1
|
Wagoner ZW, Yates TB, Hernandez-Davies JE, Sureshchandra S, Joloya EM, Jain A, de Assis R, Kastenschmidt JM, Sorn AM, Mitul MT, Tamburini I, Ahuja G, Zhong Q, Trask D, Seldin M, Davies DH, Wagar LE. Systems immunology analysis of human immune organoids identifies host-specific correlates of protection to different influenza vaccines. Cell Stem Cell 2025:S1934-5909(25)00014-1. [PMID: 39986275 DOI: 10.1016/j.stem.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/27/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025]
Abstract
Vaccines are an essential tool to significantly reduce pathogen-related morbidity and mortality. However, our ability to rationally design vaccines and identify correlates of protection remains limited. Here, we employed an immune organoid approach to capture human adaptive immune response diversity to influenza vaccines and systematically identify host and antigen features linked to vaccine response variability. Our investigation identified established and unique immune signatures correlated with neutralizing antibody responses across seven different influenza vaccines and antigens. Unexpectedly, heightened ex vivo tissue frequencies of T helper (Th)1 cells emerged as both a predictor and a correlate of neutralizing antibody responses to inactivated influenza vaccines (IIVs). Secondary analysis of human public data confirmed that elevated Th1 signatures are associated with antibody responses following in vivo vaccination. These findings demonstrate the utility of human in vitro models for identifying in vivo correlates of protection and establish a role for Th1 functions in influenza vaccination.
Collapse
Affiliation(s)
- Zachary W Wagoner
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Timothy B Yates
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Jenny E Hernandez-Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Erika M Joloya
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Jenna M Kastenschmidt
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Andrew M Sorn
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Ian Tamburini
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Gurpreet Ahuja
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA, USA; Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - Qiu Zhong
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA, USA; Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Orange, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA
| | - Lisa E Wagar
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA; Center for Virus Research, University of California, Irvine, Irvine, CA, USA; Vaccine R&D Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Karshikoff B. Why PNI scientists need to engage in exploratory hypothesis-generating biomarker studies. Brain Behav Immun Health 2024; 42:100904. [PMID: 39634075 PMCID: PMC11614827 DOI: 10.1016/j.bbih.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Multi-omics research is developing rapidly, offering extensive sample analysis options and advanced statistical solutions to identify and understand complex networks of biomarkers. This review encourages groups in the psychoneuroimmunology field with limited experience in omics research to embrace these advances. Cross-sectional studies can leverage existing sample collections to provide unique information that complements longitudinal studies, providing insights into which biological systems may warrant further investigation and building fundamental mechanistic knowledge of biological networks. The understanding of immune-brain interactions should inform ongoing developments in exploratory, hypothesis-generating research. Disregarding psychoneuroimmunological aspects may have led to challenges in some prior biomarker research. Moving forward, a more nuanced perspective on inflammation and psychological comorbidity is needed. The first steps in the conceptualization of an explorative cross-sectional omics study are discussed from a pragmatic perspective, highlighting who we choose to study and what we choose to measure.
Collapse
Affiliation(s)
- Bianka Karshikoff
- University of Stavanger, Dept. of Social Studies, Stavanger, Norway
- Karolinska Institutet, Dept. of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
4
|
Cheng X, Meng X, Chen R, Song Z, Li S, Wei S, Lv H, Zhang S, Tang H, Jiang Y, Zhang R. The molecular subtypes of autoimmune diseases. Comput Struct Biotechnol J 2024; 23:1348-1363. [PMID: 38596313 PMCID: PMC11001648 DOI: 10.1016/j.csbj.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuhao Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Kilic G, Debisarun PA, Alaswad A, Baltissen MP, Lamers LA, de Bree LCJ, Benn CS, Aaby P, Dijkstra H, Lemmers H, Martens JHA, Domínguez-Andrés J, van Crevel R, Li Y, Xu CJ, Netea MG. Seasonal variation in BCG-induced trained immunity. Vaccine 2024; 42:126109. [PMID: 38981740 DOI: 10.1016/j.vaccine.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Bacille Calmette-Guerin (BCG) vaccine is a well-established inducer of innate immune memory (also termed trained immunity), causing increased cytokine production upon heterologous secondary stimulation. Innate immune responses are known to be influenced by season, but whether seasons impact induction of trained immunity is not known. To explore the influence of season on innate immune memory induced by the BCG vaccine, we vaccinated healthy volunteers with BCG either during winter or spring. Three months later, we measured the ex vivo cytokine responses against heterologous stimuli, analyzed gene expressions and epigenetic signatures of the immune cells, and compared these with the baseline before vaccination. BCG vaccination during winter induced a stronger increase in the production of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) upon stimulation with different bacterial and fungal stimuli, compared to BCG vaccination in spring. In contrast, winter BCG vaccination resulted in lower IFNγ release in PBMCs compared to spring BCG vaccination. Furthermore, NK cells of the winter-vaccinated people had a greater pro-inflammatory cytokine and IFNγ production capacity upon heterologous stimulation. BCG had only minor effects on the transcriptome of monocytes 3 months later. In contrast, we identified season-dependent epigenetic changes in monocytes and NK cells induced by vaccination, partly explaining the higher immune cell reactivity in the winter BCG vaccination group. These results suggest that BCG vaccination during winter is more prone to induce a robust trained immunity response by activating and reprogramming the immune cells, especially NK cells. (Dutch clinical trial registry no. NL58219.091.16).
Collapse
Affiliation(s)
- Gizem Kilic
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Priya A Debisarun
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ahmed Alaswad
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lieke A Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine S Benn
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Copenhagen, Denmark
| | - Peter Aaby
- Bandim Health Project, Open Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Helga Dijkstra
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Cheng-Jian Xu
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM), A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Mihai G Netea
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
6
|
Sigawi T, Israeli A, Ilan Y. Harnessing Variability Signatures and Biological Noise May Enhance Immunotherapies' Efficacy and Act as Novel Biomarkers for Diagnosing and Monitoring Immune-Associated Disorders. Immunotargets Ther 2024; 13:525-539. [PMID: 39431244 PMCID: PMC11488351 DOI: 10.2147/itt.s477841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and cancers. While the mechanisms associated with poor responsiveness are not well defined and change between and among subjects, the current methods for overcoming the loss of response are insufficient. The Constrained Disorder Principle (CDP) explains biological systems based on their inherent variability, bounded by dynamic boundaries that change in response to internal and external perturbations. Inter and intra-subject variability characterize the immune system, making it difficult to provide a single therapeutic regimen to all patients and even the same patients over time. The dynamicity of the immune variability is also a significant challenge for personalizing immunotherapies. The CDP-based second-generation artificial intelligence system is an outcome-based dynamic platform that incorporates personalized variability signatures into the therapeutic regimen and may provide methods for improving the response and overcoming the loss of response to treatments. The signatures of immune variability may also offer a method for identifying new biomarkers for early diagnosis, monitoring immune-related disorders, and evaluating the response to treatments.
Collapse
Affiliation(s)
- Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Adir Israeli
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
7
|
Hoang KL, Read TD, King KC. Defense Heterogeneity in Host Populations Gives Rise to Pathogen Diversity. Am Nat 2024; 204:370-380. [PMID: 39326061 DOI: 10.1086/731996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractHost organisms can harbor microbial symbionts that defend them from pathogen infection in addition to the resistance encoded by the host genome. Here, we investigated how variation in defenses, generated from host genetic background and symbiont presence, affects the emergence of pathogen genetic diversity across evolutionary time. We passaged the opportunistic pathogen Pseudomonas aeruginosa through populations of the nematode Caenorhabditis elegans varying in genetic-based defenses and prevalence of a protective symbiont. After 14 passages, we assessed the amount of genetic variation accumulated in evolved pathogen lineages. We found that diversity begets diversity. An overall greater level of pathogen whole-genome and per-gene genetic diversity was measured in pathogens evolved in mixed host populations compared with those evolved in host populations composed of one type of defense. Our findings directly demonstrate that symbiont-generated heterogeneity in host defense can be a significant contributor to pathogen genetic variation.
Collapse
|
8
|
Agustiningsih D, Wibawa T. Demystifying roles of exercise in immune response regulation against acute respiratory infections: A narrative review. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:139-153. [PMID: 38708320 PMCID: PMC11067861 DOI: 10.1016/j.smhs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 05/07/2024] Open
Abstract
The benefits of physical activity and exercise, especially those classified as moderate-to-vigorous activity (MVPA), have been well-established in preventing non-communicable diseases and mental health problems in healthy adults. However, the relationship between physical activity and exercise and the prevention and management of acute respiratory infection (ARI), a global high-burden disease, has been inconclusive. There have been debates and disagreements among scientific publications regarding the relationship between exercise and immune response against the causative agents of ARI. This narrative review aims to explore the theory that sufficiently explains the correlation between exercise, immune response, and ARI. The potential root causes of discrepancies come from research associated with the "open window" hypothesis. The studies have several limitations, and future improvements to address them are urgently needed in the study design, data collection, exercise intervention, subject recruitment, biomarkers for infection and inflammation, nutritional and metabolism status, and in addressing confounding variables. In conclusion, data support the clinical advantages of exercise have a regulatory contribution toward improving the immune response, which in turn potentially protects humans fromARI. However, the hypothesis related to its negative effect must be adopted cautiously.
Collapse
Affiliation(s)
- Denny Agustiningsih
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
9
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry. Nat Neurosci 2024; 27:1064-1074. [PMID: 38769152 PMCID: PMC11156587 DOI: 10.1038/s41593-024-01636-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024]
Abstract
Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer's disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Nakamura N, Kobashi Y, Kim KS, Park H, Tani Y, Shimazu Y, Zhao T, Nishikawa Y, Omata F, Kawashima M, Yoshida M, Abe T, Saito Y, Senoo Y, Nonaka S, Takita M, Yamamoto C, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Jeong YD, Tatematsu D, Akao M, Sato Y, Iwanami S, Fujita Y, Wakui M, Aihara K, Kodama T, Shibuya K, Iwami S, Tsubokura M. Modeling and predicting individual variation in COVID-19 vaccine-elicited antibody response in the general population. PLOS DIGITAL HEALTH 2024; 3:e0000497. [PMID: 38701055 PMCID: PMC11068210 DOI: 10.1371/journal.pdig.0000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/14/2024] [Indexed: 05/05/2024]
Abstract
As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an "antibody score", which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.
Collapse
Affiliation(s)
- Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Science System Simulation, Pukyong National University, Busan, South Korea
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Tokyo, Japan
| | - Yuzo Shimazu
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Toshiki Abe
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | - Yuki Senoo
- Medical Governance Research Institute, Tokyo, Japan
| | - Saori Nonaka
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yong Dam Jeong
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Daiki Tatematsu
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Marwa Akao
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Shibuya
- Soma Medical Center of Vaccination for COVID-19, Fukushima, Japan
- Tokyo Foundation for Policy Research, Tokyo, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima, Japan
- Medical Governance Research Institute, Tokyo, Japan
- Minamisoma Municipal General Hospital, Fukushima, Japan
| |
Collapse
|
11
|
Saint-André V, Charbit B, Biton A, Rouilly V, Possémé C, Bertrand A, Rotival M, Bergstedt J, Patin E, Albert ML, Quintana-Murci L, Duffy D. Smoking changes adaptive immunity with persistent effects. Nature 2024; 626:827-835. [PMID: 38355791 PMCID: PMC10881394 DOI: 10.1038/s41586-023-06968-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2023] [Indexed: 02/16/2024]
Abstract
Individuals differ widely in their immune responses, with age, sex and genetic factors having major roles in this inherent variability1-6. However, the variables that drive such differences in cytokine secretion-a crucial component of the host response to immune challenges-remain poorly defined. Here we investigated 136 variables and identified smoking, cytomegalovirus latent infection and body mass index as major contributors to variability in cytokine response, with effects of comparable magnitudes with age, sex and genetics. We find that smoking influences both innate and adaptive immune responses. Notably, its effect on innate responses is quickly lost after smoking cessation and is specifically associated with plasma levels of CEACAM6, whereas its effect on adaptive responses persists long after individuals quit smoking and is associated with epigenetic memory. This is supported by the association of the past smoking effect on cytokine responses with DNA methylation at specific signal trans-activators and regulators of metabolism. Our findings identify three novel variables associated with cytokine secretion variability and reveal roles for smoking in the short- and long-term regulation of immune responses. These results have potential clinical implications for the risk of developing infections, cancers or autoimmune diseases.
Collapse
Affiliation(s)
- Violaine Saint-André
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France.
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France.
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, Center for Translational Research, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anne Biton
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | | | - Céline Possémé
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Bertrand
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Université Paris Cité, Paris, France
| | - Maxime Rotival
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Jacob Bergstedt
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | | | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Department of Immunology, Institut Pasteur, Université Paris Cité, Paris, France.
- Cytometry and Biomarkers UTechS, Center for Translational Research, Institut Pasteur, Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
13
|
Ramasubramanian R, Kim JW, Guan W, Meier HC, Crimmins E, Faul J, Thyagarajan B. Cohabitation as a determinant of adaptive and innate immune cell profiles: Findings from the Health and Retirement Study. Brain Behav Immun Health 2023; 33:100676. [PMID: 37663036 PMCID: PMC10474123 DOI: 10.1016/j.bbih.2023.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Non-genetic factors are important but poorly understood determinants of immune profiles. Age and Cytomegalovirus (CMV) infection remain two well documented non-genetic determinants of the immune profile. Recently, one study identified cohabitation in the same household as an important determinant of immune profiles. Methods We used immunophenotyping data from the Health and Retirement Study (HRS) to evaluate the association between cohabitation and the adaptive (subsets of T-cells, B-cells) and innate immune profiles (subsets of monocytes, natural killer cells and neutrophils). We compared adaptive and innate immune cell profiles using immunophenotyping data from 1184 same-household pairs (cohabitating partners) to 1184 non-household pairs to evaluate the association between cohabitation and adaptive immune cell profiles. We used data from 1737 same-household pairs and 1737 non-household pairs to evaluate the association between cohabitation and innate cell profiles. Household and non-household pairs were matched on age (±2years), educational background and race/ethnicity to minimize confounding due to these factors. The adaptive immune cells and innate immune cell profiles were compressed to two coordinates using multidimensional scaling (MDS). The Euclidean distances between same-household pairs were compared to the distances between non-household pairs for the adaptive and innate cell profiles separately using two sample independent t-tests. We also performed additional adjustment for age and BMI differences, CMV serostatus and smoking concordance/discordance status among household members. Results For adaptive immune cell profiles, the mean Euclidean distance between same-household pairs was 4% lower than the non-household pairs (p = 0.03). When stratified by concordance for CMV serostatus among household pairs, the Euclidean distance was significantly lower by 8% in the same-household pairs as compared to non-household pairs among those who were discordant for CMV serostatus (p = 0.01) and among same-household pairs who were CMV seronegative (p = 0.02) after covariate adjustment. The mean Euclidian distance between same-household pairs was also 8% lower than non-household pairs for the innate immune cell profiles (p-value <0.0001) and this difference remained consistent across all strata of CMV infection. Discussion This study confirms that cohabitation is associated with similarity in immune cell profiles. The differential effects of cohabitation on the adaptive and innate immune profiles suggest that further studies into the common environmental factors that influence individual immune cell subsets need to be evaluated in greater detail.
Collapse
Affiliation(s)
| | - Jae Won Kim
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Helen C.S. Meier
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Eileen Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Benson S, Karshikoff B. How Can Experimental Endotoxemia Contribute to Our Understanding of Pain? A Narrative Review. Neuroimmunomodulation 2023; 30:250-267. [PMID: 37797598 PMCID: PMC10619593 DOI: 10.1159/000534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
The immune system and the central nervous system exchange information continuously. This communication is a prerequisite for adaptive responses to physiological and psychological stressors. While the implicate relationship between inflammation and pain is increasingly recognized in clinical cohorts, the underlying mechanisms and the possibilities for pharmacological and psychological approaches aimed at neuro-immune communication in pain are not fully understood yet. This calls for preclinical models which build a bridge from clinical research to laboratory research. Experimental models of systemic inflammation (experimental endotoxemia) in humans have been increasingly recognized as an approach to study the direct and causal effects of inflammation on pain perception. This narrative review provides an overview of what experimental endotoxemia studies on pain have been able to clarify so far. We report that experimental endotoxemia results in a reproducible increase in pain sensitivity, particularly for pressure and visceral pain (deep pain), which is reflected in responses of brain areas involved in pain processing. Increased levels of blood inflammatory cytokines are required for this effect, but cytokine levels do not always predict pain intensity. We address sex-dependent differences in immunological responses to endotoxin and discuss why these differences do not necessarily translate to differences in behavioral measures. We summarize psychological and cognitive factors that may moderate pain sensitization driven by immune activation. Together, studying the immune-driven changes in pain during endotoxemia offers a deeper mechanistic understanding of the role of inflammation in chronic pain. Experimental endotoxemia models can specifically help to tease out inflammatory mechanisms underlying individual differences, vulnerabilities, and comorbid psychological problems in pain syndromes. The model offers the opportunity to test the efficacy of interventions, increasing their translational applicability for personalized medical approaches.
Collapse
Affiliation(s)
- Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bianka Karshikoff
- Department of Social Studies, University of Stavanger, Stavanger, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Benjamin KJM, Chen Q, Eagles NJ, Huuki-Myers LA, Collado-Torres L, Stolz JM, Pertea G, Shin JH, Paquola ACM, Hyde TM, Kleinman JE, Jaffe AE, Han S, Weinberger DR. Genetic and environmental contributions to ancestry differences in gene expression in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534458. [PMID: 37034760 PMCID: PMC10081196 DOI: 10.1101/2023.03.28.534458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ancestral differences in genomic variation are determining factors in gene regulation; however, most gene expression studies have been limited to European ancestry samples or adjusted for ancestry to identify ancestry-independent associations. We instead examined the impact of genetic ancestry on gene expression and DNA methylation (DNAm) in admixed African/Black American neurotypical individuals to untangle effects of genetic and environmental factors. Ancestry-associated differentially expressed genes (DEGs), transcripts, and gene networks, while notably not implicating neurons, are enriched for genes related to immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson's disease, and 30% of heritability for Alzhemier's disease. Ancestry-associated DEGs also show general enrichment for heritability of diverse immune-related traits but depletion for psychiatric-related traits. The cell-type enrichments and direction of effects vary by brain region. These DEGs are less evolutionarily constrained and are largely explained by genetic variations; roughly 15% are predicted by DNAm variation implicating environmental exposures. We also compared Black and White Americans, confirming most of these ancestry-associated DEGs. Our results highlight how environment and genetic background affect genetic ancestry differences in gene expression in the human brain and affect risk for brain illness.
Collapse
Affiliation(s)
- Kynon J M Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Geo Pertea
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Apuã C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neumora Therapeutics, Watertown, MA, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Später T, Kaneda G, Chavez M, Sheyn J, Wechsler J, Yu V, Del Rio P, Huang D, Metzger M, Tawackoli W, Sheyn D. Retention of Human iPSC-Derived or Primary Cells Following Xenotransplantation into Rat Immune-Privileged Sites. Bioengineering (Basel) 2023; 10:1049. [PMID: 37760151 PMCID: PMC10525500 DOI: 10.3390/bioengineering10091049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
In regenerative medicine, experimental animal models are commonly used to study potential effects of human cells as therapeutic candidates. Although some studies describe certain cells, such as mesenchymal stromal cells (MSC) or human primary cells, as hypoimmunogenic and therefore unable to trigger strong inflammatory host responses, other studies report antibody formation and immune rejection following xenotransplantation. Accordingly, the goal of our study was to test the cellular retention and survival of human-induced pluripotent stem cell (iPSCs)-derived MSCs (iMSCs) and primary nucleus pulposus cells (NPCs) following their xenotransplantation into immune-privileged knee joints (14 days) and intervertebral discs (IVD; 7 days) of immunocompromised Nude and immunocompetent Sprague Dawley (SD) rats. At the end of both experiments, we could demonstrate that both rat types revealed comparably low levels of systemic IL-6 and IgM inflammation markers, as assessed via ELISA. Furthermore, the number of recovered cells was with no significant difference between both rat types. Conclusively, our results show that xenogeneic injection of human iMSC and NPC into immunoprivileged knee and IVD sites did not lead to an elevated inflammatory response in immunocompetent rats when compared to immunocompromised rats. Hence, immunocompetent rats represent suitable animals for xenotransplantation studies targeting immunoprivileged sites.
Collapse
Affiliation(s)
- Thomas Später
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Melissa Chavez
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacob Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Victoria Yu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Patricia Del Rio
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dave Huang
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.H.); (M.M.)
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Melodie Metzger
- Orthopedics Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (D.H.); (M.M.)
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (T.S.); (G.K.); (M.C.); (J.S.); (J.W.); (V.Y.); (P.D.R.); (W.T.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
17
|
Gao J, Luo Y, Li H, Zhao Y, Zhao J, Han X, Han J, Lin H, Qian F. Deep Immunophenotyping of Human Whole Blood by Standardized Multi-parametric Flow Cytometry Analyses. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:309-328. [PMID: 37325713 PMCID: PMC10260734 DOI: 10.1007/s43657-022-00092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Immunophenotyping is proving crucial to understanding the role of the immune system in health and disease. High-throughput flow cytometry has been used extensively to reveal changes in immune cell composition and function at the single-cell level. Here, we describe six optimized 11-color flow cytometry panels for deep immunophenotyping of human whole blood. A total of 51 surface antibodies, which are readily available and validated, were selected to identify the key immune cell populations and evaluate their functional state in a single assay. The gating strategies for effective flow cytometry data analysis are included in the protocol. To ensure data reproducibility, we provide detailed procedures in three parts, including (1) instrument characterization and detector gain optimization, (2) antibody titration and sample staining, and (3) data acquisition and quality checks. This standardized approach has been applied to a variety of donors for a better understanding of the complexity of the human immune system. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00092-9.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yali Luo
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Helian Li
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yiran Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jialin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuling Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jingxuan Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Huiqin Lin
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Immunophenome, International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| |
Collapse
|
18
|
Souquette A, Allen EK, Oshansky CM, Tang L, Wong SS, Jeevan T, Shi L, Pounds S, Elias G, Kuan G, Balmaseda A, Zapata R, Shaw-Saliba K, Damme PV, Tendeloo VV, Dib JC, Ogunjimi B, Webby R, Schultz-Cherry S, Pekosz A, Rothman R, Gordon A, Thomas PG. Integrated Drivers of Basal and Acute Immunity in Diverse Human Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534227. [PMID: 36993205 PMCID: PMC10055315 DOI: 10.1101/2023.03.25.534227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.
Collapse
|
19
|
Mestiri S, Merhi M, Inchakalody VP, Taib N, Smatti MK, Ahmad F, Raza A, Ali FH, Hydrose S, Fernandes Q, Ansari AW, Sahir F, Al-Zaidan L, Jalis M, Ghoul M, Allahverdi N, Al Homsi MU, Uddin S, Jeremijenko AM, Nimir M, Abu-Raddad LJ, Abid FB, Zaqout A, Alfheid SR, Saqr HMH, Omrani AS, Hssain AA, Al Maslamani M, Yassine HM, Dermime S. Persistence of spike-specific immune responses in BNT162b2-vaccinated donors and generation of rapid ex-vivo T cells expansion protocol for adoptive immunotherapy: A pilot study. Front Immunol 2023; 14:1061255. [PMID: 36817441 PMCID: PMC9933868 DOI: 10.3389/fimmu.2023.1061255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese P. Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Maria K. Smatti
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fatma H. Ali
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Abdul W. Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Munir Jalis
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mokhtar Ghoul
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Niloofar Allahverdi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed U. Al Homsi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Mai Nimir
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Laith J. Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine–Qatar, Cornell University, Qatar Foundation–Education City, Doha, Qatar
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Fatma Ben Abid
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Zaqout
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Ali S. Omrani
- College of Medicine, Qatar University, Doha, Qatar
- Communicable Disease Center, Hamad Medical Corporation, Doha, Qatar
| | - Ali Ait Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | | | - Hadi M. Yassine
- Qatar University Biomedical Research Center, Qatar University, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
20
|
Ramendra R, Sage AT, Yeung J, Fernandez-Castillo JC, Cuesta M, Aversa M, Liu M, Cypel M, Keshavjee S, Martinu T. Triaging donor lungs based on a microaspiration signature that predicts adverse recipient outcome. J Heart Lung Transplant 2023; 42:456-465. [PMID: 36710092 DOI: 10.1016/j.healun.2022.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aspiration is a relative contraindication to accepting donor lungs for transplant and is currently assessed by visual inspection of the airways via bronchoscopy. However, this method is limited as it does not assess for microaspiration. Bile acids measured in large airway bronchial wash (LABW) samples have been shown to be a marker of aspiration in lung transplant recipients. Herein, we investigate the utility of measuring total bile acids (TBA) in donor LABW to predict performance of donor lungs and recipient outcomes. METHODS TBA was measured in 605 consecutive lung donors at the Toronto Lung Transplant Program. TBA levels were compared in donor lungs deemed unsuitable for transplant, requiring further assessment on ex vivo lung perfusion (EVLP), and those suitable for direct transplantation using Mann-Whitney-U tests. Relationships between LABW TBA concentrations and recipient outcomes were evaluated using multivariable Cox-PH models and log-rank analysis. RESULTS Donor TBA was highest in lungs deemed unsuitable for transplant and correlated with clinical assessment of aspiration. LABW TBA concentration correlated with calcium, decreased pH, and increased pro-inflammatory mediators in EVLP perfusate. TBA cut-off of 1245 nM was able to differentiate donor lungs directly declined from those suitable for direct transplantation with a 91% specificity (AUROC: 73%). High donor TBA status was associated with the increased rate of primary graft dysfunction, longer time to extubation, and shorter time to chronic lung allograft dysfunction. CONCLUSIONS In a large retrospective cohort, we observed that donor LABW TBA was associated with suitability of donor lungs for transplant, performance of the organ on EVLP, and adverse recipient outcomes.
Collapse
Affiliation(s)
- Rayoun Ramendra
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrew T Sage
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jonathan Yeung
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Faculty of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Juan C Fernandez-Castillo
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cuesta
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Meghan Aversa
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Faculty of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Faculty of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Ballester M, Jové-Juncà T, Pascual A, López-Serrano S, Crespo-Piazuelo D, Hernández-Banqué C, González-Rodríguez O, Ramayo-Caldas Y, Quintanilla R. Genetic architecture of innate and adaptive immune cells in pigs. Front Immunol 2023; 14:1058346. [PMID: 36814923 PMCID: PMC9939681 DOI: 10.3389/fimmu.2023.1058346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Pig industry is facing new challenges that make necessary to reorient breeding programs to produce more robust and resilient pig populations. The aim of the present work was to study the genetic determinism of lymphocyte subpopulations in the peripheral blood of pigs and identify genomic regions and biomarkers associated to them. For this purpose, we stained peripheral blood mononuclear cells to measure ten immune-cell-related traits including the relative abundance of different populations of lymphocytes, the proportions of CD4+ T cells and CD8+ T cells, and the ratio of CD4+/CD8+ T cells from 391 healthy Duroc piglets aged 8 weeks. Medium to high heritabilities were observed for the ten immune-cell-related traits and significant genetic correlations were obtained between the proportion of some lymphocytes populations. A genome-wide association study pointed out 32 SNPs located at four chromosomal regions on pig chromosomes SSC3, SSC5, SSC8, and SSCX as significantly associated to T-helper cells, memory T-helper cells and γδ T cells. Several genes previously identified in human association studies for the same or related traits were located in the associated regions, and were proposed as candidate genes to explain the variation of T cell populations such as CD4, CD8A, CD8B, KLRC2, RMND5A and VPS24. The transcriptome analysis of whole blood samples from animals with extreme proportions of γδ T, T-helper and memory T-helper cells identified differentially expressed genes (CAPG, TCF7L1, KLRD1 and CD4) located into the associated regions. In addition, differentially expressed genes specific of different T cells subpopulations were identified such as SOX13 and WC1 genes for γδ T cells. Our results enhance the knowledge about the genetic control of lymphocyte traits that could be considered to optimize the induction of immune responses to vaccines against pathogens. Furthermore, they open the possibility of applying effective selection programs for improving immunocompetence in pigs and support the use of the pig as a very reliable human biomedical model.
Collapse
Affiliation(s)
- Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Afra Pascual
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Sergi López-Serrano
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain.,Institute of Agrifood Research and Technology (IRTA), Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Carles Hernández-Banqué
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Spain
| |
Collapse
|
22
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Four-Parameter FluoroSpot Assay Reveals That the Varicella Zoster Virus Elicits a Robust Memory T Cell IL-10 Response throughout Childhood. J Virol 2022; 96:e0131022. [PMID: 36314824 PMCID: PMC9683015 DOI: 10.1128/jvi.01310-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During childhood, the composition and function of the T cell compartment undergoes significant changes. In healthy individuals, primary infection with herpesviruses is followed by latency, and occasional subclinical reactivation ensures transmission and contributes to an emerging pool of memory T cells. In immunocompromised individuals, herpesviruses can be life threatening. However, knowledge about the spectrum of virus-specific cytokine responses is limited. Here, we investigated peripheral blood mononuclear cells (PBMCs) from children with differential carrier statuses for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and varicella zoster virus (VZV) (n = 32, age 1 to 17 years). We examined memory T cell subsets as well as IFN-γ-, IL-10-, IL-17A-, and IL-22-producing T cells after polyclonal activation or stimulation with viral peptides using flow cytometry and a 4-parameter FluoroSpot assay. Age and herpesvirus carriage influenced the size of the memory T cell subsets. A positive association between age and the number of IFN-γ-, IL-17A- and IL-22-producing T cells was found following polyclonal activation. For CMV, age was positively associated with IL-17A spot-forming cells (SFC), while for VZV, age was negatively associated with IL-22 and positively associated with IFN-γ SFC. Upon activation with CMV, VZV, and EBV peptides, IFN-γ SFCs dominated. Notably, VZV responses were characterized by a higher IL-10 SFC population compared to both CMV and EBV. Our findings suggest that cytokine responses vary across herpesvirus-type-specific memory T cells and may more adequately reflect their composition. An observed deviation between polyclonal and herpesvirus-specific T cell cytokine responses in children needs to be considered when interpreting the associations between herpesvirus carrier status and bulk T cell reactivity. In summary, these findings may have implications for the treatment of immunocompromised patients. IMPORTANCE Infection with herpesviruses accounts for 35 to 40 billion human cases worldwide. Despite this, little is known about how herpesviruses shape the immune system in the asymptomatic carrier. Particularly in children, primary infection is connected to no or mild symptoms ahead of latency for life. Most research on cellular responses against herpesviruses focuses on inflammatory cytokines associated with antiproliferative and antitumor mechanisms and not the spectrum of cytokine responses in healthy humans. This study investigated four divergent cytokine-producing T cell responses to herpesviruses, reflecting different immunological functions. Three common childhood herpesviruses were selected: Epstein-Barr virus, cytomegalovirus, and varicella-zoster virus. Curiously, not all viruses induced the same pattern of cytokines. Varicella-zoster responses were characterized by IL-10, which is considered regulatory. Besides broadening understanding of responses to herpesviruses, our results raise the possibility that reactivation of varicella-zoster may be counterproductive in cancer treatment through the action of IL-10-producing T-cells.
Collapse
|
24
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
25
|
Burton AR, Guillaume SM, Foster WS, Wheatley AK, Hill DL, Carr EJ, Linterman MA. The memory B cell response to influenza vaccination is impaired in older persons. Cell Rep 2022; 41:111613. [PMID: 36351385 PMCID: PMC9666924 DOI: 10.1016/j.celrep.2022.111613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/22/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Influenza infection imparts an age-related increase in mortality and morbidity. The most effective countermeasure is vaccination; however, vaccines offer modest protection in older adults. To investigate how aging impacts the memory B cell response, we track hemagglutinin-specific B cells by indexed flow sorting and single-cell RNA sequencing (scRNA-seq) in 20 healthy adults that were administered the trivalent influenza vaccine. We demonstrate age-related skewing in the memory B cell compartment 6 weeks after vaccination, with younger adults developing hemagglutinin-specific memory B cells with an FcRL5+ "atypical" phenotype, showing evidence of somatic hypermutation and positive selection, which happened to a lesser extent in older persons. We use publicly available scRNA-seq from paired human lymph node and blood samples to corroborate that FcRL5+ atypical memory B cells can derive from germinal center (GC) precursors. Together, this study shows that the aged human GC reaction and memory B cell response following vaccination is defective.
Collapse
Affiliation(s)
- Alice R Burton
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - William S Foster
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3010, Australia
| | - Danika L Hill
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Edward J Carr
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK; Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | | |
Collapse
|
26
|
Cevirgel A, Shetty SA, Vos M, Nanlohy NM, Beckers L, Bijvank E, Rots N, van Beek J, Buisman A, van Baarle D. Identification of aging-associated immunotypes and immune stability as indicators of post-vaccination immune activation. Aging Cell 2022; 21:e13703. [PMID: 36081314 PMCID: PMC9577949 DOI: 10.1111/acel.13703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 01/25/2023] Open
Abstract
Immunosenescence describes immune dysfunction observed in older individuals. To identify individuals at-risk for immune dysfunction, it is crucial to understand the diverse immune phenotypes and their intrinsic functional capabilities. We investigated immune cell subsets and variation in the aging population. We observed that inter-individual immune variation was associated with age and cytomegalovirus seropositivity. Based on the similarities of immune subset composition among individuals, we identified nine immunotypes that displayed different aging-associated immune signatures, which explained inter-individual variation better than age. Additionally, we correlated the immune subset composition of individuals over approximately a year as a measure of stability of immune parameters. Immune stability was significantly lower in immunotypes that contained aging-associated immune subsets and correlated with a circulating CD38 + CD4+ T follicular helper cell increase 7 days after influenza vaccination. In conclusion, immune stability is a feature of immunotypes and could be a potential indicator of post-vaccination cellular kinetics.
Collapse
Affiliation(s)
- Alper Cevirgel
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sudarshan A. Shetty
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| | - Martijn Vos
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Nening M. Nanlohy
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Lisa Beckers
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Elske Bijvank
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Nynke Rots
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Josine van Beek
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Anne‐Marie Buisman
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
27
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|
28
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
29
|
Mamaklıoğlu D, Karched M, Kuru L, Kuru B, Asikainen S, Doğan B. Different Scaling And Root Planing Strategies In Turkish Patients With Aggressive Periodontitis: A Randomized Controlled Clinical Trial. Int J Dent Hyg 2022; 20:347-363. [PMID: 35143714 DOI: 10.1111/idh.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 01/06/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study is to compare clinical, cytokine and microbiological responses after quadrant-based scaling and root planing (Q-SRP), full-mouth SRP (FM-SRP) and full-mouth disinfection (FMD) in patients with generalized aggressive periodontitis (GAgP), which is currently termed as generalized stage III grade C periodontitis. METHODS Forty-two patients with GAgP were randomly assigned into groups as Q-SRP, FM-SRP or FMD with chlorhexidine. Clinical parameters were recorded and gingival crevicular fluid (GCF) and subgingival plaque samples collected at baseline, 3 and 6 months after treatment. GCF levels of interleukin (IL)-1β and IL-17 were analysed using ELISA. Quantities of six bacterial species were determined using qPCR. RESULTS Clinical parameters improved significantly in all groups at 3 and 6 months (p<0.05). Percentage of sites with probing depth >6 mm was lower in the FMD than Q-SRP group at 3 and 6 months (p<0.05). FMD showed significantly higher percentage of pocket closure compared to Q-SRP and FM-SRP at both 3 and 6 months after treatment (p<0.05). The IL-1β levels decreased only in the FMD group (p<0.05), whereas no changes were found in IL-17 levels in any group. The levels of five out of six bacterial species decreased at 3 and/or 6 months only in the FMD group (p<0.05). CONCLUSIONS The FMD treatment appears to offer superior outcome than Q-SRP and could be the first choice for patients with GAgP.
Collapse
Affiliation(s)
- Dilek Mamaklıoğlu
- Department of Periodontology, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Leyla Kuru
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Bahar Kuru
- Department of Periodontology, Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait.,Oral Microbiology, Umea University, Umea, Sweden
| | - Başak Doğan
- Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
30
|
Status of Planned and Ongoing Paediatric Trials Investigating COVID-19 Vaccines: A Cross-Sectional Study of Paediatric Clinical Trials Planned in Agreed PIPs and/or Registered in Clinical Trial Databases. Ther Innov Regul Sci 2022; 56:474-482. [PMID: 35129826 PMCID: PMC8821866 DOI: 10.1007/s43441-021-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Background The immune system matures throughout childhood; therefore, evidence about the safety and efficacy of vaccines for the prevention of COVID-19 in the paediatric population is important. Efficacy and safety have not been established for COVID-19 vaccines in a large part of the paediatric population at the time of the initial approval for use in adults. This study aims to provide an overview of planned and ongoing paediatric clinical trials investigating the safety and/or efficacy of COVID-19. Methods We identified all paediatric clinical trials investigating the safety and/or efficacy of COVID-19 vaccines in clinicaltrials.gov and clinicaltrialregister.eu, as well as all clinical trials planned in agreed PIPs (Paediatric Investigational Plans) as of 11 June 2021. Information about the study design, the paediatric age groups that they included, and the primary and secondary safety and efficacy outcomes were collected, together with expected timelines for the studies. Results 21 clinical trials were identified through the clinical trial registries and 19 clinical trials were specified in 6 agreed PIPs, 5 of these trials were also in the trial registers. All PIPs stipulated development of the COVID-19 vaccines for the full paediatric population, with a deferral. The earliest expected completion date of a PIPs is March 2024. The majority (14/21) of registered trials are randomised double-blinded studies. All investigated safety, 20 have a surrogate efficacy outcome (immunogenicity), of these 7 also measure clinical efficacy (COVID-19 infections). 18 studies were initiated, of these, all but one is still ongoing and one in adolescents has been finalised. Conclusion Even though several trials have been planned in agreed PIPs, the registered paediatric clinical trials identified are most often not part of a PIP. Supplementary Information The online version contains supplementary material available at 10.1007/s43441-021-00356-y.
Collapse
|
31
|
Padovani BN, Abrantes do Amaral M, Fénero CM, Paredes LC, Boturra de Barros GJ, Xavier IK, Hiyane MI, Ghirotto B, Feijóo CG, Saraiva Câmara NO, Takiishi T. Different wild type strains of zebrafish show divergent susceptibility to TNBS-induced intestinal inflammation displaying distinct immune cell profiles. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:13-22. [PMID: 35496825 PMCID: PMC9040082 DOI: 10.1016/j.crimmu.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/05/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022] Open
Abstract
Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative. Strain-specific immunological profiles exist in wild-type zebrafish strains (AB and TU). AB and TU showed different responses to induced intestinal inflammation. AB strain had increased mortality and higher inflammatory profile. TU strain had better survival and higher IL-10 expression.
Collapse
|
32
|
Laghmouchi A, Graça NAG, Voorberg J. Emerging Concepts in Immune Thrombotic Thrombocytopenic Purpura. Front Immunol 2021; 12:757192. [PMID: 34858410 PMCID: PMC8631936 DOI: 10.3389/fimmu.2021.757192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder of which the etiology is not fully understood. Autoantibodies targeting ADAMTS13 in iTTP patients have extensively been studied, the immunological mechanisms leading to the breach of tolerance remain to be uncovered. This review addresses the current knowledge on genetic factors associated with the development of iTTP and the interplay between the patient's immune system and environmental factors in the induction of autoimmunity against ADAMTS13. HLA-DRB1*11 has been identified as a risk factor for iTTP in the Caucasian population. Interestingly, HLA-DRB1*08:03 was recently identified as a risk factor in the Japanese population. Combined in vitro and in silico MHC class II peptide presentation approaches suggest that an ADAMTS13-derived peptide may bind to both HLA-DRB1*11 and HLA-DRB1*08:03 through different anchor-residues. It is apparent that iTTP is associated with the presence of infectious microorganisms, viruses being the most widely associated with development of iTTP. Infections may potentially lead to loss of tolerance resulting in the shift from immune homeostasis to autoimmunity. In the model we propose in this review, infections disrupt the epithelial barriers in the gut or lung, promoting exposure of antigen presenting cells in the mucosa-associated lymphoid tissue to the microorganisms. This may result in breach of tolerance through the presentation of microorganism-derived peptides that are homologous to ADAMTS13 on risk alleles for iTTP.
Collapse
Affiliation(s)
| | | | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
33
|
Immunological Trajectories of White Blood Cells from Adolescence to Adulthood: Description and Determinants. Diagnostics (Basel) 2021; 11:diagnostics11112063. [PMID: 34829410 PMCID: PMC8625023 DOI: 10.3390/diagnostics11112063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Background: The immune system gradually matures early in life in the face of internal and external stimuli. Whether the immune responses are lasting and stable during the course of life is still unclear. Methods: As part of the EPITeen cohort, 1183 adolescents were prospectively evaluated at the ages of 13, 17, 21, 24 and 27. Sociodemographic, behavioral and clinical data were collected by self- and face-to-face-administered questionnaires, along with a physical examination comprising anthropometric measurements and blood sample collections. Mixed-effects models were used to identify individual trajectories of white blood cells (WBC) and finite Gaussian mixture models were used to identify the clusters of individual trajectories. Results: Participants were allocated into six clusters based on the individual trajectories of WBC distribution. Higher Inflammatory Activation Cluster (11.4%) had the highest total WBC count and neutrophils percentage, as well as the lowest percentage of lymphocytes. These participants had significantly higher odds of being overweight [OR = 2.44, 95%CI:1.51–3.92]. Lowest Levels of WBC Cluster (24.1%) had the lowest total WBC count, being characterized by a higher participation on sports [OR = 1.54, 95%CI:1.12–2.13]. Highest Proportion of Eosinophils Cluster (20.1%) had the highest eosinophils percentage and the highest likelihood of having been diagnosed with a chronic disease [OR = 2.11, 95%CI:1.43–3.13], namely “asthma or allergies” [OR = 14.0 (1.73, 112.2]. Lowest Proportion of Eosinophils Cluster (29.1%) had the lowest percentage of eosinophils and basophils, as well as the highest lymphocyte proportion. Participants in the Undefined Cluster (13.8%) showed the highest percentage of monocytes and basophils and were also characterized by significant lower odds of having parents with 7–9 years of schooling [OR = 0.56, (0.32, 0.99]. Conclusions: In this study we identified distinct immunological trajectories of WBC from adolescence to adulthood that were associated with social, clinical and behavioral determinants. These results suggest that these immunological trajectories are defined early in life, being dependent on the exposures.
Collapse
|
34
|
Chinnaswamy S. SARS-CoV-2 infection in India bucks the trend: Trained innate immunity? Am J Hum Biol 2021; 33:e23504. [PMID: 32965717 PMCID: PMC7536963 DOI: 10.1002/ajhb.23504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19 pandemic caught the world unawares by its sudden onset in early 2020. Memories of the 1918 Spanish Flu were rekindled raising extreme fear for the virus, but in essence, it was the host and not the virus, which was deciding the outcome of the infection. Age, gender, and preexisting conditions played critical roles in shaping COVID-19 outcome. People of lower socioeconomic strata were disproportionately affected in industrialized countries such as the United States. India, a developing country with more than 1.3 billion population, a large proportion of it being underprivileged and with substandard public health provider infrastructure, feared for the worst outcome given the sheer size and density of its population. Six months into the pandemic, a comparison of COVID-19 morbidity and mortality data between India, the United States, and several European countries, reveal interesting trends. While most developed countries show curves expected for a fast-spreading respiratory virus, India seems to have a slower trajectory. As a consequence, India may have gained on two fronts: the spread of the infection is unusually prolonged, thus leading to a curve that is "naturally flattened"; concomitantly the mortality rate, which is a reflection of the severity of the disease has been relatively low. I hypothesize that trained innate immunity, a new concept in immunology, may be the phenomenon behind this. Biocultural, socioecological, and socioeconomic determinants seem to be influencing the outcome of COVID-19 in different regions/countries of the world.
Collapse
Affiliation(s)
- Sreedhar Chinnaswamy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
| |
Collapse
|
35
|
de Armas LR, Pallikkuth S, Pan L, Rinaldi S, Pahwa R, Pahwa S. Immunological age prediction in HIV-infected, ART-treated individuals. Aging (Albany NY) 2021; 13:22772-22791. [PMID: 34635604 PMCID: PMC8544329 DOI: 10.18632/aging.203625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022]
Abstract
Anti-retroviral therapy (ART) improves life expectancy in people living with HIV (PWH), but it remains unclear how chronic HIV infection affects normal aging of the immune system. Plasma cell-free protein expression and immune phenotypes were assessed in blood from ART treated PWH (19-77yrs, n = 106) and age-matched, HIV-negative controls (HC, n = 103). Using univariate spearman correlation, we identified 277 and 491 age-associated parameters out of a total 1,357 in HC and PWH, respectively. PWH exhibited shared and distinct age-associated immune profiles compared to HC highlighting the effect of HIV infection on immunological aging. Our analysis resulted in an 8-parameter, plasma-detectable inflammatory index that correlated with chronological age of all study participants but was higher overall in PWH. Additionally, predictive modeling for age in HC participants and age-associated parameters generated a 25-parameter signature, IMAP-25, with 70% and 53% accuracy in HC and PWH, respectively. Applying the IMAP-25 signature to immunological data from PWH revealed accelerated aging in PWH by 5.6 yrs. Overall, our results demonstrate that immune signatures, easily monitored in human blood samples, can be used as an indicator of one’s ‘immunological age’ during ART-treated HIV infection and can be applied to other disease states that affect the immune system.
Collapse
Affiliation(s)
- Lesley R de Armas
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Li Pan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
36
|
Sullivan G, Galdi P, Borbye-Lorenzen N, Stoye DQ, Lamb GJ, Evans MJ, Skogstrand K, Chandran S, Boardman JP. Preterm Birth Is Associated With Immune Dysregulation Which Persists in Infants Exposed to Histologic Chorioamnionitis. Front Immunol 2021; 12:722489. [PMID: 34512648 PMCID: PMC8430209 DOI: 10.3389/fimmu.2021.722489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Preterm infants are at increased risk of exposure to histologic chorioamnionitis (HCA) when compared to term-born controls, and this is associated with several neonatal morbidities involving brain, lungs and gut. Preterm infants could benefit from immunomodulatory therapies in the perinatal period, but development of rational treatment strategies requires improved characterization of the perinatal response to HCA. We had two objectives: The first, to characterize the umbilical cord blood immune profile in preterm infants compared to term-born controls; the second, to investigate the postnatal immune response in preterm infants exposed to HCA versus those who were not. Population For objective one 59 term infants [mean gestational age (GA) 39+4 (37+3 to 42+0)] and 55 preterm infants [mean GA29+0(23+3 to 32+0)] with umbilical cord samples available were included; for objective two we studied 96 preterm infants [mean GA29+1(23+2 to 32+0)] for whom placental histology and postnatal blood samples were available. Methods Placental histopathology was used to identify reaction patterns indicative of HCA, and a customized immunoassay of 24 inflammatory markers and trophic proteins selected to reflect the perinatal immune response was performed on umbilical cord blood in term and preterm participants and postnatal day 5 blood in the preterm group. Results The umbilical cord blood immune profile classified gestational age category with 86% accuracy (95% CI 0.78-0.92), p-value=1.242x10-14. Pro-inflammatory proteins IL-6, MCP-1 and CRP were elevated in the cord blood of preterm infants whilst BDNF, C3, C9, IL-18, MMP-9 and RANTES were decreased, compared to infants born at term. In preterm infants, exposure to HCA was associated with elevations in 8 immune proteins on postnatal day 5 (BDNF, C3, C5a, C9, IL-8, MCP-1, MIP-1β and MMP-9) when compared to preterm infants who were not exposed. Conclusion Preterm birth is associated with a distinct immune profile in umbilical cord blood and preterm infants exposed to HCA with evidence of a fetal inflammatory response have specific alterations in immune function that are apparent on day 5 of postnatal life.
Collapse
Affiliation(s)
- Gemma Sullivan
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Paola Galdi
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Nis Borbye-Lorenzen
- Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - David Q Stoye
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian J Lamb
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret J Evans
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Kristin Skogstrand
- Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Medical Research Council (MRC) Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
de Haan L, Suijker J, van Roey R, Berges N, Petrova E, Queiroz K, Strijker W, Olivier T, Poeschke O, Garg S, van den Broek LJ. A Microfluidic 3D Endothelium-on-a-Chip Model to Study Transendothelial Migration of T Cells in Health and Disease. Int J Mol Sci 2021; 22:8234. [PMID: 34361000 PMCID: PMC8347346 DOI: 10.3390/ijms22158234] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luuk de Haan
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Johnny Suijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Ruthger van Roey
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Nina Berges
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Elissaveta Petrova
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Karla Queiroz
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Wouter Strijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Thomas Olivier
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Oliver Poeschke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Sakshi Garg
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Lenie J. van den Broek
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| |
Collapse
|
38
|
Laupèze B, Del Giudice G, Doherty MT, Van der Most R. Vaccination as a preventative measure contributing to immune fitness. NPJ Vaccines 2021; 6:93. [PMID: 34315886 PMCID: PMC8316335 DOI: 10.1038/s41541-021-00354-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The primary goal of vaccination is the prevention of pathogen-specific infection. The indirect consequences may include maintenance of homeostasis through prevention of infection-induced complications; trained immunity that re-programs innate cells to respond more efficiently to later, unrelated threats; slowing or reversing immune senescence by altering the epigenetic clock, and leveraging the pool of memory B and T cells to improve responses to new infections. Vaccines may exploit the plasticity of the immune system to drive longer-term immune responses that promote health at a broader level than just the prevention of single, specific infections. In this perspective, we discuss the concept of “immune fitness” and how to potentially build a resilient immune system that could contribute to better health. We argue that vaccines may contribute positively to immune fitness in ways that are only beginning to be understood, and that life-course vaccination is a fundamental tool for achieving healthy aging.
Collapse
|
39
|
Genetic variation in the Mauritian cynomolgus macaque population reflects variation in the human population. Gene 2021; 787:145648. [PMID: 33848572 DOI: 10.1016/j.gene.2021.145648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022]
Abstract
The cynomolgus macaque is an important species for preclinical research, however the extent of genetic variation in this population and its similarity to the human population is not well understood. Exome sequencing was conducted for 101 cynomolgus macaques to characterize genetic variation. The variant distribution frequency was 7.81 variants per kilobase across the sequenced regions, with a total of 2,770,009 single nucleotide variants identified from 2,996,041 loci. A large portion (85.6%) had minor allele frequencies greater than 5%. Enriched pathways for genes with high genetic diversity (≥10 variants per kilobase) were those involving signaling peptides and immune response. Compared to human, the variant distribution frequency and nucleotide diversity in the macaque exome was approximately 4 times greater; however the ratio of non-synonymous to synonymous variants was similar (0.735 and 0.831, respectively). Understanding genetic variability in cynomolgus macaques will enable better interpretation and human translation of phenotypic variability in this species.
Collapse
|
40
|
Bolton C. An evaluation of the recognised systemic inflammatory biomarkers of chronic sub-optimal inflammation provides evidence for inflammageing (IFA) during multiple sclerosis (MS). Immun Ageing 2021; 18:18. [PMID: 33853634 PMCID: PMC8045202 DOI: 10.1186/s12979-021-00225-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023]
Abstract
The pathogenesis of the human demyelinating disorder multiple sclerosis (MS) involves the loss of immune tolerance to self-neuroantigens. A deterioration in immune tolerance is linked to inherent immune ageing, or immunosenescence (ISC). Previous work by the author has confirmed the presence of ISC during MS. Moreover, evidence verified a prematurely aged immune system that may change the frequency and profile of MS through an altered decline in immune tolerance. Immune ageing is closely linked to a chronic systemic sub-optimal inflammation, termed inflammageing (IFA), which disrupts the efficiency of immune tolerance by varying the dynamics of ISC that includes accelerated changes to the immune system over time. Therefore, a shifting deterioration in immunological tolerance may evolve during MS through adversely-scheduled effects of IFA on ISC. However, there is, to date, no collective proof of ongoing IFA during MS. The Review addresses the constraint and provides a systematic critique of compelling evidence, through appraisal of IFA-related biomarker studies, to support the occurrence of a sub-optimal inflammation during MS. The findings justify further work to unequivocally demonstrate IFA in MS and provide additional insight into the complex pathology and developing epidemiology of the disease.
Collapse
|
41
|
Cornwell A, Palli R, Singh MV, Benoodt L, Tyrell A, Abe JI, Schifitto G, Maggirwar SB, Thakar J. Molecular characterization of atherosclerosis in HIV positive persons. Sci Rep 2021; 11:3232. [PMID: 33547350 PMCID: PMC7865026 DOI: 10.1038/s41598-021-82429-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023] Open
Abstract
People living with HIV are at higher risk of atherosclerosis (AS). The pathogenesis of this risk is not fully understood. To assess the regulatory networks involved in AS we sequenced mRNA of the peripheral blood mononuclear cells (PBMCs) and measured cytokine and chemokine levels in the plasma of 13 persons living with HIV and 12 matched HIV-negative persons with and without AS. microRNAs (miRNAs) are known to play a role in HIV infection and may modulate gene regulation to drive AS. Hence, we further assessed miRNA expression in PBMCs of a subset of 12 HIV+ people with and without atherosclerosis. We identified 12 miRNAs differentially expressed between HIV+ AS+ and HIV+ , and validated 5 of those by RT-qPCR. While a few of these miRNAs have been implicated in HIV and atherosclerosis, others are novel. Integrating miRNA measurements with mRNA, we identified 27 target genes including SLC4A7, a critical sodium and bicarbonate transporter, that are potentially dysregulated during atherosclerosis. Additionally, we uncovered that levels of plasma cytokines were associated with transcription factor activity and miRNA expression in PBMCs. For example, BACH2 activity was associated with IL-1β, IL-15, and MIP-1α. IP10 and TNFα levels were associated with miR-124-3p. Finally, integration of all data types into a single network revealed increased importance of miRNAs in network regulation of the HIV+ group in contrast with increased importance of cytokines in the HIV+ AS+ group.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Rohith Palli
- Medical Scientist Training Program, University of Rochester, Rochester, NY, USA
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Lauren Benoodt
- Biophysics, Structural, and Computational Biology PhD Program, University of Rochester, Rochester, NY, USA
| | - Alicia Tyrell
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology-Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, USA
| | - Giovanni Schifitto
- Department of Neurology, General Neurology, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, George Washing University, Washington, DC, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, , Box 672, Rochester, NY, 14642, USA.
| |
Collapse
|
42
|
Yan Z, Maecker HT, Brodin P, Nygaard UC, Lyu SC, Davis MM, Nadeau KC, Andorf S. Aging and CMV discordance are associated with increased immune diversity between monozygotic twins. IMMUNITY & AGEING 2021; 18:5. [PMID: 33461563 PMCID: PMC7812659 DOI: 10.1186/s12979-021-00216-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Background Broadly, much of variance in immune system phenotype has been linked to the influence of non-heritable factors rather than genetics. In particular, two non-heritable factors: aging and human cytolomegavirus (CMV) infection, have been known to account for significant inter-individual immune variance. However, many specific relationships between them and immune composition remain unclear, especially between individuals over narrower age ranges. Further exploration of these relationships may be useful for informing personalized intervention development. Results To address this need, we evaluated 41 different cell type frequencies by mass cytometry and identified their relationships with aging and CMV seropositivity. Analyses were done using 60 healthy individuals, including 23 monozygotic twin pairs, categorized into young (12–31 years) and middle-aged (42–59 years). Aging and CMV discordance were associated with increased immune diversity between monozygotic twins overall, and particularly strongly in various T cell populations. Notably, we identified 17 and 11 cell subset frequencies as relatively influenced and uninfluenced by non-heritable factors, respectively, with results that largely matched those from studies on older-aged cohorts. Next, CD4+ T cell frequency was shown to diverge with age in twins, but with lower slope than in demographically similar non-twins, suggesting that much inter-individual variance in this cell type can be attributed to interactions between genetic and environmental factors. Several cell frequencies previously associated with memory inflation, such as CD27- CD8+ T cells and CD161+ CD4+ T cells, were positively correlated with CMV seropositivity, supporting findings that CMV infection may incur rapid aging of the immune system. Conclusions Our study confirms previous findings that aging, even within a relatively small age range and by mid-adulthood, and CMV seropositivity, both contribute significantly to inter-individual immune diversity. Notably, we identify several key immune cell subsets that vary considerably with aging, as well as others associated with memory inflation which correlate with CMV seropositivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00216-1.
Collapse
Affiliation(s)
- Zheng Yan
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Unni C Nygaard
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.,Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Shu Chen Lyu
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Divisions of Biomedical Informatics and Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Santos FR, Pinotti T, Fujita R. Population Variation of the Human Genome. HUMAN GENOME STRUCTURE, FUNCTION AND CLINICAL CONSIDERATIONS 2021:329-350. [DOI: 10.1007/978-3-030-73151-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Borkowski K, Newman JW, Aghaeepour N, Mayo JA, Blazenović I, Fiehn O, Stevenson DK, Shaw GM, Carmichael SL. Mid-gestation serum lipidomic profile associations with spontaneous preterm birth are influenced by body mass index. PLoS One 2020; 15:e0239115. [PMID: 33201881 PMCID: PMC7671555 DOI: 10.1371/journal.pone.0239115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023] Open
Abstract
Spontaneous preterm birth (sPTB) is a major cause of infant morbidity and mortality. While metabolic changes leading to preterm birth are unknown, several factors including dyslipidemia and inflammation have been implicated and paradoxically both low (<18.5 kg/m2) and high (>30 kg/m2) body mass indices (BMIs) are risk factors for this condition. The objective of the study was to identify BMI-associated metabolic perturbations and potential mid-gestation serum biomarkers of preterm birth in a cohort of underweight, normal weight and obese women experiencing either sPTB or full-term deliveries (n = 102; n = 17/group). For this purpose, we combined untargeted metabolomics and lipidomics with targeted metabolic profiling of major regulators of inflammation and metabolism, including oxylipins, endocannabinoids, bile acids and ceramides. Women who were obese and had sPTB showed elevated oxidative stress and dyslipidemia characterized by elevated serum free fatty acids. Women who were underweight-associated sPTB also showed evidence of dyslipidemia characterized by elevated phospholipids, unsaturated triglycerides, sphingomyelins, cholesteryl esters and long-chain acylcarnitines. In normal weight women experiencing sPTB, the relative abundance of 14(15)-epoxyeicosatrienoic acid and 14,15-dihydroxyeicosatrienoic acids to other regioisomers were altered at mid-pregnancy. This phenomenon is not yet associated with any biological process, but may be linked to estrogen metabolism. These changes were differentially modulated across BMI groups. In conclusion, using metabolomics we observed distinct BMI-dependent metabolic manifestations among women who had sPTB. These observations suggest the potential to predict sPTB mid-gestation using a new set of metabolomic markers and BMI stratification. This study opens the door to further investigate the role of cytochrome P450/epoxide hydrolase metabolism in sPTB.
Collapse
Affiliation(s)
- Kamil Borkowski
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
- * E-mail:
| | - John W. Newman
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
- United States Department of Agriculture-Agriculture Research Service-Western Human Nutrition Research Center, Davis, CA, United States of America
- Department of Nutrition, University of California-Davis, Davis, CA, United States of America
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Biomedical Data Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Jonathan A. Mayo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ivana Blazenović
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
| | - Oliver Fiehn
- West Coast Metabolomic Center, Genome Center, University of California-Davis, Davis, CA, United States of America
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Suzan L. Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
45
|
CRELD1 modulates homeostasis of the immune system in mice and humans. Nat Immunol 2020; 21:1517-1527. [PMID: 33169013 DOI: 10.1038/s41590-020-00811-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
Abstract
CRELD1 is a pivotal factor for heart development, the function of which is unknown in adult life. We here provide evidence that CRELD1 is an important gatekeeper of immune system homeostasis. Exploiting expression variance in large human cohorts contrasting individuals with the lowest and highest CRELD1 expression levels revealed strong phenotypic, functional and transcriptional differences, including reduced CD4+ T cell numbers. These findings were validated in T cell-specific Creld1-deficient mice. Loss of Creld1 was associated with simultaneous overactivation and increased apoptosis, resulting in a net loss of T cells with age. Creld1 was transcriptionally and functionally linked to Wnt signaling. Collectively, gene expression variance in large human cohorts combined with murine genetic models, transcriptomics and functional testing defines CRELD1 as an important modulator of immune homeostasis.
Collapse
|
46
|
Trukhmanov AS, Makushina AA, Storonova OA, Ivashkina NY. [Evaluation and management of infectious esophagitis in immunocompromised patients and immunocompetent individuals]. TERAPEVT ARKH 2020; 92:108-117. [PMID: 33346470 DOI: 10.26442/00403660.2020.08.000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/22/2022]
Abstract
Among the many causes of the inflammatory process in the esophagus, infectious diseases are becoming increasingly important due to their steady growth. Previously esophageal infections have traditionally been associated with immunodeficiency syndromes, but now in clinical practice, these disorders are becoming increasingly recognized in immunocompetent individuals. Early diagnosis of infectious esophagitis is necessary to develop effective treatment tactics, and, as a result, reduce the risk of complications and adverse outcomes of the disease. This study reviewed the most clinical relevant pathogens of infectious esophagitis, both among patients with immunodeficiency and among healthy individuals. Specific diagnostic, risk factors, clinical presentation and therapeutic features were considered depending on the immune status of patients.
Collapse
Affiliation(s)
- A S Trukhmanov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Makushina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - O A Storonova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N Y Ivashkina
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
47
|
Duffy D. Understanding immune variation for improved translational medicine. Curr Opin Immunol 2020; 65:83-88. [PMID: 32745736 DOI: 10.1016/j.coi.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
The goal of translational medicine is to use an improved understanding of human biology to develop new clinical approaches. Immune responses are highly variable from one person to another, with this variability strongly impacting clinical outcome. Variable immunity can determine differential risks for infection, for development of autoimmunity, and for response to therapeutic interventions. Therefore, a better understanding of the causes of such differences has huge potential to improve patient management through precision medicine strategies. Variability in immunity is determined by intrinsic (e.g. age, sex), extrinsic (e.g. environment, diet), and genetic factors. There is a growing consensus that genetics factors account for 20-40% of immune variability between individuals. The remaining unexplained variability is likely due to direct environmental influences, as well as specific gene-environmental interactions, which are more challenging to quantify and study. However, population based cohort studies with systems immunology approaches are now providing new understanding into these associations.
Collapse
Affiliation(s)
- Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| |
Collapse
|
48
|
Benhammadi M, Mathé J, Dumont-Lagacé M, Kobayashi KS, Gaboury L, Brochu S, Perreault C. IFN-λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1268-1280. [PMID: 32690660 DOI: 10.4049/jimmunol.2000225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Regulation of MHC class I (MHC I) expression has been studied almost exclusively in hematolymphoid cells. We report that thymic epithelial cells (TECs), particularly the medullary TECs, constitutively express up to 100-fold more cell surface MHC I proteins than epithelial cells (ECs) from the skin, colon, and lung. Differential abundance of cell surface MHC I in primary ECs is regulated via transcription of MHC I and of genes implicated in the generation of MHC I-binding peptides. Superior MHC I expression in TECs is unaffected by deletion of Ifnar1 or Ifngr1, but is lessened by deletion of Aire, Ifnlr1, Stat1, or Nlrc5, and is driven mainly by type III IFN produced by medullary TECs. Ifnlr1 -/- mice show impaired negative selection of CD8 thymocytes and, at 9 mo of age, present autoimmune manifestations. Our study shows unanticipated variation in MHC I expression by ECs from various sites and provides compelling evidence that superior expression of MHC I in TECs is crucial for proper thymocyte education.
Collapse
Affiliation(s)
- Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843.,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; and
| | - Louis Gaboury
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
49
|
Davenport MP, Smith NL, Rudd BD. Building a T cell compartment: how immune cell development shapes function. Nat Rev Immunol 2020; 20:499-506. [PMID: 32493982 DOI: 10.1038/s41577-020-0332-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
We are just beginning to understand the diversity of the peripheral T cell compartment, which arises from the specialization of different T cell subsets and the plasticity of individual naive T cells to adopt different fates. Although the progeny of a single T cell can differentiate into many phenotypes following infection, individual T cells are biased towards particular phenotypes. These biases are typically ascribed to random factors that occur during and after antigenic stimulation. However, the T cell compartment does not remain static with age, and shifting immune challenges during ontogeny give rise to T cells with distinct functional properties. Here, we argue that the developmental history of naive T cells creates a 'hidden layer' of diversity that persists into adulthood. Insight into this diversity can provide a new perspective on immunity and immunotherapy across the lifespan.
Collapse
Affiliation(s)
- Miles P Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia.
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
50
|
Ulaganathan VK. TraPS-VarI: Identifying genetic variants altering phosphotyrosine based signalling motifs. Sci Rep 2020; 10:8453. [PMID: 32439998 PMCID: PMC7242328 DOI: 10.1038/s41598-020-65146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/26/2020] [Indexed: 12/17/2022] Open
Abstract
Patient stratification and individualized therapeutic strategies rely on the established knowledge of genotype-specific molecular and cellular alterations of biological and therapeutic significance. Whilst almost all approved drugs have been developed based on the Reference Sequence protein database (RefSeq), the latest genome sequencing studies establish the substantial prevalence of non-synonymous genetic mutations in the general population, including stop-insertion and frame shift mutations within the coding regions of membrane proteins. While the availability of individual genotypes are becoming increasingly common, the biological and clinical interpretations of mutations among individual genomes is largely lagging behind. Lately, transmembrane proteins of haematopoietic (myeloid and lymphoid) derived immune cells have attracted much attention as important targets for cancer immunotherapies. As such, the signalling properties of haematological transmembrane receptors rely on the membrane-proximal phosphotyrosine based sequence motifs (TBSMs) such as ITAM (immunoreceptor tyrosine-based activation motif), ITIM (immunoreceptor tyrosine-based inhibition motif) and signal transducer and activator of transcription 3 (STAT3)-recruiting YxxQ motifs. However, mutations that alter the coding regions of transmembrane proteins, resulting in either insertion or deletion of crucial signal modulating TBSMs, remains unknown. To conveniently identify individual cell line-specific or patient-specific membrane protein altering mutations, we present the Transmembrane Protein Sequence Variant Identifier (TraPS-VarI). TraPS-VarI is an annotation tool for accurate mapping of the effect of an individual's mutation in the transmembrane protein sequence, and to identify the prevalence of TBSMs. TraPS-VarI is a biologist and clinician-friendly algorithm with a web interface and an associated database browser (https://www.traps-vari.org/).
Collapse
Affiliation(s)
- Vijay Kumar Ulaganathan
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany.
- Department of Neuroimmunology, Universitätsmedizin Göttingen, Von-Siebold-Str. 3A, Göttingen, 37075, Germany.
| |
Collapse
|