a pivotal regulator in primordial germ cell-like cell (PGCLC) differentiation in vitro. Physiologically, knock out of Nlrp14 resulted in reproductive failure in both female and male mice. In adult male mice, Nlrp14 knockout (KO) inhibited differentiation of spermatogonial stem cells (SSCs) and meiosis, resulting in trapped SSCs in early stages, severe oligozoospermia, and sperm abnormality. Mechanistically, NLRP14 promoted spermatogenesis by recruiting a chaperone cofactor, BAG2, to bind with HSPA2 and form the NLRP14−HSPA2−BAG2 complex, which strongly inhibited ChIP-mediated HSPA2 polyubiquitination and promoted its nuclear translocation. Finally, loss of HSPA2 protection and BAG2 recruitment by NLRP14 was confirmed in a human nonsense germline variant associated with male sterility. Together, our data highlight a unique proteasome-mediated, noncanonical function of NLRP14 in PGCLC differentiation and spermatogenesis, providing mechanistic insights of gonad-specific NLRs in mammalian germline development.
Collapse
|
12
|
Barut GT, Lischer HEL, Bruggmann R, Summerfield A, Talker SC. Transcriptomic profiling of bovine blood dendritic cells and monocytes following TLR stimulation. Eur J Immunol 2020; 50:1691-1711. [PMID: 32592404 DOI: 10.1002/eji.202048643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/26/2020] [Indexed: 11/06/2022]
Abstract
Dendritic cells (DC) and monocytes are vital for the initiation of innate and adaptive immune responses. Recently, we identified bona fide DC subsets in blood of cattle, revealing subset- and species-specific transcription of toll-like receptors (TLR). In the present study, we analyzed phenotypic and transcriptional responses of bovine DC subsets and monocytes to in vitro stimulation with four to six different TLR ligands. Bovine DC subsets, especially plasmacytoid DC (pDC), showed a clear increase of CCR7, CD25, CD40, CD80, CD86, and MHC-II expression both on mRNA and protein level. Flow cytometric detection of p38 MAPK phosphorylation 15 min after stimulation confirmed activation of DC subsets and monocytes in accordance with TLR gene expression. Whole-transcriptome sequencing of sorted and TLR-stimulated subsets revealed potential ligand- and subset-specific regulation of genes associated with inflammation, T-cell co-stimulation, migration, metabolic reprogramming, and antiviral activity. Gardiquimod was found to evoke strong responses both in DC subsets and monocytes, while Poly(I:C) and CpG preferentially triggered responses in cDC1 and pDC, respectively. This in-depth analysis of ligand responsiveness is essential for the rational design of vaccine adjuvants in cattle, and provides a solid basis for comparative studies on DC and monocyte biology across species.
Collapse
Affiliation(s)
- G Tuba Barut
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Heidi E L Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephanie C Talker
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Li Z, He C, Zhang J, Zhang H, Wei H, Wu S, Jiang W. P2Y6 Deficiency Enhances Dendritic Cell–Mediated Th1/Th17 Differentiation and Aggravates Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 205:387-397. [DOI: 10.4049/jimmunol.1900916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/14/2020] [Indexed: 01/16/2023]
|
14
|
Lecoeur H, Rosazza T, Kokou K, Varet H, Coppée JY, Lari A, Commère PH, Weil R, Meng G, Milon G, Späth GF, Prina E. Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Front Immunol 2020; 11:1098. [PMID: 32582184 PMCID: PMC7295916 DOI: 10.3389/fimmu.2020.01098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells—a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Thibault Rosazza
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Kossiwa Kokou
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Arezou Lari
- Systems Biomedicine Unit, Institut Pasteur of Iran, Teheran, Iran
| | | | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Guangxun Meng
- Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Genevieve Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département des Parasites et Insectes Vecteurs, Paris, France
| | - Gerald F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Eric Prina
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| |
Collapse
|
15
|
Acute Severe Asthma in Adolescent and Adult Patients: Current Perspectives on Assessment and Management. J Clin Med 2019; 8:jcm8091283. [PMID: 31443563 PMCID: PMC6780340 DOI: 10.3390/jcm8091283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease that is associated with variable expiratory flow, variable respiratory symptoms, and exacerbations which sometimes require hospitalization or may be fatal. It is not only patients with severe and poorly controlled asthma that are at risk for an acute severe exacerbation, but this has also been observed in patients with otherwise mild or moderate asthma. This review discusses current aspects on the pathogenesis and pathophysiology of acute severe asthma exacerbations and provides the current perspectives on the management of acute severe asthma attacks in the emergency department and the intensive care unit.
Collapse
|
16
|
Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. THE JOURNAL OF IMMUNOLOGY 2019; 203:389-399. [DOI: 10.4049/jimmunol.1900289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
|
17
|
Helou DG, Martin SF, Pallardy M, Chollet-Martin S, Kerdine-Römer S. Nrf2 Involvement in Chemical-Induced Skin Innate Immunity. Front Immunol 2019; 10:1004. [PMID: 31134077 PMCID: PMC6514534 DOI: 10.3389/fimmu.2019.01004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Exposure to certain chemicals disturbs skin homeostasis. In particular, protein-reactive chemical contact sensitizers trigger an inflammatory immune response resulting in eczema and allergic contact dermatitis. Chemical sensitizers activate innate immune cells which orchestrate the skin immune response. This involves oxidative and inflammatory pathways. In parallel, the Nrf2/Keap1 pathway, a major ubiquitous regulator of cellular oxidative and electrophilic stress is activated in the different skin innate immune cells including epidermal Langerhans cells and dermal dendritic cells, but also in keratinocytes. In this context, Nrf2 shows a strong protective capacity through the downregulation of both the oxidative stress and inflammatory pathways. In this review we highlight the important role of Nrf2 in the control of the innate immune response of the skin to chemical sensitizers.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,UF Auto-immunité et Hypersensibilités, Hôpital Bichat, APHP, Paris, France
| | - Saadia Kerdine-Römer
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
18
|
Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance. Front Immunol 2019; 10:93. [PMID: 30774630 PMCID: PMC6367268 DOI: 10.3389/fimmu.2019.00093] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Graft-vs.-host disease (GVHD) remains a significant cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Significant progresses have been made in defining the dichotomous role of dendritic cells (DCs) in the development of GVHD. Host-derived DCs are important to elicit allogeneic T cell responses, whereas certain donor-types of DCs derived from newly engrafted hematopoietic stem/progenitor cells (HSPCs) can amply this graft-vs.-host reaction. In contrast, some DCs also play non-redundant roles in mediating immune tolerance. They induce apoptotic deletion of host-reactive donor T cells while promoting expansion and function of regulatory T cells (Treg). Unfortunately, this tolerogenic effect of DCs is impaired during GVHD. Severe GVHD in patients subject to allo-HSCT is associated with significantly decreased number of circulating peripheral blood DCs during engraftment. Existing studies reveal that GVHD causes delayed reconstitution of donor DCs from engrafted HSPCs, impairs the antigen presentation function of newly generated DCs and reduces the capacity of DCs to regulate Treg. The present review will discuss the importance of DCs in alloimmunity and the mechanism underlying DC reconstitution after allo-HSCT.
Collapse
Affiliation(s)
- Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Shin Mineishi
- Department of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States,Department of Microbiology & Immunology, Temple University, Philadelphia, PA, United States,*Correspondence: Yi Zhang
| |
Collapse
|
19
|
Du X, Chapman NM, Chi H. Emerging Roles of Cellular Metabolism in Regulating Dendritic Cell Subsets and Function. Front Cell Dev Biol 2018; 6:152. [PMID: 30483503 PMCID: PMC6243939 DOI: 10.3389/fcell.2018.00152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are the bridge between innate and T cell-dependent adaptive immunity and are promising therapeutic targets for cancer and immune-mediated disorders. Upon stimulation by pathogen or danger-sensing receptors, DCs become activated and poised to induce T cell priming. Recent studies have identified critical roles of metabolic pathways, including glycolysis, oxidative phosphorylation, and fatty acid metabolism, in orchestrating DC function. In this review, we discuss the shared and distinct metabolic programs shaping the functional specification of different DC subsets, including conventional DCs, bone marrow-derived DCs, and plasmacytoid DCs. We also briefly discuss the signaling networks that tune metabolic programs in DC subsets.
Collapse
Affiliation(s)
| | | | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
20
|
Krishnaswamy JK, Alsén S, Yrlid U, Eisenbarth SC, Williams A. Determination of T Follicular Helper Cell Fate by Dendritic Cells. Front Immunol 2018; 9:2169. [PMID: 30319629 PMCID: PMC6170619 DOI: 10.3389/fimmu.2018.02169] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/03/2018] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of CD4+ T cells that collaborate with B cells to promote and regulate humoral responses. Unlike other CD4+ effector lineages, Tfh cells require interactions with both dendritic cells (DCs) and B cells to complete their differentiation. While numerous studies have assessed the potential of different DC subsets to support Tfh priming, the conclusions of these studies depend heavily on the model and method of immunization used. We propose that the location of different DC subsets within the lymph node (LN) and their access to antigen determine their potency in Tfh priming. Finally, we provide a three-step model that accounts for the ability of multiple DC subsets and related lineages to support the Tfh differentiation program.
Collapse
Affiliation(s)
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
21
|
Li C, Wang Y, Li Y, Yu Q, Jin X, Wang X, Jia A, Hu Y, Han L, Wang J, Yang H, Yan D, Bi Y, Liu G. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Sci Rep 2018; 8:3603. [PMID: 29483608 PMCID: PMC5827022 DOI: 10.1038/s41598-018-22039-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xi Jin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Linian Han
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dapeng Yan
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Guangwei Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H, Singh S, Agrewala JN. Bolstering Immunity through Pattern Recognition Receptors: A Unique Approach to Control Tuberculosis. Front Immunol 2017; 8:906. [PMID: 28824632 PMCID: PMC5539433 DOI: 10.3389/fimmu.2017.00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The global control of tuberculosis (TB) presents a continuous health challenge to mankind. Despite having effective drugs, TB still has a devastating impact on human health. Contributing reasons include the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), the AIDS-pandemic, and the absence of effective vaccines against the disease. Indeed, alternative and effective methods of TB treatment and control are urgently needed. One such approach may be to more effectively engage the immune system; particularly the frontline pattern recognition receptor (PRR) systems of the host, which sense pathogen-associated molecular patterns (PAMPs) of Mtb. It is well known that 95% of individuals infected with Mtb in latent form remain healthy throughout their life. Therefore, we propose that clues can be found to control the remainder by successfully manipulating the innate immune mechanisms, particularly of nasal and mucosal cavities. This article highlights the importance of signaling through PRRs in restricting Mtb entry and subsequently preventing its infection. Furthermore, we discuss whether this unique therapy employing PRRs in combination with drugs can help in reducing the dose and duration of current TB regimen.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepyan Chatterjee
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
23
|
Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS NANO 2017; 11:54-68. [PMID: 28075558 DOI: 10.1021/acsnano.6b07343] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the immense public health successes of immunization over the past century, effective vaccines are still lacking for globally important pathogens such as human immunodeficiency virus, malaria, and tuberculosis. Exciting recent advances in immunology and biotechnology over the past few decades have facilitated a shift from empirical to rational vaccine design, opening possibilities for improved vaccines. Some of the most important advancements include (i) the purification of subunit antigens with high safety profiles, (ii) the identification of innate pattern recognition receptors (PRRs) and cognate agonists responsible for inducing immune responses, and (iii) developments in nano- and microparticle fabrication and characterization techniques. Advances in particle engineering now allow highly tunable physicochemical properties of particle-based vaccines, including composition, size, shape, surface characteristics, and degradability. Enhanced collaborative efforts between researchers in immunology and materials science are expected to rise to next-generation vaccines. This process will be significantly aided by a greater understanding of the immunological principles guiding vaccine antigenicity, immunogenicity, and efficacy. With specific emphasis on PRR-targeted adjuvants and particle physicochemical properties, this review aims to provide an overview of the current literature to guide and focus rational particle-based vaccine design efforts.
Collapse
Affiliation(s)
- Katelyn T Gause
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Adam K Wheatley
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yan Yan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
24
|
Chang HS, Lee TH, Jun JA, Baek AR, Park JS, Koo SM, Kim YK, Lee HS, Park CS. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med 2016; 11:29-40. [PMID: 27918221 DOI: 10.1080/17476348.2017.1268919] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.
Collapse
Affiliation(s)
- Hun Soo Chang
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Tae-Hyeong Lee
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Ji Ae Jun
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Ae Rin Baek
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| | - Jong-Sook Park
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| | - So-My Koo
- c Division of Allergy and Respiratory Medicine , Soonchunhyang University Seoul Hospital , Seoul , Republic of Korea
| | - Yang-Ki Kim
- c Division of Allergy and Respiratory Medicine , Soonchunhyang University Seoul Hospital , Seoul , Republic of Korea
| | - Ho Sung Lee
- d Division of Respiratory Medicine , Soonchunhyang University CheonAn Hospital , Cheonan , Chungcheongnam-do , Republic of Korea
| | - Choon-Sik Park
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| |
Collapse
|
25
|
Cho T, Uetrecht J. How Reactive Metabolites Induce an Immune Response That Sometimes Leads to an Idiosyncratic Drug Reaction. Chem Res Toxicol 2016; 30:295-314. [DOI: 10.1021/acs.chemrestox.6b00357] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tiffany Cho
- Faculty
of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Jack Uetrecht
- Faculty
of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
26
|
Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.mchd-0021-2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NOD-like receptor (NLR) proteins, as much as Toll-like receptor proteins, play a major role in modulating myeloid cells in their immune functions. There is still, however, limited knowledge on the expression and function of several of the mammalian NLR proteins in myeloid lineages. Still, the function of pyrin domain-containing NLR proteins and NLRC4/NAIP as inflammasome components that drive interleukin-1β (IL-1β) and IL-18 maturation and secretion upon pathogen stimulation is well established. NOD1, NOD2, NLRP3, and NLRC4/NAIP act as bona fide pattern recognition receptors (PRRs) that sense microbe-associated molecular patterns (MAMPs) but also react to endogenous danger-associated molecular patterns (DAMPs). Ultimately, activation of these receptors achieves macrophage activation and maturation of dendritic cells to drive antigen-specific adaptive immune responses. Upon infection, sensing of invading pathogens and likely of DAMPs that are released in response to tissue injury is a process that involves multiple PRRs in both myeloid and epithelial cells, and these act in concert to design tailored, pathogen-adapted immune responses by induction of different cytokine profiles, giving rise to appropriate lymphocyte polarization.
Collapse
|
27
|
Gibb DR, Calabro S, Liu D, Tormey CA, Spitalnik SL, Zimring JC, Hendrickson JE, Hod EA, Eisenbarth SC. The Nlrp3 Inflammasome Does Not Regulate Alloimmunization to Transfused Red Blood Cells in Mice. EBioMedicine 2016; 9:77-86. [PMID: 27345021 PMCID: PMC4972549 DOI: 10.1016/j.ebiom.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023] Open
Abstract
Red blood cell (RBC) transfusions are essential for patients with hematological disorders and bone marrow failure syndromes. Despite ABO matching, RBC transfusions can lead to production of alloantibodies against “minor” blood group antigens. Non-ABO alloimmunization is a leading cause of transfusion-associated mortality in the U.S. Despite its clinical importance, little is known about the immunological factors that promote alloimmunization. Prior studies indicate that inflammatory conditions place patients at higher risk for alloimmunization. Additionally, co-exposure to pro-inflammatory pathogen associated molecular patterns (PAMPs) promotes alloimmunization in animal models, suggesting that RBC alloimmunization depends on innate immune cell activation. However, the specific innate immune stimuli and sensors that induce a T cell-dependent alloantibody response to transfused RBCs have not been identified. The NLRP3 inflammasome senses chemically diverse PAMPs and damage associated molecular patterns (DAMPs), including extracellular ATP and iron-containing heme. We hypothesized that activation of the NLRP3 inflammasome by endogenous DAMPs from RBCs promotes the alloimmune response to a sterile RBC transfusion. Using genetically modified mice lacking either NLRP3 or multiple downstream inflammasome response elements, we ruled out a role for the NLRP3 inflammasome or any Caspase-1 or -11 dependent inflammasome in regulating RBC alloantibody production to a model antigen. Transfusion of stored red blood cells (RBCs) induces proinflammatory cytokine production and alloimmunization to an RBC antigen in mice. Transfusion of stored RBCs, regardless of alloantigen expression, activates conventional dendritic cells in the spleen. NOD-like receptor (NLR) inflammasomes, including NLRP3, do not regulate inflammation and alloimmunization induced by stored RBCs.
Following a blood transfusion, the immune system may produce antibodies that have detrimental effects. To understand how the immune system recognizes factors in transfused blood, we examined the immune response of mice lacking important inflammatory molecules, called inflammasomes. The results demonstrate that inflammasomes do not affect the production of potentially harmful antibodies that recognize transfused red blood cells.
Collapse
Affiliation(s)
- David R Gibb
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuele Calabro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Christopher A Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, NY, New York 10032, USA
| | - James C Zimring
- Bloodworks NW Research Institute, Seattle, WA 98102, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98102, USA; Department of Internal Medicine-Division of Hematology, University of Washington School of Medicine, Seattle, WA 98102, USA
| | - Jeanne E Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, NY, New York 10032, USA.
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Zheng Z, Zheng F. Immune Cells and Inflammation in Diabetic Nephropathy. J Diabetes Res 2016; 2016:1841690. [PMID: 26824038 PMCID: PMC4707326 DOI: 10.1155/2016/1841690] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles.
Collapse
Affiliation(s)
- Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Feng Zheng
- Department of Nephrology, Advanced Institute for Medical Sciences, Second Hospital, Dalian Medical University, Dalian 116023, China
- Department of Nephrology and Basic Science Laboratory, Fujian Medical University, Fuzhou 350002, China
- *Feng Zheng:
| |
Collapse
|
29
|
Sica V, Manic G, Kroemer G, Vitale I, Galluzzi L. Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins. Methods Mol Biol 2016; 1417:231-245. [PMID: 27221495 DOI: 10.1007/978-1-4939-3566-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, also known as NOD-like receptors, are critical components of the molecular machinery that senses intracellular danger signals to initiate an innate immune response against invading pathogens or endogenous sources of hazard. The best characterized effect of NLR signaling is the secretion of various cytokines with immunostimulatory effects, including interleukin (IL)-1β and IL-18. Moreover, at least under specific circumstances, NLRs can promote regulated variants of cell death. Here, we detail two protocols for the cytofluorometric quantification of cell death-associated parameters that can be conveniently employed to assess the lethal activity of specific NLRs or their ligands.
Collapse
Affiliation(s)
- Valentina Sica
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | | | - Guido Kroemer
- INSERM, U1138, Paris, France
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 12 Rue de E'cole de Medecine, 75006, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus, Villejuif, France.
- INSERM, U1138, Paris, France.
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 12 Rue de E'cole de Medecine, 75006, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
30
|
Basu M, Paichha M, Swain B, Lenka SS, Singh S, Chakrabarti R, Samanta M. Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla). 3 Biotech 2015; 5:1021-1030. [PMID: 28324409 PMCID: PMC4624144 DOI: 10.1007/s13205-015-0306-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) and nucleotide binding and oligomerization domain (NOD) receptors are pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play crucial role in innate immunity. In addition to PAMPs, PRRs recognize endogenous molecules released from damaged tissue or dead cells [damage-associated molecular patterns (DAMPs)] and activate signaling cascades to induce inflammatory processes. In the aquatic environment, large variation in seasonal and diurnal water temperature causes heat and cold stresses in fish, resulting in tissue injury and mortality of fish. In the Indian subcontinent, catla (Catla catla) is an economically important freshwater fish species and is prone to thermal stresses. To investigate the response of pattern recognition receptors in thermal stress, we analyzed TLRs (TLR2, TLR4 and TLR5) and NOD (NOD1 and NOD2) receptors gene expression in catla following heat and cold stress. Analysis of tissue samples (gill, liver, kidney and blood) of the thermal stressed and control fish by quantitative real-time PCR (qRT-PCR) assay revealed significant (p < 0.05) induction of TLR2, TLR4 and NOD2 gene expression in majority of the tested tissues of the treated fish as compared to the control. The expression of TLR5 and NOD1 gene was also induced in the heat and cold stressed fish, but mostly restricted in the blood. The downstream signaling molecule of TLR and NOD signaling pathway viz., MyD88 (myeloid differentiation primary response gene 88) and RICK (receptor interacting serine-threonine protein kinase-2) was also induced in the thermal stressed fish suggesting the engagement of TLR and NOD signaling pathway during thermal stress.
Collapse
Affiliation(s)
- Madhubanti Basu
- Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, Orissa, India
| | - Mahismita Paichha
- Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, Orissa, India
| | - Banikalyan Swain
- Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, Orissa, India
| | - Saswati S Lenka
- Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, Orissa, India
| | - Samarpal Singh
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Mrinal Samanta
- Fish Health Management Division, Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, 751002, Orissa, India.
| |
Collapse
|
31
|
Basu M, Paichha M, Lenka SS, Chakrabarty R, Samanta M. Hypoxic stress: impact on the modulation of TLR2, TLR4, NOD1 and NOD2 receptor and their down-stream signalling genes expression in catla (Catla catla). Mol Biol Rep 2015; 43:1-9. [DOI: 10.1007/s11033-015-3932-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/13/2015] [Indexed: 01/06/2023]
|
32
|
Analysis of inflammasomes and antiviral sensing components reveals decreased expression of NLRX1 in HIV-positive patients assuming efficient antiretroviral therapy. AIDS 2015; 29:1937-41. [PMID: 26237098 DOI: 10.1097/qad.0000000000000830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Few studies have investigated the importance of different components of the inflammasome system and of innate mitochondrial sensing (IMS) pathways in HIV infection and its treatment. We analysed the expression of several components of the inflammasome and of the IMS in HIV-positive patients taking successful combination antiretroviral therapy (cART). METHODS We enrolled 20 HIV-positive patients under cART, who achieved viral suppression since at least 10 months and 20 age and sex-matched healthy donors. By RT-PCR, using peripheral blood mononuclear cells (PBMCs), we quantified the mRNA expression of 16 genes involved in inflammasome activation and regulation (AIM2, NAIP, PYCARD, CASP1, CASP5, NLRP6, NLRP1, NLRP3, TXNIP, BCL2, NLRC4, PANX1, P2RX7, IL-18, IL-1β, SUGT1) and eight genes involved in IMS (MFN2, MFN1, cGAS, RIG-I, MAVS, NLRX1, RAB32, STING). RESULTS Compared with controls, HIV-positive patients showed significantly lower mRNA levels of the mitochondrial protein NLRX1, which plays a key role in regulating apoptotic cell death; main PBMC subpopulations behave in a similar manner. No differences were observed in the expression of inflammasome components, which however showed complex correlations. CONCLUSION The decreased level of NLRX1 in HIV infection could suggest that the virus is able to downregulate mechanisms linked to triggering of cell death in several immune cell types. The fact that HIV-positive patients did not show altered expression of inflammasome components, nor of most genes involved in IMS, suggests that the infection and/or the chronic immune activation does not influence the transcriptional machinery of innate mechanisms able to trigger inflammation at different levels.
Collapse
|
33
|
Simultaneous deletion of NOD1 and NOD2 inhibits in vitro alloresponses but does not prevent allograft rejection. Immunobiology 2015; 220:1227-31. [PMID: 26159289 DOI: 10.1016/j.imbio.2015.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/23/2022]
Abstract
Pattern recognition receptors (PRRs) play an important role in host anti-donor responses to transplanted tissue. A key trigger of the host alloresponse involves recognition of foreign antigen presented on activated antigen presenting cells by the host T cells. Emerging data suggest that PRR blockade can abrogate host anti-donor responses by interfering with activation of antigen presenting cells, particularly activation of dendritic cells. Our study asked whether blockade of a well-characterized family of intracellular PRRs, the NOD family, interfered with alloantigen recognition and allograft rejection. We found that deletion of either NOD1 or NOD2 in antigen presenting cells (APCs) had no effect on induction of T cell proliferation to alloantigen, but that simultaneous deletion of NOD1 and NOD2 significantly inhibited T cell responses. There was however no effect of the NOD deletion on skin graft rejection when NOD1×NOD2 skin was transplanted onto allogeneic hosts or when WT skin was transplanted onto NOD1×NOD2 deficient recipients. The conclusion of this study is that in vitro alloresponses are negatively impacted by the simultaneous deletion of NOD1 and NOD2, but that allograft rejection across a stringent allo barrier is not affected. Our results suggest that the NOD family members, NOD1 and NOD2, play a collaborative role in T cell activation by alloantigen and that their blockade in vitro can inhibit T cell responses.
Collapse
|
34
|
Kaurenoic Acid Possesses Leishmanicidal Activity by Triggering a NLRP12/IL-1β/cNOS/NO Pathway. Mediators Inflamm 2015; 2015:392918. [PMID: 26074677 PMCID: PMC4444587 DOI: 10.1155/2015/392918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/24/2015] [Indexed: 01/18/2023] Open
Abstract
Leishmania amazonensis (L. amazonensis) infection can cause severe local and diffuse injuries in humans, a condition clinically known as American cutaneous leishmaniasis (ACL). Currently, the therapeutic approach for ACL is based on Glucantime, which shows high toxicity and poor effectiveness. Therefore, ACL remains a neglected disease with limited options for treatment. Herein, the in vitro antiprotozoal effect and mechanisms of the diterpene kaurenoic acid [ent-kaur-16-en-19-oic acid] (KA) against L. amazonensis were investigated. KA exhibited a direct antileishmanial effect on L. amazonensis promastigotes. Importantly, KA also reduced the intracellular number of amastigote forms and percentage of infected peritoneal macrophages of BALB/c mice. Mechanistically, KA treatment reestablished the production of nitric oxide (NO) in a constitutive NO synthase- (cNOS-) dependent manner, subverting the NO-depleting escape mechanism of L. amazonensis. Furthermore, KA induced increased production of IL-1β and expression of the inflammasome-activating component NLRP12. These findings demonstrate the leishmanicidal capability of KA against L. amazonensis in macrophage culture by triggering a NLRP12/IL-1β/cNOS/NO mechanism.
Collapse
|
35
|
Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc Natl Acad Sci U S A 2015; 112:3056-61. [PMID: 25713392 DOI: 10.1073/pnas.1501554112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) are the primary leukocytes responsible for priming T cells. To find and activate naïve T cells, DCs must migrate to lymph nodes, yet the cellular programs responsible for this key step remain unclear. DC migration to lymph nodes and the subsequent T-cell response are disrupted in a mouse we recently described lacking the NOD-like receptor NLRP10 (NLR family, pyrin domain containing 10); however, the mechanism by which this pattern recognition receptor governs DC migration remained unknown. Using a proteomic approach, we discovered that DCs from Nlrp10 knockout mice lack the guanine nucleotide exchange factor DOCK8 (dedicator of cytokinesis 8), which regulates cytoskeleton dynamics in multiple leukocyte populations; in humans, loss-of-function mutations in Dock8 result in severe immunodeficiency. Surprisingly, Nlrp10 knockout mice crossed to other backgrounds had normal DOCK8 expression. This suggested that the original Nlrp10 knockout strain harbored an unexpected mutation in Dock8, which was confirmed using whole-exome sequencing. Consistent with our original report, NLRP3 inflammasome activation remained unaltered in NLRP10-deficient DCs even after restoring DOCK8 function; however, these DCs recovered the ability to migrate. Isolated loss of DOCK8 via targeted deletion confirmed its absolute requirement for DC migration. Because mutations in Dock genes have been discovered in other mouse lines, we analyzed the diversity of Dock8 across different murine strains and found that C3H/HeJ mice also harbor a Dock8 mutation that partially impairs DC migration. We conclude that DOCK8 is an important regulator of DC migration during an immune response and is prone to mutations that disrupt its crucial function.
Collapse
|
36
|
Robinson JA, Moehle K. Structural aspects of molecular recognition in the immune system. Part II: Pattern recognition receptors (IUPAC Technical Report). PURE APPL CHEM 2014. [DOI: 10.1515/pac-2013-1026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The vertebrate immune system uses pattern recognition receptors (PRRs) to detect a large variety of molecular signatures (pathogen-associated molecular patterns, PAMPs) from a broad range of different invading pathogens. The PAMPs range in size from relatively small molecules, to others of intermediate size such as bacterial lipopolysaccharide, lipopeptides, and oligosaccharides, to macromolecules such as viral DNA, RNA, and pathogen-derived proteins such as flagellin. Underlying this functional diversity of PRRs is a surprisingly small number of structurally distinct protein folds that include leucine-rich repeats in Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the DExH box helicase domain in RIG-like receptors (RLRs), and C-type lectin domains (CTLDs) in the C-type lectins. Following PAMP recognition by the PRRs, downstream signaling pathways activate the innate immune system to respond to invading pathogenic organisms. The resulting stimulatory response is also vital for a balanced adaptive immune response to the pathogen, mediated by circulating antibodies and/or cytotoxic T cells. However, an aberrant stimulation of the innate immune system can also lead to excessive inflammatory and toxic stress responses. Exciting opportunities are now arising for the design of small synthetic molecules that bind to PRRs and influence downstream signaling pathways. Such molecules can be useful tools to modulate immune responses, for example, as adjuvants to stimulate adaptive immune responses to a vaccine, or as therapeutic agents to dampen aberrant immune responses, such as inflammation. The design of agonists or antagonists of PRRs can now benefit from a surge in knowledge of the 3D structures of PRRs, many in complexes with their natural ligands. This review article describes recent progress in structural studies of PRRs (TLRs, NLRs, CTLs, and RLRs), which is required for an understanding of how they specifically recognize structurally diverse “foreign” PAMPs amongst a background of other “self” molecules, sometimes closely related in structure, that are present in the human body.
Collapse
|
37
|
Hütter J, Eriksson M, Johannssen T, Klopfleisch R, von Smolinski D, Gruber AD, Seeberger PH, Lepenies B. Role of the C-type lectin receptors MCL and DCIR in experimental colitis. PLoS One 2014; 9:e103281. [PMID: 25068517 PMCID: PMC4113383 DOI: 10.1371/journal.pone.0103281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract. Though its exact etiology is still unclear, it is proposed that an imbalance in the intestinal homeostasis leads to a disturbed interaction between commensal microbiota and the mucosal immune system. Previous studies have shown that both innate and adaptive immunity are involved in an overwhelming colon inflammation, and thus contribute to the pathogenesis of IBD. In innate immunity, several pattern recognition receptors such as Toll-like receptors, NOD-like receptors or C-type lectin receptors (CLRs) are involved in IBD pathogenesis. Myeloid CLRs are mainly expressed by antigen-presenting cells and bind to glycan structures present on self or foreign antigens. The Macrophage-restricted C-type lectin (MCL) and the Dendritic cell immunoreceptor (DCIR) are two poorly characterized members of the CLR family. In this study, we investigated the role of MCL and DCIR in the pathogenesis of murine colitis. Both CLRs bound to intestinal microbiota to a different extent. They modulated the production of pro-inflammatory cytokines by antigen-presenting cells upon stimulation with heat-killed microbiota and impacted subsequent T cell responses. To analyze whether MCL and DCIR contribute to the pathogenesis of IBD, the dextran sulfate sodium (DSS) murine colitis model was employed. MCL−/− as well as DCIR−/− mice exhibited only a slightly increased severity of disease compared to wild-type mice indicating a limited role for MCL and DCIR in the regulation of intestinal immunity.
Collapse
Affiliation(s)
- Julia Hütter
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Magdalena Eriksson
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Timo Johannssen
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Robert Klopfleisch
- Freie Universität Berlin, Department of Veterinary Pathology, Berlin, Germany
| | | | - Achim D. Gruber
- Freie Universität Berlin, Department of Veterinary Pathology, Berlin, Germany
| | - Peter H. Seeberger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Berlin, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
IBD is a spectrum of chronic disorders that constitute an important health problem worldwide. The hunt for genetic determinants of disease onset and course has culminated in the Immunochip project, which has identified >160 loci containing IBD susceptibility genes. In this Review, we highlight how genetic association studies have informed our understanding of the pathogenesis of IBD by focusing research efforts on key pathways involved in innate immunity, autophagy, lymphocyte differentiation and chemotaxis. Several of these novel genetic markers and cellular pathways are promising candidates for patient stratification and therapeutic targeting.
Collapse
|
39
|
Liu D, Rhebergen AM, Eisenbarth SC. Licensing Adaptive Immunity by NOD-Like Receptors. Front Immunol 2013; 4:486. [PMID: 24409181 PMCID: PMC3873523 DOI: 10.3389/fimmu.2013.00486] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022] Open
Abstract
The innate immune system is composed of a diverse set of host defense molecules, physical barriers, and specialized leukocytes and is the primary form of immune defense against environmental insults. Another crucial role of innate immunity is to shape the long-lived adaptive immune response mediated by T and B lymphocytes. The activation of pattern recognition receptors (PRRs) from the Toll-like receptor family is now a classic example of innate immune molecules influencing adaptive immunity, resulting in effective antigen presentation to naïve T cells. More recent work suggests that the activation of another family of PRRs, the NOD-like receptors (NLRs), induces a different set of innate immune responses and accordingly, drives different aspects of adaptive immunity. Yet how this unusually diverse family of molecules (some without canonical PRR function) regulates immunity remains incompletely understood. In this review, we discuss the evidence for and against NLR activity orchestrating adaptive immune responses during infectious as well as non-infectious challenges.
Collapse
Affiliation(s)
- Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Anne Marie Rhebergen
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
40
|
Neuroinflammation and copper in Alzheimer's disease. Int J Alzheimers Dis 2013; 2013:145345. [PMID: 24369524 PMCID: PMC3863554 DOI: 10.1155/2013/145345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammation is the innate immune response to infection or tissue damage. Initiation of proinflammatory cascades in the central nervous system (CNS) occurs through recognition of danger associated molecular patterns by cognate immune receptors expressed on inflammatory cells and leads to rapid responses to remove the danger stimulus. The presence of activated microglia and astrocytes in the vicinity of amyloid plaques in the brains of Alzheimer's disease (AD) patients and mouse models implicates inflammation as a contributor to AD pathogenesis. Activated microglia play a critical role in amyloid clearance, but chronic deregulation of CNS inflammatory pathways results in secretion of neurotoxic mediators that ultimately contribute to neurodegeneration in AD. Copper (Cu) homeostasis is profoundly affected in AD, and accumulated extracellular Cu drives Aβ aggregation, while intracellular Cu deficiency limits bioavailable Cu required for CNS functions. This review presents an overview of inflammatory events that occur in AD in response to Aβ and highlights recent advances on the role of Cu in modulation of beneficial and detrimental inflammatory responses in AD.
Collapse
|
41
|
Sharma AM, Uetrecht J. Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. Drug Metab Rev 2013; 46:1-18. [DOI: 10.3109/03602532.2013.848214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Paramyxovirus activation and inhibition of innate immune responses. J Mol Biol 2013; 425:4872-92. [PMID: 24056173 DOI: 10.1016/j.jmb.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022]
Abstract
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.
Collapse
|
43
|
Abstract
Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, and axonal degeneration. Changes in microglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microglia potentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging.
Collapse
Affiliation(s)
- G Jean Harry
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, MD C1-04, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
44
|
Granucci F, Lutz MB, Zanoni I. The nature of activatory and tolerogenic dendritic cell-derived signal 2. Front Immunol 2013; 4:198. [PMID: 23882267 PMCID: PMC3712195 DOI: 10.3389/fimmu.2013.00198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/28/2023] Open
Affiliation(s)
- Francesca Granucci
- Department of Biotechnology and Bioscience, University of Milano-Bicocca , Milan, Italy
| | | | | |
Collapse
|
45
|
Monzavi-Karbassi B, Pashov A, Kieber-Emmons T. Tumor-Associated Glycans and Immune Surveillance. Vaccines (Basel) 2013; 1:174-203. [PMID: 26343966 PMCID: PMC4515579 DOI: 10.3390/vaccines1020174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anastas Pashov
- Stephan Angeloff Institute of Microbiology, BAS, Sofia 1113, Bulgaria
| | - Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
46
|
Damm A, Lautz K, Kufer TA. Roles of NLRP10 in innate and adaptive immunity. Microbes Infect 2013; 15:516-23. [PMID: 23562614 DOI: 10.1016/j.micinf.2013.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 03/22/2013] [Indexed: 12/19/2022]
|