1
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Sohail A, Waqas FH, Braubach P, Czichon L, Samir M, Iqbal A, de Araujo L, Pleschka S, Steinert M, Geffers R, Pessler F. Differential transcriptomic host responses in the early phase of viral and bacterial infections in human lung tissue explants ex vivo. Respir Res 2024; 25:369. [PMID: 39395995 PMCID: PMC11471021 DOI: 10.1186/s12931-024-02988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND The first 24 h of infection represent a critical time window in interactions between pathogens and host tissue. However, it is not possible to study such early events in human lung during natural infection due to lack of clinical access to tissue this early in infection. We, therefore, applied RNA sequencing to ex vivo cultured human lung tissue explants (HLTE) from patients with emphysema to study global changes in small noncoding RNA, mRNA, and long noncoding RNA (lncRNA, lincRNA) populations during the first 24 h of infection with influenza A virus (IAV), Mycobacterium bovis Bacille Calmette-Guerin (BCG), and Pseudomonas aeruginosa. RESULTS Pseudomonas aeruginosa caused the strongest expression changes and was the only pathogen that notably affected expression of microRNA and PIWI-associated RNA. The major classes of long RNAs (> 100 nt) were represented similarly among the RNAs that were differentially expressed upon infection with the three pathogens (mRNA 77-82%; lncRNA 15-17%; pseudogenes 4-5%), but lnc-DDX60-1, RP11-202G18.1, and lnc-THOC3-2 were part of an RNA signature (additionally containing SNX10 and SLC8A1) specifically associated with IAV infection. IAV infection induced brisk interferon responses, CCL8 being the most strongly upregulated mRNA. Single-cell RNA sequencing identified airway epithelial cells and macrophages as the predominant IAV host cells, but inflammatory responses were also detected in cell types expressing few or no IAV transcripts. Combined analysis of bulk and single-cell RNAseq data identified a set of 6 mRNAs (IFI6, IFI44L, IRF7, ISG15, MX1, MX2) as the core transcriptomic response to IAV infection. The two bacterial pathogens induced qualitatively very similar changes in mRNA expression and predicted signaling pathways, but the magnitude of change was greater in P. aeruginosa infection. Upregulation of GJB2, VNN1, DUSP4, SerpinB7, and IL10, and downregulation of PKMYT1, S100A4, GGTA1P, and SLC22A31 were most strongly associated with bacterial infection. CONCLUSIONS Human lung tissue mounted substantially different transcriptomic responses to infection by IAV than by BCG and P. aeruginosa, whereas responses to these two divergent bacterial pathogens were surprisingly similar. This HLTE model should prove useful for RNA-directed pathogenesis research and tissue biomarker discovery during the early phase of infections, both at the tissue and single-cell level.
Collapse
Affiliation(s)
- Aaqib Sohail
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Fakhar H Waqas
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Laurien Czichon
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mohamed Samir
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Azeem Iqbal
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Leonardo de Araujo
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
- Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus-Liebig-Universität, 35390, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - Michael Steinert
- Institute for Microbiology, Technical University Braunschweig, Brunswick, Germany
| | - Robert Geffers
- Genome Analysis, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE Centre for Experimental and Clinical Infection Research-a joint venture of Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- Centre for Individualised Infection Medicine, Hannover, Germany.
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Brunswick, Germany.
| |
Collapse
|
3
|
Liu S, Wang P, Wang P, Zhao Z, Zhang X, Pan Y, Pan J. Tissue-resident memory CD103+CD8+ T cells in colorectal cancer: its implication as a prognostic and predictive liver metastasis biomarker. Cancer Immunol Immunother 2024; 73:176. [PMID: 38954030 PMCID: PMC11219596 DOI: 10.1007/s00262-024-03709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/19/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tissue-resident memory CD103+CD8+ T cells (CD103+CD8+ TRMs) are important components of anti-tumor immunity. However, the significance of CD103+CD8+ TRMs in colorectal cancer (CRC) and their advantages remain unclear. METHODS Clinical data and specimens were used to evaluate the significance of CD103+CD8+ TRMs in CRC. A mouse subcutaneous tumorigenesis model and colony-formation assay were conducted to evaluate the anti-tumor effects of CD103+CD8+ TRMs. Finally, the infiltration density and function of CD103+CD8+ TRMs in the tumors were evaluated using flow cytometry. RESULTS In this study, we showed that highly infiltrated CD103+CD8+ TRMs were associated with earlier clinical stage and negative VEGF expression in CRC patients and predicted a favorable prognosis for CRC/CRC liver metastases patients. Interestingly, we also found that CD103+CD8+ TRMs may have predictive potential for whether CRC develops liver metastasis in CRC. In addition, we found a positive correlation between the ratio of the number of α-SMA+ vessels to the sum of the number of α-SMA+ and CD31+ vessels in CRC, and the infiltration level of CD103+CD8+ TRMs. In addition, anti-angiogenic therapy promoted infiltration of CD103+CD8+ TRMs and enhanced their ability to secrete interferon (IFN)-γ, thus further improving the anti-tumor effect. Moreover, in vivo experiments showed that compared with peripheral blood CD8+ T cells, CD103+CD8+ TRMs infused back into the body could also further promote CD8+ T cells to infiltrate the tumor, and they had a stronger ability to secrete IFN-γ, which resulted in better anti-tumor effects. CONCLUSION We demonstrated that CD103+CD8+ TRMs have the potential for clinical applications and provide new ideas for combined anti-tumor therapeutic strategies, such as anti-tumor angiogenesis therapy and CAR-T combined immunotherapy.
Collapse
Affiliation(s)
- Shijin Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Penglin Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Peize Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhan Zhao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiaolin Zhang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, 510632, China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Liang G, Huang J, Chen J, Wen X, Li R, Xie H, Zhang Z, Chen Z, Chen Y, Xian Z, He X, Ke J, Lian L, Lan P, Wu X, Hu T. Fatty Acid Oxidation Promotes Apoptotic Resistance and Proinflammatory Phenotype of CD4 + Tissue-resident Memory T cells in Crohn's Disease. Cell Mol Gastroenterol Hepatol 2024; 17:939-964. [PMID: 38423357 PMCID: PMC11026735 DOI: 10.1016/j.jcmgh.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND & AIMS As the most abundant memory T cells and major source of tumor necrosis factor α in the intestinal mucosa of Crohn's disease (CD) patients, CD4+ tissue-resident memory T (TRM) cells play a critical role in CD pathogenesis. We investigated the role of metabolic reprogramming in the regulation of proinflammatory and apoptosis-resistant phenotype for CD4+ TRM cells. METHODS CD4+ TRM cells were collected from intestinal resection tissues from control and CD patients. Transcriptomic and metabolomic analysis were performed to identify metabolic characteristics of CD4+ TRM cells. Enzyme-linked immunosorbent assay and quantitative polymerase chain reaction experiments were used to assess cytokines level in CD4+ TRM cells; activation-induced cell apoptosis rate was evaluated by flow cytometry. Transwell assay and wound healing assay were performed to detect the effect of CD4+ TRM cells on the migration of normal intestinal epithelial cells. RESULTS Transcriptomic data combined with unbiased metabolomic analysis revealed an increased fatty acid oxidation (FAO) phenotype existed in CD4+ TRM cells from CD patients. The lipidomic data and stable isotope tracer experiments demonstrated that CD4+ TRM cells up-regulated their lipid lipolysis and fatty acid uptake to fuel FAO in CD patients. Mechanistically, the activated nuclear factor kappa B signaling increased transcription of genes involved in lipid lipolysis, fatty acid uptake, and oxidation in CD4+ TRM cells from CD patients. Targeting FAO of CD4+ TRM cells reversed their apoptosis-resistant and proinflammatory phenotype in CD patients. CONCLUSIONS CD4+ TRM cells process an accelerated FAO mediated by activated nuclear factor kappa B signaling in CD patients; targeting FAO could reverse their apoptosis-resistant and proinflammatory phenotype. These findings shed a new light on the pathogenic mechanism investigation and novel therapy development in CD patients.
Collapse
Affiliation(s)
- Guanzhan Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Junfeng Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jing Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaofeng Wen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ruibing Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Hanlin Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zongjin Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zexian Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yongle Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhenyu Xian
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xiaowen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jia Ke
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Lei Lian
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Department of General Surgery (Gastric Surgery), The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, Guangdong, P. R. China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; State Key Laboratory of Oncology in South China, Guangzhou, P. R. China.
| | - Xianrui Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Department of General Surgery (Gastrointestinal Surgery), Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Tuo Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
5
|
Wang YH, Li W, McDermott M, Son GY, Maiti G, Zhou F, Tao A, Raphael D, Moreira AL, Shen B, Vaeth M, Nadorp B, Chakravarti S, Lacruz RS, Feske S. Regulatory T cells and IFN-γ-producing Th1 cells play a critical role in the pathogenesis of Sjögren's Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576314. [PMID: 38328096 PMCID: PMC10849570 DOI: 10.1101/2024.01.23.576314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objectives Sjögren's Disease (SjD) is an autoimmune disorder characterized by progressive dysfunction, inflammation and destruction of salivary and lacrimal glands, and by extraglandular manifestations. Its etiology and pathophysiology remain incompletely understood, though a role for autoreactive B cells has been considered key. Here, we investigated the role of effector and regulatory T cells in the pathogenesis of SjD. Methods Histological analysis, RNA-sequencing and flow cytometry were conducted on glands, lungs, eyes and lymphoid tissues of mice with regulatory T cell-specific deletion of stromal interaction proteins (STIM) 1 and 2 ( Stim1/2 Foxp3 ), which play key roles in calcium signaling and T cell function. The pathogenicity of T cells from Stim1/2 Foxp3 mice was investigated through adoptively transfer into lymphopenic host mice. Additionally, single-cell transcriptomic analysis was performed on peripheral blood mononuclear cells (PBMCs) of patients with SjD and control subjects. Results Stim1/2 Foxp3 mice develop a severe SjD-like disorder including salivary gland (SG) and lacrimal gland (LG) inflammation and dysfunction, autoantibodies and extraglandular symptoms. SG inflammation in Stim1/2 Foxp3 mice is characterized by T and B cell infiltration, and transcriptionally by a Th1 immune response that correlates strongly with the dysregulation observed in patients with SjD. Adoptive transfer of effector T cells from Stim1/2 Foxp3 mice demonstrates that the SjD-like disease is driven by interferon (IFN)-γ producing autoreactive CD4 + T cells independently of B cells and autoantiboodies. scRNA-seq analysis identifies increased Th1 responses and attenuated memory Treg function in PBMCs of patients with SjD. Conclusions We report a more accurate mouse model of SjD while providing evidence for a critical role of Treg cells and IFN-γ producing Th1 cells in the pathogenesis of SjD, which may be effective targets for therapy.
Collapse
|
6
|
Li Y, Gu Y, Yang P, Wang Y, Yu X, Li Y, Jin Z, Xu L. CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer. Immunotargets Ther 2024; 13:1-14. [PMID: 38223406 PMCID: PMC10787557 DOI: 10.2147/itt.s439969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy utilizing T cells that attack tumors is a promising strategy for treatment, but immune suppressive T cell subsets, such as regulatory T cell (Treg), and immune checkpoint molecules, including programmed death-1 (PD-1), can suppress the intensity of a T cell immune reaction and thereby impair tumor clearance. Cluster of differentiation 69 (CD69), known as an early leukocyte activation marker, can be used as a measure or early marker of T cell activation. In recent years, the functions of CD69 in the regulation of Treg/Th17 (T helper cell 17) differentiation and in the tissue retention of T cells have attracted considerable interest. These functions are related to the role of CD69 in immune suppression in tumor environments (TME). In this review, we first summarized current perspectives in the biological function of CD69 and demonstrated that CD69 acts as a regulator of T cell activation, differentiation, retention, and exhaustion. Then, we discussed recent advances in understanding of CD69 deficiency and anti-CD69 antibody administration and shed light on the value of targeting on CD69 for cancer immunotherapy and prognosis prediction.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yinfeng Gu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Pengyue Yang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xibao Yu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
7
|
Yu S, Wang K, Cao C, Zhang B, Chen Y, Wu C, Li C, Tang J, Luo W. Tissue-resident memory T cells exhibit phenotypically and functionally heterogeneous in human physiological and pathological nasal mucosa. Clin Immunol 2024; 258:109860. [PMID: 38065369 DOI: 10.1016/j.clim.2023.109860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Pathogens commonly enter mucosal barrier tissues and tissue-resident memory T cells (TRM) are essential for preventing mucosal lesions. However, the immunological properties of TRM cells in nasal mucosa are poorly known. In comparison with control tissues, decreasing CD103+ TRM cells were observed in Chronic rhinosinusitis with nasal polyps (CRSwNPs) and sinonasal inverted papilloma (SNIP), which presented high capability to produce effector cytokines. In CRSwNPs, we found that CD103+ TRM cells with higher cytokine and Granzyme B coexpressed high PD-1, CD103- TRM cells expressed higher IL-10. Homogenates isolated from CRSwNPs induced CD103 expression on peripheral T cells which could be inhibited by blocking TGF-β. The frequencies of CD103+ TRM cells in CRSwNPs were extremely negatively correlated with neutrophil infiltration. CD103+ TRM cells from Staphylococcus aureus positive CRSwNPs had a stronger response to SEB. Taken together, two phenotypically and functionally distinct subsets of TRM cells exist in nasal tissues and play critical roles in the progress of CRSwNPs and SNIPs.
Collapse
Affiliation(s)
- Sifei Yu
- Institute of translational medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China
| | - Kai Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China
| | - Chen Cao
- Department of Otolaryngology, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Beiying Zhang
- Institute of translational medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China
| | - Youmou Chen
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China; The General Hospital of Western Theater Command, No. 270, Rongdu Avenue, Chengdu 610083, PR China
| | - Changyou Wu
- Clifford Hospital, Jinan University, No.3 Hongfu Road, Guangzhou 511495, PR China
| | - Chunwei Li
- Department of Otolaryngology, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, PR China
| | - Jun Tang
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China.
| | - Wei Luo
- Institute of translational medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, PR China.
| |
Collapse
|
8
|
Park SL, Christo SN, Wells AC, Gandolfo LC, Zaid A, Alexandre YO, Burn TN, Schröder J, Collins N, Han SJ, Guillaume SM, Evrard M, Castellucci C, Davies B, Osman M, Obers A, McDonald KM, Wang H, Mueller SN, Kannourakis G, Berzins SP, Mielke LA, Carbone FR, Kallies A, Speed TP, Belkaid Y, Mackay LK. Divergent molecular networks program functionally distinct CD8 + skin-resident memory T cells. Science 2023; 382:1073-1079. [PMID: 38033053 DOI: 10.1126/science.adi8885] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Skin-resident CD8+ T cells include distinct interferon-γ-producing [tissue-resident memory T type 1 (TRM1)] and interleukin-17 (IL-17)-producing (TRM17) subsets that differentially contribute to immune responses. However, whether these populations use common mechanisms to establish tissue residence is unknown. In this work, we show that TRM1 and TRM17 cells navigate divergent trajectories to acquire tissue residency in the skin. TRM1 cells depend on a T-bet-Hobit-IL-15 axis, whereas TRM17 cells develop independently of these factors. Instead, c-Maf commands a tissue-resident program in TRM17 cells parallel to that induced by Hobit in TRM1 cells, with an ICOS-c-Maf-IL-7 axis pivotal to TRM17 cell commitment. Accordingly, by targeting this pathway, skin TRM17 cells can be ablated without compromising their TRM1 counterparts. Thus, skin-resident T cells rely on distinct molecular circuitries, which can be exploited to strategically modulate local immunity.
Collapse
Affiliation(s)
- Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexandria C Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schröder
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Stéphane M Guillaume
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Clara Castellucci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brooke Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Keely M McDonald
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - George Kannourakis
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Lisa A Mielke
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Francis R Carbone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Osman M, Park SL, Mackay LK. Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system. Eur J Immunol 2023; 53:e2250060. [PMID: 36597841 DOI: 10.1002/eji.202250060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T (TRM ) cells play a vital role in local immune protection against infection and cancer. The location of TRM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8+ TRM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on TRM cell generation in the context of vaccination.
Collapse
Affiliation(s)
- Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Churov AV, Chegodaev YS, Khotina VA, Ofitserov VP, Orekhov AN. Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life (Basel) 2023; 13:1931. [PMID: 37763334 PMCID: PMC10532736 DOI: 10.3390/life13091931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Atherosclerosis is an insidious vascular disease with an asymptomatic debut and development over decades. The aetiology and pathogenesis of atherosclerosis are not completely clear. However, chronic inflammation and autoimmune reactions play a significant role in the natural course of atherosclerosis. The pathogenesis of atherosclerosis involves damage to the intima, immune cell recruitment and infiltration of cells such as monocytes/macrophages, neutrophils, and lymphocytes into the inner layer of vessel walls, and the accumulation of lipids, leading to vascular inflammation. The recruited immune cells mainly have a pro-atherogenic effect, whereas CD4+ regulatory T (Treg) cells are another heterogeneous group of cells with opposite functions that suppress the pathogenic immune responses. Present in low numbers in atherosclerotic plaques, Tregs serve a protective role, maintaining immune homeostasis and tolerance by suppressing pro-inflammatory immune cell subsets. Compelling experimental data suggest that various Treg cell-based approaches may be important in the treatment of atherosclerosis. Here we highlight the most recent advances in our understanding of the roles of FOXP3-expressing CD4+ Treg cells in the atherogenic process and discuss potential translational strategies for the treatment of atherosclerosis by Treg manipulation.
Collapse
Affiliation(s)
- Alexey V. Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Yegor S. Chegodaev
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Victoria A. Khotina
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Vladimir P. Ofitserov
- Moscow Aviation Institute, National Research University, 4 Volokolamskoe Shosse, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| |
Collapse
|
13
|
Li WS, Zhang QQ, Li Q, Liu SY, Yuan GQ, Pan YW. Innate immune response restarts adaptive immune response in tumors. Front Immunol 2023; 14:1260705. [PMID: 37781382 PMCID: PMC10538570 DOI: 10.3389/fimmu.2023.1260705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
The imbalance of immune response plays a crucial role in the development of diseases, including glioblastoma. It is essential to comprehend how the innate immune system detects tumors and pathogens. Endosomal and cytoplasmic sensors can identify diverse cancer cell antigens, triggering the production of type I interferon and pro-inflammatory cytokines. This, in turn, stimulates interferon stimulating genes, enhancing the presentation of cancer antigens, and promoting T cell recognition and destruction of cancer cells. While RNA and DNA sensing of tumors and pathogens typically involve different receptors and adapters, their interaction can activate adaptive immune response mechanisms. This review highlights the similarity in RNA and DNA sensing mechanisms in the innate immunity of both tumors and pathogens. The aim is to enhance the anti-tumor innate immune response, identify regions of the tumor that are not responsive to treatment, and explore new targets to improve the response to conventional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Wen-shan Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Department of Neurosurgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Qing-qing Zhang
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Qiao Li
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shang-yu Liu
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guo-qiang Yuan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ya-wen Pan
- The Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Davé V, Richert-Spuhler LE, Arkatkar T, Warrier L, Pholsena T, Johnston C, Schiffer JT, Prlic M, Lund JM. Recurrent infection transiently expands human tissue T cells while maintaining long-term homeostasis. J Exp Med 2023; 220:e20210692. [PMID: 37314481 PMCID: PMC10267593 DOI: 10.1084/jem.20210692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic viral infections are known to lead to T cell exhaustion or dysfunction. However, it remains unclear if antigen exposure episodes from periodic viral reactivation, such as herpes simplex virus type-2 (HSV-2) recrudescence, are sufficient to induce T cell dysfunction, particularly in the context of a tissue-specific localized, rather than a systemic, infection. We designed and implemented a stringent clinical surveillance protocol to longitudinally track both viral shedding and in situ tissue immune responses in a cohort of HSV+ volunteers that agreed to avoid using anti-viral therapy for the course of this study. Comparing lesion to control skin biopsies, we found that tissue T cells expanded immediately after reactivation, and then returned numerically and phenotypically to steady state. T cell responses appeared to be driven at least in part by migration of circulating T cells to the infected tissue. Our data indicate that tissue T cells are stably maintained in response to HSV reactivation, resembling a series of acute recall responses.
Collapse
Affiliation(s)
- Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Laura E. Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tanvi Arkatkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Warrier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | | | - Christine Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Mukherjee S, Skrede S, Haugstøyl M, López M, Fernø J. Peripheral and central macrophages in obesity. Front Endocrinol (Lausanne) 2023; 14:1232171. [PMID: 37720534 PMCID: PMC10501731 DOI: 10.3389/fendo.2023.1232171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
Abstract
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient intake causes adipose tissue expansion, which may in turn cause cellular stress that triggers infiltration of pro-inflammatory immune cells from the circulation as well as activation of cells that are residing in the adipose tissue. In particular, the adipose tissue macrophages (ATMs) are important in the pathogenesis of obesity. A pro-inflammatory activation is also found in other organs which are important for energy metabolism, such as the liver, muscle and the pancreas, which may stimulate the development of obesity-related co-morbidities, including insulin resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-induced pro-inflammatory signaling also occurs in the central nervous system (CNS), and that pro-inflammatory activation of immune cells in the brain may be involved in appetite dysregulation and metabolic disturbances in obesity. More recently, it has become evident that microglia, the resident macrophages of the CNS that drive neuroinflammation, may also be activated in obesity and can be relevant for regulation of hypothalamic feeding circuits. In this review, we focus on the action of peripheral and central macrophages and their potential roles in metabolic disease, and how macrophages interact with other immune cells to promote inflammation during obesity.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Martha Haugstøyl
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Wang Y, Hu Y, Liu Y, Shi C, Yu L, Lu N, Zhang C. Liver-resident CD44 hiCD27 - γδT Cells Help to Protect Against Listeria monocytogenes Infection. Cell Mol Gastroenterol Hepatol 2023; 16:923-941. [PMID: 37611663 PMCID: PMC10616555 DOI: 10.1016/j.jcmgh.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Gamma delta (γδ) T cells are heterogeneous and functionally committed to producing interferon (IFN)-γ and interleukin (IL)-17. γδT cells are defined as tissue-resident lymphocytes in barrier tissues. Among them, IL-17-producing γδT cells are relatively abundant in the liver. However, a systematic and comprehensive understanding of the residency characteristics and function of hepatic IL-17A+ γδT cells is lacking. METHODS We undertook a single-cell analysis of γδT17 cells derived from murine livers. A parabiosis model was used to assess tissue residency. Fluorescence-activated cell sorting and adoptive transfer experiments were used to investigate the response and protective role of liver-resident CD44hiCD27- γδT cells in Listeria monocytogenes infection. Transwell assay was used to assess the role of macrophages in the chemotaxis of liver-resident CD44hiCD27- γδT cells. RESULTS We identified hepatic IL-17A-producing γδT cells as CD44hiCD27- γδT cells. They had tissue-resident characteristics and resided principally within the liver. Vγ6+ T cells also exhibited liver-resident features. Liver-resident CD44hiCD27- γδT cells had significantly increased proliferation capacity, and their proportion rapidly increased after infection. Some CD44hiCD27- γδT cells could produce IL-17A and IFN-γ simultaneously in response to Lm infection. Adoptive transfer of hepatic CD44hiCD27- γδT cells into Lm-infected TCRδ-/- mice led to markedly lower bacterial numbers in the liver. Hepatic macrophages promoted the migration and accumulation of liver-resident CD44hiCD27- γδT cells into infection sites. CONCLUSIONS Liver-resident CD44hiCD27- γδT cells protect against Lm infection. Hepatic macrophages coordinate with liver-resident CD44hiCD27- γδT cells and contribute to the clearance of Lm at the early stage of infection corporately.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linyan Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Yang R, Huang BY, Wang YN, Meng Q, Guo Y, Wang S, Yin XY, Feng H, Gong M, Wang S, Niu CY, Shi Y, Shi HS. Excision of mesenteric lymph nodes alters gut microbiota and impairs social dominance in adult mice. Brain Behav 2023:e3053. [PMID: 37157948 DOI: 10.1002/brb3.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Mesenteric lymph nodes (MLNs) are central in immune anatomy. MLNs are associated with the composition of gut microbiota, affecting the central system and immune system. Gut microbiota was found to differ among individuals of different social hierarchies. Nowadays, excision of MLNs is more frequently involved in gastrointestinal surgery; however, the potential side effects of excision of MLNs on social dominance are still unknown. METHODS MLNs were removed from male mice (7-8 weeks old). Four weeks after MLN removal, social dominance test was performed to investigate social dominance; hippocampal and serum interleukin (IL)-1β, IL-10, and tumor necrosis factor-alpha (TNF-α) were investigated; and histopathology was used to evaluate local inflammation of the ileum. The composition of the gut microbiota was then examined to understand the possible mechanism, and finally intraperitoneal injection of IL-10 was used to validate the effect of IL-10 on social dominance. RESULTS There was a decrease in social dominance in the operation group compared to the control group, as well as a decrease in serum and hippocampal IL-10 levels, but no difference in serum and hippocampal IL-1β and TNF-α levels, and no local inflammation of the ileum after MLN removal. 16S rRNA sequencing analysis showed that the relative abundance of the class Clostridia was decreased in the operation group. This decrease was positively associated with serum IL-10 levels. Furthermore, intraperitoneal injection of IL-10 in a subset of mice increased social dominance. CONCLUSIONS Our findings suggested that MLNs contributed to maintaining social dominance, which might be associated with reduced IL-10 and the imbalance of specific flora in gut microbiota.
Collapse
Affiliation(s)
- Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Bo-Ya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ning Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xue-Yong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Chun-Yu Niu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Shui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
18
|
Taggenbrock RLRE, van Gisbergen KPJM. ILC1: Development, maturation, and transcriptional regulation. Eur J Immunol 2023; 53:e2149435. [PMID: 36408791 PMCID: PMC10099236 DOI: 10.1002/eji.202149435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
Type 1 Innate Lymphoid cells (ILC1s) are tissue-resident cells that partake in the regulation of inflammation and homeostasis. A major feature of ILC1s is their ability to rapidly respond after infections. The effector repertoire of ILC1s includes the pro-inflammatory cytokines IFN-γ and TNF-α and cytotoxic mediators such as granzymes, which enable ILC1s to establish immune responses and to directly kill target cells. Recent advances in the characterization of ILC1s have considerably furthered our understanding of ILC1 development and maintenance in tissues. In particular, it has become clear how ILC1s operate independently from conventional natural killer cells, with which they share many characteristics. In this review, we discuss recent developments with regards to the differentiation, polarization, and effector maturation of ILC1s. These processes may underlie the observed heterogeneity in ILC1 populations within and between different tissues. Next, we highlight transcriptional programs that control each of the separate steps in the differentiation of ILC1s. These transcriptional programs are shared with other tissue-resident type-1 lymphocytes, such as tissue-resident memory T cells (TRM ) and invariant natural killer T cells (iNKT), highlighting that ILC1s utilize networks of transcriptional regulation that are conserved between lymphocyte lineages to respond effectively to tissue-invading pathogens.
Collapse
Affiliation(s)
- Renske L R E Taggenbrock
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Woestemeier A, Scognamiglio P, Zhao Y, Wagner J, Muscate F, Casar C, Siracusa F, Cortesi F, Agalioti T, Müller S, Sagebiel A, Konczalla L, Wahib R, Karstens KF, Giannou AD, Duprée A, Wolter S, Wong MN, Mühlig AK, Bielecka AA, Bansal V, Zhang T, Mann O, Puelles VG, Huber TB, Lohse AW, Izbicki JR, Palm NW, Bonn S, Huber S, Gagliani N. Multicytokine-producing CD4+ T cells characterize the livers of patients with NASH. JCI Insight 2023; 8:153831. [PMID: 36625344 PMCID: PMC9870087 DOI: 10.1172/jci.insight.153831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
A role of CD4+ T cells during the progression from nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH) has been suggested, but which polarization state of these cells characterizes this progression and the development of fibrosis remain unclear. In addition, a gut-liver axis has been suggested to play a role in NASH, but the role of CD4+ T cells in this axis has just begun to be investigated. Combining single-cell RNA sequencing and multiple-parameter flow cytometry, we provide the first cell atlas to our knowledge focused on liver-infiltrating CD4+ T cells in patients with NAFLD and NASH, showing that NASH is characterized by a population of multicytokine-producing CD4+ T cells. Among these cells, only those with a Th17 polarization state were enriched in patients with advanced fibrosis. In parallel, we observed that Bacteroides appeared to be enriched in the intestine of NASH patients and to correlate with the frequency of multicytokine-producing CD4+ T cells. In short, we deliver a CD4+ T cell atlas of NAFLD and NASH, providing the rationale to target CD4+ T cells with a Th17 polarization state to block fibrosis development. Finally, our data offer an early indication to test whether multicytokine-producing CD4+ T cells are part of the gut-liver axis characterizing NASH.
Collapse
Affiliation(s)
| | | | - Yu Zhao
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Jonas Wagner
- Department for General, Visceral and Thoracic Surgery
| | | | - Christian Casar
- Department for General, Visceral and Thoracic Surgery
- Bioinformatics Core, and
| | | | | | | | - Simone Müller
- Department for General, Visceral and Thoracic Surgery
| | | | | | - Ramez Wahib
- Department for General, Visceral and Thoracic Surgery
| | | | | | - Anna Duprée
- Department for General, Visceral and Thoracic Surgery
| | - Stefan Wolter
- Department for General, Visceral and Thoracic Surgery
| | - Milagros N. Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne K. Mühlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University’s Children Hospital, UKE Hamburg, Hamburg, Germany
| | - Agata A. Bielecka
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Vikas Bansal
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Tianran Zhang
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | - Oliver Mann
- Department for General, Visceral and Thoracic Surgery
| | - Victor G. Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Noah W. Palm
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Biomedical AI (bAIome), Center for Molecular Neurobiology (ZMNH)
| | | | - Nicola Gagliani
- Department for General, Visceral and Thoracic Surgery
- I Department of Medicine
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
21
|
[Advances in the Study of Tissue-resident Memory T Cells in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:862-869. [PMID: 36617472 PMCID: PMC9845087 DOI: 10.3779/j.issn.1009-3419.2022.102.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have been widely used in the treatment of lung cancer, but the benefit population is limited and there is a lack of effective predictive markers of efficacy. Tissue-resident memory T cells (TRM) reside in tissues and exert anti-tumor effects by expressing the integrins CD103, CD49a or C-type lectin CD69 and immune checkpoint receptors. TRM expressing programmed cell death 1 (PD-1) is enriched with transcriptional products associated with cytotoxicity and enhances T cell (antigen) receptor (TCR)-mediated cytotoxicity. TRM is a promising biomarker for predicting the efficacy and prognosis of immunotherapy in lung cancer patients. This review will describe the progress of TRM research in lung cancer.
.
Collapse
|
22
|
Gao A, Zhao W, Wu R, Su R, Jin R, Luo J, Gao C, Li X, Wang C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J Autoimmun 2022; 133:102950. [PMID: 36356551 DOI: 10.1016/j.jaut.2022.102950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling, systemic autoimmune disease. It presents a remarkable tendency to recur, which renders it almost impossible for patients to live without drugs. Under such circumstances, many patients have to suffer the pain of recurrent attacks as well as the side effects of long-term medication. Current therapies for RA are primarily systemic treatments without targeting the problem that RA is more likely to recur locally. Emerging studies suggest the existence of a mechanism mediating local memory during RA, which is closely related to the persistent residence of tissue-resident memory T cells (TRM). TRM, one of the memory T cell subsets, reside in tissues providing immediate immune protection but driving recurrent local inflammation on the other hand. The heterogeneity among synovial TRM is unclear, with the dominated CD8+ TRM observed in inflamed synovium of RA patients coming into focus. Besides local arthritis relapse, TRM may also contribute to extra-articular organ involvement in RA due to their migration potential. Future integration of single-cell RNA sequencing (scRNA-seq) with spatial transcriptomics to explore the gene expression patterns of TRM in both temporal dimension and spatial dimension may help us identify specific therapeutic targets. Targeting synovial TRM to suppress local arthritis flares while using systemic therapies to prevent extra-articular organ involvement may provide a new perspective to address RA recurrence.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Wenpeng Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory for Immunomicroecology, Shanxi, China.
| |
Collapse
|
23
|
Deschler K, Rademacher J, Lacher SM, Huth A, Utzt M, Krebs S, Blum H, Haibel H, Proft F, Protopopov M, Rodriguez VR, Beltrán E, Poddubnyy D, Dornmair K. Antigen-specific immune reactions by expanded CD8 + T cell clones from HLA-B*27-positive patients with spondyloarthritis. J Autoimmun 2022; 133:102901. [PMID: 36115212 DOI: 10.1016/j.jaut.2022.102901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a chronic inflammatory disease that is tightly linked to HLA-B*27 but the pathophysiological basis of this link is still unknown. It is discussed whether either the instability of HLA-B*27 molecules triggers predominantly innate immune reactions or yet unknown antigenic peptides presented by HLA-B*27 induce adaptive autoimmune reactions by CD8+ T cells. To analyze the pathogenesis of SpA, we here investigated the T cell receptor (TCR) usage and whole transcriptomes of CD8+ single cells from synovial fluid of HLA-B*27-positive SpA patients and HLA-B*27-negative controls. In HLA-B*27-positive patients, we confirmed preferential expression of several TCR β-chain families, found even more restricted usage of particular TCR α-chains, assigned matching TCR αβ-chain pairs with homologous CDR3-sequences, and detected identical TCR-chains in different patients. Gene expression analyses by single cell mRNAseq revealed that genes specific for the tissue resident memory phenotype, exhaustion, and apoptosis were particularly highly expressed in expanded clonotypes from HLA-B*27-positive SpA patients. Together, several independent lines of evidence argue in favor of an (auto)antigenic peptide related pathogenesis.
Collapse
Affiliation(s)
- Katharina Deschler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Judith Rademacher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Sonja M Lacher
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Alina Huth
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Markus Utzt
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the LMU Munich, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Fabian Proft
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Mikhail Protopopov
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Valeria Rios Rodriguez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Denis Poddubnyy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Gastroenterology, Infectiology and Rheumatologie (including Nutrition Medicine), Germany; Epidemiology unit, German Rheumatism Research Centre, Berlin, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
24
|
Mucosal-associated invariant T cells reduce and display tissue-resident phenotype with elevated IL-17 producing capacity in non-small cell lung cancer. Int Immunopharmacol 2022; 113:109461. [DOI: 10.1016/j.intimp.2022.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
|
25
|
Whitley SK, Li M, Kashem SW, Hirai T, Igyártó BZ, Knizner K, Ho J, Ferris LK, Weaver CT, Cua DJ, McGeachy MJ, Kaplan DH. Local IL-23 is required for proliferation and retention of skin-resident memory T H17 cells. Sci Immunol 2022; 7:eabq3254. [PMID: 36367947 PMCID: PMC9847353 DOI: 10.1126/sciimmunol.abq3254] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cytokine interleukin-23 (IL-23) is critical for development and maintenance of autoimmune inflammation in nonlymphoid tissues; however, the mechanism through which IL-23 supports tissue-specific immunity remains unclear. In mice, we found that circulating memory T cells were dispensable for anamnestic protection from Candida albicans skin infection, and tissue-resident memory (TRM) cell-mediated protection from C. albicans reinfection required IL-23. Administration of anti-IL-23 receptor antibody to mice after resolution of primary C. albicans infection resulted in loss of CD69+ CD103+ tissue-resident memory T helper 17 (TRM17) cells from skin, and clinical anti-IL-23 therapy depleted TRM17 cells from skin of patients with psoriasis. IL-23 receptor blockade impaired TRM17 cell proliferation but did not affect apoptosis susceptibility or tissue egress. IL-23 produced by CD301b+ myeloid cells was required for TRM17 maintenance in skin after C. albicans infection, and CD301b+ cells were necessary for TRM17 expansion during the development of imiquimod dermatitis. This study demonstrates that locally produced IL-23 promotes in situ proliferation of cutaneous TRM17 cells to support their longevity and function and provides mechanistic insight into the durable efficacy of IL-23 blockade in the treatment of psoriasis.
Collapse
Affiliation(s)
- Sarah K. Whitley
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Mushi Li
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Sakeen W. Kashem
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Toshiro Hirai
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA
| | - Kelley Knizner
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Jonhan Ho
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Laura K. Ferris
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Mandy J. McGeachy
- Rheumatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| | - Daniel H. Kaplan
- Departments of Dermatology, University of Pittsburgh, Pittsburgh PA
- Immunology, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
26
|
Hammoudi N, Hamoudi S, Bonnereau J, Bottois H, Pérez K, Bezault M, Hassid D, Chardiny V, Grand C, Gergaud B, Bonnet J, Chedouba L, Tran Minh ML, Gornet JM, Baudry C, Corte H, Maggiori L, Toubert A, McBride J, Brochier C, Neighbors M, Le Bourhis L, Allez M. Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn's Disease. Front Immunol 2022; 13:1008456. [PMID: 36439157 PMCID: PMC9685428 DOI: 10.3389/fimmu.2022.1008456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/24/2022] [Indexed: 09/15/2023] Open
Abstract
Lympho-epithelial interactions between intestinal T resident memory cells (Trm) and the epithelium have been associated with inflammatory bowel disease (IBD) activity. We developed ex vivo autologous organoid-mucosal T cell cocultures to functionally assess lymphoepithelial interactions in Crohn's Disease (CD) patients compared to controls. We demonstrate the direct epithelial cell death induced by autologous mucosal T cells in CD patients but not in controls. These findings were positively correlated with T cell infiltration of the organoids. This potential was inhibited by limiting lympho-epithelial interactions through CD103 and NKG2D blocking antibodies. These data directly demonstrate for the first time the direct deleterious effect of mucosal T cells on the epithelium of CD patients. Such ex-vivo models are promising techniques to unravel the pathophysiology of these diseases and the potential mode of action of current and future therapies.
Collapse
Affiliation(s)
- Nassim Hammoudi
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Sarah Hamoudi
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Julie Bonnereau
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Hugo Bottois
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Kevin Pérez
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Madeleine Bezault
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Déborah Hassid
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Victor Chardiny
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Céline Grand
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Brice Gergaud
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Joëlle Bonnet
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Leila Chedouba
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - My-Linh Tran Minh
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Jean-Marc Gornet
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Clotilde Baudry
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Hélène Corte
- Digestive Surgery Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Léon Maggiori
- Digestive Surgery Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Antoine Toubert
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Jacqueline McBride
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, United States
| | | | - Margaret Neighbors
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, United States
| | - Lionel Le Bourhis
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Matthieu Allez
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| |
Collapse
|
27
|
Suryadevara N, Kumar A, Ye X, Rogers M, Williams JV, Wilson JT, Karijolich J, Joyce S. A molecular signature of lung-resident CD8 + T cells elicited by subunit vaccination. Sci Rep 2022; 12:19101. [PMID: 36351985 PMCID: PMC9645351 DOI: 10.1038/s41598-022-21620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Natural infection as well as vaccination with live or attenuated viruses elicit tissue resident, CD8+ memory T cell (Trm) response. Trm cells so elicited act quickly upon reencounter with the priming agent to protect the host. These Trm cells express a unique molecular signature driven by the master regulators-Runx3 and Hobit. We previously reported that intranasal instillation of a subunit vaccine in a prime boost vaccination regimen installed quick-acting, CD8+ Trm cells in the lungs that protected against lethal vaccinia virus challenge. It remains unexplored whether CD8+ Trm responses so elicited are driven by a similar molecular signature as those elicited by microbes in a real infection or by live, attenuated pathogens in conventional vaccination. We found that distinct molecular signatures distinguished subunit vaccine-elicited lung interstitial CD8+ Trm cells from subunit vaccine-elicited CD8+ effector memory and splenic memory T cells. Nonetheless, the transcriptome signature of subunit vaccine elicited CD8+ Trm resembled those elicited by virus infection or vaccination. Clues to the basis of tissue residence and function of vaccine specific CD8+ Trm cells were found in transcripts that code for chemokines and chemokine receptors, purinergic receptors, and adhesins when compared to CD8+ effector and splenic memory T cells. Our findings inform the utility of protein-based subunit vaccination for installing CD8+ Trm cells in the lungs to protect against respiratory infectious diseases that plague humankind.
Collapse
Affiliation(s)
- Naveenchandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiang Ye
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Meredith Rogers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - John V Williams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Institute for Infection, Immunity, and Inflammation in Children (i4Kids), Pittsburgh, PA, 15224, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - John Karijolich
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
28
|
Advancements in the characterization of tissue resident memory T cells in skin disease. Clin Immunol 2022; 245:109183. [DOI: 10.1016/j.clim.2022.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
29
|
Jiang F, Jiao Y, Yang K, Mao M, Yu M, Cao D, Xiang Y. Single-Cell Profiling of the Immune Atlas of Tumor-Infiltrating Lymphocytes in Endometrial Carcinoma. Cancers (Basel) 2022; 14:4311. [PMID: 36077846 PMCID: PMC9455014 DOI: 10.3390/cancers14174311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial carcinoma (EC) is a gynecological malignancy with a high incidence; however, thorough studies on tumor-infiltrating lymphocyte (TIL) populations in EC are lacking. We aimed to map the immune atlas of TILs in type I EC via single-cell RNA sequencing (scRNA-seq), mass cytometry and flow cytometry analysis. We found that natural killer (NK) cells and CD8+ T lymphocytes were the major components of TILs in EC patients. We first identified three transcriptionally distinct NK cell subsets, which are likely to possess diverse anti-tumor functions. Additionally, CD103+ cells substantially contributed to the CD8+ T cell population. The signature gene expression of CD103+ CD8+ T cells indicated the tissue residency, immunological memory, and exhaustion properties of this cell subset, which were defined as tissue-resident memory T cells (TRM cells). Moreover, based on scRNA-seq and mass cytometry analysis, we first identified the intrinsic heterogeneity of CD103+ CD8+ T cells that were thought to have a distinct cytotoxicity, cell adhesion and exhaustion status functions. Collectively, distinct subsets of NK cells were found and might shed light on future investigations. CD103+ CD8+ T cell population may be an important immunotherapeutic target in EC and targeting this cell population with combined immunosuppressive therapy might improve the efficacy of immunotherapy for EC.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Yuhao Jiao
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Kun Yang
- Department of Dermatology, Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mingyi Mao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Mei Yu
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Dongyan Cao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| | - Yang Xiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Centre for Obstetric & Gynaecologic Diseases, Beijing 100730, China
| |
Collapse
|
30
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
31
|
Abstract
Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary mucosa, compose the body’s front line of defense. Since barrier tissues are persistently exposed to microbial challenges, a rapid response that can deal with diverse invading pathogens is crucial. Because B cells have been perceived as indirectly contributing to immune responses through antibody production, B cells functioning in the peripheral organs have been outside the scope of researchers. However, recent evidence supports the existence of tissue-resident memory B cells (BRMs) in the lungs. This population’s defensive response was stronger and faster than that of their circulating counterparts and could resist heterogeneous strains. With such traits, BRMs could be a promising target for vaccine design, but much about them remains to be revealed, including their locations, origin, specific markers, and the mechanisms of their establishment and maintenance. There is evidence for resident B cells in organs other than the lungs, suggesting that B cells are directly involved in the immune reactions of multiple non-lymphoid organs. This review summarizes the history of the discovery of BRMs and discusses important unresolved questions. Unique characteristics of humoral immunity that play an important role in the peripheral organs will be described briefly. Future research on B cells residing in non-lymphoid organs will provide new insights to help solve major problems regarding human health.
Collapse
Affiliation(s)
- Choong Man Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- BioMedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Ji Eun Oh,
| |
Collapse
|
32
|
Bruni E, Cimino MM, Donadon M, Carriero R, Terzoli S, Piazza R, Ravens S, Prinz I, Cazzetta V, Marzano P, Kunderfranco P, Peano C, Soldani C, Franceschini B, Colombo FS, Garlanda C, Mantovani A, Torzilli G, Mikulak J, Mavilio D. Intrahepatic CD69 +Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression. J Immunother Cancer 2022; 10:jitc-2022-004579. [PMID: 35863820 PMCID: PMC9310256 DOI: 10.1136/jitc-2022-004579] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background More than 50% of all patients with colorectal cancer (CRC) develop liver metastases (CLM), a clinical condition characterized by poor prognosis and lack of reliable prognostic markers. Vδ1 cells are a subset of tissue-resident gamma delta (γδ) T lymphocytes endowed with a broad array of antitumor functions and showing a natural high tropism for the liver. However, little is known about their impact in the clinical outcomes of CLM. Methods We isolated human γδ T cells from peripheral blood (PB) and peritumoral (PT) tissue of 93 patients undergone surgical procedures to remove CLM. The phenotype of freshly purified γδ T cells was assessed by multiparametric flow cytometry, the transcriptional profiles by single cell RNA-sequencing, the functional annotations by Gene Ontology enrichment analyses and the clonotype by γδ T cell receptor (TCR)-sequencing. Results The microenvironment of CLM is characterized by a heterogeneous immune infiltrate comprising different subsets of γδ tumor-infiltrating lymphocytes (TILs) able to egress the liver and re-circulate in PB. Vδ1 T cells represent the largest population of γδ TILs within the PT compartment of CLM that is greatly enriched in Vδ1 T effector (TEF) cells expressing constitutive high levels of CD69. These Vδ1 CD69+ TILs express a distinct phenotype and transcriptional signature, show high antitumor potential and correlate with better patient clinical outcomes in terms of lower numbers of liver metastatic lesions and longer overall survival (OS). Moreover, intrahepatic CD69+ Vδ1 TILs can egress CLM tissue to re-circulate in PB, where they retain a phenotype, transcriptional signature and TCR clonal repertoires resembling their liver origin. Importantly, even the increased frequencies of the CD69+ terminally differentiated (TEMRA) Vδ1 cells in PB of patients with CLM significantly correlate with longer OS. The positive prognostic score of high frequencies of CD69+ TEMRA Vδ1 cells in PB is independent from the neoadjuvant chemotherapy and immunotherapy regimens administered to patients with CLM prior surgery. Conclusions The enrichment of tissue-resident CD69+ Vδ1 TEMRA cells re-circulating at high frequencies in PB of patients with CLM limits tumor progression and represents a new important clinical tool to either predict the natural history of CLM or develop alternative therapeutic protocols of cellular therapies.
Collapse
Affiliation(s)
- Elena Bruni
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Matteo Maria Cimino
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Health Science, Università del Piemonte Orientale, Novara, Italy
| | - Roberta Carriero
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Biomedical Technologie, CNR Milan, Human Technopole, Milan, Italy
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Koyaman-Nasu R, Wang Y, Hasegawa I, Endo Y, Nakayama T, Kimura MY. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol 2022; 34:555-561. [PMID: 35689672 DOI: 10.1093/intimm/dxac024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy utilizes our immune system to attack cancer cells and is an extremely promising strategy for cancer treatment. Although immune-checkpoint blockade, such as anti-PD-1 antibody (Ab), has demonstrated significant enhancement of anti-tumor immunity and has induced notable clinical outcomes, its response rates remain low, and adverse effects are always a matter of concern; therefore, new targets for cancer immunotherapy are always desired. In this situation, new concepts are needed to fuel the investigation of new target molecules for cancer immunotherapy. We propose that CD69 is one such target molecule. CD69 is known to be an activation marker of leukocytes and is also considered a crucial regulator of various immune responses through its interacting proteins. CD69 promotes T cell retention in lymphoid tissues via sphingosine-1-phosphate receptor 1 (S1P1) internalization and also plays roles in the pathogenesis of inflammatory disorders through interacting with its functional ligands Myl9/12 (myosin light chains 9, 12a and 12b). In anti-tumor immunity, CD69 is known to be expressed on T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (TDLNs). We revealed that CD69 negatively regulates the effector function of intratumoral T cells and importantly controls the 'exhaustion' of CD8 T cells. In addition, we and others showed that either CD69 deficiency or the administration of anti-CD69 monoclonal antibody enhances anti-tumor immunity. Thus, CD69 is an attractive target for cancer immunotherapy.
Collapse
Affiliation(s)
- Ryo Koyaman-Nasu
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yangsong Wang
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Ichita Hasegawa
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yukihiro Endo
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Motoko Y Kimura
- Department of Experimental Immunology, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
34
|
Abstract
In this review, we summarize and discuss recent advances in understanding the characteristics of tissue-resident memory T cells (TRMs) in the context of solid organ transplantation (SOT). We first introduce the traditionally understood noncirculating features of TRMs and the key phenotypic markers that define this population, then provide a detailed discussion of emerging concepts on the recirculation and plasticity of TRM in mice and humans. We comment on the potential heterogeneity of transient, temporary resident, and permanent resident T cells and potential interchangeable phenotypes between TRM and effector T cells in nonlymphoid tissues. We review the literature on the distribution of TRM in human nonlymphoid organs and association of clinical outcomes in different types of SOT, including intestine, lung, liver, kidney, and heart. We focus on both tissue-specific and organ-shared features of donor- and recipient-derived TRMs after transplantation whenever applicable. Studies with comprehensive sample collection, including longitudinal and cross-sectional controls, and applied advanced techniques such as multicolor flow cytometry to distinguish donor and recipient TRMs, bulk, and single-cell T-cell receptor sequencing to track clonotypes and define transcriptome profiles, and functional readouts to define alloreactivity and proinflammatory/anti-inflammatory activities are emphasized. We also discuss important findings on the tissue-resident features of regulatory αβ T cells and unconventional γδ T cells after transplantation. Understanding of TRM in SOT is a rapidly growing field that urges future studies to address unresolved questions regarding their heterogeneity, plasticity, longevity, alloreactivity, and roles in rejection and tolerance.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, United States
- Department of Surgery, Columbia University, New York, United States
- Department of Microbiology & Immunology, Columbia University, New York, United States
| |
Collapse
|
35
|
Abstract
Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.
Collapse
Affiliation(s)
- Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
- Department of Surgery, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
36
|
Koelle DM, Dong L, Jing L, Laing KJ, Zhu J, Jin L, Selke S, Wald A, Varon D, Huang ML, Johnston C, Corey L, Posavad CM. HSV-2-Specific Human Female Reproductive Tract Tissue Resident Memory T Cells Recognize Diverse HSV Antigens. Front Immunol 2022; 13:867962. [PMID: 35432373 PMCID: PMC9009524 DOI: 10.3389/fimmu.2022.867962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023] Open
Abstract
Antigen-specific TRM persist and protect against skin or female reproductive tract (FRT) HSV infection. As the pathogenesis of HSV differs between humans and model organisms, we focus on humans with well-characterized recurrent genital HSV-2 infection. Human CD8+ TRM persisting at sites of healed human HSV-2 lesions have an activated phenotype but it is unclear if TRM can be cultivated in vitro. We recovered HSV-specific TRM from genital skin and ectocervix biopsies, obtained after recovery from recurrent genital HSV-2, using ex vivo activation by viral antigen. Up to several percent of local T cells were HSV-reactive ex vivo. CD4 and CD8 T cell lines were up to 50% HSV-2-specific after sorting-based enrichment. CD8 TRM displayed HLA-restricted reactivity to specific HSV-2 peptides with high functional avidities. Reactivity to defined peptides persisted locally over several month and was quite subject-specific. CD4 TRM derived from biopsies, and from an extended set of cervical cytobrush specimens, also recognized diverse HSV-2 antigens and peptides. Overall we found that HSV-2-specific TRM are abundant in the FRT between episodes of recurrent genital herpes and maintain competency for expansion. Mucosal sites are accessible for clinical monitoring during immune interventions such as therapeutic vaccination.
Collapse
Affiliation(s)
- David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kerry J. Laing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jia Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lei Jin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
| | - Dana Varon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Lawrence Corey
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christine M. Posavad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
37
|
Kong L, Andrikopoulos S, MacIsaac RJ, Mackay LK, Nikolic‐Paterson DJ, Torkamani N, Zafari N, Marin ECS, Ekinci EI. Role of the adaptive immune system in diabetic kidney disease. J Diabetes Investig 2022; 13:213-226. [PMID: 34845863 PMCID: PMC8847140 DOI: 10.1111/jdi.13725] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a highly prevalent complication of diabetes and the leading cause of end-stage kidney disease. Inflammation is recognized as an important driver of progression of DKD. Activation of the immune response promotes a pro-inflammatory milieu and subsequently renal fibrosis, and a progressive loss of renal function. Although the role of the innate immune system in diabetic renal disease has been well characterized, the potential contribution of the adaptive immune system remains poorly defined. Emerging evidence in experimental models of DKD indicates an increase in the number of T cells in the circulation and in the kidney cortex, that in turn triggers secretion of inflammatory mediators such as interferon-γ and tumor necrosis factor-α, and activation of cells in innate immune response. In human studies, the number of T cells residing in the interstitial region of the kidney correlates with the degree of albuminuria in people with type 2 diabetes. Here, we review the role of the adaptive immune system, and associated cytokines, in the development of DKD. Furthermore, the potential therapeutic benefits of targeting the adaptive immune system as a means of preventing the progression of DKD are discussed.
Collapse
Affiliation(s)
- Lingyun Kong
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | | | - Richard J MacIsaac
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Endocrinology & DiabetesSt Vincent's Hospital MelbourneMelbourneVictoriaAustralia
| | - Laura K Mackay
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVictoriaAustralia
| | - David J Nikolic‐Paterson
- Department of NephrologyMonash Medical Center and Monash University Center for Inflammatory DiseasesMelbourneVictoriaAustralia
| | - Niloufar Torkamani
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| | - Neda Zafari
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
| | - Evelyn C S Marin
- College of Sport and Exercise ScienceVictoria UniversityMelbourneVictoriaAustralia
| | - Elif I Ekinci
- Department of MedicineAustin Health, University of MelbourneMelbourneVictoriaAustralia
- Endocrine Center of ExcellenceAustin HealthMelbourneVictoriaAustralia
| |
Collapse
|
38
|
Wang Y, Guan Y, Hu Y, Li Y, Lu N, Zhang C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front Immunol 2022; 12:757379. [PMID: 35126348 PMCID: PMC8814360 DOI: 10.3389/fimmu.2021.757379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Gamma delta (γδ) T cells play a key role in the innate immune response and serve as the first line of defense against infection and tumors. These cells are defined as tissue-resident lymphocytes in skin, lung, and intestinal mucosa. They are also relatively abundant in the liver; however, little is known about the residency of hepatic γδT cells. By comparing the phenotype of murine γδT cells in liver, spleen, thymus, and small intestine, a CXCR3+CXCR6+ γδT-cell subset with tissue-resident characteristics was found in liver tissue from embryos through adults. Liver sinusoidal endothelial cells mediated retention of CXCR3+CXCR6+ γδT cells through the interactions between CXCR3 and CXCR6 and their chemokines. During acute HBV infection, CXCR3+CXCR6+ γδT cells produced high levels of IFN-γ and adoptive transfer of CXCR3+CXCR6+ γδT cells into acute HBV-infected TCRδ−/− mice leading to lower HBsAg and HBeAg expression. It is suggested that liver resident CXCR3+CXCR6+ γδT cells play a protective role during acute HBV infection. Strategies aimed at expanding and activating liver resident CXCR3+CXCR6+ γδT cells both in vivo or in vitro have great prospects for use in immunotherapy that specifically targets acute HBV infection.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Chemokines/metabolism
- Hepatitis B/metabolism
- Hepatitis B virus/pathogenicity
- Hepatocytes/metabolism
- Hepatocytes/virology
- Intestine, Small/metabolism
- Intestine, Small/virology
- Liver/metabolism
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR6/metabolism
- Spleen/metabolism
- Spleen/virology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Thymus Gland/metabolism
- Thymus Gland/virology
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jining No. 1 People’s Hospital, Jining, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| |
Collapse
|
39
|
Zheng MZM, Wakim LM. Tissue resident memory T cells in the respiratory tract. Mucosal Immunol 2022; 15:379-388. [PMID: 34671115 PMCID: PMC8526531 DOI: 10.1038/s41385-021-00461-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Owing to their capacity to rapidly spread across the population, airborne pathogens represent a significant risk to global health. Indeed, several of the past major global pandemics have been instigated by respiratory pathogens. A greater understanding of the immune cells tasked with protecting the airways from infection will allow for the development of strategies that curb the spread and impact of these airborne diseases. A specific subset of memory T-cell resident in both the upper and lower respiratory tract, termed tissue-resident memory (Trm), have been shown to play an instrumental role in local immune responses against a wide breadth of both viral and bacterial infections. In this review, we discuss factors that influence respiratory tract Trm development, longevity, and immune surveillance and explore vaccination regimes that harness these cells, such approaches represent exciting new strategies that may be utilized to tackle the next global pandemic.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
40
|
Zhong Y, Walker SK, Pritykin Y, Leslie CS, Rudensky AY, van der Veeken J. Hierarchical regulation of the resting and activated T cell epigenome by major transcription factor families. Nat Immunol 2021; 23:122-134. [PMID: 34937932 PMCID: PMC8712421 DOI: 10.1038/s41590-021-01086-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
T cell activation, a key early event in the adaptive immune response, is subject to elaborate transcriptional control. Here, we examined how the activities of eight major transcription factor (TF) families are integrated to shape the epigenome of naïve and activated CD4 and CD8 T cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified the “heavy lifters” positively influencing chromatin accessibility. Members of Ets, Runx, and TCF/Lef TF families occupied the vast majority of accessible chromatin regions, acting as “housekeepers”, “universal amplifiers”, and “placeholders”, respectively, at sites that maintained or gained accessibility upon T cell activation. Additionally, a small subset of strongly induced immune response genes displayed a non-canonical TF recruitment pattern. Our study provides a key resource and foundation for the understanding of transcriptional and epigenetic regulation in T cells and offers a new perspective on the hierarchical interactions between critical TFs.
Collapse
|
41
|
Poon MML, Byington E, Meng W, Kubota M, Matsumoto R, Grifoni A, Weiskopf D, Dogra P, Lam N, Szabo PA, Ural BB, Wells SB, Rosenfeld AM, Brusko MA, Brusko TM, Connors TJ, Sette A, Sims PA, Luning Prak ET, Shen Y, Farber DL. Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Rep 2021; 37:110071. [PMID: 34852222 PMCID: PMC8719595 DOI: 10.1016/j.celrep.2021.110071] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
The persistence of anti-viral immunity is essential for protection and exhibits profound heterogeneity across individuals. Here, we elucidate the factors that shape maintenance and function of anti-viral T cell immunity in the body by comprehensive profiling of virus-specific T cells across blood, lymphoid organs, and mucosal tissues of organ donors. We use flow cytometry, T cell receptor sequencing, single-cell transcriptomics, and cytokine analysis to profile virus-specific CD8+ T cells recognizing the ubiquitous pathogens influenza and cytomegalovirus. Our results reveal that virus specificity determines overall magnitude, tissue distribution, differentiation, and clonal repertoire of virus-specific T cells. Age and sex influence T cell differentiation and dissemination in tissues, while T cell tissue residence and functionality are highly correlated with the site. Together, our results demonstrate how the covariates of virus, tissue, age, and sex impact the anti-viral immune response, which is important for targeting, monitoring, and predicting immune responses to existing and emerging viruses.
Collapse
Affiliation(s)
- Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eve Byington
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak Burcu Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
42
|
Immunological Assessment of Lung Responses to Inhalational Lipoprotein Vaccines Against Bacterial Pathogens. Methods Mol Biol 2021. [PMID: 34784043 DOI: 10.1007/978-1-0716-1900-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules Pam2Cys and Pam3Cys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space. We describe detection of T-cell responses via leukocyte restimulation, followed by intracellular cytokine staining and flow cytometry, enzyme-linked immunosorbent spot assay (ELISpot), and sustained leukocyte restimulation for detection of antigen-specific memory responses. We also detail assessment of antibody responses to vaccine antigens, via enzyme-linked immunosorbent assay (ELISA)-based detection. These methods are suitable for testing a wide range of pulmonary vaccines.
Collapse
|
43
|
Reina-Campos M, Scharping NE, Goldrath AW. CD8 + T cell metabolism in infection and cancer. Nat Rev Immunol 2021; 21:718-738. [PMID: 33981085 PMCID: PMC8806153 DOI: 10.1038/s41577-021-00537-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Cytotoxic CD8+ T cells play a key role in the elimination of intracellular infections and malignant cells and can provide long-term protective immunity. In the response to infection, CD8+ T cell metabolism is coupled to transcriptional, translational and epigenetic changes that are driven by extracellular metabolites and immunological signals. These programmes facilitate the adaptation of CD8+ T cells to the diverse and dynamic metabolic environments encountered in the circulation and in the tissues. In the setting of disease, both cell-intrinsic and cell-extrinsic metabolic cues contribute to CD8+ T cell dysfunction. In addition, changes in whole-body metabolism, whether through voluntary or disease-induced dietary alterations, can influence CD8+ T cell-mediated immunity. Defining the metabolic adaptations of CD8+ T cells in specific tissue environments informs our understanding of how these cells protect against pathogens and tumours and maintain tissue health at barrier sites. Here, we highlight recent findings revealing how metabolic networks enforce specific CD8+ T cell programmes and discuss how metabolism is integrated with CD8+ T cell differentiation and function and determined by environmental cues.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E. Scharping
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ananda W. Goldrath
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.,
| |
Collapse
|
44
|
Chang MH, Levescot A, Nelson-Maney N, Blaustein RB, Winden KD, Morris A, Wactor A, Balu S, Grieshaber-Bouyer R, Wei K, Henderson LA, Iwakura Y, Clark RA, Rao DA, Fuhlbrigge RC, Nigrovic PA. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell Rep 2021; 37:109902. [PMID: 34706228 DOI: 10.1016/j.celrep.2021.109902] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 08/20/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis is a systemic autoimmune disease, but disease flares typically affect only a subset of joints, distributed in a distinctive pattern for each patient. Pursuing this intriguing pattern, we show that arthritis recurrence is mediated by long-lived synovial resident memory T cells (TRM). In three murine models, CD8+ cells bearing TRM markers remain in previously inflamed joints during remission. These cells are bona fide TRM, exhibiting a failure to migrate between joints, preferential uptake of fatty acids, and long-term residency. Disease flares result from TRM activation by antigen, leading to CCL5-mediated recruitment of circulating effector cells. Correspondingly, TRM depletion ameliorates recurrence in a site-specific manner. Human rheumatoid arthritis joint tissues contain a comparable CD8+-predominant TRM population, which is most evident in late-stage leukocyte-poor synovium, exhibiting limited T cell receptor diversity and a pro-inflammatory transcriptomic signature. Together, these findings establish synovial TRM as a targetable mediator of disease chronicity in autoimmune arthritis.
Collapse
Affiliation(s)
- Margaret H Chang
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anaïs Levescot
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nathan Nelson-Maney
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rachel B Blaustein
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allyn Morris
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alexandra Wactor
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Spoorthi Balu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert C Fuhlbrigge
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Eliasse Y, Leveque E, Garidou L, Battut L, McKenzie B, Nocera T, Redoules D, Espinosa E. IL-17 + Mast Cell/T Helper Cell Axis in the Early Stages of Acne. Front Immunol 2021; 12:740540. [PMID: 34650562 PMCID: PMC8506309 DOI: 10.3389/fimmu.2021.740540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acne is a multifactorial disease driven by physiological changes occurring during puberty in the pilosebaceous unit (PSU) that leads to sebum overproduction and a dysbiosis involving notably Cutibacterium acnes. These changes in the PSU microenvironment lead to a shift from a homeostatic to an inflammatory state. Indeed, immunohistochemical analyses have revealed that inflammation and lymphocyte infiltration can be detected even in the infraclinical acneic stages, highlighting the importance of the early stages of the disease. In this study, we utilized a robust multi-pronged approach that included flow cytometry, confocal microscopy, and bioinformatics to comprehensively characterize the evolution of the infiltrating and resident immune cell populations in acneic lesions, beginning in the early stages of their development. Using a discovery cohort of 15 patients, we demonstrated that the composition of immune cell infiltrate is highly dynamic in nature, with the relative abundance of different cell types changing significantly as a function of clinical lesion stage. Within the stages examined, we identified a large population of CD69+ CD4+ T cells, several populations of activated antigen presenting cells, and activated mast cells producing IL-17. IL-17+ mast cells were preferentially located in CD4+ T cell rich areas and we showed that activated CD4+ T cells license mast cells to produce IL-17. Our study reveals that mast cells are the main IL-17 producers in the early stage of acne, underlying the importance of targeting the IL-17+ mast cell/T helper cell axis in therapeutic approaches.
Collapse
Affiliation(s)
- Yoan Eliasse
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Edouard Leveque
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lucile Garidou
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Louise Battut
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Brienne McKenzie
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Thérèse Nocera
- Clinical Evaluation Center, Pierre Fabre Dermo-Cosmétique, Toulouse, France.,Dermatology Department, University Hospital Larrey, Toulouse, France
| | - Daniel Redoules
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Eric Espinosa
- Inserm, U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France.,Université de Toulouse, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
46
|
Yang XX, Yang C, Wang L, Zhou YB, Yuan X, Xiang N, Wang YP, Li XM. Molecular Mechanism of Sphingosine-1-Phosphate Receptor 1 Regulating CD4 + Tissue Memory in situ T Cells in Primary Sjogren's Syndrome. Int J Gen Med 2021; 14:6177-6188. [PMID: 34611431 PMCID: PMC8485922 DOI: 10.2147/ijgm.s327304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Although extensive research has been carried out on CD4+T cells infiltrating the labial glands in patients with primary Sjögren’s Syndrome (pSS), it is still unclear how CD4+T cells remain in the labial gland tissue and develop into tissue resident cells. The aim of this study was to investigate the molecular mechanism by which CD4+T reside in labial glandular tissue of pSS patients. Methods Lymphocyte infiltration in labial salivary glands (LSG) of pSS patients was detected by H&E staining. Expression of sphingosine-1-phosphate receptor 1 (S1PR1) in LSG was examined by Immunohistochemistry. Immunofluorescence analyses were utilized to detect the co-expression of CD4, CD69 and S1PR1 in T cells of LSG of pSS patients. Expression of gene S1pr1 in peripheral blood CD4+T cells of healthy controls and pSS patients was detected by quantitative real-time PCR (QPCR). QPCR was used to examine the expression of gene S1pr1, Klf2, and Cd69 in the CD4+T cells that were co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Results S1PR1 was expressed in the infiltrating monocytes in LSG of pSS patients, and S1PR1 was weakly or even not expressed in cytoplasm of CD4+CD69+TRM cells of LSG in patients with pSS. Expression of gene S1pr1 in peripheral blood CD4+T cells of pSS patients was about three-fifths of that of healthy controls (P < 0.05). Expression of genes S1pr1 (P < 0.001) and Klf-2 (P < 0.001) was significantly decreased, and the expression of gene Cd69 (P < 0.05) was significantly increased in peripheral blood CD4+T cells of pSS patients co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Conclusion Our study suggests that the decrease of S1pr1 gene expression may provide a molecular basis for promoting the tissue retention and development of CD4+CD69+TRM cells.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chao Yang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Li Wang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ying-Bo Zhou
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiang Yuan
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Nan Xiang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yi-Ping Wang
- Westmead Institute for Medical Research, University of Sydney, Sdyney, NSW, 2145, Australia
| | - Xiao-Mei Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
47
|
Tomas J, Koo Y, Popoff D, Arce-Gorvel V, Hanniffy S, Gorvel JP, Mionnet C. PTX Instructs the Development of Lung-Resident Memory T Cells in Bordetella pertussis Infected Mice. Toxins (Basel) 2021; 13:toxins13090632. [PMID: 34564636 PMCID: PMC8470914 DOI: 10.3390/toxins13090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.
Collapse
Affiliation(s)
- Julie Tomas
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Yoon Koo
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
- Laboratoire Adhesion & Inflammation, UMR INSERM 1067, UMR CNRS 7333, Aix-Marseille Université Case 937, CEDEX 09, 13288 Marseille, France
| | - Dimitri Popoff
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Sean Hanniffy
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Cyrille Mionnet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
- Correspondence:
| |
Collapse
|
48
|
Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat Immunol 2021; 22:1140-1151. [PMID: 34426691 DOI: 10.1038/s41590-021-01004-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/15/2021] [Indexed: 12/23/2022]
Abstract
Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFβ is a major driver of this diversity. Notably, dampened TGFβ signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFβ-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.
Collapse
|
49
|
Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 2021; 54:1825-1840.e7. [DOI: 10.1016/j.immuni.2021.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
|
50
|
Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a 'Green' Surfactant with Low-Energy Emulsification Method. Pharmaceutics 2021; 13:1024. [PMID: 34371716 PMCID: PMC8309190 DOI: 10.3390/pharmaceutics13071024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a skin disease that is not lethal and does not spread through bodily contact. However, this seemingly harmless condition can lead to a loss of confidence and social stigmatization due to a persons' flawed appearance. The conventional methods of psoriasis treatment include taking in systemic drugs to inhibit immunoresponses within the body or applying topical drugs onto the surface of the skin to inhibit cell proliferation. Topical methods are favored as they pose lesser side effects compared to the systemic methods. However, the side effects from systemic drugs and low bioavailability of topical drugs are the limitations to the treatment. The use of nanotechnology in this field has enhanced drug loading capacity and reduced dosage size. In this review, biosurfactants were introduced as a 'greener' alternative to their synthetic counterparts. Glycolipid biosurfactants are specifically suited for anti-psoriatic application due to their characteristic skin-enhancing qualities. The selection of a suitable oil phase can also contribute to the anti-psoriatic effect as some oils have skin-healing properties. The review covers the pathogenic pathway of psoriasis, conventional treatments, and prospective ingredients to be used as components in the nanoemulsion formulation. Furthermore, an insight into the state-of-the-art methods used in formulating nanoemulsions and their progression to low-energy methods are also elaborated in detail.
Collapse
Affiliation(s)
- Ignatius Julian Dinshaw
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|