1
|
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes (Basel) 2024; 15:1368. [PMID: 39596569 PMCID: PMC11593610 DOI: 10.3390/genes15111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary arrhythmias, as a class of cardiac electrophysiologic abnormalities caused mainly by genetic mutations, have gradually become one of the most important causes of sudden cardiac death in recent years. With the continuous development of genetics and molecular biology techniques, the study of inherited arrhythmias has made remarkable progress in the past few decades. More and more disease-causing genes are being identified, and there have been advances in the application of genetic testing for disease screening in individuals with disease and their family members. Determining more refined disease prevention strategies and therapeutic regimens that are tailored to the genetic characteristics and molecular pathogenesis of different groups or individuals forms the basis of individualized treatment. Understanding advances in the study of inherited arrhythmias provides important clues to better understand their pathogenesis and clinical features. This article provides a review of the pathophysiologic alterations caused by genetic variants and their relationship to disease phenotypes, including mainly cardiac ion channelopathies and cardiac conduction disorders.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Verheul LM, Hoeksema WF, Groeneveld SA, Mulder BA, Bootsma M, Alings M, Evertz R, Blank AC, Kammeraad JAE, Clur SAB, Yap SC, Postema PG, Wilde AAM, Volders PGA, Hassink RJ. Comparing adolescent- and adult-onset unexplained cardiac arrest: Results from the Dutch Idiopathic VF Registry. Heart Rhythm 2024; 21:1779-1786. [PMID: 38493994 DOI: 10.1016/j.hrthm.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Current cohorts of patients with idiopathic ventricular fibrillation (IVF) primarily include adult-onset patients. Underlying causes of sudden cardiac arrest vary with age; therefore, underlying causes and disease course may differ for adolescent-onset vs adult-onset patients. OBJECTIVE The purpose of this study was to compare adolescent-onset with adult-onset patients having an initially unexplained cause of VF. METHODS The study included 39 patients with an index event aged ≤19 years (adolescent-onset) and 417 adult-onset patients from the Dutch Idiopathic VF Registry. Data on event circumstances, clinical characteristics, change in diagnosis, and arrhythmia recurrences were collected and compared between the 2 groups. RESULTS In total, 42 patients received an underlying diagnosis during follow-up (median 7 [2-12] years), with similar yields (15% adolescent-onset vs 9% adult-onset; P = .16). Among the remaining unexplained patients, adolescent-onset patients (n = 33) had their index event at a median age of 17 [16-18] years, and 72% were male. The youngest patient was aged 13 years. In comparison with adults (n = 381), adolescent-onset patients more often had their index event during exercise (P <.01). Adolescent-onset patients experienced more appropriate implantable cardioverter-defibrillator (ICD) therapy during follow-up compared with adults (44% vs 26%; P = .03). Inappropriate ICD therapy (26% vs 17%; P = .19), ICD complications (19% vs 14%; P = .41), and deaths (3% vs 4%; P = 1) did not significantly differ between adolescent-onset and adult-onset patients. CONCLUSION IVF may occur during adolescence. Adolescent-onset patients more often present during exercise compared with adults. Furthermore, they are more vulnerable to ventricular arrhythmias as reflected by a higher incidence of appropriate ICD therapy.
Collapse
Affiliation(s)
- Lisa M Verheul
- University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Wiert F Hoeksema
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Heart Failure and Arrhythmias, Amsterdam, The Netherlands, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | | | - Bart A Mulder
- University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Reinder Evertz
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Janneke A E Kammeraad
- Erasmus MC-Sophia Children's Hospital, Cardiovascular Institute, Department of Pediatric Cardiology, Rotterdam, The Netherlands
| | - Sally-Ann B Clur
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Heart Failure and Arrhythmias, Amsterdam, The Netherlands, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands; Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart,"
| | - Sing-Chien Yap
- Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter G Postema
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Heart Failure and Arrhythmias, Amsterdam, The Netherlands, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands; Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart,"
| | - Arthur A M Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Heart Failure and Arrhythmias, Amsterdam, The Netherlands, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands; Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart,"
| | - Paul G A Volders
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart,"; Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rutger J Hassink
- University Medical Center Utrecht, Utrecht, The Netherlands; Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD-Heart,"
| |
Collapse
|
3
|
Schwartz PJ, Crotti L, Nyegaard M, Overgaard MT. Role of Calmodulin in Cardiac Disease: Insights on Genotype and Phenotype. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004542. [PMID: 39247953 DOI: 10.1161/circgen.124.004542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Calmodulin, a protein critically important for the regulation of all major cardiac ion channels, is the quintessential cellular calcium sensor and plays a key role in preserving cardiac electrical stability. Its unique importance is highlighted by the presence of 3 genes in 3 different chromosomes encoding for the same protein and by their extreme conservation. Indeed, all 3 calmodulin (CALM) genes are among the most constrained genes in the human genome, that is, the observed variants are much less than expected by chance. Not surprisingly, CALM variants are poorly tolerated and accompany significant clinical phenotypes, of which the most important are those associated with increased risk for life-threatening arrhythmias. Here, we review the current knowledge about calmodulin, its specific physiological, structural, and functional characteristics, and its importance for cardiovascular disease. Given our role in the development of this knowledge, we also share some of our views about currently unanswered questions, including the rational approaches to the clinical management of the affected patients. Specifically, we present some of the most critical information emerging from the International Calmodulinopathy Registry, which we established 10 years ago. Further progress clearly requires deep phenotypic information on as many carriers as possible through international contributions to the registry, in order to expand our knowledge about Calmodulinopathies and guide clinical management.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (P.J.S., L.C.)
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Mette Nyegaard
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.N.)
- Department of Health Science and Technology (M.N.), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
4
|
Hamrick SK, Kim CSJ, Tester DJ, Gencarelli M, Tobert KE, Gluscevic M, Ackerman MJ. Single Construct Suppression and Replacement Gene Therapy for the Treatment of All CALM1-, CALM2-, and CALM3-Mediated Arrhythmia Disorders. Circ Arrhythm Electrophysiol 2024; 17:e012036. [PMID: 39069900 DOI: 10.1161/circep.123.012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND CaM (calmodulin)-mediated long-QT syndrome is a genetic arrhythmia disorder (calmodulinopathies) characterized by a high prevalence of life-threatening ventricular arrhythmias occurring early in life. Three distinct genes (CALM1, CALM2, and CALM3) encode for the identical CaM protein. Conventional pharmacotherapies fail to adequately protect against potentially lethal cardiac events in patients with calmodulinopathy. METHODS Five custom-designed CALM1-, CALM2-, and CALM3-targeting short hairpin RNAs (shRNAs) were tested for knockdown (KD) efficiency using TSA201 cells and reverse transcription-quantitative polymerase chain reaction. A dual-component suppression and replacement (SupRep) CALM gene therapy (CALM-SupRep) was created by cloning into a single construct CALM1-, CALM2-, and CALM3-specific shRNAs that produce KD (suppression) of each respective gene and a shRNA-immune CALM1 cDNA (replacement). CALM1-F142L, CALM2-D130G, and CALM3-D130G induced pluripotent stem cell-derived CMs were generated from patients with CaM-mediated long-QT syndrome. A voltage-sensing dye was used to measure action potential duration at 90% repolarization (APD90). RESULTS Following shRNA KD efficiency testing, a candidate shRNA was identified for CALM1 (86% KD), CALM2 (71% KD), and CALM3 (94% KD). The APD90 was significantly prolonged in CALM2-D130G (647±9 ms) compared with CALM2-WT (359±12 ms; P<0.0001). Transfection with CALM-SupRep shortened the average APD90 of CALM2-D130G to 457±19 ms (66% attenuation; P<0.0001). Additionally, transfection with CALM-SupRep shortened the APD90 of CALM1-F142L (665±9 to 410±15 ms; P<0.0001) and CALM3-D130G (978±81 to 446±6 ms; P<0.001). CONCLUSIONS We provide the first proof-of-principle suppression-replacement gene therapy for CaM-mediated long-QT syndrome. The CALM-SupRep gene therapy shortened the pathologically prolonged APD90 in CALM1-, CALM2-, and CALM3-variant CaM-mediated long-QT syndrome induced pluripotent stem cell-derived CM lines. The single CALM-SupRep construct may be able to treat all calmodulinopathies, regardless of which of the 3 CaM-encoding genes are affected.
Collapse
Affiliation(s)
- Samantha K Hamrick
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - C S John Kim
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Manuela Gencarelli
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Kathryn E Tobert
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.K.H., C.S.J.K., D.J.T., M. Gencarelli, K.E.T., M. Gluscevic, M.J.A.), Mayo Clinic, Rochester, MN
- Department of Cardiovascular Medicine (Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic) (M.J.A.), Mayo Clinic, Rochester, MN
- Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology) (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
5
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Rebbeck RT, Svensson B, Zhang J, Samsó M, Thomas DD, Bers DM, Cornea RL. Kinetics and mapping of Ca-driven calmodulin conformations on skeletal and cardiac muscle ryanodine receptors. Nat Commun 2024; 15:5120. [PMID: 38879623 PMCID: PMC11180167 DOI: 10.1038/s41467-024-48951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/16/2024] [Indexed: 06/19/2024] Open
Abstract
Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jingyan Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
8
|
van der Crabben SN, Wilde AAM. Idiopathic ventricular fibrillation: is it a case for genetic testing? Herzschrittmacherther Elektrophysiol 2024; 35:19-24. [PMID: 38334831 PMCID: PMC10879354 DOI: 10.1007/s00399-024-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Idiopathic ventricular fibrillation (IVF) is a diagnosis of exclusion in sudden cardiac arrest (SCA) survivors. Although there are clear guidelines on the clinical work-up of SCA survivors, less than one in five patients receives a complete work-up. This increases the chances of erroneously labelling these patients as having IVF, while 10-20% of them have an inherited cardiac condition (ICC). Diagnoses of ICC increase over time due to (additional) deep phenotyping or as a result of spontaneous expression of ICC over time. As SCA survivors can also harbor (likely) pathogenic variants in cardiomyopathy-associated genes in the absence of a phenotype, or can have another ICC without a clear cardiac phenotype, the question arises as to whether genetic testing in this group should be routinely performed. Family history (mainly in the case of sudden death) can increase suspicion of an ICC in an SCA victim, but does not add great value when adults underwent a complete cardiological work-up. The diagnosis of ICC has treatment consequences not only for the patient but also for their family. Genetic diagnostic yield does not appear to increase with larger gene panels, but variants of unknown significance (VUS) do. Although VUS can be confusing, careful and critical segregation analysis in the family can be performed when discussed in a multidisciplinary team at a center of expertise with at least a cardiologist as well as a clinical and laboratory geneticist, thereby degrading or promoting VUS. When to introduce genetic testing in SCA survivors remains a matter of debate, but the combination of quick, deep phenotyping with additional genetic testing for the unidentifiable phenotypes, especially in the young, seems preferable.
Collapse
Affiliation(s)
- S N van der Crabben
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- European Reference Network for rare, low prevalence, and/or complex diseases of the heart: ERN GUARD-Heart, Amsterdam, The Netherlands.
| | - A A M Wilde
- European Reference Network for rare, low prevalence, and/or complex diseases of the heart: ERN GUARD-Heart, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Cardiology, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Iacobucci GJ, Popescu GK. Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophys J 2024; 123:277-293. [PMID: 38140727 PMCID: PMC10870176 DOI: 10.1016/j.bpj.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Calcium ions (Ca2+) reduce NMDA receptor currents through several distinct mechanisms. Among these, calmodulin (CaM)-dependent inhibition (CDI) accomplishes rapid, reversible, and incomplete reduction of the NMDA receptor currents in response to elevations in intracellular Ca2+. Quantitative and mechanistic descriptions of CDI of NMDA receptor-mediated signals have been marred by variability originating, in part, from differences in the conditions and metrics used to evaluate this process across laboratories. Recent ratiometric approaches to measure the magnitude and kinetics of NMDA receptor CDI have facilitated rapid insights into this phenomenon. Notably, the kinetics and magnitude of NMDA receptor CDI depend on the degree of saturation of its CaM binding sites, which represent the bona fide calcium sensor for this type of inhibition, the kinetics and magnitude of the Ca2+ signal, which depends on the biophysical properties of the NMDA receptor or of adjacent Ca2+ sources, and on the relative distribution of Ca2+ sources and CaM molecules. Given that all these factors vary widely during development, across cell types, and with physiological and pathological states, it is important to understand how NMDA receptor CDI develops and how it contributes to signaling in the central nervous system. Here, we review briefly these recent advances and highlight remaining questions about the structural and kinetic mechanisms of NMDA receptor CDI. Given that pathologies can arise from several sources, including mutations in the NMDA receptor and in CaM, understanding how CaM responds to intracellular Ca2+ signals to initiate conformational changes in NMDA receptors, and mapping the structural domains responsible will help to envision novel therapeutic strategies to neuropsychiatric diseases, which presently have limited available treatments.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
| |
Collapse
|
10
|
Yang H, Liu YR, Song ZX, Tang ZS, Jia AL, Wang MG, Duan JA. Study on the underlying mechanism of Poria in intervention of arrhythmia zebrafish by integrating metabolomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155143. [PMID: 37890443 DOI: 10.1016/j.phymed.2023.155143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Poria is an herb with both medicinal and dietary application. It has been used in various traditional Chinese patent medicines and medicinal decoctions for the treatment of arrhythmia. However, the specific mechanisms involved in the antiarrhythmic effects of Poria have, until now, remained unknown. PURPOSE This present study sought to explore the potential compounds and mechanisms by which Poria ameliorates BaCl2-induced arrhythmia. METHOD We initiated by using network pharmacology to predict probable components, targets, and associated signaling pathways before optimizing the extraction process of Poria. We then applied Poria extract to a zebrafish model of BaCl2-induced arrhythmia. We combined network pharmacology and untargeted metabolomic analysis to predict the likely signaling and metabolic pathways governed by Poria. Finally, we verified putative mRNA and metabolite targets of Poria involved in the intervention of arrhythmia by PCR, molecular docking, enzymatic inhibition and targeted metabolomics. RESULTS We found that triterpenoids may be the main components of Poria responsible for its effects on arrhythmia, and that the optimal extraction process for its water extract is 9 volumes of water with the 7.5 h first extraction period, and the second extraction period of 1.5 h. Through experimentation, we have found that the water extract of Poria can interfere with BaCl2 induced arrhythmia in zebrafish by significantly increasing the heart rate, reducing the SV-BA distance, and pericardial area, and the degree of cardiomyocyte apoptosis in zebrafish. In addition, PCR validation revealed that Poria can regulate the calcium signaling pathway by upregulating the gene expression levels of ADRB1, HTR7, CALMB1, and PPP3CA. Meanwhile, through molecular docking and enzyme activity inhibition, it was found that the compounds in Poria can bind to ADRB1, HTR7, CALMB1, and PPP3CA, respectively. Targeted metabolism confirmed that Poria can downregulate the synthesis of cAMP in the calcium signaling pathway, as well as the synthesis of valine and isoleucine in valine, leucine, and isoleucine biosynthesis. CONCLUSION Overall, our study indicates that Poria exerts its antiarrhythmic effect through regulating the calcium signaling pathway and valine, leucine, and isoleucine biosynthesis. Our findings not only establish a mechanistic framework for elucidating the antiarrhythmic effects of Chinese patent medicine containing Poria, but also provide a medicinal basis for the study of its dual use as medicine and food.
Collapse
Affiliation(s)
- Hui Yang
- Changchun University of Chinese Medicine, Changchun 130117, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Yan-Ru Liu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Zhong-Xing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China
| | - Zhi-Shu Tang
- Changchun University of Chinese Medicine, Changchun 130117, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xian yang 712046, PR China; China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Ai-Ling Jia
- Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Ming-Geng Wang
- Shandong Buchang Pharmaceutical Co., Ltd, Shandong 274000, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
11
|
Sun Q, Xie Z, Wang F, Guo J, Yan X. Case report of a child with long QT syndrome type 14 caused by CALM1 gene mutation and literature review. Mol Genet Genomic Med 2024; 12:e2287. [PMID: 37905352 PMCID: PMC10767591 DOI: 10.1002/mgg3.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE To analyze the clinical and genetic characteristics of a patient with long QT syndrome type 14 (long QT syndrome-14, LQT14, OMIM # 616247) caused by a de novo CALM1 mutation. METHODS The clinical data of the patient were collected, next-generation sequencing technology was used to determine the exome gene sequence of the patient, and the suspected pathogenic locus was verified by Sanger sequencing. RESULTS A 5-year and 9-month-old girl was admitted to the hospital due to a syncopal episode. During the attack, the main symptoms were loss of consciousness, cyanosis of the face and lips, and weakness of limbs. The child had multiple seizures in the past, all of which occurred after emotional excitement and activity. She was diagnosed with epilepsy for more than 3 years, but the effect of antiepileptic treatment was not satisfactory. The electrocardiogram was normal in the past. A month ago, convulsions occurred again after exercise, and the electrocardiogram showed QTc 496 ms. The treadmill test showed a significant prolongation of QTc after exercise, and the genetic results suggested a new heterozygous variant of CALM1, c.395A>G; p. (Asp132Gly). Consequently, she was diagnosed with LQT14 and treated with propranolol. During a follow-up of 15 months, there were no seizures or syncope. CONCLUSIONS This patient had multiple episodes of convulsions or syncope after emotional stimulation or activity, with intermittent prolongation of the QTc on routine ECG, marked prolongation of the QTc after exercise, and T-wave alternans, which differed from the LQT14 phenotype caused by the previous CALM1 mutation.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of CardiologyChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| | - Zhenhua Xie
- Henan Key Laboratory of Pediatric Inherited and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| | - Fangjie Wang
- Department of CardiologyChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| | - Jun Guo
- Beijing Key Laboratory for Genetics of Birth DefectsBeijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Capital Medical University, Center of Rare Diseases, National Center for Children's Health, Beijing Children's Hospital, Capital Medical UniversityBeijingChina
| | - Xiaochen Yan
- Department of CardiologyChildren's Hospital Affiliated to Zhengzhou University, Zhengzhou Hospital of Beijing Children's HospitalZhengzhouChina
| |
Collapse
|
12
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
13
|
Jeong JH, Kim YG, Oh SK, Lee HS, Choi YY, Min K, Shim J, Park YM, Kim JH, Oh YS, Kim NH, Pak HN, On YK, Park HW, Hwang GS, Kim DK, Park YA, Park HS, Cho Y, Oh S, Choi JI, Kim YH. Identification of concealed cardiomyopathy using next-generation sequencing-based genetic testing in Korean patients initially diagnosed with idiopathic ventricular fibrillation. Europace 2023; 25:euad313. [PMID: 37949661 PMCID: PMC10639093 DOI: 10.1093/europace/euad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
AIMS Idiopathic ventricular fibrillation (IVF) is a disease in which the cause of ventricular fibrillation cannot be identified despite comprehensive clinical evaluation. This study aimed to investigate the clinical yield and implications of genetic testing for IVF. METHODS AND RESULTS This study was based on the multi-centre inherited arrhythmia syndrome registry in South Korea from 2014 to 2017. Next-generation sequencing-based genetic testing was performed that included 174 genes previously linked to cardiovascular disease. A total of 96 patients were clinically diagnosed with IVF. The mean age of the onset was 41.2 ± 12.7 years, and 79 patients were males (82.3%). Of these, 74 underwent genetic testing and four (5.4%) of the IVF probands had pathogenic or likely pathogenic variants (each having one of MYBPC3, MYH7, DSP, and TNNI3). All pathogenic or likely pathogenic variants were located in genes with definite evidence of a cardiomyopathy phenotype, either hypertrophic cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy. CONCLUSION Next-generation sequencing-based genetic testing identified pathogenic or likely pathogenic variants in 5.4% of patients initially diagnosed with IVF, suggesting that genetic testing with definite evidence genes of cardiomyopathy may enable molecular diagnosis in a minority of patients with IVF. Further clinical evaluation and follow-up of patients with IVF with positive genotypes are needed to unveil concealed phenotypes, such as the pre-clinical phase of cardiomyopathy.
Collapse
Affiliation(s)
- Joo Hee Jeong
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yun Gi Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Suk-Kyu Oh
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyoung Seok Lee
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yun Young Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyongjin Min
- Division of Cardiology, Incheon Sejong General Hospital, Incheon, Korea
| | - Jaemin Shim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yae Min Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jun-Hyung Kim
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yong-Seog Oh
- Department of Internal Medicine, Seoul St.Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nam-Ho Kim
- Department of Internal Medicine, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan, Korea
| | - Hui-Nam Pak
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Keun On
- Department of Internal Medicine, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyung Wook Park
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University School of Medicine, Gwangju, Korea
| | - Gyo-Seung Hwang
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Dae-Kyeong Kim
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Young-Ah Park
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hyoung-Seob Park
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Keimyung University College of Medicine, Daegu, Korea
| | - Yongkeun Cho
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
15
|
Crotti L, Spazzolini C, Nyegaard M, Overgaard MT, Kotta MC, Dagradi F, Sala L, Aiba T, Ayers MD, Baban A, Barc J, Beach CM, Behr ER, Bos JM, Cerrone M, Covi P, Cuneo B, Denjoy I, Donner B, Elbert A, Eliasson H, Etheridge SP, Fukuyama M, Girolami F, Hamilton R, Horie M, Iascone M, Jaimez JJ, Jensen HK, Kannankeril PJ, Kaski JP, Makita N, Muñoz-Esparza C, Odland HH, Ohno S, Papagiannis J, Porretta AP, Prandstetter C, Probst V, Robyns T, Rosenthal E, Rosés-Noguer F, Sekarski N, Singh A, Spentzou G, Stute F, Tfelt-Hansen J, Till J, Tobert KE, Vinocur JM, Webster G, Wilde AAM, Wolf CM, Ackerman MJ, Schwartz PJ. Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry. Eur Heart J 2023; 44:3357-3370. [PMID: 37528649 PMCID: PMC10499544 DOI: 10.1093/eurheartj/ehad418] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
AIMS Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.
Collapse
Affiliation(s)
- Lia Crotti
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22, 20135 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Carla Spazzolini
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Maria-Christina Kotta
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Federica Dagradi
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22, 20135 Milan, Italy
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22, 20135 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Takeshi Aiba
- Division of Arrhythmia, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mark D Ayers
- Department of Pediatrics, Division of Pediatric Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anwar Baban
- Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Cheyenne M Beach
- Pediatric Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Elijah R Behr
- Cardiology Section, Institute of Molecular and Clinical Sciences, St George’s University of London and Cardiovascular Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, UK
| | - J Martijn Bos
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Division of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Marina Cerrone
- Inherited Arrhythmias Clinic, Leon H. Charney Division of Cardiology, NYU Grossmann School of Medicine, New York, NY, USA
| | - Peter Covi
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Bettina Cuneo
- Department of Pediatrics, Section of Cardiology, University of Denver School of Medicine, Aurora, CO, USA
| | - Isabelle Denjoy
- Centre de Référence Maladies Cardiaques Héréditaires Filière Cardiogen, Département de Rythmologie, Groupe Hospitalier Bichat-Claude Bernard, Paris, France
| | - Birgit Donner
- Kardiologie, Universitäts-Kinderspital beider Basel (UKBB), Basel, Switzerland
| | - Adrienne Elbert
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Håkan Eliasson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Cardiology C8:34, Karolinska University Hospital, Stockholm, Sweden
| | - Susan P Etheridge
- Department of Pediatrics, Division of Pediatric Cardiology, University of Utah and Primary Children’s Hospital, Salt Lake City, UT, USA
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Robert Hamilton
- Division of Cardiology, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Juan Jiménez Jaimez
- Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitario IBS Granada, Spain
| | - Henrik Kjærulf Jensen
- Department of Cardiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, K-8200 Aarhus N, Denmark
| | - Prince J Kannankeril
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan P Kaski
- Centre for Paediatric Inherited and Rare Cardiovascular Disease, Institute of Cardiovascular Science, University College London, Zayed Centre for Research into Rare Disease in Childhood, London, UK
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Suita, Japan
- Sapporo Teishinkai Hospital, Sapporo, Japan
| | - Carmen Muñoz-Esparza
- Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Inherited Cardiac Disease Unit, Hospital Universitario Virgen Arrixaca, Murcia, Spain
| | - Hans H Odland
- Department of Cardiology and Pediatric Cardiology, Section for Arrhythmias, Oslo University Hospital, Oslo, Norway
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - John Papagiannis
- Pediatric and Adult Congenital Heart Disease, Onassis Cardiac Surgery Center, Athens, Greece
| | - Alessandra Pia Porretta
- Unité des Troubles du Rythme, Service de Cardiologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Christopher Prandstetter
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Department of Pediatric Cardiology, Kepler University Hospital, Linz, Austria
| | - Vincent Probst
- Service de Cardiologie, L’institut du Thorax, CHU Nantes, Nantes, France
| | - Tomas Robyns
- Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Eric Rosenthal
- Evelina London Children’s Hospital, St Thomas’ Hospital, London, UK
| | - Ferran Rosés-Noguer
- Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Lead Paediatric Cardiology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Royal Brompton Hospital NHS Guy’s and St Thomas Foundation Trust, London, UK
| | - Nicole Sekarski
- Unité de Cardiologie Pédiatrique, Département Médico-Chirurgical de Pédiatrie, CHUV | Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Anoop Singh
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA
| | | | - Fridrike Stute
- Department of Pediatric Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Jacob Tfelt-Hansen
- Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jan Till
- Royal Brompton Hospital NHS Guy’s and St Thomas Foundation Trust, London, UK
| | - Kathryn E Tobert
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Division of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Gregory Webster
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arthur A M Wilde
- Member of the European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Cordula M Wolf
- Center for Rare Congenital Heart Diseases, Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University Munich, School of Medicine & Health, Munich, Germany
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics, Division of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22, 20135 Milan, Italy
| |
Collapse
|
16
|
Wren LM, DeKeyser JM, Barefield DY, Hawkins NA, McNally EM, Kearney JA, Wasserstrom JA, George AL. Sex and Gene Influence Arrhythmia Susceptibility in Murine Models of Calmodulinopathy. Circ Arrhythm Electrophysiol 2023; 16:e010891. [PMID: 37589122 PMCID: PMC10530303 DOI: 10.1161/circep.122.010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Pathogenic variants in genes encoding CaM (calmodulin) are associated with a life-threatening ventricular arrhythmia syndrome (calmodulinopathy). The in vivo consequences of CaM variants have not been studied extensively and there is incomplete understanding of the genotype-phenotype relationship for recurrent variants. We investigated effects of different factors on calmodulinopathy phenotypes using 2 mouse models with a recurrent pathogenic variant (N98S) in Calm1 or Calm2. METHODS Genetically engineered mice with heterozygous N98S pathogenic variants in Calm1 or Calm2 were generated. Differences between the sexes and affected genes were assessed using multiple physiological assays at the cellular and whole animal levels. Statistical significance among groups was evaluated using 1-way ANOVA or the Kruskal-Wallis test when data were not normally distributed. RESULTS Calm1N98S/+ (Calm1S/+) or Calm2N98S/+ (Calm2S/+) mice exhibited sinus bradycardia and were more susceptible to arrhythmias after exposure to epinephrine and caffeine. Male Calm1S/+ mice had the most severe arrhythmia phenotype with evidence of early embryonic lethality, greater susceptibility for arrhythmic events, frequent premature beats, corrected QT prolongation, and more heart rate variability after epinephrine and caffeine than females with the same genotype. Calm2 S/+ mice exhibited a less severe phenotype, with female Calm2 S/+ mice having the least severe arrhythmia susceptibility. Flecainide was not effective in preventing arrhythmias in heterozygous CaM-N98S mice. Intracellular Ca2+ transients observed in isolated ventricular cardiomyocytes from male heterozygous CaM-N98S mice had lower peak amplitudes and slower sarcoplasmic reticulum Ca2+ release following in vitro exposure to epinephrine and caffeine, which were not observed in cardiomyocytes from heterozygous female CaM-N98S mice. CONCLUSIONS We report heterogeneity in arrhythmia susceptibility and cardiomyocyte Ca2+ dynamics among male and female mice heterozygous for a recurrent pathogenic variant in Calm1 or Calm2, illustrating a complex calmodulinopathy phenotype in vivo. Further investigation of sex and genetic differences may help identify the molecular basis for this heterogeneity.
Collapse
Affiliation(s)
- Lisa M. Wren
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jean-Marc DeKeyser
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - David Y. Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Nicole A. Hawkins
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Elizabeth M. McNally
- Center for Genetic Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jennifer A. Kearney
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - J. Andrew Wasserstrom
- Department of Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Alfred L. George
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
17
|
Brohus M, Busuioc AO, Wimmer R, Nyegaard M, Overgaard MT. Calmodulin mutations affecting Gly114 impair binding to the Na V1.5 IQ-domain. Front Pharmacol 2023; 14:1210140. [PMID: 37663247 PMCID: PMC10469309 DOI: 10.3389/fphar.2023.1210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Missense variants in CALM genes encoding the Ca2+-binding protein calmodulin (CaM) cause severe cardiac arrhythmias. The disease mechanisms have been attributed to dysregulation of RyR2, for Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) and/or CaV1.2, for Long-QT Syndrome (LQTS). Recently, a novel CALM2 variant, G114R, was identified in a mother and two of her four children, all of whom died suddenly while asleep at a young age. The G114R variant impairs closure of CaV1.2 and RyR2, consistent with a CPVT and/or mild LQTS phenotype. However, the children carrying the CALM2 G114R variant displayed a phenotype commonly observed with variants in NaV1.5, i.e., Brugada Syndrome (BrS) or LQT3, where death while asleep is a common feature. We therefore hypothesized that the G114R variant specifically would interfere with NaV1.5 binding. Here, we demonstrate that CaM binding to the NaV1.5 IQ-domain is severely impaired for two CaM variants G114R and G114W. The impact was most severe at low and intermediate Ca2+ concentrations (up to 4 µM) resulting in more than a 50-fold reduction in NaV1.5 binding affinity, and a smaller 1.5 to 11-fold reduction at high Ca2+ concentrations (25-400 µM). In contrast, the arrhythmogenic CaM-N98S variant only induced a 1.5-fold reduction in NaV1.5 binding and only at 4 µM Ca2+. A non-arrhythmogenic I10T variant in CaM did not impair NaV1.5 IQ binding. These data suggest that the interaction between NaV1.5 and CaM is decreased with certain CaM variants, which may alter the cardiac sodium current, INa. Overall, these results suggest that the phenotypic spectrum of calmodulinopathies may likely expand to include BrS- and/or LQT3-like traits.
Collapse
Affiliation(s)
- Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ana-Octavia Busuioc
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| | | |
Collapse
|
18
|
Pannone L, Gauthey A, Conte G, Osei R, Campanale D, Baldi E, Berne P, Vicentini A, Vergara P, Sorgente A, Rootwelt-Norberg C, Della Rocca DG, Monaco C, Bisignani A, Miraglia V, Spolverini M, Paparella G, Overeinder I, Bala G, Almorad A, Ströker E, de Ravel T, Medeiros-Domingo A, Sieira J, Haugaa KH, Brugada P, La Meir M, Auricchio A, Chierchia GB, Van Dooren S, de Asmundis C. Genetics in Probands With Idiopathic Ventricular Fibrillation: A Multicenter Study. JACC Clin Electrophysiol 2023; 9:1296-1306. [PMID: 37227348 DOI: 10.1016/j.jacep.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Different genes have been associated with idiopathic ventricular fibrillation (IVF); however, there are no studies correlating genotype with phenotype. OBJECTIVES The aim of this study was to define the genetic background of probands with IVF using large gene panel analysis and to correlate genetics with long-term clinical outcomes. METHODS All consecutive probands with a diagnosis of IVF were included in a multicenter retrospective study. All patients had: 1) IVF diagnosis throughout the follow-up; and 2) genetic analysis with a broad gene panel. All genetic variants were classified as pathogenic/likely pathogenic (P+), variants of unknown significance (VUS) or no variants (NO-V), following current guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. The primary endpoint was occurrence of ventricular arrhythmias (VA). RESULTS Forty-five consecutive patients were included. A variant was found in 12 patients, 3 P+ and 9 VUS carriers. After a mean follow-up time of 105.0 months, there were no deaths and 16 patients (35.6%) experienced a VA. NO-V patients had higher VA free survival during the follow-up, compared with both VUS (72.7% vs 55.6%, log-rank P < 0.001) and P+ (72.7% vs 0%, log-rank P = 0.013). At Cox analysis, P+ or VUS carrier status was a predictor of VA occurrence. CONCLUSIONS In probands with IVF, undergoing genetic analysis with a broad panel, the diagnostic yield for P+ is 6.7%. P+ or VUS carrier status is a predictor of VA occurrence.
Collapse
Affiliation(s)
- Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Anaïs Gauthey
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giulio Conte
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Randy Osei
- Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Brussels, Belgium
| | - Daniela Campanale
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Enrico Baldi
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Berne
- Department of Cardiology, Ospedale Santissima Annunziata, University of Sassari, Sassari, Italy
| | - Alessandro Vicentini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Vergara
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Bisignani
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Vincenzo Miraglia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Marcello Spolverini
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy; Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Paparella
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Ingrid Overeinder
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Thomy de Ravel
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | | | - Juan Sieira
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; University of Oslo, Oslo, Norway
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Mark La Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Angelo Auricchio
- Division of Cardiology, Istituto Cardiocentro Ticino, Ente Cantonale Ospedaliero, Lugano, Switzerland
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sonia Van Dooren
- Centre for Medical Genetics Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium, and European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium.
| |
Collapse
|
19
|
Williams RB, Alam Afsar MN, Tikunova S, Kou Y, Fang X, Somarathne RP, Gyawu RF, Knotts GM, Agee TA, Garcia SA, Losordo LD, Fitzkee NC, Kekenes-Huskey PM, Davis JP, Johnson CN. Human disease-associated calmodulin mutations alter calcineurin function through multiple mechanisms. Cell Calcium 2023; 113:102752. [PMID: 37245392 PMCID: PMC10330910 DOI: 10.1016/j.ceca.2023.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Calmodulin (CaM) is a ubiquitous, calcium-sensing protein that regulates a multitude of processes throughout the body. In response to changes in [Ca2+], CaM modifies, activates, and deactivates enzymes and ion channels, as well as many other cellular processes. The importance of CaM is highlighted by the conservation of an identical amino acid sequence in all mammals. Alterations to CaM amino acid sequence were once thought to be incompatible with life. During the last decade modifications to the CaM protein sequence have been observed in patients suffering from life-threatening heart disease (calmodulinopathy). Thus far, inadequate or untimely interaction between mutant CaM and several proteins (LTCC, RyR2, and CaMKII) have been identified as mechanisms underlying calmodulinopathy. Given the extensive number of CaM interactions in the body, there are likely many consequences for altering CaM protein sequence. Here, we demonstrate that disease-associated CaM mutations alter the sensitivity and activity of the Ca2+-CaM-enhanced serine/threonine phosphatase calcineurin (CaN). Biophysical characterization by circular dichroism, solution NMR spectroscopy, stopped-flow kinetic measurements, and MD simulations provide mechanistic insight into mutation dysfunction as well as highlight important aspects of CaM Ca2+ signal transduction. We find that individual CaM point mutations (N53I, F89L, D129G, and F141L) impair CaN function, however, the mechanisms are not the same. Specifically, individual point mutations can influence or modify the following properties: CaM binding, Ca2+ binding, and/or Ca2+kinetics. Moreover, structural aspects of the CaNCaM complex can be altered in manners that indicate changes to allosteric transmission of CaM binding to the enzyme active site. Given that loss of CaN function can be fatal, as well as evidence that CaN modifies ion channels already associated with calmodulinopathy, our results raise the possibility that altered CaN function contributes to calmodulinopathy.
Collapse
Affiliation(s)
- Ryan B Williams
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Md Nure Alam Afsar
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A
| | - Yongjun Kou
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A
| | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood Illinois 60153, U.S.A
| | - Radha P Somarathne
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Rita F Gyawu
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Garrett M Knotts
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Taylor A Agee
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Sara A Garcia
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Luke D Losordo
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood Illinois 60153, U.S.A
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A.
| | - Christopher N Johnson
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A; Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville TN 37232, U.S.A.
| |
Collapse
|
20
|
Bergeman AT, Postema PG, Wilde AAM, van der Werf C. Pharmacological treatment of short-coupled idiopathic ventricular fibrillation: A review. Indian Pacing Electrophysiol J 2023; 23:77-83. [PMID: 36933619 PMCID: PMC10160784 DOI: 10.1016/j.ipej.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Short-coupled idiopathic ventricular fibrillation (IVF) is a subtype of IVF in which episodes of polymorphic ventricular tachycardia or ventricular fibrillation are initiated by short-coupled premature ventricular contractions (PVCs). Our understanding of the pathophysiology is evolving, with evidence suggesting that these malignant PVCs originate from the Purkinje system. In most cases, the genetic underpinning has not been identified. Whereas the implantation of an implantable cardioverter-defibrillator is uncontroversial, the choice of pharmacological treatment is the subject of discussion. In this review, we summarize the available knowledge on pharmacological therapy in short-coupled IVF and provide our recommendations for management of patients with this syndrome.
Collapse
Affiliation(s)
- A T Bergeman
- Heart Centre, Department of Cardiology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - P G Postema
- Heart Centre, Department of Cardiology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - A A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - C van der Werf
- Heart Centre, Department of Cardiology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
21
|
Life-threatening arrhythmogenic CaM mutations disrupt CaM binding to a distinct RyR2 CaM-binding pocket. Biochim Biophys Acta Gen Subj 2023; 1867:130313. [PMID: 36693454 DOI: 10.1016/j.bbagen.2023.130313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.
Collapse
|
22
|
McCoy MD, Ullah A, Lederer WJ, Jafri MS. Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte. Biomolecules 2022; 13:72. [PMID: 36671457 PMCID: PMC9855640 DOI: 10.3390/biom13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.
Collapse
Affiliation(s)
- Matthew D. McCoy
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
23
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
24
|
Jain N, Nagaich U, Pandey M, Chellappan DK, Dua K. Predictive genomic tools in disease stratification and targeted prevention: a recent update in personalized therapy advancements. EPMA J 2022; 13:561-580. [PMID: 36505888 PMCID: PMC9727029 DOI: 10.1007/s13167-022-00304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
In the current era of medical revolution, genomic testing has guided the healthcare fraternity to develop predictive, preventive, and personalized medicine. Predictive screening involves sequencing a whole genome to comprehensively deliver patient care via enhanced diagnostic sensitivity and specific therapeutic targeting. The best example is the application of whole-exome sequencing when identifying aberrant fetuses with healthy karyotypes and chromosomal microarray analysis in complicated pregnancies. To fit into today's clinical practice needs, experimental system biology like genomic technologies, and system biology viz., the use of artificial intelligence and machine learning is required to be attuned to the development of preventive and personalized medicine. As diagnostic techniques are advancing, the selection of medical intervention can gradually be influenced by a person's genetic composition or the cellular profiling of the affected tissue. Clinical genetic practitioners can learn a lot about several conditions from their distinct facial traits. Current research indicates that in terms of diagnosing syndromes, facial analysis techniques are on par with those of qualified therapists. Employing deep learning and computer vision techniques, the face image assessment software DeepGestalt measures resemblances to numerous of disorders. Biomarkers are essential for diagnostic, prognostic, and selection systems for developing personalized medicine viz. DNA from chromosome 21 is counted in prenatal blood as part of the Down's syndrome biomarker screening. This review is based on a detailed analysis of the scientific literature via a vigilant approach to highlight the applicability of predictive diagnostics for the development of preventive, targeted, personalized medicine for clinical application in the framework of predictive, preventive, and personalized medicine (PPPM/3 PM). Additionally, targeted prevention has also been elaborated in terms of gene-environment interactions and next-generation DNA sequencing. The application of 3 PM has been highlighted by an in-depth analysis of cancer and cardiovascular diseases. The real-time challenges of genome sequencing and personalized medicine have also been discussed.
Collapse
Affiliation(s)
- Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, 201303 UP India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, 201303 UP India
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031 India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
25
|
Postrigan AE, Babushkina NP, Svintsova LI, Plotnikova IV, Skryabin NA. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Wang M, Tu X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front Cardiovasc Med 2022; 9:891399. [PMID: 35783865 PMCID: PMC9240357 DOI: 10.3389/fcvm.2022.891399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmia without structural heart disease is an arrhythmic disorder that occurs in structurally normal heart and no transient or reversible arrhythmia factors, such as electrolyte disorders and myocardial ischemia. Ventricular arrhythmias without structural heart disease can be induced by multiple factors, including genetics and environment, which involve different genetic and epigenetic regulation. Familial genetic analysis reveals that cardiac ion-channel disorder and dysfunctional calcium handling are two major causes of this type of heart disease. Genome-wide association studies have identified some genetic susceptibility loci associated with ventricular tachycardia and ventricular fibrillation, yet relatively few loci associated with no structural heart disease. The effects of epigenetics on the ventricular arrhythmias susceptibility genes, involving non-coding RNAs, DNA methylation and other regulatory mechanisms, are gradually being revealed. This article aims to review the knowledge of ventricular arrhythmia without structural heart disease in genetics, and summarizes the current state of epigenetic regulation.
Collapse
|
27
|
Sarcoplasmic Reticulum Ca2+ Dysregulation in the Pathophysiology of Inherited Arrhythmia: An Update. Biochem Pharmacol 2022; 200:115059. [DOI: 10.1016/j.bcp.2022.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
28
|
Krahn AD, Tfelt-Hansen J, Tadros R, Steinberg C, Semsarian C, Han HC. Latent Causes of Sudden Cardiac Arrest. JACC Clin Electrophysiol 2022; 8:806-821. [PMID: 35738861 DOI: 10.1016/j.jacep.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Abstract
Inherited arrhythmia syndromes are a common cause of apparently unexplained cardiac arrest or sudden cardiac death. These include long QT syndrome and Brugada syndrome, with a well-recognized phenotype in most patients with sufficiently severe disease to lead to cardiac arrest. Less common and typically less apparent conditions that may not be readily evident include catecholaminergic polymorphic ventricular tachycardia, short QT syndrome and early repolarization syndrome. In cardiac arrest patients whose extensive testing does not reveal an underlying etiology, a diagnosis of idiopathic ventricular fibrillation or short-coupled ventricular fibrillation is assigned. This review summarizes our current understanding of the less common inherited arrhythmia syndromes and provides clinicians with a practical approach to diagnosis and management.
Collapse
Affiliation(s)
- Andrew D Krahn
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Christian Steinberg
- Institut universitaire de cardiologie et pneumologie de Québec (IUCPQ-UL), Laval University, Inherited Arrhythmia Services, Départment of Cardiology and Cardiac Surgery, Québec, Canada
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Hui-Chen Han
- Center for Cardiovascular Innovation, Heart Rhythm Services, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada; Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
30
|
Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord 2021; 20:1793-1805. [PMID: 34900826 DOI: 10.1007/s40200-021-00840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Purpose Personalized medicine (PM) is the concept of managing patients based on their characteristics, including genotypes. In the field of cardiology, advantages of PM could be found in the diagnosis and treatment of several conditions such as arrhythmias and cardiomyopathies; moreover, it may be beneficial to prevent adverse drug reactions (ADR) and select the best medication. Genetic background can help us in selecting effective treatments, appropriate dose requirements, and preventive strategies in individuals with particular genotypes. Method In this review, we provide examples of personalized medicine based on human genetics for the most used pharmaceutics in cardiology, including warfarin, clopidogrel, and statins. We also review cardiovascular diseases, including coronary artery disease, arrhythmia, and cardiomyopathies. Conclusion Genetic factors are as important as environmental factors and they should be tested and evaluated more in the future by improving in genetic testing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00840-0.
Collapse
Affiliation(s)
- Ali Sheikhy
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Fallahzadeh
- Research Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghaei Meybodi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Masih Tajdini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Hosseini
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Tsai WC, Chen PS, Rubart M. Calmodulinopathy in inherited arrhythmia syndromes. Tzu Chi Med J 2021; 33:339-344. [PMID: 34760628 PMCID: PMC8532581 DOI: 10.4103/tcmj.tcmj_182_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that controls and regulates key cellular functions. In all vertebrates, three CaM genes located on separate chromosomes encode an identical 149 amino acid protein, implying an extraordinarily high level of evolutionary importance and suggesting that CaM mutations would be possibly fatal. Inherited arrhythmia syndromes comprise a spectrum of primary electrical disorders caused by mutations in genes encoding ion channels or associated proteins leading to various cardiac arrhythmias, unexplained syncope, and sudden cardiac death. CaM mutations have emerged as an independent entity among inherited arrhythmia syndromes, referred to as calmodulinopathies. The most common clinical presentation associated with calmodulinopathy is congenital long QT syndrome, followed by catecholaminergic polymorphic ventricular tachycardia, both of which significantly increase the possibility of repeated syncope, lethal arrhythmic events, and sudden cardiac death, especially in young individuals. Here, we aim to give an overview of biochemical and structural characteristics of CaM and progress toward updating current known CaM mutations and associated clinical phenotypes. We also review the possible mechanisms underlying calmodulinopathy, based on several key in vitro studies. We expect that further experimental studies are needed to explore the complexity of calmodulinopathy.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Peng-Sheng Chen
- Department of Cardiology, Cedar-Sinai Medical Center, Los Angeles, CA, USA
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
33
|
Steinberg C, Davies B, Mellor G, Tadros R, Laksman ZW, Roberts JD, Green M, Alqarawi W, Angaran P, Healey J, Sanatani S, Leather R, Seifer C, Fournier A, Duff H, Gardner M, McIntyre C, Hamilton R, Simpson CS, Krahn AD. Short-coupled ventricular fibrillation represents a distinct phenotype among latent causes of unexplained cardiac arrest: a report from the CASPER registry. Eur Heart J 2021; 42:2827-2838. [PMID: 34010395 DOI: 10.1093/eurheartj/ehab275] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS The term idiopathic ventricular fibrillation (IVF) describes survivors of unexplained cardiac arrest (UCA) without a specific diagnosis after clinical and genetic testing. Previous reports have described a subset of IVF individuals with ventricular arrhythmia initiated by short-coupled trigger premature ventricular contractions (PVCs) for which the term short-coupled ventricular fibrillation (SCVF) has been proposed. The aim of this article is to establish the phenotype and frequency of SCVF in a large cohort of UCA survivors. METHODS AND RESULTS We performed a multicentre study including consecutive UCA survivors from the CASPER registry. Short-coupled ventricular fibrillation was defined as otherwise unexplained ventricular fibrillation initiated by a trigger PVC with a coupling interval of <350 ms. Among 364 UCA survivors, 24/364 (6.6%) met diagnostic criteria for SCVF. The diagnosis of SCVF was obtained in 19/24 (79%) individuals by documented ventricular fibrillation during follow-up. Ventricular arrhythmia was initiated by a mean PVC coupling interval of 274 ± 32 ms. Electrical storm occurred in 21% of SCVF probands but not in any UCA proband (P < 0.001). The median time to recurrent ventricular arrhythmia in SCVF was 31 months. Recurrent ventricular fibrillation resulted in quinidine administration in 12/24 SCVF (50%) with excellent arrhythmia control. CONCLUSION Short-coupled ventricular fibrillation is a distinct primary arrhythmia syndrome accounting for at least 6.6% of UCA. As documentation of ventricular fibrillation onset is necessary for the diagnosis, most cases are diagnosed at the time of recurrent arrhythmia, thus the true prevalence of SCVF remains still unknown. Quinidine is effective in SCVF and should be considered as first-line treatment for patients with recurrent episodes.
Collapse
Affiliation(s)
- Christian Steinberg
- Cardiac Electrophysiology Service, Department of Cardiology and Cardiac Surgery, Institut universitaire de cardiologie et pneumologie de Québec, Laval University, 2725, Chemin Ste-Foy, Quebec, QC G1V 4G5, Canada
| | - Brianna Davies
- Heart Rhythm Services, Department of Medicine, St-Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Greg Mellor
- Cardiac Electrophysiology Service, Royal Papworth Hospital, Cambridge, UK
| | - Rafik Tadros
- Section of Cardiac Electrophysiology, Montreal Heart Institute, University of Montreal, Montreal, QC, Canada
| | - Zachary W Laksman
- Heart Rhythm Services, Department of Medicine, St-Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Martin Green
- Cardiac Electrophysiology Service, Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Wael Alqarawi
- Cardiac Electrophysiology Service, Ottawa Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Paul Angaran
- Cardiac Arrhythmia Service, St-Michael's Hospital, Toronto, ON, Canada
| | - Jeffrey Healey
- Arrhythmia Services Hamilton Health Sciences, Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | - Richard Leather
- Cardiac Electrophysiology Service, Royal Jubilee Hospital, Victoria, BC, Canada
| | - Colette Seifer
- St-Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Anne Fournier
- Division of Pediatric Cardiology, Department of Pediatrics, Centre Hospitalier Universitaire de Sainte-Justine, Montreal, QC, Canada
| | - Henry Duff
- Division of Cardiology, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Martin Gardner
- Cardiac Electrophysiology Service, QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Ciorsti McIntyre
- Cardiac Electrophysiology Service, QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Robert Hamilton
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Andrew D Krahn
- Heart Rhythm Services, Department of Medicine, St-Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Berchtold MW, Munk M, Kulej K, Porth I, Lorentzen L, Panina S, Zacharias T, Larsen MR, la Cour JM. The heart arrhythmia-linked D130G calmodulin mutation causes premature inhibitory autophosphorylation of CaMKII. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119119. [PMID: 34391760 DOI: 10.1016/j.bbamcr.2021.119119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) is well known for transmitting Ca2+-signals, which leads to a multitude of physiological responses. Its functionality is believed to involve CaMKII holoenzyme dynamics where trans-autophosphorylation of the crucial phosphorylation site, T286 occurs. Phosphorylation of this site does not occur when stimulated exclusively with the arrhythmia associated D130G mutant form of CaM in vitro. Here, we present evidence that the loss-of-CaMKII function correlates with premature phosphorylation of its inhibitory phosphosite T306 in CaMKIIα and T307 in CaMKIIδ as this site was up to 20-fold more phosphorylated in the presence of D130G CaM compared to wildtype CaM. Indeed, changing this phosphosite to a non-phosphorylatable alanine reversed the inhibitory effect of D130G both in vitro and in live cell experiments. In addition, several phosphosites with so far undescribed functions directing the Ca2+-sensitivity of the CaMKII sensor were also affected by the presence of the D130G mutation implicating a role of several additional autophosphosites (besides T286 and T306/T307) so far not known to regulate CaMKII Ca2+ sensitivity. Furthermore, we show that introducing a D130G mutation in the CALM2 gene of the P19CL6 pluripotent mouse embryonic carcinoma cell line using CRISPR/Cas9 decreased the spontaneous beat frequency compared to wildtype cells when differentiated into cardiomyocytes supporting an alteration of cardiomyocyte physiology caused by this point mutation. In conclusion, our observations shed for the first time light on how the D130G CaM mutation interferes with the function of CaMKII and how it affects the beating frequency of cardiomyocyte-like cells.
Collapse
Affiliation(s)
| | - Mads Munk
- Department of Biology, University of Copenhagen, Denmark
| | - Katarzyna Kulej
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Isabel Porth
- Department of Biology, University of Copenhagen, Denmark
| | - Lasse Lorentzen
- Department of Biology, University of Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Denmark; MonTa Biosciences ApS, Diplomvej 381, 2800 kgs Lyngby, Denmark
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Jonas M la Cour
- Department of Biology, University of Copenhagen, Denmark; ChemoMetec A/S, Gydevang 43, 3450 Lillerød, Denmark
| |
Collapse
|
35
|
Conte G, Giudicessi JR, Ackerman MJ. Idiopathic ventricular fibrillation: the ongoing quest for diagnostic refinement. Europace 2021; 23:4-10. [PMID: 33038214 DOI: 10.1093/europace/euaa211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/03/2020] [Indexed: 11/13/2022] Open
Abstract
Prior to the recognition of distinct clinical entities, such as Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and long QT syndrome, all sudden cardiac arrest (SCA) survivors with ventricular fibrillation (VF) and apparently structurally normal hearts were labelled as idiopathic ventricular fibrillation (IVF). Over the last three decades, the definition of IVF has changed substantially, mostly as result of the identification of the spectrum of SCA-predisposing genetic heart diseases (GHDs), and the molecular evidence, by post-mortem genetic analysis (aka, the molecular autopsy), of cardiac channelopathies as the pathogenic basis for up to 35% of unexplained cases of sudden cardiac death (SCD) in the young. The evolution of the definition of IVF over time has led to a progressively greater awareness of the need for an extensive diagnostic assessment in unexplained SCA survivors. Nevertheless, GHDs are still underdiagnosed among SCA survivors, due to the underuse of pharmacological challenges (i.e. sodium channel blocker test), misrecognition of electrocardiogram (ECG) abnormalities/patterns (i.e. early repolarization pattern or exercise-induced ventricular bigeminy) or errors in the measurement of ECG parameters (e.g. the heart-rate corrected QT interval). In this review, we discuss the epidemiology, diagnostic approaches, and the controversies related to role of the genetic background in unexplained SCA survivors with a default diagnosis of IVF.
Collapse
Affiliation(s)
- Giulio Conte
- Division of Cardiology, Cardiocentro Ticino, via Tesserete 48, 6900, Lugano, Switzerland.,Faculty of Biomedical Sciences, USI, Lugano, Switzerland.,Centre for Computational Medicine in Cardiology, Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
| | - John R Giudicessi
- Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN, USA.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric & Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN, USA.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric & Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Giudicessi JR, Ye D, Stutzman MJ, Zhou W, Tester DJ, Ackerman MJ. Prevalence and electrophysiological phenotype of rare SCN5A genetic variants identified in unexplained sudden cardiac arrest survivors. Europace 2021; 22:622-631. [PMID: 32091595 DOI: 10.1093/europace/euz337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS To determine the prevalence and in vitro electrophysiological (EP) phenotype of ultra-rare SCN5A variants of uncertain significance (VUS) identified in unexplained sudden cardiac arrest (SCA) survivors. METHODS AND RESULTS Retrospective review of 73 unexplained SCA survivors was used to identify all patients that underwent a form of genetic testing that included comprehensive SCN5A analysis. Ultra-rare SCN5A variants (minor allele frequency < 0.005) were adjudicated according to the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines. Variants designated as VUS were expressed heterologously and characterized using the whole-cell patch clamp technique. Overall, 60/73 (82%; the average age at SCA 28 ± 12 years) unexplained SCA survivors had received SCN5A genetic testing. Of these, 5/60 (8.3%) had an ultra-rare SCN5A variant. All SCN5A variants were classified as VUS. Whereas the single SCN5A VUS (p.Asp872Asn-SCN5A) identified in an unexplained SCA survivor with PR interval prolongation and inferior early repolarization conferred a loss-of-function phenotype (46.2% reduction in peak current density; 16 ms slower recovery from inactivation), the four other SCN5A VUS (p.Glu30Gly-SCN5A, p.Gln245Lys-SCN5A, p.Pro648Leu-SCN5A, and p.Glu1240Gln-SCN5A) identified in unexplained SCA survivors without early repolarization/conduction delay were indistinguishable from wild-type Nav1.5 channels. CONCLUSION In the absence of a phenotype(s) potentially attributable to sodium channel dysfunction, all SCN5A VUS identified in unexplained SCA survivors conferred a wild-type EP phenotype in vitro. As the background rate of SCN5A genetic variation is not trivial, great care must be taken to avoid prioritizing genotype over phenotype when attempting to ascertain the root cause of an individual's SCA.
Collapse
Affiliation(s)
- John R Giudicessi
- Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN, USA
| | - Dan Ye
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa J Stutzman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei Zhou
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Guggenheim 501, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
38
|
McCoy MD, Hamre J, Klimov DK, Jafri MS. Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations. Biophys J 2020; 120:189-204. [PMID: 33333034 DOI: 10.1016/j.bpj.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.
Collapse
Affiliation(s)
- Matthew D McCoy
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington DC; School of Systems Biology, George Mason University, Manassas, Virginia.
| | - John Hamre
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - M Saleet Jafri
- School of Systems Biology, George Mason University, Manassas, Virginia; Krasnow Institute for Advanced Study, Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, Virginia.
| |
Collapse
|
39
|
Brohus M, Arsov T, Wallace DA, Jensen HH, Nyegaard M, Crotti L, Adamski M, Zhang Y, Field MA, Athanasopoulos V, Baró I, Ribeiro de Oliveira-Mendes BB, Redon R, Charpentier F, Raju H, DiSilvestre D, Wei J, Wang R, Rafehi H, Kaspi A, Bahlo M, Dick IE, Chen SRW, Cook MC, Vinuesa CG, Overgaard MT, Schwartz PJ. Infanticide vs. inherited cardiac arrhythmias. Europace 2020; 23:441-450. [PMID: 33200177 PMCID: PMC7947592 DOI: 10.1093/europace/euaa272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/28/2023] Open
Abstract
AIMS In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.
Collapse
Affiliation(s)
- Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Todor Arsov
- Department of Immunology and Infectious Disease, Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, Acton 2601, Australia,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Wallace
- Department of Immunology and Infectious Disease, Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, Acton 2601, Australia
| | - Helene Halkjær Jensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Via Pier Lombardo, 22, 20135 Milan, Italy,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marcin Adamski
- Biology Teaching and Learning Centre, Research School of Biology and John Curtin School of Medical Research, The Australian National University, Canberra, Acton 2601, Australia
| | - Yafei Zhang
- NGS Team, Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Acton 2601, Australia
| | - Matt A Field
- Department of Immunology and Infectious Disease, Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, Acton 2601, Australia,Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, Acton 2601, Australia
| | - Isabelle Baró
- Université de Nantes, CNRS, INSERM, L’institut du Thorax, F-44000 Nantes, France
| | | | - Richard Redon
- Université de Nantes, CNRS, INSERM, L’institut du Thorax, F-44000 Nantes, France
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, L’institut du Thorax, F-44000 Nantes, France
| | - Hariharan Raju
- Cardiology Department, Faculty of Medicine, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Deborah DiSilvestre
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Antony Kaspi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, Victoria 3052, Australia,Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sui Rong Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, Acton 2601, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, Acton 2601, Australia,Corresponding authors. +39 0255000408/9. E-mail address: (P.J.S.); Tel +45 9940 8525. E-mail address: (M.T.O.); Tel +61 432130556. E-mail address: (C.G.V.)
| | - Michael Toft Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark,Corresponding authors. +39 0255000408/9. E-mail address: (P.J.S.); Tel +45 9940 8525. E-mail address: (M.T.O.); Tel +61 432130556. E-mail address: (C.G.V.)
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Via Pier Lombardo, 22, 20135 Milan, Italy,Corresponding authors. +39 0255000408/9. E-mail address: (P.J.S.); Tel +45 9940 8525. E-mail address: (M.T.O.); Tel +61 432130556. E-mail address: (C.G.V.)
| |
Collapse
|
40
|
Crotti L, Spazzolini C, Tester DJ, Ghidoni A, Baruteau AE, Beckmann BM, Behr ER, Bennett JS, Bezzina CR, Bhuiyan ZA, Celiker A, Cerrone M, Dagradi F, De Ferrari GM, Etheridge SP, Fatah M, Garcia-Pavia P, Al-Ghamdi S, Hamilton RM, Al-Hassnan ZN, Horie M, Jimenez-Jaimez J, Kanter RJ, Kaski JP, Kotta MC, Lahrouchi N, Makita N, Norrish G, Odland HH, Ohno S, Papagiannis J, Parati G, Sekarski N, Tveten K, Vatta M, Webster G, Wilde AAM, Wojciak J, George AL, Ackerman MJ, Schwartz PJ. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J 2020; 40:2964-2975. [PMID: 31170290 DOI: 10.1093/eurheartj/ehz311] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Calmodulinopathies are rare life-threatening arrhythmia syndromes which affect mostly young individuals and are, caused by mutations in any of the three genes (CALM 1-3) that encode identical calmodulin proteins. We established the International Calmodulinopathy Registry (ICalmR) to understand the natural history, clinical features, and response to therapy of patients with a CALM-mediated arrhythmia syndrome. METHODS AND RESULTS A dedicated Case Report File was created to collect demographic, clinical, and genetic information. ICalmR has enrolled 74 subjects, with a variant in the CALM1 (n = 36), CALM2 (n = 23), or CALM3 (n = 15) genes. Sixty-four (86.5%) were symptomatic and the 10-year cumulative mortality was 27%. The two prevalent phenotypes are long QT syndrome (LQTS; CALM-LQTS, n = 36, 49%) and catecholaminergic polymorphic ventricular tachycardia (CPVT; CALM-CPVT, n = 21, 28%). CALM-LQTS patients have extremely prolonged QTc intervals (594 ± 73 ms), high prevalence (78%) of life-threatening arrhythmias with median age at onset of 1.5 years [interquartile range (IQR) 0.1-5.5 years] and poor response to therapies. Most electrocardiograms (ECGs) show late onset peaked T waves. All CALM-CPVT patients were symptomatic with median age of onset of 6.0 years (IQR 3.0-8.5 years). Basal ECG frequently shows prominent U waves. Other CALM-related phenotypes are idiopathic ventricular fibrillation (IVF, n = 7), sudden unexplained death (SUD, n = 4), overlapping features of CPVT/LQTS (n = 3), and predominant neurological phenotype (n = 1). Cardiac structural abnormalities and neurological features were present in 18 and 13 patients, respectively. CONCLUSION Calmodulinopathies are largely characterized by adrenergically-induced life-threatening arrhythmias. Available therapies are disquietingly insufficient, especially in CALM-LQTS. Combination therapy with drugs, sympathectomy, and devices should be considered.
Collapse
Affiliation(s)
- Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Carla Spazzolini
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Alice Ghidoni
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Alban-Elouen Baruteau
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,L'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Britt-Maria Beckmann
- Department of Medicine I, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Elijah R Behr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | | | - Connie R Bezzina
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Zahurul A Bhuiyan
- Unité de Recherche Cardiogénétique, Service de Médecine Génétique, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alpay Celiker
- Department of Pediatric Cardiology, Koc University School of Medicine, Istanbul, Turkey
| | - Marina Cerrone
- Cardiovascular Genetics Program, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Federica Dagradi
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Gaetano M De Ferrari
- Division of Cardiology, "Città della Salute e della Scienza di Torino" Hospital, Department of Medical Sciences, University of Turin, Italy.,PhD Program in Translational Medicine, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Susan P Etheridge
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT, USA
| | - Meena Fatah
- The Labatt Family Heart Centre and Pediatrics (Cardiology), The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Pablo Garcia-Pavia
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, CIBERCV, Madrid, Spain.,University Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Saleh Al-Ghamdi
- Cardiac Sciences Department, Section of Pediatric Cardiology, King Abdulaziz Cardiac Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Robert M Hamilton
- The Labatt Family Heart Centre and Pediatrics (Cardiology), The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Zuhair N Al-Hassnan
- Cardiovascular Genetic Program, Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Juan Jimenez-Jaimez
- Cardiology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | | | - Juan P Kaski
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Maria-Christina Kotta
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Najim Lahrouchi
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute and Omics Research Center, Osaka, Japan
| | - Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Hans H Odland
- Department of Pediatric Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - John Papagiannis
- Division of Cardiology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Nicole Sekarski
- Paediatric Cardiology Unit, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Matteo Vatta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Invitae Corporation, San Francisco, CA, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arthur A M Wilde
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Julianne Wojciak
- Department of Genomic Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| |
Collapse
|
41
|
Saljic A, Muthukumarasamy KM, la Cour JM, Boddum K, Grunnet M, Berchtold MW, Jespersen T. Impact of arrhythmogenic calmodulin variants on small conductance Ca 2+ -activated K + (SK3) channels. Physiol Rep 2020; 7:e14210. [PMID: 31587513 PMCID: PMC6778599 DOI: 10.14814/phy2.14210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+‐sensing protein regulating many important cellular processes. Several CaM‐associated variants have been identified in a small group of patients with cardiac arrhythmias. The mechanism remains largely unknown, even though a number of ion channels, including the ryanodine receptors and the L‐type calcium channels have been shown to be functionally affected by the presence of mutant CaM. CaM is constitutively bound to the SK channel, which underlies the calcium‐gated ISK contributing to cardiac repolarization. The CaM binding to SK channels is essential for gating, correct assembly, and membrane expression. To elucidate the effect of nine different arrhythmogenic CaM variants on SK3 channel function, HEK293 cells stably expressing SK3 were transiently co‐transfected with CaMWT or variant and whole‐cell patch‐clamp recordings were performed with a calculated free Ca2+ concentration of 400 nmol/L. MDCK cells were transiently transfected with SK3 and/or CaMWT or variant to address SK3 and CaM localization by immunocytochemistry. The LQTS‐associated variants CaMD96V, CaMD130G, and CaMF142L reduced ISK,Ca compared with CaMWT (P < 0.01, P < 0.001, and P < 0.05, respectively). The CPVT associated variant CaMN54I also reduced the ISK,Ca (P < 0.05), which was linked to an accumulation of SK3/CaMN54I channel complexes in intracellular compartments (P < 0.05). The CPVT associated variants, CaMA103V and CaMD132E only revealed a tendency toward reduced current, while the variants CaMF90L and CaMN98S, causing LQTS syndrome, did not have any impact on ISK,Ca. In conclusion, we found that the arrhythmogenic CaM variants CaMN54I, CaMD96V, CaMD130G, and CaMF142L significantly down‐regulate the SK3 channel current, but with distinct mechanism.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Marstrand la Cour
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Werner Berchtold
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Abstract
The serine/threonine phosphatase calcineurin acts as a crucial connection between calcium signaling the phosphorylation states of numerous important substrates. These substrates include, but are not limited to, transcription factors, receptors and channels, proteins associated with mitochondria, and proteins associated with microtubules. Calcineurin is activated by increases in intracellular calcium concentrations, a process that requires the calcium sensing protein calmodulin binding to an intrinsically disordered regulatory domain in the phosphatase. Despite having been studied for around four decades, the activation of calcineurin is not fully understood. This review largely focuses on what is known about the activation process and highlights aspects that are currently not understood. Video abstract.
Collapse
Affiliation(s)
- Trevor P Creamer
- Center for Structural Biology, Department of Molecular & Cellular Biochemistry, 741 S. Limestone Street, Lexington, KY, 40536-0509, USA.
| |
Collapse
|
43
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace 2020; 22:1147-1148. [PMID: 32538434 PMCID: PMC7400488 DOI: 10.1093/europace/euaa065] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São, Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo-São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, USA
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women s Hospital and Harvard Medical School, Boston, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- Los Angeles UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine, at UCLA, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
44
|
Beghi S, Cavaliere F, Buschini A. Gene polymorphisms in calcium-calmodulin pathway: Focus on cardiovascular disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108325. [PMID: 33339582 DOI: 10.1016/j.mrrev.2020.108325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease is the leading cause of death in industrialized countries and affects an increasing number of people. Several risk factors play an important role in the etiology of this disease, such as an unhealthy lifestyle. It is increasingly clear that genetic factors influencing the molecular basis of excitation-contraction mechanisms in the heart could contribute to modify the individual's risk. Thanks to the progress that has been made in understanding calcium signaling in the heart, it is assumed that calmodulin can play a crucial role in the excitation-contraction coupling. In fact, calmodulin (CaM) binds calcium and consequently regulates calcium channels. Several works show how some polymorphic variants can be considered predisposing factors to complex pathologies. Therefore, we hypothesize that the identification of polymorphic variants of proteins involved in the CaM pathway could be important for understanding how genetic traits can influence predisposition to myocardial infarction. This review considers each pathway of the three different isoforms of calmodulin (CaM1; CaM2; CaM3) and focuses on some common proteins involved in the three pathways, with the aim of analyzing the polymorphisms studied in the literature and understanding if they are associated with cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Beghi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy
| | - Francesca Cavaliere
- University of Parma, Department of Food and Drug, Parco Area Delle Scienze 17A, 43124, Parma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy.
| |
Collapse
|
45
|
Wleklinski MJ, Kannankeril PJ, Knollmann BC. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J Physiol 2020; 598:2817-2834. [PMID: 32115705 PMCID: PMC7699301 DOI: 10.1113/jp276757] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced cardiac channelopathy that has a high mortality in untreated patients. Our understanding has grown tremendously since CPVT was first described as a clinical syndrome in 1995. It is now established that the deadly arrhythmias are caused by unregulated 'pathological' calcium release from the sarcoplasmic reticulum (SR), the major calcium storage organelle in striated muscle. Important questions remain regarding the molecular mechanisms that are responsible for the pathological calcium release, regarding the tissue origin of the arrhythmic beats that initiate ventricular tachycardia, and regarding optimal therapeutic approaches. At present, mutations in six genes involved in SR calcium release have been identified as the genetic cause of CPVT: RYR2 (encoding ryanodine receptor calcium release channel), CASQ2 (encoding cardiac calsequestrin), TRDN (encoding triadin), CALM1, CALM2 and CALM3 (encoding identical calmodulin protein). Here, we review each CPVT subtype and how CPVT mutations alter protein function, RyR2 calcium release channel regulation, and cellular calcium handling. We then discuss research and hypotheses surrounding the tissue mechanisms underlying CPVT, such as the pathophysiological role of sinus node dysfunction in CPVT, and whether the arrhythmogenic beats originate from the conduction system or the ventricular working myocardium. Finally, we review the treatments that are available for patients with CPVT, their efficacy, and how therapy could be improved in the future.
Collapse
Affiliation(s)
- Matthew J Wleklinski
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Prince J Kannankeril
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bjӧrn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Sabri MR, Gharipour M, Tayebi N, Sadeghian L, Javanmard SH, Sarrafzadegan N. Determining genetic variants in children and adolescents suffering from tetralogy of Fallot with a positive family history: methodology. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020096. [PMID: 33525261 PMCID: PMC7927530 DOI: 10.23750/abm.v91i4.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 12/08/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Congenital heart disease (CHD) affects near 1% of all live births and is considered to be the main reason of morbidity and mortality in early childhood. In this study, we investigated molecular genetics factors associated with Tetralogy of Fallot (TOF) using high throughput technologies in the consanguineous families with at least 2 affected individual. METHOD This family study started in March 2017 to May 2018 in pediatric cardiovascular research center, Cardiovascular Research Institute, Isfahan, Iran. After obtaining informed consent, we invited families who had at least 2 individuals in one generation or previous generations with familial marriage history and they were included in the study. Genomic DNA was extracted from peripheral blood lymphocytes of the patient and samples were investigated for structural variations such as deletion or duplication in the genome using single nucleotide polymorphism array (SNP array). In the next step, if the SNP array is negative, next generation study will be performed in the propend and after analyzing the raw data and filtering for rare pathogenic variants. RESULTS In this study, totally 5 families were evaluated. All affected and unaffected individuals of each family included in the pedigree. This study comprised 14 subjects (9 males and 5 females; 8.92 ± 6.21 years old). Baseline characteristics and clinical data of the study subjects are presented in Table 1. The prevalence of consanguineous marriage is 92.2% among parents, 71.4% among mother grandparents and 28.6% among father grandparents. 64.3 % of our participants have sibling with similar disease. The prevalence of atrial septal defect (ASD), ventricular septal defect (VSD), and arrhythmia and TOF was 7.1%. CONCLUSION We found some families with 2 or more CHD and with a high rate of consanguineous marriage and probably suffering from a genetic predisposition. We aim to exam them further with next generation study (NGS) to find any genetic defect and then to exam other CHD's in our region. Key words: gene mutations, children, adolescents, tetralogy of Fallot, family history.
Collapse
Affiliation(s)
- Mohammad Reza Sabri
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran .
| | - Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Naeimeh Tayebi
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran .
| | - Ladan Sadeghian
- Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran .
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
47
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Diez GR, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm 2020; 17:e269-e316. [PMID: 32553607 DOI: 10.1016/j.hrthm.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, New York, USA; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology "Ignacio Chavez," Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, California, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
48
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, S Lim H, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Molano LFP, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. J Arrhythm 2020; 36:553-607. [PMID: 32782627 PMCID: PMC7411224 DOI: 10.1002/joa3.12338] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Alberto Alfie
- Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina
| | - Serge Boveda
- Department of Cardiology Clinique Pasteur Toulouse France
| | - Nikolaos Dagres
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Dario Di Toro
- Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina
| | - Lee L Eckhardt
- Department of Medicine University of Wisconsin-Madison Madison WI USA
| | - Kenneth Ellenbogen
- Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA
| | - Carina Hardy
- Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil
| | - Takanori Ikeda
- Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA
| | - Andrew Krahn
- Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada
| | - Kengo Kusano
- Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Valentina Kutyifa
- University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary
| | - Han S Lim
- Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico
| | - Hui-Nam Pak
- Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico
| | - William Sauer
- Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA
| | - Anil Saxena
- Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands
| | | | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA
| | - Arthur Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - T Jared Bunch
- Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alfred E Buxton
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gonzalo Calvimontes
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Tze-Fan Chao
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Lars Eckardt
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Heidi Estner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Anne M Gillis
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Rodrigo Isa
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Josef Kautzner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philippe Maury
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Joshua D Moss
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gi-Byung Nam
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Brian Olshansky
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Luis Fernando Pava Molano
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mauricio Pimentel
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mukund Prabhu
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Wendy S Tzou
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philipp Sommer
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Janice Swampillai
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alejandro Vidal
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Thomas Deneke
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gerhard Hindricks
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Christophe Leclercq
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| |
Collapse
|
49
|
Nyegaard M, Overgaard MT. The International Calmodulinopathy Registry: recording the diverse phenotypic spectrum of un-CALM hearts. Eur Heart J 2020; 40:2976-2978. [PMID: 31280324 PMCID: PMC6748712 DOI: 10.1093/eurheartj/ehz463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
50
|
Su J, Gao Q, Yu L, Sun X, Feng R, Shao D, Yuan Y, Zhu Z, Sun X, Kameyama M, Hao L. The LQT-associated calmodulin mutant E141G induces disturbed Ca 2+-dependent binding and a flickering gating mode of the Ca V1.2 channel. Am J Physiol Cell Physiol 2020; 318:C991-C1004. [PMID: 32186935 DOI: 10.1152/ajpcell.00019.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71-59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China.,Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuanxuan Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Yuan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhengnan Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|