1
|
Zhang H, Leng S, Gao F, Kovalik JP, Tan RS, Wee HN, Chua KV, Ching J, Zhao X, Allen J, Wu Q, Leiner T, Zhong L, Koh AS. Longitudinal aortic strain, ventriculo-arterial coupling and fatty acid oxidation: novel insights into human cardiovascular aging. GeroScience 2024; 46:5459-5471. [PMID: 38514519 PMCID: PMC11493888 DOI: 10.1007/s11357-024-01127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/09/2024] [Indexed: 03/23/2024] Open
Abstract
Aging-induced aortic stiffness has been associated with altered fatty acid metabolism. We studied aortic stiffness using cardiac magnetic resonance (CMR)-assessed ventriculo-arterial coupling (VAC) and novel aortic (AO) global longitudinal strain (GLS) combined with targeted metabolomic profiling. Among community older adults without cardiovascular disease, VAC was calculated as aortic pulse wave velocity (PWV), a marker of arterial stiffness, divided by left ventricular (LV) GLS. AOGLS was the maximum absolute strain measured by tracking the phasic distance between brachiocephalic artery origin and aortic annulus. In 194 subjects (71 ± 8.6 years; 88 women), AOGLS (mean 5.6 ± 2.1%) was associated with PWV (R = -0.3644, p < 0.0001), LVGLS (R = 0.2756, p = 0.0001) and VAC (R = -0.3742, p <0.0001). Stiff aorta denoted by low AOGLS <4.26% (25th percentile) was associated with age (OR 1.13, 95% CI 1.04-1.24, p = 0.007), body mass index (OR 1.12, 95% CI 1.01-1.25, p = 0.03), heart rate (OR 1.04, 95% CI 1.01-1.06, p = 0.011) and metabolites of medium-chain fatty acid oxidation: C8 (OR 1.005, p = 0.026), C10 (OR 1.003, p = 0.036), C12 (OR 1.013, p = 0.028), C12:2-OH/C10:2-DC (OR 1.084, p = 0.032) and C16-OH (OR 0.82, p = 0.006). VAC was associated with changes in long-chain hydroxyl and dicarboxyl carnitines. Multivariable models that included acyl-carnitine metabolites, but not amino acids, significantly increased the discrimination over clinical risk factors for prediction of AOGLS (AUC [area-under-curve] 0.73 to 0.81, p = 0.037) and VAC (AUC 0.78 to 0.87, p = 0.0044). Low AO GLS and high VAC were associated with altered medium-chain and long-chain fatty acid oxidation, respectively, which may identify early metabolic perturbations in aging-associated aortic stiffening. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02791139.
Collapse
Affiliation(s)
- Hongzhou Zhang
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Department of Cardiology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Shuang Leng
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Fei Gao
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hai Ning Wee
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Kee Voon Chua
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore, 229899, Singapore
| | - Xiaodan Zhao
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - John Allen
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Qinghua Wu
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Liang Zhong
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Angela S Koh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
2
|
Augusto SN, Suresh A, Tang WHW. Ceramides as Biomarkers of Cardiovascular Diseases and Heart Failure. Curr Heart Fail Rep 2024; 22:2. [PMID: 39560878 DOI: 10.1007/s11897-024-00689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW Ceramides are lipid species that play several physiological roles in the body, including stress response, inflammation, and apoptosis, and their involvement in lipid metabolism and energy production makes them crucial in the pathophysiology of heart failure (HF). RECENT FINDINGS Several species of ceramides and ceramide signatures have recently been investigated as possible biomarkers of cardiovascular disease (CVD), and risk scores have demonstrated prognostic value in stratifying patients by risk and possibly predicting adverse cardiac events. With growing interest in targeting metabolic dysfunction, understanding the role of ceramides in CVD also opens the possibility of novel therapeutics that target ceramide metabolism to improve cardiac function and cardiac outcomes in patients. Understanding the role of ceramides in CVD opens the possibility of novel diagnostics and theragnostic targeting ceramide metabolism to improve cardiac function and cardiac outcomes in patients with heart failure.
Collapse
Affiliation(s)
- Silvio N Augusto
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195
| | - Abhilash Suresh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - W H Wilson Tang
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA, 9500 Euclid Avenue, Desk J3-4, 44195.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Feng L, Zhao X, Song J, Yang S, Xiang J, Zhang M, Tu C, Song X. Association between the plasma ceramide and coronary microvascular resistance. Cardiovasc Diabetol 2024; 23:395. [PMID: 39497178 PMCID: PMC11536972 DOI: 10.1186/s12933-024-02495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Plasma ceramide plays a potentially significant role in the pathogenesis of coronary microvascular dysfunction. However, the relationship between plasma ceramide and coronary microvascular resistance in patients remains unclear. This study aimed to evaluate the association between plasma ceramide levels, as well as their distinct ratios, and coronary microvascular resistance. METHODS This single-center observational study retrospectively enrolled patients who underwent both ceramide measurement and coronary angiography during hospitalization. The microvascular resistance of the coronary arteries was assessed in all patients using the angiography-derived index of microcirculatory resistance (Angio-IMR). The cumulative coronary microvascular resistance was calculated by summing the microvascular resistance of the three main coronary arteries. Multiple linear and logistic regression analyses were employed to evaluate the relationship between plasma ceramide and cumulative coronary microvascular resistance. Restricted cubic spline (RCS) analysis was conducted to investigate the association between plasma ceramide levels and cumulative coronary microvascular resistance. Receiver operating characteristic (ROC) curves were employed to evaluate the predictive value of plasma ceramide for coronary microvascular resistance. Additionally, subgroup analyses and interaction tests were performed. RESULTS A total of 225 patients were included in this study, with a median cumulative coronary microvascular resistance of 48.04 (40.32-56.73). After adjusting for potential confounding factors, both plasma 16:0 ceramide and the 16:0/24:0 ceramide ratio were positively associated with cumulative coronary microvascular resistance [standardized β ± standard error: 75.05 ± 8.46 (P < 0.001) and 91.72 ± 20.41 (P < 0.001), respectively]. Similar independent associations were observed in predicting high cumulative microvascular resistance [β = 8.03 ± 1.91 (P < 0.001) and 9.98 ± 3.88 (P = 0.010), respectively]. Additionally, a significant nonlinear relationship was observed between plasma 16:0 ceramide, the 16:0/24:0 ceramide ratio, and cumulative coronary microvascular resistance (P for nonlinear < 0.05). The ROC analysis revealed that the optimal cut-off for plasma 16:0 ceramide is 0.178 µmol/L, with a specificity of 57.1% and a sensitivity of 91.2%. For the 16:0/24:0 ceramide ratio, the optimal cut-off is 0.072, yielding a specificity of 73.2% and a sensitivity of 54.9%. Subgroup analysis indicated that the association between plasma ceramide and coronary microvascular resistance was trending toward non-significance in patients with acute coronary syndrome (ACS). CONCLUSIONS A significant nonlinear relationship exists between plasma ceramide and coronary microvascular resistance, which holds important clinical implications for the risk stratification of coronary microvascular disease. New insights into the potential effects of ceramides enhance our understanding of the complex mechanisms underlying coronary microvascular disease and warrant further investigation in a broader population.
Collapse
Affiliation(s)
- Lanxin Feng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianqiao Song
- Sun yat sen university, Zhongshan school of medicine, Guangzhou, People's Republic of China
| | - Shuwen Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianping Xiang
- ArteryFlow Technology Co., Ltd, Hangzhou, People's Republic of China
| | - Min Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Wang Z, Lu B, Zhang L, Xia Y, Shao X, Zhong S. Causality of Blood Metabolites on Proliferative Diabetic Retinopathy: Insights From a Genetic Perspective. J Diabetes Res 2024; 2024:6828908. [PMID: 39512998 PMCID: PMC11540900 DOI: 10.1155/2024/6828908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Our goal was to examine the causal link between blood metabolites, their ratios, and the risk of developing proliferative diabetic retinopathy (PDR) from a genetic insight. Methods: Summary-level data about 1400 blood metabolites and their ratios, as well as PDR, were sourced from prior genome-wide association studies (GWAS). A two-sample univariate and multivariate Mendelian randomization (MR) approach was utilized. Additionally, metabolic pathway analysis and sensitivity analysis were also conducted. Results: After adjusting for multiple tests, four blood metabolites significantly correlated with PDR risk. Two ceramides, including glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) (odds ratio [OR] = 1.12, 95% confidence interval (CI): 1.06-1.17, p < 0.001, false discovery rate (FDR) = 0.005) and glycosyl-N-behenoyl-sphingadienine (d18:2/22:0) (OR = 1.11, 95% CI: 1.06-1.16, p < 0.001, FDR = 0.017), were linked to increased risk. Additionally, 3-methylcytidine (OR = 1.05, 95% CI: 1.03-1.08, p < 0.001, FDR = 0.021) also posed a risk, whereas (N(1)+N(8))-acetylspermidine (OR = 0.91, 95% CI: 0.87-0.94, p < 0.001, FDR = 0.002) appeared protective. Multivariable MR analysis further confirmed a direct, protective effect of (N(1)+N(8))-acetylspermidine on PDR risk (OR = 0.94, 95% CI: 0.89-1.00, p = 0.040). The sensitivity analysis results indicated that evidence for heterogeneity and pleiotropy was absent. Conclusion: These metabolites have the potential to be used as biomarkers and are promising for future research into the mechanisms and drug targets for PDR.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Bing Lu
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Yuwen Xia
- Department of Clinical Nutrition, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Xiaoping Shao
- Department of Clinical Nutrition, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| | - Shao Zhong
- Department of Clinical Nutrition, The First People's Hospital of Kunshan, Kunshan, Jiangsu 215300, China
| |
Collapse
|
5
|
Junqueira DL, Cavalcanti AB, Sallum JMF, Yasaki E, de Andrade Jesuíno I, Stach A, Negrelli K, de Oliveira Silva L, Lopes MA, Caixeta A, Chan MY, Ching J, Carvalho VM, Faccio AT, Tsutsui J, Rizzatti E, Fonseca RA, Summers S, Fonseca HA, Rochitte CE, Krieger JE, de Carvalho LP. Plasma ceramides as biomarkers for microvascular disease and clinical outcomes in diabetes and myocardial infarction. Clin Diabetes Endocrinol 2024; 10:32. [PMID: 39285502 PMCID: PMC11406755 DOI: 10.1186/s40842-024-00186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/14/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Ceramides have recently been identified as novel biomarkers associated with diabetes mellitus (DM) and major adverse cardiac and cerebrovascular events (MACCE). This study aims to explore their utility in diagnosing microvascular disease. METHODS This study prospectively enrolled 309 patients from 2018 to 2020 into three groups: healthy controls (Group 1, N = 51), DM patients without acute myocardial infarction (AMI) (Group 2, N = 150), and DM patients with AMI (Group 3, N = 108). We assessed outcomes using stress perfusion cardiac magnetic resonance (CMR) imaging for coronary microvascular disease (CMD) (Outcome 1), retinography for retinal microvascular disease (RMD) (Outcome 2), both CMD and RMD (Outcome 3), and absence of microvascular disease (w/o MD) (outcome 4). We evaluated the classification performance of ceramides using receiver operating characteristic (ROC) analysis and multiple logistic regression. 11-ceramide panel previously identified by our research group as related to macrovascular disease were used. RESULTS Average glycated hemoglobin (HbA1c) values were 5.1% in Group 1, 8.3% in Group 2, and 7.6% in Group 3. Within the cohort, CMD was present in 59.5% of patients, RMD in 25.8%, both CMD and RMD in 18.8%, and w/o MD in 38.5%. The AUC values for the reference ceramide ratios were as follows: CMD at 0.66 (p = 0.012), RMD at 0.61 (p = 0.248), CMD & RMD at 0.64 (p = 0.282), and w/o MD at 0.67 (p = 0.010). In contrast, the AUC values using 11-ceramide panel showed significant improvement in the outcomes prediction: CMD at 0.81 (p = 0.001), RMD at 0.73 (p = 0.010), CMD & RMD at 0.73 (p = 0.04), and w/o MD at 0.83 (p = 0.010). Additionally, the plasma concentration of C14.0 was notably higher in the w/o MD group (p < 0.001). CONCLUSIONS Plasma ceramides serve as potential predictors for health status and microvascular disease phenotypes in diabetic patients.
Collapse
Affiliation(s)
- Debora Leonor Junqueira
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil.
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil.
| | | | - Juliana Maria Ferraz Sallum
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Erika Yasaki
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | | | - Alline Stach
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Karina Negrelli
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Leila de Oliveira Silva
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Marcela Almeida Lopes
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
| | - Adriano Caixeta
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Mark Yy Chan
- Yong Loo-Lin School of Medicine, Cardiac Department, National University of Singapore, NUHCS, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Jianhong Ching
- Duke-NUS Graduate Medical School, Metabolomics Research Center, 8 College Rd, Singapore, 169857, Singapore
| | | | | | - Jeane Tsutsui
- Fleury Group, Av. Santo Amaro, N° 4584, Brooklin, São Paulo, 04702-000, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Edgar Rizzatti
- Fleury Group, Av. Santo Amaro, N° 4584, Brooklin, São Paulo, 04702-000, Brazil
| | - Rafael Almeida Fonseca
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Scott Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Center, University of Utah, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Henrique Almeida Fonseca
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
| | - Carlos Eduardo Rochitte
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - José Eduardo Krieger
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| | - Leonardo Pinto de Carvalho
- Heart Hospital-HCOR, Desembargador Eliseu Guilherme, N° 147, Paraíso, São Paulo, CEP: 04004-030, Brazil
- Federal University of São Paulo State-UNIFESP, Rua Napoleão de Barros, N° 715, Vila Clementino, São Paulo, CEP: 04004-030, Brazil
- Heart Institute-InCor, University of São Paulo Medical School Hospital, Av. Dr. Eneas de Carvalho Aguiar, N° 44, Cerqueira Cesar, São Paulo, CEP: 05403-900, Brazil
| |
Collapse
|
6
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
7
|
Gaggini M, Marchi F, Pylypiv N, Parlanti A, Storti S, Paradossi U, Berti S, Vassalle C. Vitamin D and Ceramide Metabolomic Profile in Acute Myocardial Infarction. Metabolites 2024; 14:233. [PMID: 38668361 PMCID: PMC11052114 DOI: 10.3390/metabo14040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sphingolipids (SLs) influence several cellular pathways, while vitamin D exerts many extraskeletal effects in addition to its traditional biological functions, including the modulation of calcium homeostasis and bone health. Moreover, Vitamin D and SLs affect the regulation of each others' metabolism; hence, this study aims to evaluate the relationship between the levels of 25(OH)D and ceramides in acute myocardial infarction (AMI). In particular, the blood abundance of eight ceramides and 25(OH)D was evaluated in 134 AMI patients (aged 68.4 ± 12.0 years, 72% males). A significant inverse correlation between 25(OH)D and both Cer(d18:1/16:0) and Cer(d18:1/18:0) was found; indeed, patients with severe hypovitaminosis D (<10 ng/mL) showed the highest levels of the two investigated ceramides. Moreover, diabetic/dyslipidemic patients with suboptimal levels of 25(OH)D (<30 ng/mL) had higher levels of both the ceramides when compared with the rest of the population. On the other hand, 25(OH)D remained an independent determinant for Cer(d18:1/16:0) (STD Coeff -0.18, t-Value -2, p ≤ 0.05) and Cer(d18:1/18:0) (-0.2, -2.2, p < 0.05). In light of these findings, the crosstalk between sphingolipids and vitamin D may unravel additional mechanisms by which these molecules can influence CV risk in AMI.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Federica Marchi
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Nataliya Pylypiv
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Alessandra Parlanti
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Simona Storti
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Umberto Paradossi
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Sergio Berti
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Ospedale G Pasquinucci, 54100 Massa, Italy; (F.M.); (N.P.); (A.P.); (S.S.); (U.P.); (S.B.)
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
8
|
Ahmad AF, Caparrós-Martin JA, Gray N, Lodge S, Wist J, Lee S, O'Gara F, Dwivedi G, Ward NC. Gut microbiota and metabolomics profiles in patients with chronic stable angina and acute coronary syndrome. Physiol Genomics 2024; 56:48-64. [PMID: 37811721 DOI: 10.1152/physiolgenomics.00072.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The gut microbiota and its associated metabolites may be involved in the development and progression of CVD, although the mechanisms and impact on clinical outcomes are not fully understood. This study investigated the gut microbiome profile and associated metabolites in patients with chronic stable angina (CSA) and acute coronary syndrome (ACS) compared with healthy controls. Bacterial alpha diversity in stool from patients with ACS or CSA was comparable to healthy controls at both baseline and follow-up visits. Differential abundance analysis identified operational taxonomic units (OTUs) assigned to commensal taxa differentiating patients with ACS from healthy controls at both baseline and follow-up. Patients with CSA and ACS had significantly higher levels of trimethylamine N-oxide compared with healthy controls (CSA: 0.032 ± 0.023 mmol/L, P < 0.01 vs. healthy, and ACS: 0.032 ± 0.023 mmol/L, P = 0.02 vs. healthy, respectively). Patients with ACS had reduced levels of propionate and butyrate (119 ± 4 vs. 139 ± 5.1 µM, P = 0.001, and 14 ± 4.3 vs. 23.5 ± 8.1 µM, P < 0.001, respectively), as well as elevated serum sCD14 (2245 ± 75.1 vs. 1834 ± 45.8 ng/mL, P < 0.0001) and sCD163 levels (457.3 ± 31.8 vs. 326.8 ± 20.7 ng/mL, P = 0.001), compared with healthy controls at baseline. Furthermore, a modified small molecule metabolomic and lipidomic signature was observed in patients with CSA and ACS compared with healthy controls. These findings provide evidence of a link between gut microbiome composition and gut bacterial metabolites with CVD. Future time course studies in patients to observe temporal changes and subsequent associations with gut microbiome composition are required to provide insight into how these are affected by transient changes following an acute coronary event.NEW & NOTEWORTHY The study found discriminative microorganisms differentiating patients with acute coronary syndrome (ACS) from healthy controls. In addition, reduced levels of certain bacterial metabolites and elevated sCD14 and sCD163 were observed in patients with ACS compared with healthy controls. Furthermore, modified small molecule metabolomic and lipidomic signatures were found in both patient groups. Although it is not known whether these differences in profiles are associated with disease development and/or progression, the findings provide exciting options for potential new disease-related mechanism(s) and associated therapeutic target(s).
Collapse
Affiliation(s)
- Adilah F Ahmad
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jose A Caparrós-Martin
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Fergal O'Gara
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Kale D, Fatangare A, Phapale P, Sickmann A. Blood-Derived Lipid and Metabolite Biomarkers in Cardiovascular Research from Clinical Studies: A Recent Update. Cells 2023; 12:2796. [PMID: 38132115 PMCID: PMC10741540 DOI: 10.3390/cells12242796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The primary prevention, early detection, and treatment of cardiovascular disease (CVD) have been long-standing scientific research goals worldwide. In the past decades, traditional blood lipid profiles have been routinely used in clinical practice to estimate the risk of CVDs such as atherosclerotic cardiovascular disease (ASCVD) and as treatment targets for the primary prevention of adverse cardiac events. These blood lipid panel tests often fail to fully predict all CVD risks and thus need to be improved. A comprehensive analysis of molecular species of lipids and metabolites (defined as lipidomics and metabolomics, respectively) can provide molecular insights into the pathophysiology of the disease and could serve as diagnostic and prognostic indicators of disease. Mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based lipidomics and metabolomics analysis have been increasingly used to study the metabolic changes that occur during CVD pathogenesis. In this review, we provide an overview of various MS-based platforms and approaches that are commonly used in lipidomics and metabolomics workflows. This review summarizes the lipids and metabolites in human plasma/serum that have recently (from 2018 to December 2022) been identified as promising CVD biomarkers. In addition, this review describes the potential pathophysiological mechanisms associated with candidate CVD biomarkers. Future studies focused on these potential biomarkers and pathways will provide mechanistic clues of CVD pathogenesis and thus help with the risk assessment, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| | | | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany; (A.F.); (P.P.)
| |
Collapse
|
10
|
Zhang F, Li B, Su H, Guo Z, Zhu H, Wang A, Jiang K, Cao Y. Progress in the Metabolomics of Acute Coronary Syndrome. Rev Cardiovasc Med 2023; 24:204. [PMID: 39077017 PMCID: PMC11266460 DOI: 10.31083/j.rcm2407204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 07/31/2024] Open
Abstract
Acute coronary syndrome (ACS) is a severe type of coronary heart disease (CHD) with increasing prevalence and significant challenges for prevention and treatment. Metabolomics is an emerging technology with intrinsic dynamics and flexibility to better delineate the phenotypic and metabolic alterations in organisms at the time of altered pathological states. It provides new insights into the complex pathological mechanisms of cardiovascular disease and contributes to the early detection, monitoring and evaluation of ACS. In this review, we analyze and summarize the literature related to ACS metabolomics which has contributed to the diagnosis and prevention of ACS.
Collapse
Affiliation(s)
- Fu Zhang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Bo Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu, China
| | - Hongling Su
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Zhaoxia Guo
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Hai Zhu
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Aqian Wang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Kaiyu Jiang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Yunshan Cao
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| |
Collapse
|
11
|
van Vliet S, Blair AD, Hite LM, Cloward J, Ward RE, Kruse C, van Wietmarchsen HA, van Eekeren N, Kronberg SL, Provenza FD. Pasture-finishing of bison improves animal metabolic health and potential health-promoting compounds in meat. J Anim Sci Biotechnol 2023; 14:49. [PMID: 37004100 PMCID: PMC10067211 DOI: 10.1186/s40104-023-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND With rising concerns regarding the effects of red meat on human and environmental health, a growing number of livestock producers are exploring ways to improve production systems. A promising avenue includes agro-ecological practices such as rotational grazing of locally adapted ruminants. Additionally, growing consumer interest in pasture-finished meat (i.e., grass-fed) has raised questions about its nutritional composition. Thus, the goal of this study was to determine the impact of two common finishing systems in North American bison-pasture-finished or pen-finished on concentrates for 146 d-on metabolomic, lipidomic, and fatty acid profiles of striploins (M. longissimus lumborum). RESULTS Six hundred and seventy-one (671) out of 1570 profiled compounds (43%) differed between pasture- and pen-finished conditions (n = 20 animals per group) (all, P < 0.05). Relative to pasture-finished animals, the muscle of pen-finished animals displayed elevated glucose metabolites (~ 1.6-fold), triglycerides (~ 2-fold), markers of oxidative stress (~ 1.5-fold), and proteolysis (~ 1.2-fold). In contrast, pasture-finished animals displayed improved mitochondrial (~ 1.3-fold higher levels of various Krebs cycle metabolites) and carnitine metabolism (~ 3-fold higher levels of long-chain acyl carnitines) (all P < 0.05). Pasture-finishing also concentrated higher levels of phenolics (~ 2.3-fold), alpha-tocopherol (~ 5.8-fold), carotene (~ 2.0-fold), and very long-chain fatty acids (~ 1.3-fold) in their meat, while having lower levels of a common advanced lipoxidation (4-hydroxy-nonenal-glutathione; ~ 2-fold) and glycation end-product (N6-carboxymethyllysine; ~ 1.7-fold) (all P < 0.05). In contrast, vitamins B5, B6, and C, gamma/beta-tocopherol, and three phenolics commonly found in alfalfa were ~ 2.5-fold higher in pen-finished animals (all P < 0.05); suggesting some concentrate feeding, or grazing plants rich in those compounds, may be beneficial. CONCLUSIONS Pasture-finishing (i.e., grass-fed) broadly improves bison metabolic health and accumulates additional potential health-promoting compounds in their meat compared to concentrate finishing in confinement (i.e., pen-finished). Our data, however, does not indicate that meat from pen-finished bison is therefore unhealthy. The studied bison meat-irrespective of finishing practice-contained favorable omega 6:3 ratios (< 3.2), and amino acid and vitamin profiles. Our study represents one of the deepest meat profiling studies to date (> 1500 unique compounds), having revealed previously unrecognized differences in animal metabolic health and nutritional composition because of finishing mode. Whether observed nutritional differences have an appreciable effect on human health remains to be determined.
Collapse
Affiliation(s)
- Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA.
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA.
| | - Amanda D Blair
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Lydia M Hite
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Jennifer Cloward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Robert E Ward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Carter Kruse
- Turner Institute of Ecoagriculture, Bozeman, MT, 59718, USA
| | | | | | - Scott L Kronberg
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| | - Frederick D Provenza
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| |
Collapse
|
12
|
Sasset L, Manzo OL, Zhang Y, Marino A, Rubinelli L, Riemma MA, Chalasani MLS, Dasoveanu DC, Roviezzo F, Jankauskas SS, Santulli G, Bucci MR, Lu TT, Di Lorenzo A. Nogo-A reduces ceramide de novo biosynthesis to protect from heart failure. Cardiovasc Res 2023; 119:506-519. [PMID: 35815623 PMCID: PMC10226746 DOI: 10.1093/cvr/cvac108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Growing evidence correlate the accrual of the sphingolipid ceramide in plasma and cardiac tissue with heart failure (HF). Regulation of sphingolipid metabolism in the heart and the pathological impact of its derangement remain poorly understood. Recently, we discovered that Nogo-B, a membrane protein of endoplasmic reticulum, abundant in the vascular wall, down-regulates the sphingolipid de novo biosynthesis via serine palmitoyltransferase (SPT), first and rate liming enzyme, to impact vascular functions and blood pressure. Nogo-A, a splice isoform of Nogo, is transiently expressed in cardiomyocyte (CM) following pressure overload. Cardiac Nogo is up-regulated in dilated and ischaemic cardiomyopathies in animals and humans. However, its biological function in the heart remains unknown. METHODS AND RESULTS We discovered that Nogo-A is a negative regulator of SPT activity and refrains ceramide de novo biosynthesis in CM exposed to haemodynamic stress, hence limiting ceramide accrual. At 7 days following transverse aortic constriction (TAC), SPT activity was significantly up-regulated in CM lacking Nogo-A and correlated with ceramide accrual, particularly very long-chain ceramides, which are the most abundant in CM, resulting in the suppression of 'beneficial' autophagy. At 3 months post-TAC, mice lacking Nogo-A in CM showed worse pathological cardiac hypertrophy and dysfunction, with ca. 50% mortality rate. CONCLUSION Mechanistically, Nogo-A refrains ceramides from accrual, therefore preserves the 'beneficial' autophagy, mitochondrial function, and metabolic gene expression, limiting the progression to HF under sustained stress.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Onorina Laura Manzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, China
| | - Alice Marino
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Maria Antonietta Riemma
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Madhavi Latha S Chalasani
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dragos C Dasoveanu
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Stanislovas S Jankauskas
- Department of Medicine (Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology) and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Maria Rosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano 49, Naples 80131, Italy
| | - Theresa T Lu
- Department of Microbiology and Immunology, Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
13
|
Berkowitz L, Salazar C, Ryff CD, Coe CL, Rigotti A. Serum sphingolipid profiling as a novel biomarker for metabolic syndrome characterization. Front Cardiovasc Med 2022; 9:1092331. [PMID: 36578837 PMCID: PMC9791223 DOI: 10.3389/fcvm.2022.1092331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Sphingolipids are components of cell membrane structure, but also circulate in serum and are essential mediators of many cellular functions. While ceramides have been proposed previously as a useful biomarker for cardiometabolic disease, the involvement of other sphingolipids is still controversial. The aim of this study was to investigate the cross-sectional association between blood sphingolipidomic profiles and metabolic syndrome (MetS) as well as other atherosclerotic risk factors in a large population-based study in the U.S. Methods Clinical data and serum sphingolipidomic profiling from 2,063 subjects who participated in the biomarker project of the Midlife in the United States (MIDUS) study were used. Results Consistent with previous reports, we found a positive association between most ceramide levels and obesity, atherogenic dyslipidemia, impaired glucose metabolism, and MetS prevalence. In contrast, most simple β-glycosphingolipids (i.e., hexosylceramides and lactosylceramides) were inversely associated with dysmetabolic biomarkers. However, this latter sphingolipid class showed a positive link with inflammatory and vascular damage-associated biomarkers in subjects with MetS. Through metabolic network analysis, we found that the relationship between ceramides and simple β-glycosphingolipids differed significantly not only according to MetS status, but also with respect to the participants' C-reactive protein levels. Conclusion Our findings suggest that a comprehensive sphingolipid profile is more informative about MetS than ceramides alone, and it may reveal new insights into the pathophysiology and further diabetic vs. cardiovascular risk in patients with MetS.
Collapse
Affiliation(s)
- Loni Berkowitz
- Center of Molecular Nutrition and Chronic Diseases, Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Loni Berkowitz
| | - Cristian Salazar
- Center of Molecular Nutrition and Chronic Diseases, Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carol D. Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Christopher L. Coe
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Attilio Rigotti
- Center of Molecular Nutrition and Chronic Diseases, Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Kurano M, Tsukamoto K, Sakai E, Yatomi Y. Differences in the Distribution of Ceramides and Sphingosine among Lipoprotein and Lipoprotein-Depleted Fractions in Patients with Type 2 Diabetes Mellitus. J Atheroscler Thromb 2022; 29:1727-1758. [PMID: 35082227 PMCID: PMC9881536 DOI: 10.5551/jat.63249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM In addition to the quantity and quality, the carriers, such as lipoproteins and albumin, can affect the physiological properties and clinical significance of lipids. This study aimed to elucidate the modulation of the levels of ceramides and sphingosine, which are considered as proatherosclerotic lipids, in lipoproteins and lipoprotein-depleted fractions in subjects with type 2 diabetes. METHODS We separated the serum samples collected from healthy subjects (n=22) and subjects with type 2 diabetes (n=39) into Triglyceride (TG)-rich lipoproteins (TRL), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and lipoprotein-depleted fractions via ultracentrifugation. Then, we measured the levels of six species of ceramides, sphingosine, and dihydrosphingosine via LC-MS/MS and statistically analyzed them to identify the sphingolipids in each fraction, which are associated with diabetes as well as cardiovascular and renal complications. RESULTS In subjects with diabetes, the levels of sphingosine and dihydrosphingosine in the TRL, LDL, and lipoprotein-depleted fractions were higher, whereas those in the HDL were lower. In addition, the ceramide levels in HDL were lower, whereas those in lipoprotein-depleted fractions were higher. Furthermore, The levels of ceramides in lipoproteins, especially LDL, were negatively associated with the presence of cardiovascular diseases and stage 4 diabetic nephropathy. CONCLUSIONS The contents of ceramides and sphingosine in lipoproteins and lipoprotein-depleted fractions were differently modulated in diabetes and associated with cardiovascular diseases and diabetic nephropathy. The carrier might be an important factor for the biological properties and clinical significance of these sphingolipids.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
15
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jȩdrzejewska A, Czarzasta K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med 2022; 9:915961. [PMID: 36119733 PMCID: PMC9471951 DOI: 10.3389/fcvm.2022.915961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are a structural component of the cell membrane, derived from sphingosine, an amino alcohol. Its sphingoid base undergoes various types of enzymatic transformations that lead to the formation of biologically active compounds, which play a crucial role in the essential pathways of cellular signaling, proliferation, maturation, and death. The constantly growing number of experimental and clinical studies emphasizes the pivotal role of sphingolipids in the pathophysiology of cardiovascular diseases, including, in particular, ischemic heart disease, hypertension, heart failure, and stroke. It has also been proven that altering the sphingolipid metabolism has cardioprotective properties in cardiac pathologies, including myocardial infarction. Recent studies suggest that selected sphingolipids may serve as valuable biomarkers useful in the prognosis of cardiovascular disorders in clinical practice. This review aims to provide an overview of the current knowledge of sphingolipid metabolism and signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Wojciech Łysik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jȩdrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Regua A, Papp C, Grageda A, Porter BA, Caza T, Bichindaritz I, Krendel M, Sivapiragasam A, Bratslavsky G, Kuznetsov VA, Kotula L. ABI1-based expression signature predicts breast cancer metastasis and survival. Mol Oncol 2022; 16:2632-2657. [PMID: 34967509 PMCID: PMC9297774 DOI: 10.1002/1878-0261.13175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022] Open
Abstract
Despite the current standard of care, breast cancer remains one of the leading causes of mortality in women worldwide, thus emphasizing the need for better predictive and therapeutic targets. ABI1 is associated with poor survival and an aggressive breast cancer phenotype, although its role in tumorigenesis, metastasis, and the disease outcome remains to be elucidated. Here, we define the ABI1-based seven-gene prognostic signature that predicts survival of metastatic breast cancer patients; ABI1 is an essential component of the signature. Genetic disruption of Abi1 in primary breast cancer tumors of PyMT mice led to significant reduction of the number and size of lung metastases in a gene dose-dependent manner. The disruption of Abi1 resulted in deregulation of the WAVE complex at the mRNA and protein levels in mouse tumors. In conclusion, ABI1 is a prognostic metastatic biomarker in breast cancer. We demonstrate, for the first time, that lung metastasis is associated with an Abi1 gene dose and specific gene expression aberrations in primary breast cancer tumors. These results indicate that targeting ABI1 may provide a therapeutic advantage in breast cancer patients.
Collapse
Affiliation(s)
- Angelina Regua
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
- Present address:
Department of Cancer BiologyWake Forest University School of MedicineWinston‐SalemNC27101USA
| | - Csaba Papp
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Andre Grageda
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Baylee A. Porter
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Tiffany Caza
- Department of PathologySUNY Upstate Medical UniversitySyracuseNYUSA
| | | | - Mira Krendel
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | | | - Gennady Bratslavsky
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Vladimir A. Kuznetsov
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| | - Leszek Kotula
- Department of UrologySUNY Upstate Medical UniversitySyracuseNYUSA
- Department of Biochemistry and Molecular BiologySUNY Upstate Medical UniversitySyracuseNYUSA
| |
Collapse
|
17
|
Kluger NJ, Legget ME. Emerging Biomarkers in Acute Coronary Syndromes - A Pathophysiologic Perspective. Heart Lung Circ 2022; 31:779-786. [PMID: 35283017 DOI: 10.1016/j.hlc.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 01/24/2023]
Abstract
Diagnosis and prognostication in acute coronary syndromes (ACS) is achieved using a combination of clinical factors and biomarkers, notably cardiac troponin and B type natriuretic peptide and its N terminal fragment NT-proBNP. However, there are numerous biomarkers that have been shown to be associated with ACS, with variable incremental utility. This brief review focusses on some promising emerging biomarkers in ACS, discussed according to pathophysiologic mechanism, as well as diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Nicola J Kluger
- Dept of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, NZ
| | - Malcolm E Legget
- Dept of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, NZ.
| |
Collapse
|
18
|
Mayrink J, Leite DF, Nobrega GM, Costa ML, Cecatti JG. Prediction of pregnancy-related hypertensive disorders using metabolomics: a systematic review. BMJ Open 2022; 12:e054697. [PMID: 35470187 PMCID: PMC9039389 DOI: 10.1136/bmjopen-2021-054697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To determine the accuracy of metabolomics in predicting hypertensive disorders in pregnancy. DESIGN Systematic review of observational studies. DATA SOURCES AND STUDY ELIGIBILITY CRITERIA An electronic literature search was performed in June 2019 and February 2022. Two researchers independently selected studies published between 1998 and 2022 on metabolomic techniques applied to predict the condition; subsequently, they extracted data and performed quality assessment. Discrepancies were dealt with a third reviewer. The primary outcome was pre-eclampsia. Cohort or case-control studies were eligible when maternal samples were taken before diagnosis of the hypertensive disorder. STUDY APPRAISAL AND SYNTHESIS METHODS Data on study design, maternal characteristics, how hypertension was diagnosed, metabolomics details and metabolites, and accuracy were independently extracted by two authors. RESULTS Among 4613 initially identified studies on metabolomics, 68 were read in full text and 32 articles were included. Studies were excluded due to duplicated data, study design or lack of identification of metabolites. Metabolomics was applied mainly in the second trimester; the most common technique was liquid-chromatography coupled to mass spectrometry. Among the 122 different metabolites found, there were 23 amino acids and 21 fatty acids. Most of the metabolites were involved with ammonia recycling; amino acid metabolism; arachidonic acid metabolism; lipid transport, metabolism and peroxidation; fatty acid metabolism; cell signalling; galactose metabolism; nucleotide sugars metabolism; lactose degradation; and glycerolipid metabolism. Only citrate was a common metabolite for prediction of early-onset and late-onset pre-eclampsia. Vitamin D was the only metabolite in common for pre-eclampsia and gestational hypertension prediction. Meta-analysis was not performed due to lack of appropriate standardised data. CONCLUSIONS AND IMPLICATIONS Metabolite signatures may contribute to further insights into the pathogenesis of pre-eclampsia and support screening tests. Nevertheless, it is mandatory to validate such methods in larger studies with a heterogeneous population to ascertain the potential for their use in clinical practice. PROSPERO REGISTRATION NUMBER CRD42018097409.
Collapse
Affiliation(s)
- Jussara Mayrink
- Department of Obstetrics and Gynecology, State University of Campinas Faculty of Medical Sciences, Campinas, Brazil
| | - Debora F Leite
- Department of Obstetrics and Gynecology, State University of Campinas Faculty of Medical Sciences, Campinas, Brazil
| | - Guilherme M Nobrega
- Department of Obstetrics and Gynecology, State University of Campinas Faculty of Medical Sciences, Campinas, Brazil
| | - Maria Laura Costa
- Department of Obstetrics and Gynecology, State University of Campinas Faculty of Medical Sciences, Campinas, Brazil
| | - Jose Guilherme Cecatti
- Department of Obstetrics and Gynecology, State University of Campinas Faculty of Medical Sciences, Campinas, Brazil
| |
Collapse
|
19
|
Junqueira DLM, Stach A, Caixeta A, Sallum J, Yasaki E, Tsutsui J, Rizatti E, Rochitte CE, Ching-Jianhong, Kovalik JP, Krieger JE, Richards AM, Chan MY, Carvalho LPD. Ceramidas Plasmáticas na Estratificação de Risco das Doenças Cardiovasculares. Arq Bras Cardiol 2022; 118:768-777. [PMID: 35508055 PMCID: PMC9007014 DOI: 10.36660/abc.20201165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
A produção de ceramida ocorre em todo o corpo e desempenha um papel importante na manutenção da fisiologia normal. No entanto, os níveis de ceramidas são alterados em estados de doença, principalmente durante o desenvolvimento de diabetes e dislipidemia. A produção de ceramidas também está associada à instabilidade das placas ateroscleróticas. Estudos recentes revelam que pacientes com doença arterial coronariana instável apresentam níveis plasmáticos aumentados de ceramidas (principalmente C16, C18 e C24:1). Atualmente, são consideradas biomarcadores emergentes nas doenças cardiovasculares, sendo utilizadas na predição de instabilidade da placa aterosclerótica e eventos cardiovasculares adversos de forma independente aos fatores de risco tradicionais. Com o objetivo de descrever e discutir o papel das ceramidas na estratificação das doenças cardiovasculares, o desenvolvimento desta revisão narrativa contextualiza a importância desse biomarcador no cenário atual da cardiologia.
Collapse
|
20
|
Akhiyat N, Vasile V, Ahmad A, Sara JD, Nardi V, Lerman LO, Jaffe A, Lerman A. Plasma Ceramide Levels Are Elevated in Patients With Early Coronary Atherosclerosis and Endothelial Dysfunction. J Am Heart Assoc 2022; 11:e022852. [PMID: 35301857 PMCID: PMC9075496 DOI: 10.1161/jaha.121.022852] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Elevated plasma ceramides are independent predictors of cardiovascular disease and mortality in patients with advanced epicardial coronary artery disease. Our understanding of plasma ceramides in early epicardial coronary artery disease, however, remains limited. We examined the role of plasma ceramides in early coronary atherosclerosis characterized by coronary endothelial dysfunction. Methods and Results Participants presenting with chest pain and nonobstructive epicardial coronary artery disease underwent coronary endothelial function. Patients (n=90) demonstrated abnormal coronary endothelial function with acetylcholine (≥20% decrease in coronary artery diameter or ≤50% increase in coronary blood flow). A total of 30 controls had normal coronary endothelial function. Concentrations of plasma ceramide 18:0 (P=0.038), 16:0 (P=0.021), and 24:0 (P=0.019) differed between participants with normal and abnormal coronary endothelial function. Ceramide 24:0 (odds ratio [OR], 2.23 [95% CI, 1.07–4.66]; P=0.033) and 16:0 (OR, 1.91×106 [95% CI, 11.93–3.07×1011]; P=0.018) were independently associated with coronary endothelial dysfunction. Among participants with endothelium‐dependent coronary dysfunction (n=78), ceramides 16:0 (OR, 5.17×105 [95% CI, 2.83–9.44×1010]; P=0.033), 24:0 (OR, 2.98 [95% CI, 1.27–7.00]; P=0.012), and 24:1/24:0 (OR, 4.39×10−4 [95% CI, 4×10−7–0.48]; P=0.030) were more likely to be elevated. Conclusions The current study demonstrated an association between increased circulating ceramide levels and coronary endothelial dysfunction in the absence of epicardial coronary artery disease. This study supports the role of plasma ceramides as a potential biomarker or a therapeutic target for early coronary atherosclerosis in humans.
Collapse
Affiliation(s)
- Nadia Akhiyat
- Division of Internal Medicine Department of Medicine Mayo Clinic Rochester MN
| | - Vlad Vasile
- Division of Cardiovascular Disease Department of Medicine Mayo Clinic Rochester MN
| | - Ali Ahmad
- Division of Cardiovascular Disease Department of Medicine Mayo Clinic Rochester MN
| | - Jaskanwal Deep Sara
- Division of Cardiovascular Disease Department of Medicine Mayo Clinic Rochester MN
| | - Valentina Nardi
- Division of Cardiovascular Disease Department of Medicine Mayo Clinic Rochester MN
| | - Lilach O Lerman
- Division of Nephrology and Hypertension Department of Medicine Mayo Clinic Rochester MN
| | - Allan Jaffe
- Division of Cardiovascular Disease Department of Medicine Mayo Clinic Rochester MN
| | - Amir Lerman
- Division of Cardiovascular Disease Department of Medicine Mayo Clinic Rochester MN
| |
Collapse
|
21
|
Yang H, Yang F, Luo M, Chen Q, Liu X, Zhang Y, Zhu G, Chen W, Li T, Shu C, Zhou Z. Metabolomic Profile Reveals That Ceramide Metabolic Disturbance Plays an Important Role in Thoracic Aortic Dissection. Front Cardiovasc Med 2022; 9:826861. [PMID: 35211530 PMCID: PMC8861291 DOI: 10.3389/fcvm.2022.826861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Aims Thoracic aortic dissection (TAD) is a life-threatening disease with no effective drug therapy thus far. New therapeutic targets and indications for timely surgical intervention are urgently needed. Our aim is to investigate new pathological mechanisms and potential biomarkers of TAD through global metabolomic profiling of aortic aneurysm and dissection patients. Methods and Results We performed untargeted metabolomics to determine plasma metabolite concentrations in an aortic disease cohort, including 70 thoracic aortic aneurysm (TAA) and 70 TAD patients, as well as 70 healthy controls. Comparative analysis revealed that sphingolipid, especially its core metabolite C18-ceramide, was significantly distinguished in TAD patients but not in TAA patients, which was confirmed by subsequent quantitative analysis of C18-ceramide in a validation cohort. By analyzing our existing multiomics data in aortic tissue in a murine TAD model and TAD patients, we found that an enhanced ceramide de novo synthesis pathway in macrophages might contribute to the elevated ceramide. Inhibition of the ceramide de novo synthesis pathway by myriocin markedly alleviated BAPN-induced aortic inflammation and dissection in mice. In vitro studies demonstrated that exogenous C18-ceramide promoted macrophage inflammation and matrix metalloprotein (MMP) expression through the NLRP3-caspase 1 pathway. In contrast, inhibition of endogenous ceramide synthesis by myriocin attenuated lipopolysaccharide (LPS)-induced macrophage inflammation. Conclusions Our findings demonstrated that ceramide metabolism disturbance might play a vital role in TAD development by aggravating aortic inflammation through the NLRP3 pathway, possibly providing a new target for pharmacological therapy and a potential biomarker of TAD.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Sasset L, Di Lorenzo A. Sphingolipid Metabolism and Signaling in Endothelial Cell Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:87-117. [PMID: 35503177 DOI: 10.1007/978-981-19-0394-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endothelium, inner layer of blood vessels, constitutes a metabolically active paracrine, endocrine, and autocrine organ, able to sense the neighboring environment and exert a variety of biological functions important to preserve the health of vasculature, tissues, and organs. Sphingolipids are both fundamental structural components of the eukaryotic membranes and signaling molecules regulating a variety of biological functions. Ceramide and sphingosine-1-phosphate (S1P), bioactive sphingolipids, have emerged as important regulators of cardiovascular functions in health and disease. In this review we discuss recent insights into the role of ceramide and S1P biosynthesis and signaling in regulating endothelial cell functions, in health and diseases. We also highlight advances into the mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo sphingolipid biosynthesis, with an emphasis on its inhibitors, ORMDL and NOGO-B. Understanding the molecular mechanisms regulating the sphingolipid de novo biosynthesis may provide the foundation for therapeutic modulation of this pathway in a variety of conditions, including cardiovascular diseases, associated with derangement of this pathway.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Huang Q, Hao S, You J, Yao X, Li Z, Schilling J, Thyparambil S, Liao WL, Zhou X, Mo L, Ladella S, Davies-Balch SR, Zhao H, Fan D, Whitin JC, Cohen HJ, McElhinney DB, Wong RJ, Shaw GM, Stevenson DK, Sylvester KG, Ling XB. Early-pregnancy prediction of risk for pre-eclampsia using maternal blood leptin/ceramide ratio: discovery and confirmation. BMJ Open 2021; 11:e050963. [PMID: 34824115 PMCID: PMC8627403 DOI: 10.1136/bmjopen-2021-050963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This study aimed to develop a blood test for the prediction of pre-eclampsia (PE) early in gestation. We hypothesised that the longitudinal measurements of circulating adipokines and sphingolipids in maternal serum over the course of pregnancy could identify novel prognostic biomarkers that are predictive of impending event of PE early in gestation. STUDY DESIGN Retrospective discovery and longitudinal confirmation. SETTING Maternity units from two US hospitals. PARTICIPANTS Six previously published studies of placental tissue (78 PE and 95 non-PE) were compiled for genomic discovery, maternal sera from 15 women (7 non-PE and 8 PE) enrolled at ProMedDx were used for sphingolipidomic discovery, and maternal sera from 40 women (20 non-PE and 20 PE) enrolled at Stanford University were used for longitudinal observation. OUTCOME MEASURES Biomarker candidates from discovery were longitudinally confirmed and compared in parallel to the ratio of placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) using the same cohort. The datasets were generated by enzyme-linked immunosorbent and liquid chromatography-tandem mass spectrometric assays. RESULTS Our discovery integrating genomic and sphingolipidomic analysis identified leptin (Lep) and ceramide (Cer) (d18:1/25:0) as novel biomarkers for early gestational assessment of PE. Our longitudinal observation revealed a marked elevation of Lep/Cer (d18:1/25:0) ratio in maternal serum at a median of 23 weeks' gestation among women with impending PE as compared with women with uncomplicated pregnancy. The Lep/Cer (d18:1/25:0) ratio significantly outperformed the established sFlt-1/PlGF ratio in predicting impending event of PE with superior sensitivity (85% vs 20%) and area under curve (0.92 vs 0.52) from 5 to 25 weeks of gestation. CONCLUSIONS Our study demonstrated the longitudinal measurement of maternal Lep/Cer (d18:1/25:0) ratio allows the non-invasive assessment of PE to identify pregnancy at high risk in early gestation, outperforming the established sFlt-1/PlGF ratio test.
Collapse
Affiliation(s)
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Jin You
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Zhen Li
- Department of Surgery, Stanford University, Stanford, California, USA
- Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
- School of Electrical Engineering, Southeast University, Nanjing, China
| | | | | | | | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China
| | - Lihong Mo
- Department of Obstetrics and Gynecology, University of California San Francisco, Fresno, California, USA
| | - Subhashini Ladella
- Department of Obstetrics and Gynecology, University of California San Francisco, Fresno, California, USA
| | | | - Hangyi Zhao
- Department of Mathematics, Stanford University, Stanford, California, USA
| | - David Fan
- Department of Statistics and Applied Probability, University of California Santa Barbara, Santa Barbara, California, USA
| | - John C Whitin
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Harvey J Cohen
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Doff B McElhinney
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - David K Stevenson
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Xuefeng B Ling
- Department of Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin Alleviates Doxorubicin-Induced Heart Failure and Excessive Accumulation of Ceramides. Front Cardiovasc Med 2021; 8:732554. [PMID: 34869633 PMCID: PMC8639694 DOI: 10.3389/fcvm.2021.732554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin-driven cardiotoxicity could result in dilated cardiomyopathy and heart failure (HF). Previously, we showed that periplocymarin exerted a cardiotonic role by promoting calcium influx and attenuating myocardial fibrosis induced by isoproterenol (ISO) by improving the metabolism of cardiomyocytes. However, the impact of periplocymarin on doxorubicin (DOX)-triggered cardiomyopathy has not been investigated. In the current study, C57BL/6 mice were randomly divided into three groups, namely, the control, DOX, and DOX+periplocymarin groups. The cardiac function and apoptosis were measured. Our results revealed that periplocymarin administration greatly improved the DOX-induced cardiac dysfunction manifested by the ejection fraction (EF%), fractional shortening (FS%), left ventricular posterior wall thickness (LVPW), left ventricular anterior wall thickness (LVAW), left ventricular (LV) mass, and attenuated DOX-induced cardiomyocyte apoptosis assessed by hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blotting. Further study using H9c2 cells revealed that the pretreatment of periplocymarin suppressed DOX-induced apoptosis evidenced by annexin V staining. Moreover, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that DOX lead to an accumulation in serum ceramide, and the pre-treatment of periplocymarin could reverse this phenomenon. Network pharmacology also demonstrated that ceramide metabolism was involved in the process. Consistently, real-time PCR showed that periplocymarin significantly abolished the induction of the genes involved in the de novo synthesis of ceramide, i.e., CerS2, CerS4, CerS5, and CerS6, and the induction was attributed to the treatment of DOX. Collectively, these results suggested that periplocymarin reduced cardiomyocyte apoptosis to protect hearts from DOX-induced cardiotoxicity and the de novo synthesis of ceramides was involved in this process.
Collapse
Affiliation(s)
| | | | | | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Surendran A, Atefi N, Zhang H, Aliani M, Ravandi A. Defining Acute Coronary Syndrome through Metabolomics. Metabolites 2021; 11:685. [PMID: 34677400 PMCID: PMC8540033 DOI: 10.3390/metabo11100685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
As an emerging platform technology, metabolomics offers new insights into the pathomechanisms associated with complex disease conditions, including cardiovascular diseases. It also facilitates assessing the risk of developing the disease before its clinical manifestation. For this reason, metabolomics is of growing interest for understanding the pathogenesis of acute coronary syndromes (ACS), finding new biomarkers of ACS, and its associated risk management. Metabolomics-based studies in ACS have already demonstrated immense potential for biomarker discovery and mechanistic insights by identifying metabolomic signatures (e.g., branched-chain amino acids, acylcarnitines, lysophosphatidylcholines) associated with disease progression. Herein, we discuss the various metabolomics approaches and the challenges involved in metabolic profiling, focusing on ACS. Special attention has been paid to the clinical studies of metabolomics and lipidomics in ACS, with an emphasis on ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Arun Surendran
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Negar Atefi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
| | - Hannah Zhang
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
| | - Michel Aliani
- Faculty of Agricultural and Food Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
26
|
Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. BIOLOGY 2021; 10:biology10100964. [PMID: 34681063 PMCID: PMC8533611 DOI: 10.3390/biology10100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023]
Abstract
Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls' Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis.
Collapse
|
27
|
Wang S, Li J, Chen A, Song H. Differentiated expression of long non-coding RNA-small nucleolar RNA host gene 8 in atherosclerosis and its molecular mechanism. Bioengineered 2021; 12:7167-7176. [PMID: 34558393 PMCID: PMC8806704 DOI: 10.1080/21655979.2021.1979441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular diseases, and the incidence is increasing year by year. Many studies have shown that long non-coding RNA plays a vital role in the pathogenesis of AS. This study aimed to explore the role and mechanism of lncRNA-small nucleolar RNA host gene 8 (SNHG8) in AS. The expressions of serum lncSNHG8 and miR-224-3p were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic meaning of lncSNHG8 in AS was estimated by Receiver operating characteristic (ROC) curve. The correlation between lncSNHG8 and various clinical indicators, as well as miR-244-3p was evaluated by Pearson correlation coefficient analysis. Cell proliferation and migration were estimated by cell counting kit-8 (CCK-8) and Transwell assay. The interaction between lncSNHG8 and miR-224-3p was proved by luciferase reporter gene assay. The expression level of lncSNHG8 was increased in AS patients, while miR-224-3p expression was decreased. The ROC curve indicated that lncSNHG8 with high serum expression had the ability to distinguish AS. Pearson correlation coefficient exhibited that the level of miR-224-3p was negatively correlated with the level of lncSNHG8. The results of cell experiments indicated that inhibition of the expression of lncSNHG8 significantly inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs). Luciferase reporter gene experiments confirmed that there was a target relationship between lncSNHG8 and miR-224-3p. In conclusion, lncSNHG8 had high diagnostic value for AS. It promoted the proliferation and migration of VSMCs by adsorption and inhibition of miR-224-3p.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Emergency Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - Jianchao Li
- Department of Emergency Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - Aimei Chen
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - He Song
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong China
| |
Collapse
|
28
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
29
|
Mohd Faizal AS, Thevarajah TM, Khor SM, Chang SW. A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106190. [PMID: 34077865 DOI: 10.1016/j.cmpb.2021.106190] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
Collapse
Affiliation(s)
- Aizatul Shafiqah Mohd Faizal
- Bioinformatics Programme, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - T Malathi Thevarajah
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
30
|
Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model. Int J Mol Sci 2021; 22:ijms22147680. [PMID: 34299301 PMCID: PMC8305829 DOI: 10.3390/ijms22147680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin can reduce cardiovascular risk independent of glycemic control. The mechanisms behind its non-glycemic benefits, which include decreased energy intake, lower blood pressure and improved lipid and fatty acid metabolism, are not fully understood. In our study, metformin treatment reduced myocardial accumulation of neutral lipids—triglycerides, cholesteryl esters and the lipotoxic intermediates—diacylglycerols and lysophosphatidylcholines in a prediabetic rat model (p < 0.001). We observed an association between decreased gene expression and SCD-1 activity (p < 0.05). In addition, metformin markedly improved phospholipid fatty acid composition in the myocardium, represented by decreased SFA profiles and increased n3-PUFA profiles. Known for its cardioprotective and anti-inflammatory properties, metformin also had positive effects on arachidonic acid metabolism and CYP-derived arachidonic acid metabolites. We also found an association between increased gene expression of the cardiac isoform CYP2c with increased 14,15-EET (p < 0.05) and markedly reduced 20-HETE (p < 0.001) in the myocardium. Based on these results, we conclude that metformin treatment reduces the lipogenic enzyme SCD-1 and the accumulation of the lipotoxic intermediates diacylglycerols and lysophosphatidylcholine. Increased CYP2c gene expression and beneficial effects on CYP-derived arachidonic acid metabolites in the myocardium can also be involved in cardioprotective effect of metformin.
Collapse
|
31
|
Del Gaudio I, Rubinelli L, Sasset L, Wadsack C, Hla T, Di Lorenzo A. Endothelial Spns2 and ApoM Regulation of Vascular Tone and Hypertension Via Sphingosine-1-Phosphate. J Am Heart Assoc 2021; 10:e021261. [PMID: 34240614 PMCID: PMC8483458 DOI: 10.1161/jaha.121.021261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Most of the circulating sphingosine-1-phosphate (S1P) is bound to ApoM (apolipoprotein M) of high-density lipoprotein (HDL) and mediates many beneficial effects of HDL on the vasculature via G protein-coupled S1P receptors. HDL-bound S1P is decreased in atherosclerosis, myocardial infarction, and diabetes mellitus. In addition to being the target, the endothelium is a source of S1P, which is transported outside of the cells by Spinster-2, contributing to circulating S1P as well as to local signaling. Mice lacking endothelial S1P receptor 1 are hypertensive, suggesting a vasculoprotective role of S1P signaling. This study investigates the role of endothelial-derived S1P and ApoM-bound S1P in regulating vascular tone and blood pressure. Methods and Results ApoM knockout (ApoM KO) mice and mice lacking endothelial Spinster-2 (ECKO-Spns2) were infused with angiotensin II for 28 days. Blood pressure, measured by telemetry and tail-cuff, was significantly increased in both ECKO-Spns2 and ApoM KO versus control mice, at baseline and following angiotensin II. Notably, ECKO-Spns2 presented an impaired vasodilation to flow and blood pressure dipping, which is clinically associated with increased risk for cardiovascular events. In hypertension, both groups presented reduced flow-mediated vasodilation and some degree of impairment in endothelial NO production, which was more evident in ECKO-Spns2. Increased hypertension in ECKO-Spns2 and ApoM KO mice correlated with worsened cardiac hypertrophy versus controls. Conclusions Our study identifies an important role for Spinster-2 and ApoM-HDL in blood pressure homeostasis via S1P-NO signaling and dissects the pathophysiological impact of endothelial-derived S1P and ApoM of HDL-bound S1P in hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY.,Department of Obstetrics and Gynecology Medical University of Graz Austria
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| | - Christian Wadsack
- Department of Obstetrics and Gynecology Medical University of Graz Austria
| | - Timothy Hla
- Vascular Biology Program Boston Children's Hospital and Department of Surgery Harvard Medical School Boston MA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine Cardiovascular Research InstituteFeil Family Brain & Mind Research InstituteWeill Cornell Medicine New York NY
| |
Collapse
|
32
|
Le Barz M, Vors C, Combe E, Joumard-Cubizolles L, Lecomte M, Joffre F, Trauchessec M, Pesenti S, Loizon E, Breyton AE, Meugnier E, Bertrand K, Drai J, Robert C, Durand A, Cuerq C, Gaborit P, Leconte N, Bernalier-Donadille A, Cotte E, Laville M, Lambert-Porcheron S, Ouchchane L, Vidal H, Malpuech-Brugère C, Cheillan D, Michalski MC. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight 2021; 6:146161. [PMID: 33857018 PMCID: PMC8262315 DOI: 10.1172/jci.insight.146161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND High circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown. METHODS In a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake. RESULTS Milk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut. CONCLUSION Milk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL. TRIAL REGISTRATION ClinicalTrials.gov, NCT02099032, NCT02146339. FUNDING ANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Cécile Vors
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Florent Joffre
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Michèle Trauchessec
- Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Sandra Pesenti
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Anne-Esther Breyton
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Karène Bertrand
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Chloé Robert
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Annie Durand
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Charlotte Cuerq
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, Avenue François Mitterrand, BP49, 17700, Surgères, France.,ENILIA ENSMIC, Avenue François Mitterrand, 17700, Surgères, France
| | - Nadine Leconte
- INRAE, Institut Agro, STLO (Science et Technologie du Lait et de l'Œuf), 35042, Rennes, France
| | | | - Eddy Cotte
- Hospices Civils de Lyon, 69000, Lyon, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de chirurgie digestive, 69310, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Martine Laville
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Stéphanie Lambert-Porcheron
- TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Hubert Vidal
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - David Cheillan
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| |
Collapse
|
33
|
Öörni K, Kovanen PT. Aggregation Susceptibility of Low-Density Lipoproteins-A Novel Modifiable Biomarker of Cardiovascular Risk. J Clin Med 2021; 10:1769. [PMID: 33921661 PMCID: PMC8074066 DOI: 10.3390/jcm10081769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Circulating low-density lipoprotein (LDL) particles enter the arterial intima where they bind to the extracellular matrix and become modified by lipases, proteases, and oxidizing enzymes and agents. The modified LDL particles aggregate and fuse into larger matrix-bound lipid droplets and, upon generation of unesterified cholesterol, cholesterol crystals are also formed. Uptake of the aggregated/fused particles and cholesterol crystals by macrophages and smooth muscle cells induces their inflammatory activation and conversion into foam cells. In this review, we summarize the causes and consequences of LDL aggregation and describe the development and applications of an assay capable of determining the susceptibility of isolated LDL particles to aggregate when exposed to human recombinant sphingomyelinase enzyme ex vivo. Significant person-to-person differences in the aggregation susceptibility of LDL particles were observed, and such individual differences largely depended on particle lipid composition. The presence of aggregation-prone LDL in the circulation predicted future cardiovascular events in patients with atherosclerotic cardiovascular disease. We also discuss means capable of reducing LDL particles' aggregation susceptibility that could potentially inhibit LDL aggregation in the arterial wall. Whether reductions in LDL aggregation susceptibility are associated with attenuated atherogenesis and a reduced risk of atherosclerotic cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Katariina Öörni
- Wihuri Research Institute, 00290 Helsinki, Finland;
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | |
Collapse
|
34
|
Azizov S, Sharipov M, Lim JM, Tawfik SM, Kattaev N, Lee YI. Solvent-resistant microfluidic paper-based analytical device/spray mass spectrometry for quantitative analysis of C 18 -ceramide biomarker. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4611. [PMID: 32789982 DOI: 10.1002/jms.4611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
We developed a highly efficient and low-cost organic solvents-resistant microfluidic paper-based analytical device (μPAD) coupled with paper spray mass spectrometry (PS-MS) for quantitative determination of C18 -ceramide as a prognostic biomarker for several diseases. Several models of μPAD patterns have been examined to select the most resistant and efficient microchannel barriers, which can provide continuous spray at ionization zone and prevent "coffee ring" effect. Moreover, the developed μPAD has enabled the analysis of low concentration of C18 -ceramide because of the maximum supply of deposited analyte through microchannel. The MS results confirmed the formation of doubly and singly charged metal ion complexes between ceramide and different metal ions. Notably, the complexation that occurs between lithium ions and C18 -ceramide showed a high relative abundance compared with other formed complexes. Taking into account the relative abundance of complex [Cer + Li]+ at 572.8 m/z, it can be considered as a stable ion and therefore be used for the analysis of C18 -ceramide at low concentrations. Complexation of C18 -ceramide and lithium confirmed with quantum chemical calculations. The proposed method represents good linearity with a regression coefficient of 0.9956 for the analysis of C18 -ceramide and reaches a limit of detection to 0.84 nM. It has been adapted successfully for practical application in human serum samples with high recovery values in range of 92%-105%. The developed μPAD-MS technique provides clear advantages by reducing the experimental steps and simplifying the operation process and enables to identify subnanomolar concentration of C18 -ceramide in human serum samples.
Collapse
Affiliation(s)
- Shavkatjon Azizov
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Jae-Min Lim
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Salah M Tawfik
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Nuritdin Kattaev
- Department of Chemistry, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| |
Collapse
|
35
|
Koh AS, Kovalik JP. Metabolomics and cardiovascular imaging: a combined approach for cardiovascular ageing. ESC Heart Fail 2021; 8:1738-1750. [PMID: 33783981 PMCID: PMC8120371 DOI: 10.1002/ehf2.13274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/14/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this review is to explore how metabolomics can help uncover new biomarkers and mechanisms for cardiovascular ageing. Cardiovascular ageing refers to cardiovascular structural and functional alterations that occur with chronological ageing and that can lead to the development of cardiovascular disease. These alterations, which were previously only detectable on tissue histology or corroborated on blood samples, are now detectable with modern imaging techniques. Despite the emergence of powerful new imaging tools, clinical investigation into cardiovascular ageing is challenging because ageing is a life course phenomenon involving known and unknown risk factors that play out in a dynamic fashion. Metabolomic profiling measures large numbers of metabolites with diverse chemical properties. Metabolomics has the potential to capture changes in biochemistry brought about by pathophysiologic processes as well as by normal ageing. When combined with non-invasive cardiovascular imaging tools, metabolomics can be used to understand pathological consequences of cardiovascular ageing. This review will summarize previous metabolomics and imaging studies in cardiovascular ageing. These methods may be a clinically relevant and novel approach to identify mechanisms of cardiovascular ageing and formulate or personalize treatment strategies.
Collapse
Affiliation(s)
- Angela S Koh
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore.,Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
36
|
Hua T, Bao Q, He X, Cai W, He J. Lipidomics Revealed Alteration of Sphingolipid Metabolism During the Reparative Phase After Myocardial Infarction Injury. Front Physiol 2021; 12:663480. [PMID: 33776806 PMCID: PMC7994894 DOI: 10.3389/fphys.2021.663480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 01/10/2023] Open
Abstract
Aberrant sphingolipid metabolism contributes to cardiac pathophysiology. Emerging evidence found that an increased level of ceramide during the inflammatory phase of post-myocardial infarction (MI) served as a biomarker and was associated with cardiac dysfunction. However, the alternation of the sphingolipid profile during the reparative phase after MI is still not fully understood. Using a mouse model of the left anterior descending ligation that leads to MI, we performed metabolomics studies to assess the alternations of both plasma and myocardial sphingolipid profiles during the reparative phase post-MI. A total number of 193 sphingolipid metabolites were detected. Myocardial sphingolipids but not plasma sphingolipids showed marked change after MI injury. Ceramide-1-phosphates, which were accumulated after MI, contributed highly to the difference in sphingolipid profiles between groups. Consistently, the expression of ceramide kinase, which phosphorylates ceramides to generate ceramide-1-phosphates, was upregulated in heart tissue after MI injury. Our findings revealed the altering sphingolipid metabolism during the reparative phase post-MI and highlighted the potential role of ceramide kinase/ceramide-1-phosphate in ischemic heart disease.
Collapse
Affiliation(s)
- Tong Hua
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenbin Cai
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Tabassum R, Ripatti S. Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases. Cell Mol Life Sci 2021; 78:2565-2584. [PMID: 33449144 PMCID: PMC8004487 DOI: 10.1007/s00018-020-03715-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide leading to 31% of all global deaths. Early prediction and prevention could greatly reduce the enormous socio-economic burden posed by CVDs. Plasma lipids have been at the center stage of the prediction and prevention strategies for CVDs that have mostly relied on traditional lipids (total cholesterol, total triglycerides, HDL-C and LDL-C). The tremendous advancement in the field of lipidomics in last two decades has facilitated the research efforts to unravel the metabolic dysregulation in CVDs and their genetic determinants, enabling the understanding of pathophysiological mechanisms and identification of predictive biomarkers, beyond traditional lipids. This review presents an overview of the application of lipidomics in epidemiological and genetic studies and their contributions to the current understanding of the field. We review findings of these studies and discuss examples that demonstrates the potential of lipidomics in revealing new biology not captured by traditional lipids and lipoprotein measurements. The promising findings from these studies have raised new opportunities in the fields of personalized and predictive medicine for CVDs. The review further discusses prospects of integrating emerging genomics tools with the high-dimensional lipidome to move forward from the statistical associations towards biological understanding, therapeutic target development and risk prediction. We believe that integrating genomics with lipidome holds a great potential but further advancements in statistical and computational tools are needed to handle the high-dimensional and correlated lipidome.
Collapse
Affiliation(s)
- Rubina Tabassum
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, PO Box 20, 00014, Helsinki, Finland.
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, PO Box 20, 00014, Helsinki, Finland.
- Department of Public Health, Clinicum, University of Helsinki, Helsinki, Finland.
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
38
|
Busik JV. Lipid metabolism dysregulation in diabetic retinopathy. J Lipid Res 2021; 62:100017. [PMID: 33581416 PMCID: PMC7892987 DOI: 10.1194/jlr.tr120000981] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolic abnormalities have emerged as potential risk factors for the development and progression of diabetic complications, including diabetic retinopathy (DR). This review article provides an overview of the results of clinical trials evaluating the potential benefits of lipid-lowering drugs, such as fibrates, omega-3 fatty acids, and statins, for the prevention and treatment of DR. Although several clinical trials demonstrated that treatment with fibrates leads to improvement of DR, there is a dissociation between the protective effects of fibrates in the retina, and the intended blood lipid classes, including plasma triglycerides, total cholesterol, or HDL:LDL cholesterol ratio. Guided by these findings, plasma lipid and lipoprotein-independent mechanisms are addressed based on clinical, cell culture, and animal model studies. Potential retinal-specific effects of fatty acid oxidation products, cholesterol, and ceramide, as well as lipid-independent effects of PPAR alpha activation, are summarized based on the current literature. Overall, this review highlights promising potential of lipid-based treatment strategies further enhanced by the new knowledge of intraretinal lipids and lipoproteins in DR.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Mah M, Febbraio M, Turpin-Nolan S. Circulating Ceramides- Are Origins Important for Sphingolipid Biomarkers and Treatments? Front Endocrinol (Lausanne) 2021; 12:684448. [PMID: 34385976 PMCID: PMC8353232 DOI: 10.3389/fendo.2021.684448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 01/13/2023] Open
Abstract
Biomarkers are important tools for describing the adequacy or inadequacy of biological processes (to allow for the early and accurate diagnosis) and monitoring the biological effects of intervention strategies (to identify and develop optimal dose and treatment strategies). A number of lipid biomarkers are implicated in metabolic disease and the circulating levels of these biomarkers are used in clinical settings to predict and monitor disease severity. There is convincing evidence that specific circulating ceramide species can be used as biological predictors and markers of cardiovascular disease, atherosclerosis and type 2 diabetes mellitus. Here, we review the existing literature that investigated sphingolipids as biomarkers for metabolic disease prediction. What are the advantages and disadvantages? Are circulating ceramides predominantly produced in the liver? Will hepatic sphingolipid inhibitors be able to completely prevent and treat metabolic disease? As sphingolipids are being employed as biomarkers and potential metabolic disease treatments, we explore what is currently known and what still needs to be discovered.
Collapse
|
40
|
Targher G, Lunardi G, Mantovani A, Meessen J, Bonapace S, Temporelli PL, Nicolis E, Novelli D, Conti A, Tavazzi L, Maggioni AP, Latini R. Relation between plasma ceramides and cardiovascular death in chronic heart failure: A subset analysis of the GISSI-HF trial. ESC Heart Fail 2020; 7:3288-3297. [PMID: 32627354 PMCID: PMC7754905 DOI: 10.1002/ehf2.12885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Ceramides exert several biological activities that may contribute to the pathophysiology of cardiovascular disease and heart failure (HF). The association between plasma levels of distinct ceramides (that have been previously associated with increased cardiovascular risk) and cardiovascular mortality in patients with chronic HF has received little attention. METHODS AND RESULTS In a post hoc ancillary analysis of the Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure (GISSI-HF; NCT00336336) trial, we randomly selected a sample of 200 ambulatory patients with chronic HF who died due to cardiovascular causes and 200 patients who were alive at the end of the trial (after a median follow-up period of 3.9 years). We measured baseline plasma concentrations of six previously identified high-risk ceramide species [Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0), Cer(d18:1/22:0), Cer(d18:1/24:0), and Cer(d18:1/24:1) and their individual plasma ratios with Cer(d18:1/24:0)]. Patients who died due to cardiovascular causes had significantly (P < 0.05 or less) higher levels of plasma Cer(d18:1/16:0) and Cer(d18:1/24:1), but lower levels of plasma Cer(d18:1/22:0) and Cer(d18:1/24:0) than had those who did not. All plasma ratios of each ceramide with Cer(d18:1/24:0) were significantly higher in patients who died due to cardiovascular causes. In Cox regression analyses, all five plasma ratios of each ceramide with Cer(d18:1/24:0) were significantly associated with a greater risk of cardiovascular mortality (with unadjusted hazard ratios ranging from 1.23 to 1.59; P < 0.001 or less). These significant associations were attenuated after adjustment for multiple established risk factors, New York Heart Association functional class, left ventricular ejection fraction, use of medications, plasma pentraxin-3 levels, and, especially, plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. When we applied a Bonferroni correction for multiple comparisons (using a P-threshold 0.05/5 ceramide ratios = 0.01), none of the five plasma ratios of each ceramide with Cer(d18:1/24:0) remained statistically associated with the risk of cardiovascular mortality (with adjusted hazard ratios ranging from 1.10 to 1.23). CONCLUSIONS Higher levels of specific plasma ceramides [especially when used in ratios with Cer(d18:1/24:0)] are associated with increased cardiovascular mortality in ambulatory patients with chronic HF. However, these associations are weakened after adjustment for established cardiovascular risk factors, medication use, and plasma NT-proBNP concentrations.
Collapse
Affiliation(s)
- Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaPiazzale Stefani, 1Verona37126Italy
| | - Gianluigi Lunardi
- Medical Analysis Laboratory‘IRCCS Sacro Cuore—Don Calabria’ HospitalNegrarItaly
| | - Alessandro Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of MedicineUniversity and Azienda Ospedaliera Universitaria Integrata of VeronaPiazzale Stefani, 1Verona37126Italy
| | - Jennifer Meessen
- Department of Cardiovascular MedicineIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Stefano Bonapace
- Division of Cardiology‘IRCCS Sacro Cuore—Don Calabria’ HospitalNegrarItaly
| | | | - Enrico Nicolis
- Department of Cardiovascular MedicineIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Deborah Novelli
- Department of Cardiovascular MedicineIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Antonio Conti
- Medical Analysis Laboratory‘IRCCS Sacro Cuore—Don Calabria’ HospitalNegrarItaly
| | - Luigi Tavazzi
- Maria Cecilia Hospital, GVM Care & ResearchCotignolaItaly
| | | | - Roberto Latini
- Department of Cardiovascular MedicineIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
41
|
Sorokin V, Vickneson K, Kofidis T, Woo CC, Lin XY, Foo R, Shanahan CM. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Front Immunol 2020; 11:599415. [PMID: 33324416 PMCID: PMC7726011 DOI: 10.3389/fimmu.2020.599415] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
The pathobiology of atherosclerotic disease requires further elucidation to discover new approaches to address its high morbidity and mortality. To date, over 17 million cardiovascular-related deaths have been reported annually, despite a multitude of surgical and nonsurgical interventions and advances in medical therapy. Existing strategies to prevent disease progression mainly focus on management of risk factors, such as hypercholesterolemia. Even with optimum current medical therapy, recurrent cardiovascular events are not uncommon in patients with atherosclerosis, and their incidence can reach 10–15% per year. Although treatments targeting inflammation are under investigation and continue to evolve, clinical breakthroughs are possible only if we deepen our understanding of vessel wall pathobiology. Vascular smooth muscle cells (VSMCs) are one of the most abundant cells in vessel walls and have emerged as key players in disease progression. New technologies, including in situ hybridization proximity ligation assays, in vivo cell fate tracing with the CreERT2-loxP system and single-cell sequencing technology with spatial resolution, broaden our understanding of the complex biology of these intriguing cells. Our knowledge of contractile and synthetic VSMC phenotype switching has expanded to include macrophage-like and even osteoblast-like VSMC phenotypes. An increasing body of data suggests that VSMCs have remarkable plasticity and play a key role in cell-to-cell crosstalk with endothelial cells and immune cells during the complex process of inflammation. These are cells that sense, interact with and influence the behavior of other cellular components of the vessel wall. It is now more obvious that VSMC plasticity and the ability to perform nonprofessional phagocytic functions are key phenomena maintaining the inflammatory state and senescent condition and actively interacting with different immune competent cells.
Collapse
Affiliation(s)
- Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Keeran Vickneson
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao Yun Lin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, ASTAR, Singapore, Singapore
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London, London, United Kingdom
| |
Collapse
|
42
|
Abstract
The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Department of Internal Medicine, Division of Endocrinology, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
43
|
Öörni K, Jauhiainen M, Kovanen PT. Why and how increased plasma ceramides predict future cardiovascular events? Atherosclerosis 2020; 314:71-73. [PMID: 33121744 DOI: 10.1016/j.atherosclerosis.2020.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
44
|
Burrello J, Biemmi V, Dei Cas M, Amongero M, Bolis S, Lazzarini E, Bollini S, Vassalli G, Paroni R, Barile L. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci Rep 2020; 10:16182. [PMID: 32999414 PMCID: PMC7527456 DOI: 10.1038/s41598-020-73411-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are structural components of cell membrane, displaying several functions in cell signalling. Extracellular vesicles (EV) are lipid bilayer membrane nanoparticle and their lipid composition may be different from parental cells, with a significant enrichment in sphingolipid species, especially in pathological conditions. We aimed at optimizing EV isolation from plasma and describing the differential lipid content of EV, as compared to whole plasma. As pilot study, we evaluated the diagnostic potential of lipidomic signature of circulating EV in patients with a diagnosis of ST-segment-elevation myocardial infarction (STEMI). STEMI patients were evaluated before reperfusion and 24-h after primary percutaneous coronary intervention. Twenty sphingolipid species were quantified by liquid-chromatography tandem-mass-spectrometry. EV-ceramides, -dihydroceramides, and -sphingomyelins increased in STEMI vs. matched controls and decreased after reperfusion. Their levels correlated to hs-troponin, leucocyte count, and ejection fraction. Plasma sphingolipids levels were 500-to-700-fold higher as compared to EV content; nevertheless, only sphingomyelins differed in STEMI vs. control patients. Different sphingolipid species were enriched in EV and their linear combination by machine learning algorithms accurately classified STEMI patients at pre-PCI evaluation. In conclusion, EV lipid signature discriminates STEMI patients. These findings may contribute to the identification of novel biomarkers and signaling mechanisms related to cardiac ischemia.
Collapse
Affiliation(s)
- J Burrello
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - V Biemmi
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - M Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - M Amongero
- Department of Mathematical Sciences G. L. Lagrange, Polytechnic University of Torino, Torino, Italy
| | - S Bolis
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - E Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - S Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - G Vassalli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - R Paroni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - L Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland. .,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
45
|
Pan W, Li L, Sun M, Wang C, Fang S, Yu B. Plasma ceramides are associated with coronary atherosclerotic burden in patients with ST-segment elevation myocardial infarction. Int J Cardiol 2020; 320:155-160. [PMID: 32800902 DOI: 10.1016/j.ijcard.2020.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Plasma ceramides (Cer), a subset of bioactive lipids, have mechanistic links to atherosclerotic coronary artery disease (CAD) pathogenesis and are related to major adverse cardiovascular events (MACEs). OBJECTIVES This study aimed to explore the associations between plasma Cer and atherosclerotic burden evaluated by Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score. METHODS AND RESULTS A retrospective series of 248 ST-segment elevation myocardial infarction (STEMI) patients undergoing interventional procedures and plasma ceramides measurement were enrolled. Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was used to evaluate plasma Cer concentrations. SYNTAX score was automatically calculated on the SYNTAX website (http://www.syntaxscore.com/). Patients with STEMI had higher plasma MACEs-related ceramide levels than normal donors (p < .001). Pearson correlation analysis showed positive correlations between SYNTAX score and Cer(d18:1/16:0) (r = 0.176, p = .006), Cer(d18:1/18:0) (r = 0.290, p < .001), Cer(d18:1/24:1) (r = 0.209, p = .001) and Cer(d18:1/24:0) (r = 0.134, p = .036). Adjustments for all traditional risks, higher Cer(d18:1/16:0) level (per SD increase, β (95%CI) =10.681 (1.912-19.923), p = .032), Cer(d18:1/18:0) level (per SD increase, β (95%CI) =38.830 (15.444-62.126), p = .001), Cer(d18:1/24:1) level (per SD increase, β (95%CI) =6.122 (1.640-10.605), p = .008) (except for and Cer(d18:1/24:0) level (per SD increase, β (95%CI) =0.999 (-0.508-2.506), p = .193)) were independently associated with higher levels of SYNTAX score. CONCLUSIONS Elevated plasma levels of Cer (d18:1/16:0), Cer(d18:1/18:0) and Cer(d18:1/24:1)) are independent predictors for a high atherosclerotic burden in patients with STEMI. Our findings provide evidence supporting proatherogenic roles of Cer.
Collapse
Affiliation(s)
- Weili Pan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Longyan Li
- Department of Cardiology, People's Liberation Army Joint Logistics Support Unit 962 Hospital, Harbin, Province Heilongjiang, China
| | - Meng Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Chao Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Shaohong Fang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China.
| |
Collapse
|
46
|
Poss AM, Summers SA. Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD. Front Endocrinol (Lausanne) 2020; 11:505. [PMID: 32849291 PMCID: PMC7411076 DOI: 10.3389/fendo.2020.00505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which ranges from the relatively benign and reversible fatty liver (NAFL) to the more advanced and deadly steatohepatitis (NASH), affects a remarkably high percentage of adults in the population. Depending upon severity, NAFLD can increase one's risk for diabetes, cardiovascular disease, and hepatocellular carcinoma. Though the dominant histological feature of all forms of the disease is the accumulation of liver triglycerides, these molecules are likely not pathogenic, but rather serve to protect the liver from the damaging consequences of overnutrition. We propose herein that the less abundant ceramides, through evolutionarily-conserved actions intended to help organisms adapt to nutrient excess, drive the cellular events that define NAFL/NASH. In early stages of the disease process, they promote lipid uptake and storage, whilst inhibiting utilization of glucose. In later stages, they stimulate hepatocyte apoptosis and fibrosis. In rodents, blocking ceramide synthesis ameliorates all stages of NAFLD. In humans, serum and liver ceramides correlate with the severity of NAFLD and its comorbidities diabetes and heart disease. These studies identify key roles for ceramides in these hepatic manifestations of the metabolic syndrome.
Collapse
Affiliation(s)
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
47
|
St. Paul A, Corbett CB, Okune R, Autieri MV. Angiotensin II, Hypercholesterolemia, and Vascular Smooth Muscle Cells: A Perfect Trio for Vascular Pathology. Int J Mol Sci 2020; 21:E4525. [PMID: 32630530 PMCID: PMC7350267 DOI: 10.3390/ijms21124525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them. These intersecting points are manifested in clinical studies in which lipid lowering therapies reduce blood pressure, and anti-hypertensive medications reduce atherosclerotic plaque. At the molecular level, the vascular smooth muscle cell (VSMC) is the target, integrator, and effector cell of both atherogenic and the major effector protein of the hypertensive signal Angiotensin II (Ang II). Together, these signals can potentiate each other and prime the artery and exacerbate hypertension and atherosclerosis. Therefore, VSMCs are the fulcrum in progression of these diseases and, therefore, understanding the effects of atherogenic stimuli and Ang II on the VSMC is key to understanding and treating atherosclerosis and hypertension. In this review, we will examine studies in which hypertension and atherosclerosis intersect on the VSMC, and illustrate common pathways between these two diseases and vascular aging.
Collapse
Affiliation(s)
| | | | | | - Michael V. Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; (A.S.P.); (C.B.C.); (R.O.)
| |
Collapse
|
48
|
Tu C, Xie L, Wang Z, Zhang L, Wu H, Ni W, Li C, Li L, Zeng Y. Association between ceramides and coronary artery stenosis in patients with coronary artery disease. Lipids Health Dis 2020; 19:151. [PMID: 32586390 PMCID: PMC7315545 DOI: 10.1186/s12944-020-01329-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Coronary artery stenosis induces heart diseases including acute coronary syndrome (ACS). Some studies reported the ceramide species are associated with the ACS and major adverse cardia and cerebrovascular events (MACE). However, few studies investigated the association between plasma ceramide levels and the severity of stenosis, together with the onset of diseases. This aim of the present study was to investigate the association betweencertain ceramide species, coronary artery stenosis and acute coronary syndrome. METHODS Five hundred fifty-three patients with definite or suspected CAD were recruited and received angiography. Subjects were assigned into 4 groups according to the severity of coronary artery stenosis. The measurements of 4 plasma ceramide species, namely, Cer (d18:1/16:0), Cer (d18:1/18:0), Cer (d18:1/24:1), Cer (d18:1/24:0) were carried out by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the ratio of Cer (d18:1/16:0), Cer (d18:1/18:0) and Cer (d18:1/24:1) to Cer (18:1/24:0), respectively, were calculated as index to evaluate the association between plasma ceramides levels and coronary artery stenosis. Multiple logistic regression analysis was used to establish the prognostic model for the prediction of ACS risk. RESULTS After the adjustment by multiple clinical risk factors including age, gender, pre-existing myocardial/cerebral infarction, hemoglobin A1c% (HbA1c%), smoking and the diagnosis during index hospitalization, multiple logistic regression analysis showed that the high ratio of Cer (d18:1/24:1) to Cer (d18:1/24:0), female gender, HbA1c%, unstable angina (UAP) and acute myocardial infarction (AMI) diagnosis (compared with atherosclerosis) during index hospitalization were associated with more severe coronary artery stenosis. Furthermore, the prognostic model was established after adjustment of risk factors and the area under curve (AUC) of receiver operating characteristics (ROC) for the prognostic model was 0.732 and 95% CI was 0.642-0.822. CONCLUSION The severity of coronary artery stenosis is associated with high ratio of Cer (d18:1/24:1) to Cer (d18:1/24:0), female gender, HbA1c% and AMI. Although the reported prognostic model showed a good discrimination, further investigation on long term MACE is needed to evaluate the role of ceramide for the prediction of MACE risk.
Collapse
Affiliation(s)
- Chenchen Tu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Chaoyang District, Beijing, 100029, China
| | - Lan Xie
- Beijing Health Biotech Co. Ltd., yard 7, science park road, Huilongguan, Changping district, Beijing, 102206, China
| | - Zhenjie Wang
- Health Examination Center, Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, China
| | - Lili Zhang
- Beijing Health Biotech Co. Ltd., yard 7, science park road, Huilongguan, Changping district, Beijing, 102206, China
| | - Hongmei Wu
- Beijing Health Biotech Co. Ltd., yard 7, science park road, Huilongguan, Changping district, Beijing, 102206, China
| | - Wei Ni
- Beijing Health Biotech Co. Ltd., yard 7, science park road, Huilongguan, Changping district, Beijing, 102206, China
| | - Caixia Li
- Beijing Health Biotech Co. Ltd., yard 7, science park road, Huilongguan, Changping district, Beijing, 102206, China
| | - Lin Li
- Beijing Health Biotech Co. Ltd., yard 7, science park road, Huilongguan, Changping district, Beijing, 102206, China
| | - Yong Zeng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
49
|
Associations between specific plasma ceramides and severity of coronary-artery stenosis assessed by coronary angiography. DIABETES & METABOLISM 2020; 46:150-157. [DOI: 10.1016/j.diabet.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
|
50
|
Pan W, Dong H, Sun R, Zhao L, Sun M, Li L, Yu X, Liu J, Wu J, Yang F, Yu B. Plasma Ceramides in Relation to Coronary Plaque Characterization Determined by Optical Coherence Tomography. J Cardiovasc Transl Res 2020; 14:140-149. [PMID: 32212040 DOI: 10.1007/s12265-020-09978-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023]
Abstract
Plasma ceramides (Cer), a subset of bioactive lipids, have mechanistic links to development of atherosclerosis and are related to major adverse cardiovascular events (MACEs). Previous researches have demonstrated vulnerable plaques contribute to acute cardiovascular events and poor prognosis. This study aimed to explore the associations between Cer and culprit plaque characterizations evaluated by optical coherence tomography (OCT). It was found that plasma Cer are associated with culprit plaque vulnerability evaluated by OCT, providing evidence supporting proatherogenic roles and potential to act as markers for plaque vulnerability of Cer. Graphical Abstract With increasing plasma ceramide levels, the prevalence of thin-cap fibroatheroma (TCFA) and plaque rupture (PR) is higher, that is, culprit plaques are more vulnerable.
Collapse
Affiliation(s)
- Weili Pan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Hui Dong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Rong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Linlin Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China
| | - Meng Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Longyan Li
- Department of Cardiology, People's Liberation Army Joint Logistics Support Unit 962 Hospital, Harbin, Province Heilongjiang, China
| | - Xianghao Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Jinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Jianjun Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Fan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Province Heilongjiang, China. .,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Province Heilongjiang, China.
| |
Collapse
|