1
|
Zhang N, Shi K, Ma S, Zhang X, Duan M, Zhang M, Liu Y, Gao T, Yang H, Ma X, Huang Y, Cheng Y, Qu H, Fan J, Yao Q, Zhan S. Correlation between lipoprotein(a) and recurrent ischemic events post-cerebral vascular stent implantation. J Stroke Cerebrovasc Dis 2024; 33:107882. [PMID: 39038628 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND AND AIM The association of Lipoprotein(a) (Lp[a]) with recurrent ischemic events in stented patients remains uncertain. So, this research aimed to investigate the impact of elevated Lp(a) levels on the occurrence of ischemic events in this specific patient population. METHODS Totally 553 patients who underwent intracranial or extracranial artery stent implantation were included. Baseline data were collected and postoperative ischemic outcomes were followed up. Cox regression analysis was used to investigate the association between Lp(a) and outcomes, while accounting for confounding factors. Finally, we established prediction models based on nomogram. RESULTS Of total 553 patients, a number of 107 (19.3%) experienced outcomes. These included 46 cases (25.4%) in group with elevated Lp(a) levels (>30 mg/dL) and 61 cases (16.4%) in non-elevated group (χ2=6.343, p=0.012). The group with elevated Lp(a) was 1.811 times more likely to experience ischemic events than the non-elevated group, each 1 mg/dL increase in Lp(a) resulted in a 1.008-fold increase in the recurrence rate of ischemic events. In addition, sex (male), previous history of coronary heart disease, decreased albumin, elevated very low density lipoprotein cholesterol and poorly controlled risk factors (including blood pressure and blood sugar) were also associated with a high risk of recurrent ischemic events after stent implantation. CONCLUSION Lp(a) elevation was a significant risk factor for ischemic events in symptomatic patients who underwent intracranial or extracranial artery stenting.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Kaili Shi
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Minyu Duan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Mengyuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yixin Liu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Tiantian Gao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Han Yang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xiaodong Ma
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yizhou Huang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jiaxin Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Qingling Yao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
2
|
Ma Z, Zhong J, Tu W, Li S, Chen J. The functions of apolipoproteins and lipoproteins in health and disease. MOLECULAR BIOMEDICINE 2024; 5:53. [PMID: 39465476 PMCID: PMC11513782 DOI: 10.1186/s43556-024-00218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Lipoproteins and apolipoproteins are crucial in lipid metabolism, functioning as essential mediators in the transport of cholesterol and triglycerides and being closely related to the pathogenesis of multiple systems, including cardiovascular. Lipoproteins a (Lp(a)), as a unique subclass of lipoproteins, is a low-density lipoprotein(LDL)-like particle with pro-atherosclerotic and pro-inflammatory properties, displaying high heritability. More and more strong evidence points to a possible link between high amounts of Lp(a) and cardiac conditions like atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis (AS), making it a risk factor for heart diseases. In recent years, Lp(a)'s role in other diseases, including neurological disorders and cancer, has been increasingly recognized. Although therapies aimed at low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) have achieved significant success, elevated Lp(a) levels remain a significant clinical management problem. Despite the limited efficacy of current lipid-lowering therapies, major clinical advances in new Lp(a)-lowering therapies have significantly advanced the field. This review, grounded in the pathophysiology of lipoproteins, seeks to summarize the wide-ranging connections between lipoproteins (such as LDL-C and HDL-C) and various diseases, alongside the latest clinical developments, special emphasis is placed on the pivotal role of Lp(a) in cardiovascular disease, while also examining its future potential and mechanisms in other conditions. Furthermore, this review discusses Lp(a)-lowering therapies and highlights significant recent advances in emerging treatments, advocates for further exploration into Lp(a)'s pathogenic mechanisms and its potential as a therapeutic target, proposing new secondary prevention strategies for high-risk individuals.
Collapse
Affiliation(s)
- Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wei Tu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiliang Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
3
|
Ntaios G, Dalakoti M. Treat the patient, not the disease: The embolic stroke of undetermined source as an opportunity to optimize cardiovascular prevention in a holistic approach. Eur J Intern Med 2024:S0953-6205(24)00431-X. [PMID: 39443247 DOI: 10.1016/j.ejim.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
For any physician treating a patient with a medical condition of unclear etiology, the differential diagnosis aims to identify the actual most probable cause among various potential etiologies, in order to tailor treatment options. In patients with embolic stroke of undetermined source (ESUS), this can be challenging due to the frequent presence of multiple potential embolic sources, raising difficulties to identify the most likely cause. Additionally, despite targeted preventive measures for the presumed embolic source, patients may remain at risk for stroke and cardiovascular events due to other unrecognized or underestimated pathologies. The multi-level complexity and multimorbidity typically associated with ESUS, represents a challenge that requires broad knowledge of the cardiovascular pathophysiology, deep expertise of the available diagnostic and therapeutic options, and interdisciplinary approach. At the same time, it is an ideal opportunity to assess thoroughly the overall cardiovascular status of the patient, which in turn can allow us to optimize therapeutic and preventive strategies in a holistic approach, and prevent future strokes, cardiovascular events and disability through different parallel pathways. In this context, rather than narrowing our perspective on identifying the specific embolic source presumed to be the most likely cause of ESUS, it is crucial to shift our focus from the disease to the patient, and evaluate the overall cardiovascular profile by assessing the risk of all cardiovascular comorbidities present, no matter if causally associated with ESUS or not. In order to bring across these points and more, this article is centred around a clinical case that serves as a starting point to illustrate the holistic approach to the management of patients with ESUS. After all, this is the beauty, the magic and the art of Internal Medicine: to treat the patient, not the disease, the system or the organ.
Collapse
Affiliation(s)
- George Ntaios
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41110, Greece.
| | - Mayank Dalakoti
- Cardiovascular Metabolic Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Health System, Singapore
| |
Collapse
|
4
|
Amstler S, Streiter G, Pfurtscheller C, Forer L, Di Maio S, Weissensteiner H, Paulweber B, Schönherr S, Kronenberg F, Coassin S. Nanopore sequencing with unique molecular identifiers enables accurate mutation analysis and haplotyping in the complex lipoprotein(a) KIV-2 VNTR. Genome Med 2024; 16:117. [PMID: 39380090 PMCID: PMC11462820 DOI: 10.1186/s13073-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Repetitive genome regions, such as variable number of tandem repeats (VNTR) or short tandem repeats (STR), are major constituents of the uncharted dark genome and evade conventional sequencing approaches. The protein-coding LPA kringle IV type-2 (KIV-2) VNTR (5.6 kb per unit, 1-40 units per allele) is a medically highly relevant example with a particularly intricate structure, multiple haplotypes, intragenic homologies, and an intra-VNTR STR. It is the primary regulator of plasma lipoprotein(a) [Lp(a)] concentrations, an important cardiovascular risk factor. Lp(a) concentrations vary widely between individuals and ancestries. Multiple variants and functional haplotypes in the LPA gene and especially in the KIV-2 VNTR strongly contribute to this variance. METHODS We evaluated the performance of amplicon-based nanopore sequencing with unique molecular identifiers (UMI-ONT-Seq) for SNP detection, haplotype mapping, VNTR unit consensus sequence generation, and copy number estimation via coverage-corrected haplotypes quantification in the KIV-2 VNTR. We used 15 human samples and low-level mixtures (0.5 to 5%) of KIV-2 plasmids as a validation set. We then applied UMI-ONT-Seq to extract KIV-2 VNTR haplotypes in 48 multi-ancestry 1000 Genome samples and analyzed at scale a poorly characterized STR within the KIV-2 VNTR. RESULTS UMI-ONT-Seq detected KIV-2 SNPs down to 1% variant level with high sensitivity, specificity, and precision (0.977 ± 0.018; 1.000 ± 0.0005; 0.993 ± 0.02) and accurately retrieved the full-length haplotype of each VNTR unit. Human variant levels were highly correlated with next-generation sequencing (R2 = 0.983) without bias across the whole variant level range. Six reads per UMI produced sequences of each KIV-2 unit with Q40 quality. The KIV-2 repeat number determined by coverage-corrected unique haplotype counting was in close agreement with droplet digital PCR (ddPCR), with 70% of the samples falling even within the narrow confidence interval of ddPCR. We then analyzed 62,679 intra-KIV-2 STR sequences and explored KIV-2 SNP haplotype patterns across five ancestries. CONCLUSIONS UMI-ONT-Seq accurately retrieves the SNP haplotype and precisely quantifies the VNTR copy number of each repeat unit of the complex KIV-2 VNTR region across multiple ancestries. This study utilizes the KIV-2 VNTR, presenting a novel and potent tool for comprehensive characterization of medically relevant complex genome regions at scale.
Collapse
Affiliation(s)
- Stephan Amstler
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Streiter
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cathrin Pfurtscheller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
de Boer LM, Wiegman A, van Gemert RLA, Hutten BA, Klaassen ILM. The association between lipoprotein(a) levels and ischemic stroke in children: A case-control study. Pediatr Blood Cancer 2024; 71:e31236. [PMID: 39082557 DOI: 10.1002/pbc.31236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Pediatric arterial ischemic stroke (AIS) is a rare disorder, associated with severe morbidity. In adults, elevated lipoprotein(a) (Lp(a)), a cholesterol-like particle, is associated with ischemic stroke. However, data on Lp(a) and pediatric AIS are scarce. Therefore, we evaluated the association between Lp(a) levels and pediatric AIS. METHODS We included children who suffered an AIS (≤18 years) and were treated in a tertiary center in Amsterdam, the Netherlands. Two groups of children with AIS were identified: (i) neonates and (ii) children older than 29 days. A case-control study was performed, with the latter group as cases and children without AIS as control group. Cases and controls were matched for age of Lp(a) testing and sex. Multivariable logistic regression models were used. RESULTS Thirteen neonates and 23 children were included. Mean (SD) age of AIS was 0.6 (2.0) days and 9.2 (6.3) years, respectively. Children with AIS were matched to 62 controls. Lp(a) levels of greater than 50 mg/dL were more prevalent in children with AIS compared to controls (21.7% vs. 3.2%, p = .02). A significant association was found between Lp(a) and AIS (odds ratio [OR] adjusted for age at Lp(a) testing, body mass index [BMI], measurement assay: 1.36 per 10 mg/dL increase of Lp(a), 95% confidence interval [CI]: 1.02-1.82, p = .041). CONCLUSIONS In this study, Lp(a) levels were positively associated with the risk of AIS in children, suggesting that high Lp(a) might be an independent risk factor for AIS. This underlines the importance of Lp(a) measurement in children with AIS.
Collapse
Affiliation(s)
- Lotte M de Boer
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Wiegman
- Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
| | - Robert L A van Gemert
- Pediatrics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Pediatric Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara A Hutten
- Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
| | - Irene L M Klaassen
- Pediatric Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Dalla Vestra M, Grolla E, Autiero G, Presotto F. Peripheral artery disease risk factors: A focus on lipoprotein(a). Arch Cardiovasc Dis 2024; 117:584-589. [PMID: 39227282 DOI: 10.1016/j.acvd.2024.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 09/05/2024]
Abstract
There is a well-established and strong link between high lipoprotein(a) concentration and coronary heart disease, but the evidence regarding peripheral artery disease and carotid atherosclerosis is not as conclusive. This review aims to summarize the relationships between lipoprotein(a), peripheral artery disease and carotid atherosclerosis, in order to try to understand the weight of lipoprotein(a) in determining the development, progression and any complications of atherosclerotic plaque at the carotid and peripheral artery level. There is currently no effective therapy to reduce lipoprotein(a) concentration, but understanding its significance as a vascular risk factor is the starting point to then explore (when effective therapies become available) if there is the possibility, even in patients with peripheral artery disease and carotid atherosclerosis, to achieve better control of the residual vascular risk that is ultimately induced by lipoprotein(a).
Collapse
Affiliation(s)
- Michele Dalla Vestra
- Department of Internal Medicine, Ospedale dell'Angelo, 30174 Mestre-Venezia, Italy.
| | - Elisabetta Grolla
- Department of Cardiology, Ospedale dell'Angelo, 30174 Mestre-Venezia, Italy
| | - Giuliana Autiero
- Department of Internal Medicine, Ospedale dell'Angelo, 30174 Mestre-Venezia, Italy
| | - Fabio Presotto
- Department of Internal Medicine, Ospedale dell'Angelo, 30174 Mestre-Venezia, Italy
| |
Collapse
|
7
|
Nordestgaard BG, Langsted A. Lipoprotein(a) and cardiovascular disease. Lancet 2024; 404:1255-1264. [PMID: 39278229 DOI: 10.1016/s0140-6736(24)01308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024]
Abstract
One in five people are at high risk for atherosclerotic cardiovascular disease and aortic valve stenosis due to high lipoprotein(a). Lipoprotein(a) concentrations are lowest in people from east Asia, Europe, and southeast Asia, intermediate in people from south Asia, the Middle East, and Latin America, and highest in people from Africa. Concentrations are more than 90% genetically determined and 17% higher in post-menopausal women than in men. Individuals at a higher cardiovascular risk should have lipoprotein(a) concentrations measured once in their lifetime to inform those with high concentrations to adhere to a healthy lifestyle and receive medication to lower other cardiovascular risk factors. With no approved drugs to lower lipoprotein(a) concentrations, it is promising that at least five drugs in development lower concentrations by 65-98%, with three currently being tested in large cardiovascular endpoint trials. This Review covers historical perspectives, physiology and pathophysiology, genetic evidence of causality, epidemiology, role in familial hypercholesterolaemia and diabetes, management, screening, diagnosis, measurement, prevention, and future lipoprotein(a)-lowering drugs.
Collapse
Affiliation(s)
- Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Thompson N, Streutker A, Goldhamer AC, Myers TR. Reduction in Lp(a) after a medically supervised, prolonged water-only fast followed by a whole-plant-food diet free of added salt, oil, and sugar: a case report. Front Nutr 2024; 11:1418705. [PMID: 39381355 PMCID: PMC11459402 DOI: 10.3389/fnut.2024.1418705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein (LDL) associated with increased cardiovascular disease (CVD) risk. High Lp(a) levels are genetically determined and lack effective pharmacotherapy. This case report describes a 67-year-old, vegan male with elevated blood pressure (BP), total cholesterol (TC), LDL, and Lp(a) who underwent a 10-day, medically supervised water-only fast followed by a 6-week SOS-free diet (free of added salt, oil, and sugar). At the 6-week-follow-up visit, he experienced significant reductions in several CVD risk markers, including blood pressure, total cholesterol, LDL, and high-sensitivity C-reactive protein. He also experienced an unexpected decrease in Lp(a), from 236.3 nmol/L to 143.4 nmol/L (39%). This decrease is comparable to reductions achieved with proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. These findings suggest that prolonged water-only fasting and/or an SOS-free diet may be an effective alternative approach for managing high Lp(a) levels and reducing CVD risk in a vegan population, warranting further research.
Collapse
|
9
|
Giussani M, Orlando A, Tassistro E, Torresani E, Lieti G, Patti I, Colombrita C, Bulgarelli I, Antolini L, Parati G, Genovesi S. Is lipoprotein(a) measurement important for cardiovascular risk stratification in children and adolescents? Ital J Pediatr 2024; 50:161. [PMID: 39227973 PMCID: PMC11373248 DOI: 10.1186/s13052-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Elevated lipoprotein (Lp(a)) levels are associated with increased risk of atherosclerotic processes and cardiovascular events in adults. The amount of Lp(a) is mainly genetically determined. Therefore, it is important to identify individuals with elevated Lp(a) as early as possible, particularly if other cardiovascular risk factors are present. The purpose of the study was to investigate whether, in a population of children and adolescents already followed for the presence of one or more cardiovascular risk factors (elevated blood pressure (BP), and/or excess body weight, and/or dyslipidemia), the measurement of Lp(a) can be useful for better stratifying their risk profile. METHODS In a sample of 195 children and adolescents, height, body weight, waist circumference and systolic (SBP) and diastolic (DBP) BP were measured. Body Mass Index (BMI) and SBP and DBP z-scores were calculated. Plasma Lp(a), total cholesterol, high-density lipoprotein (HDL), triglycerides, glucose, insulin, uric acid and creatinine were assessed. Low-density lipoprotein (LDL) cholesterol was calculated with the Friedewald formula. High Lp(a) was defined as ≥ 75 nmol/L and high LDL cholesterol as ≥ 3.37 mmol/L. RESULTS Our sample of children and adolescents (54.4% males, mean age 11.5 years) had median LDL cholesterol and Lp(a) values equal to 2.54 (interquartile range, IQR: 2.07-3.06) mmol/L and 22 (IQR: 7.8-68.6) nmol/L respectively. 13.8% of children had LDL cholesterol ≥ 3.37 mmol/L and 22.6 Lp(a) values ≥ 75 nmol/L. Lp(a) values were higher in children of normal weight than in those with excess weight (p = 0.007), but the difference disappeared if normal weight children referred for dyslipidemia only were excluded from the analysis (p = 0.210). 69.4% of children had normal Lp(a) and LDL cholesterol values and only 6.2% showed both elevated Lp(a) and LDL cholesterol levels. However, 16.6% of the sample, despite having normal LDL cholesterol, had elevated Lp(a) values. Multivariable analyses showed a significant association of LDL cholesterol both with Lp(a) values, and with the presence of elevated Lp(a) levels. For each mmol/L increase in LDL cholesterol the risk of having an elevated Lp(a) value increased by 73%. There was an inverse correlation between BMI z-score and Lp(a). Neither BP z-scores, nor other biochemical parameters were associated with Lp(a). CONCLUSIONS In our population more than one out of five children had elevated Lp(a) values, and in about 17% of children elevated Lp(a) values were present in the absence of increased LDL cholesterol. Our results suggest that Lp(a) measurement can be useful to better define the cardiovascular risk profile in children and adolescents already followed for the presence of other cardiovascular risk factors such as elevated BP, excess body weight and high LDL cholesterol.
Collapse
Affiliation(s)
- Marco Giussani
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy.
| | - Antonina Orlando
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy
| | - Elena Tassistro
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Erminio Torresani
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy
| | - Giulia Lieti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilenia Patti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Claudia Colombrita
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy
| | - Ilaria Bulgarelli
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy
| | - Laura Antolini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging (B4 Center), University of Milano-Bicocca, Monza, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Simonetta Genovesi
- Istituto Auxologico Italiano, IRCCS, Via L. Ariosto 13, Milano, 20145, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
10
|
Xiao Y, Yu B, Chao C, Wang S, Hu D, Wu C, Luo Y, Xie L, Li C, Peng D, Zhou Z. Chinese expert consensus on blood lipid management in patients with diabetes (2024 edition). J Transl Int Med 2024; 12:325-343. [PMID: 39360162 PMCID: PMC11444477 DOI: 10.2478/jtim-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Diabetes is a significant independent risk factor for atherosclerotic cardiovascular disease (ASCVD), with dyslipidemia playing a critical role in the initiation and progression of ASCVD in diabetic patients. In China, the current prevalence of dyslipidemia in diabetes is high, but the control rate remains low. Therefore, to enhance lipid management in patients with diabetes, the Endocrinology and Metabolism Physician Branch of the Chinese Medical Doctor Association, in collaboration with the Experts' Committee of the National Society of Cardiometabolic Medicine, has convened experts to develop a consensus on the management of dyslipidemia in patients with type 1 or type 2 diabetes. The development of this consensus is informed by existing practices in lipid management among Chinese diabetic patients, incorporating contemporary evidence-based findings and guidelines from national and international sources. The consensus encompasses lipid profile characteristics, the current epidemiological status of dyslipidemia, ASCVD risk stratification, and lipid management procedures in diabetic patients. For the first time, both low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol have been recommended as primary targets for lipid intervention in diabetic patients. The consensus also includes a summary and recommendations for lipid management strategies in special diabetic populations, including children and adolescents, individuals aged 75 years and older, patients with chronic kidney disease, metabolic-associated fatty liver disease, and those who are pregnant. This comprehensive consensus aims to improve cardiovascular outcomes in diabetic patients by contributing to the dissemination of key clinical advancements and guiding clinical practice.
Collapse
Affiliation(s)
- Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Shuai Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Die Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Chao Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Yonghong Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Chenyu Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Endocrinology and Metabolism Physician Branch of the Chinese Medical Doctor Association
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - National Society of Cardiometabolic Medicine
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| |
Collapse
|
11
|
Baragetti A, Da Dalt L, Norata GD. New insights into the therapeutic options to lower lipoprotein(a). Eur J Clin Invest 2024; 54:e14254. [PMID: 38778431 DOI: 10.1111/eci.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Elevated levels of lipoprotein(a) [Lp(a)] represent a risk factor for cardiovascular disease including aortic valve stenosis, myocardial infarction and stroke. While the patho-physiological mechanisms linking Lp(a) with atherosclerosis are not fully understood, from genetic studies that lower Lp(a) levels protect from CVD independently of other risk factors including lipids and lipoproteins. Hereby, Lp(a) has been considered an appealing pharmacological target. RESULTS However, approved lipid lowering therapies such as statins, ezetimibe or PCSK9 inhibitors have a neutral to modest effect on Lp(a) levels, thus prompting the development of new strategies selectively targeting Lp(a). These include antisense oligonucleotides and small interfering RNAs (siRNAs) directed towards apolipoprotein(a) [Apo(a)], which are in advanced phase of clinical development. More recently, additional approaches including inhibitors of Apo(a) and gene editing approaches via CRISPR-Cas9 technology entered early clinical development. CONCLUSION If the results from the cardiovascular outcome trials, designed to demonstrate whether the reduction of Lp(a) of more than 80% as observed with pelacarsen, olpasiran or lepodisiran translates into the decrease of cardiovascular mortality and major adverse cardiovascular events, will be positive, lowering Lp(a) will become a new additional target in the management of patients with elevated cardiovascular risk.
Collapse
Grants
- RF-2019-12370896 Ministero Della Salute, Ricerca Finalizzata
- Ministero Dell'Università e Della Ricerca, CARDINNOV, ERA4 Health, GAN°101095426, the EU Horizon Europe Research and Innovation Programe
- PRIN-PNRRR2022P202294PHK Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
- PRIN2022KTSAT Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
- NANOKOSEUROPEAID/173691/DD/ACT/XK European Commission
- Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale PNRR Missione 4, Progetto CN3-National Center for Gene Therpay and Drugs based on RNA Technology
- Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale, MUSA-Multilayered Urban Sustainabiliy Action
- PNRR-MAD-2022-12375913 Ministero Dell'Università e Della Ricerca, Progetti di Rilevante Interesse Nazionale
Collapse
Affiliation(s)
- A Baragetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| | - L Da Dalt
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
12
|
Afzal Z, Cao H, Chaudhary M, Chigurupati HD, Neppala S, Alruwaili W, Awad M, Sandesara D, Siddique M, Farman A, Zafrullah F, Gonuguntla K, Sattar Y. Elevated lipoprotein(a) levels: A crucial determinant of cardiovascular disease risk and target for emerging therapies. Curr Probl Cardiol 2024; 49:102586. [PMID: 38653440 DOI: 10.1016/j.cpcardiol.2024.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Cardiovascular disease (CVD) remains a significant global health challenge despite advancements in prevention and treatment. Elevated Lipoprotein(a) [Lp(a)] levels have emerged as a crucial risk factor for CVD and aortic stenosis, affecting approximately 20 of the global population. Research over the last decade has established Lp(a) as an independent genetic contributor to CVD and aortic stenosis, beginning with Kare Berg's discovery in 1963. This has led to extensive exploration of its molecular structure and pathogenic roles. Despite the unknown physiological function of Lp(a), studies have shed light on its metabolism, genetics, and involvement in atherosclerosis, inflammation, and thrombosis. Epidemiological evidence highlights the link between high Lp(a) levels and increased cardiovascular morbidity and mortality. Newly emerging therapies, including pelacarsen, zerlasiran, olpasiran, muvalaplin, and lepodisiran, show promise in significantly lowering Lp(a) levels, potentially transforming the management of cardiovascular disease. However, further research is essential to assess these novel therapies' long-term efficacy and safety, heralding a new era in cardiovascular disease prevention and treatment and providing hope for at-risk patients.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Medicine, Shanxi Medical University, China
| | - Huili Cao
- Department of Cardiology, Second Hospital of Shanxi Medical University, China
| | | | - Himaja Dutt Chigurupati
- Department of Internal Medicine, New York Medical College at Saint Michael's Medical Center, NJ, USA
| | - Sivaram Neppala
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Waleed Alruwaili
- Department of Internal Medicine, West Virginia University, Morgantown, WV, USA
| | - Maan Awad
- Department of Internal Medicine, West Virginia University, Morgantown, WV, USA
| | | | | | - Ali Farman
- Department of Medicine, Corewell Health Dearborn Hospital, Dearborn, MI, USA
| | - Fnu Zafrullah
- Department of Cardiology, Ascension Borgess Hospital, MI, USA
| | | | - Yasar Sattar
- Department of Cardiology, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
13
|
Shiyovich A, Berman AN, Besser SA, Biery DW, Cardoso R, Divakaran S, Singh A, Huck DM, Weber B, Plutzky J, Cannon C, Nasir K, Di Carli MF, Januzzi JL, Bhatt DL, Blankstein R. Lipoprotein(a) as a cardiovascular risk factor among patients with and without diabetes Mellitus: the Mass General Brigham Lp(a) Registry. Cardiovasc Diabetol 2024; 23:257. [PMID: 39026226 PMCID: PMC11264681 DOI: 10.1186/s12933-024-02348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and Lp(a) are well-established predictors of coronary artery disease (CAD) outcomes. However, their combined association remains poorly understood. OBJECTIVE To investigate the relationship between elevated Lp(a) and DM with CAD outcomes. METHODS Retrospective analysis of the MGB Lp(a) Registry involving patients ≥ 18 years who underwent Lp(a) measurements between 2000 and 2019. Exclusion criteria were severe kidney dysfunction, malignant neoplasms, and prior atherosclerotic cardiovascular disease (ASCVD). The primary outcome was a combination of cardiovascular death or myocardial infarction (MI). Elevated Lp(a) was defined as > 90th percentile (≥ 216 nmol/L). RESULTS Among 6,238 patients who met the eligibility criteria, the median age was 54, 45% were women, and 12% had DM. Patients with DM were older, more frequently male, and had a higher prevalence of additional cardiovascular risk factors. Over a median follow-up of 12.9 years, patients with either DM or elevated Lp(a) experienced higher rates of the primary outcome. Notably, those with elevated Lp(a) had a higher incidence of the primary outcome regardless of their DM status. The annual event rates were as follows: No-DM and Lp(a) < 90th% - 0.6%; No-DM and Lp(a) > 90th% - 1.3%; DM and Lp(a) < 90th% - 1.9%; DM and Lp(a) > 90th% - 4.7% (p < 0.001). After adjusting for confounders, elevated Lp(a) remained independently associated with the primary outcome among both patients with DM (HR = 2.66 [95%CI: 1.55-4.58], p < 0.001) and those without DM (HR = 2.01 [95%CI: 1.48-2.74], p < 0.001). CONCLUSIONS Elevated Lp(a) constitutes an independent and incremental risk factor for CAD outcomes in patients with and without DM.
Collapse
Affiliation(s)
- Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam N Berman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie A Besser
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David W Biery
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rhanderson Cardoso
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay Divakaran
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinainder Singh
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M Huck
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Cannon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Khurram Nasir
- Department of Cardiovascular Medicine, Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Marcelo F Di Carli
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Manla Y, AbdelWareth L, Shantouf R, Aljabery Y, St John TL, Sabbour H, Piechowski-Jozwiak B, Almahmeed W. Trends and findings of lipoprotein(a) testing and associated cardiovascular disease profiles: a large single-center study from the Middle East-Gulf region. Front Cardiovasc Med 2024; 11:1439013. [PMID: 39045005 PMCID: PMC11263072 DOI: 10.3389/fcvm.2024.1439013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Background Lipoprotein(a) [Lp(a)] is a genetically determined risk factor for atherosclerotic cardiovascular disease (CVD). Limited data are available on Lp(a) testing from the Middle-East region. Therefore, we aim to evaluate the utilization and yield of Lp(a) testing over time and characterize CVD profiles of patients with abnormal Lp(a) tasting at a single-quaternary-care center in the United Arab Emirates. Methods Unique Lp(a) tests conducted between 07/2017 and 10-2023 were included. Overtime trends in Lp(a) test utilization and abnormal Lp(a) [defined as Lp(a) > 125 nmol/L] test findings were described. CVD rates in patients with abnormal Lp(a) were compared to those with Lp(a) ≤ 125 nmol/L using appropriate methods. Results In our center, 0.95% of the patients (n = 5,677) had their Lp(a) measured, with a median level of 32 [11-82] nmol/L. Lp(a) was abnormal in 15.9% of the tests. Over the years 2018-2022, there was a 109% increase in Lp(a) testing, with concomitant up-trends in findings of abnormal Lp(a) (11.8% to 16.4%, P = 0.02). Compared to patients with Lp(a) ≤ 125 nmol/I, those with abnormal Lp(a) had higher rates of any prevalent CVD (34% vs. 25.1%, P < 0.001), CAD (25.6% vs. 17.7%, P < 0.001), HF (6.5% vs. 3.8%, P < 0.001), and stroke (7.1% vs. 4.4%, P < 0.001). Conclusion Almost one in six patients tested for Lp(a) had abnormally elevated Lp(a), and CVD was prevalent in one-third of the patients who tested abnormal for Lp(a). The study highlights the growing awareness of the relevance of Lp(a) for CVD risk stratification and prevention.
Collapse
Affiliation(s)
- Yosef Manla
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Laila AbdelWareth
- Pathology and Laboratory Medicine Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- National Reference Laboratory, Abu Dhabi, United Arab Emirates
- Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ronney Shantouf
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yazan Aljabery
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Terrence Lee St John
- Research Department, Academic Office, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hani Sabbour
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Wael Almahmeed
- Heart, Vascular and Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Delgado-Lista J, Mostaza JM, Arrobas-Velilla T, Blanco-Vaca F, Masana L, Pedro-Botet J, Perez-Martinez P, Civeira F, Cuende-Melero JI, Gomez-Barrado JJ, Lahoz C, Pintó X, Suarez-Tembra M, Lopez-Miranda J, Guijarro C. Consensus on lipoprotein(a) of the Spanish Society of Arteriosclerosis. Literature review and recommendations for clinical practice. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:243-266. [PMID: 38599943 DOI: 10.1016/j.arteri.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The irruption of lipoprotein(a) (Lp(a)) in the study of cardiovascular risk factors is perhaps, together with the discovery and use of proprotein convertase subtilisin/kexin type 9 (iPCSK9) inhibitor drugs, the greatest novelty in the field for decades. Lp(a) concentration (especially very high levels) has an undeniable association with certain cardiovascular complications, such as atherosclerotic vascular disease (AVD) and aortic stenosis. However, there are several current limitations to both establishing epidemiological associations and specific pharmacological treatment. Firstly, the measurement of Lp(a) is highly dependent on the test used, mainly because of the characteristics of the molecule. Secondly, Lp(a) concentration is more than 80% genetically determined, so that, unlike other cardiovascular risk factors, it cannot be regulated by lifestyle changes. Finally, although there are many promising clinical trials with specific drugs to reduce Lp(a), currently only iPCSK9 (limited for use because of its cost) significantly reduces Lp(a). However, and in line with other scientific societies, the SEA considers that, with the aim of increasing knowledge about the contribution of Lp(a) to cardiovascular risk, it is relevant to produce a document containing the current status of the subject, recommendations for the control of global cardiovascular risk in people with elevated Lp(a) and recommendations on the therapeutic approach to patients with elevated Lp(a).
Collapse
Affiliation(s)
- Javier Delgado-Lista
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Jose M Mostaza
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario La Paz, Madrid, España
| | - Teresa Arrobas-Velilla
- Sociedad Española de Medicina de Laboratorio (SEQCML), Laboratorio de Bioquímica Clínica, Hospital Universitario Virgen Macarena, Sevilla, España
| | - Francisco Blanco-Vaca
- Departamento de Bioquímica Clínica, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona; Departamento de Bioquímica y Biología Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, España
| | - Luis Masana
- Unidad de Medicina Vascular y Metabolismo, Hospital Universitari Sant Joan, Universitat Rovira i Virgili, IISPV, CIBERDEM, Reus, Tarragona, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Barcelona; Departamento de Medicina, Universidad Autónoma de Barcelona, Barcelona, España
| | - Pablo Perez-Martinez
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España
| | - Fernando Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, IIS Aragón, Universidad de Zaragoza, Zaragoza; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, España
| | - Jose I Cuende-Melero
- Consulta de Riesgo Vascular, Servicio de Medicina Interna, Complejo Asistencial Universitario de Palencia, Palencia; Departamento de Medicina, Dermatología y Toxicología, Facultad de Medicina, Universidad de Valladolid, Valladolid, España
| | - Jose J Gomez-Barrado
- Unidad de Cuidados Cardiológicos Agudos y Riesgo Cardiovascular, Servicio de Cardiología, Hospital Universitario San Pedro de Alcántara, Cáceres, España
| | - Carlos Lahoz
- Unidad de Lípidos y Arteriosclerosis, Servicio de Medicina Interna, Hospital La Paz-Carlos III, Madrid, España
| | - Xavier Pintó
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge-Idibell-Universidad de Barcelona-CiberObn, España
| | - Manuel Suarez-Tembra
- Unidad de Lípidos y RCV, Servicio de Medicina Interna, Hospital San Rafael, A Coruña, España
| | - Jose Lopez-Miranda
- Unidad de Lípidos y Aterosclerosis, Servicio de Medicina Interna, Hospital Universitario Reina Sofía; Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba; IMIBIC, Córdoba; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
| | - Carlos Guijarro
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Alcorcón, Madrid, España
| |
Collapse
|
16
|
Akyol O, Yang CY, Woodside DG, Chiang HH, Chen CH, Gotto AM. Comparative Analysis of Atherogenic Lipoproteins L5 and Lp(a) in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 26:317-329. [PMID: 38753254 PMCID: PMC11192678 DOI: 10.1007/s11883-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA
| | - Chao-Yuh Yang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| | - Darren G Woodside
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Huan-Hsing Chiang
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA
| | - Chu-Huang Chen
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA.
| | | |
Collapse
|
17
|
Zhao Y, Wang Z, Ji R, Wang Y, Zhang Y, Yu K. Relationship between carotid atherosclerosis and lipoprotein (a) in patients with acute ischemic stroke. Front Neurol 2024; 15:1383771. [PMID: 38988596 PMCID: PMC11234851 DOI: 10.3389/fneur.2024.1383771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Objective This study aimed to examine the relationship between lipoprotein (a) (Lp[a]) and other blood lipid indexes and carotid artery atherosclerosis in patients with acute ischemic stroke (AIS). Methods A total of 2,018 patients were selected from the hospital "acute stroke intervention and secondary prevention registration database" by identifying blood fat indexes (cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and Lp[a]). Based on the results of carotid artery ultrasound examinations, the patients were divided into a "no plaque" group, comprising 400 patients, a "plaque and no stenosis" group, comprising 1,122 patients and a "carotid stenosis" group, comprising 496 patients. The relationship between Lp(a) and blood lipid indexes and carotid artery atherosclerosis was then investigated using multi-factor logistics regression analysis. Results There were 400 patients (19.8%) with no carotid plaque, 1,122 patients (55.6%) with plaque and no carotid stenosis and 496 patients (24.6%) with carotid stenosis. As the degree of carotid artery atherosclerosis increased, the Lp(a) level gradually increased; Lp(a) and cholesterol were identified as independent risk factors for carotid atherosclerosis. Conclusion Lipoprotein (a) and cholesterol are independent risk factors for patients with AIS with carotid atherosclerosis, and their levels increase with the degree of carotid artery atherosclerosis; therefore, attention should focus on levels of cholesterol and Lp(a) in acute stroke patients to control atherosclerosis effectively.
Collapse
Affiliation(s)
- Yongna Zhao
- Department of Neurology, Renqiu Kangji Hospital, Renqiu, China
| | - Zhichao Wang
- Department of Neurology, Renqiu Kangji Hospital, Renqiu, China
| | - Ruijun Ji
- Department of Neurology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yaguang Zhang
- Department of Neurology, Renqiu Kangji Hospital, Renqiu, China
| | - Kai Yu
- Department of Neurology, Renqiu Kangji Hospital, Renqiu, China
| |
Collapse
|
18
|
Volgman AS, Koschinsky ML, Mehta A, Rosenson RS. Genetics and Pathophysiological Mechanisms of Lipoprotein(a)-Associated Cardiovascular Risk. J Am Heart Assoc 2024; 13:e033654. [PMID: 38879448 PMCID: PMC11255763 DOI: 10.1161/jaha.123.033654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Elevated lipoprotein(a) is a genetically transmitted codominant trait that is an independent risk driver for cardiovascular disease. Lipoprotein(a) concentration is heavily influenced by genetic factors, including LPA kringle IV-2 domain size, single-nucleotide polymorphisms, and interleukin-1 genotypes. Apolipoprotein(a) is encoded by the LPA gene and contains 10 subtypes with a variable number of copies of kringle -2, resulting in >40 different apolipoprotein(a) isoform sizes. Genetic loci beyond LPA, such as APOE and APOH, have been shown to impact lipoprotein(a) levels. Lipoprotein(a) concentrations are generally 5% to 10% higher in women than men, and there is up to a 3-fold difference in median lipoprotein(a) concentrations between racial and ethnic populations. Nongenetic factors, including menopause, diet, and renal function, may also impact lipoprotein(a) concentration. Lipoprotein(a) levels are also influenced by inflammation since the LPA promoter contains an interleukin-6 response element; interleukin-6 released during the inflammatory response results in transient increases in plasma lipoprotein(a) levels. Screening can identify elevated lipoprotein(a) levels and facilitate intensive risk factor management. Several investigational, RNA-targeted agents have shown promising lipoprotein(a)-lowering effects in clinical studies, and large-scale lipoprotein(a) testing will be fundamental to identifying eligible patients should these agents become available. Lipoprotein(a) testing requires routine, nonfasting blood draws, making it convenient for patients. Herein, we discuss the genetic determinants of lipoprotein(a) levels, explore the pathophysiological mechanisms underlying the association between lipoprotein(a) and cardiovascular disease, and provide practical guidance for lipoprotein(a) testing.
Collapse
Affiliation(s)
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine and DentistryWestern UniversityLondonONCanada
| | | | - Robert S. Rosenson
- Metabolism and Lipids Program, Mount Sinai Fuster Heart HospitalIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
19
|
Chen Y, Gue Y, McDowell G, Gorog DA, Lip GYH. Impaired endogenous fibrinolysis status: a potential prognostic predictor in ischemic stroke. Minerva Med 2024; 115:364-379. [PMID: 38727704 DOI: 10.23736/s0026-4806.24.09133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Stroke confers a severe global healthcare burden, hence exploring risk factors for stroke occurrence and prognosis is important for stroke prevention and post-stroke management strategies. Endogenous fibrinolysis is a spontaneous physiological protective mechanism that dissolves thrombus to maintain vascular patency. Recently, impaired endogenous fibrinolysis has been considered as a potential novel cardiovascular risk factor, but its link with ischaemic stroke in the past has been underappreciated. In this review, we summarize the latest mechanisms of endogenous fibrinolysis, review the current evidence and data on endogenous fibrinolysis in ischemic stroke. It includes the structure of thrombus in ischemic stroke patients, the effect of fibrin structure on the endogenous fibrinolytic efficiency, and the association between intravenous thrombolytic therapy and endogenous fibrinolysis in ischemic stroke. It also includes the single factors (tissue plasminogen activator, urokinase plasminogen activator, plasminogen activator inhibitor-1, thrombin activatable fibrinolysis inhibitor, complement component 3, complement component 5, alpha-2-antiplasmin, plasmin-alpha-2-antiplasmin complex, and lipoprotein[a]), and the global assessments of endogenous fibrinolysis status (thromboelastography, rotational thromboelastometry, and global thrombosis test), and their potential as predictors to identify occurrence or unfavorable functional outcomes of ischemic stroke. All of these assessments present advantages and limitations, and we suggest that the global thrombosis test may be more appropriate for detecting impaired endogenous fibrinolysis status in ischemic stroke patients.
Collapse
Affiliation(s)
- Yang Chen
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Ying Gue
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK -
| | - Garry McDowell
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Diana A Gorog
- School of Life and Medical Sciences, Postgraduate Medical School, University of Hertfordshire, Hatfield, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Gregory Y H Lip
- Liverpool Center for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Yang C, Zhu CG, Sui YG, Guo YL, Wu NQ, Dong Q, Xu RX, Qian J, Li JJ. Synergetic impact of lipoprotein(a) and fibrinogen on stroke in coronary artery disease patients. Eur J Clin Invest 2024; 54:e14179. [PMID: 38363025 DOI: 10.1111/eci.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Emerging data suggested that lipoprotein(a) [Lp(a)] is an independent risk factor for atherosclerotic cardiovascular disease. Previous studies indicated fibrinogen (Fib) had synergetic effect on Lp(a)-induced events. However, combined impact of Fib and Lp(a) on ischemic stroke has not been elucidated. METHODS In this prospective study, we consecutively enrolled 8263 patients with stable coronary artery diseases (CAD) from 2011 to 2017. Patients were categorized into three groups according to tertiles of Lp(a) levels [Lp(a)-low, Lp(a)-medium, and Lp(a)-high] and further divided into nine groups by Lp(a) and Fib levels. All subjects were followed up for the occurrence of ischemic stroke. RESULTS During a median follow-up of 37.7 months, 157 (1.9%) ischemic strokes occurred. Stroke incidence increased by Lp(a) (1.1 vs. 2.1 vs. 2.5%, Cochran-Armitage p < .001) and Fib (1.1 vs. 2.0 vs. 2.6%, Cochran-Armitage p < .001) categories. When further classified into nine groups by Lp(a) and Fib levels, the incidence of ischemic stroke in group 9 [Lp(a)-high and Fib-high] was significantly higher than that in group 1 [Lp(a)-low and Fib-low] (3.1 vs. 6%, p < .001). The group 9 was associated with a highest risk for ischemic stroke (adjusted HR 4.907, 95% CI: 2.154-11.18, p < .001), compared with individuals in the Lp(a)-high (adjusted HR 2.290, 95% CI: 1.483-3.537, p < .001) or Fib-high (adjusted HR 1.184, 95% CI: 1.399-3.410, p = .001). Furthermore, combining Lp(a) with Fib increased C-statistics by .045 (p = .004). CONCLUSIONS Current study first demonstrated that elevated Lp(a) combining with Fib evaluation enhanced the risk of ischemic stroke in patients with CAD beyond Lp(a) or Fib alone.
Collapse
Affiliation(s)
- Cheng Yang
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Gang Sui
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na-Qiong Wu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Dong
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Xia Xu
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Qian
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Kaur G, Abdelrahman K, Berman AN, Biery DW, Shiyovich A, Huck D, Garshick M, Blankstein R, Weber B. Lipoprotein(a): Emerging insights and therapeutics. Am J Prev Cardiol 2024; 18:100641. [PMID: 38646022 PMCID: PMC11033089 DOI: 10.1016/j.ajpc.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 04/23/2024] Open
Abstract
The strong association between lipoprotein (a) [Lp(a)] and atherosclerotic cardiovascular disease has led to considerations of Lp(a) being a potential target for mitigating residual cardiovascular risk. While approximately 20 % of the population has an Lp(a) level greater than 50 mg/dL, there are no currently available pharmacological lipid-lowering therapies that have demonstrated substantial reduction in Lp(a). Novel therapies to lower Lp(a) include antisense oligonucleotides and small-interfering ribonucleic acid molecules and have shown promising results in phase 2 trials. Phase 3 trials are currently underway and will test the causal relationship between Lp(a) and ASCVD and whether lowering Lp(a) reduces cardiovascular outcomes. In this review, we summarize emerging insights related to Lp(a)'s role as a risk-enhancing factor for ASCVD, association with calcific aortic stenosis, effects of existing therapies on Lp(a) levels, and variations amongst patient populations. The evolving therapeutic landscape of emerging therapeutics is further discussed.
Collapse
Affiliation(s)
- Gurleen Kaur
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Adam N. Berman
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David W. Biery
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Arthur Shiyovich
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Huck
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Ron Blankstein
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Shiyovich A, Berman AN, Besser SA, Biery DW, Kaur G, Divakaran S, Singh A, Huck DM, Weber B, Plutzky J, Di Carli MF, Nasir K, Cannon C, Januzzi JL, Bhatt DL, Blankstein R. Association of Lipoprotein (a) and Standard Modifiable Cardiovascular Risk Factors With Incident Myocardial Infarction: The Mass General Brigham Lp(a) Registry. J Am Heart Assoc 2024; 13:e034493. [PMID: 38761082 PMCID: PMC11179826 DOI: 10.1161/jaha.123.034493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a robust predictor of coronary heart disease outcomes, with targeted therapies currently under investigation. We aimed to evaluate the association of high Lp(a) with standard modifiable risk factors (SMuRFs) for incident first acute myocardial infarction (AMI). METHODS AND RESULTS This retrospective study used the Mass General Brigham Lp(a) Registry, which included patients aged ≥18 years with an Lp(a) measurement between 2000 and 2019. Exclusion criteria were severe kidney dysfunction, malignant neoplasm, and prior known atherosclerotic cardiovascular disease. Diabetes, dyslipidemia, hypertension, and smoking were considered SMuRFs. High Lp(a) was defined as >90th percentile, and low Lp(a) was defined as <50th percentile. The primary outcome was fatal or nonfatal AMI. A combination of natural language processing algorithms, International Classification of Diseases (ICD) codes, and laboratory data was used to identify the outcome and covariates. A total of 6238 patients met the eligibility criteria. The median age was 54 (interquartile range, 43-65) years, and 45% were women. Overall, 23.7% had no SMuRFs, and 17.8% had ≥3 SMuRFs. Over a median follow-up of 8.8 (interquartile range, 4.2-12.8) years, the incidence of AMI increased gradually, with higher number of SMuRFs among patients with high (log-rank P=0.031) and low Lp(a) (log-rank P<0.001). Across all SMuRF subgroups, the incidence of AMI was significantly higher for patients with high Lp(a) versus low Lp(a). The risk of high Lp(a) was similar to having 2 SMuRFs. Following adjustment for confounders and number of SMuRFs, high Lp(a) remained significantly associated with the primary outcome (hazard ratio, 2.9 [95% CI, 2.0-4.3]; P<0.001). CONCLUSIONS Among patients with no prior atherosclerotic cardiovascular disease, high Lp(a) is associated with significantly higher risk for first AMI regardless of the number of SMuRFs.
Collapse
Affiliation(s)
- Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Adam N. Berman
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Stephanie A. Besser
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - David W. Biery
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Gurleen Kaur
- Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Sanjay Divakaran
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Avinainder Singh
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Daniel M. Huck
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Marcelo F. Di Carli
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - Khurram Nasir
- Division of Cardiovascular Prevention and Wellness, Department of Cardiovascular MedicineHouston Methodist DeBakey Heart and Vascular CenterHoustonTX
| | - Christopher Cannon
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| | - James L. Januzzi
- Cardiology DivisionMassachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical ResearchBostonMA
| | - Deepak L. Bhatt
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Mount Sinai HeartIcahn School of Medicine at Mount Sinai Health SystemNew YorkNY
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
- Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonMA
| |
Collapse
|
23
|
Leistner DM, Laguna-Fernandez A, Haghikia A, Abdelwahed YS, Schatz AS, Erbay A, Roehle R, Fonseca AF, Ferber P, Landmesser U. Impact of elevated lipoprotein(a) on coronary artery disease phenotype and severity. Eur J Prev Cardiol 2024; 31:856-865. [PMID: 38348689 DOI: 10.1093/eurjpc/zwae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 03/19/2024]
Abstract
AIMS A thorough characterization of the relationship between elevated lipoprotein(a) [Lp(a)] and coronary artery disease (CAD) is lacking. This study aimed to quantitatively assess the association of increasing Lp(a) levels and CAD severity in a real-world population. METHODS AND RESULTS This non-interventional, cross-sectional, LipidCardio study included patients aged ≥21 years undergoing angiography (October 2016-March 2018) at a tertiary cardiology centre, who have at least one Lp(a) measurement. The association between Lp(a) and CAD severity was determined by synergy between PCI with taxus and cardiac surgery (SYNTAX)-I and Gensini scores and angiographic characteristics. Overall, 975 patients (mean age: 69.5 years) were included; 70.1% were male, 97.5% had Caucasian ancestry, and 33.2% had a family history of premature atherosclerotic cardiovascular disease. Median baseline Lp(a) level was 19.3 nmol/L. Patients were stratified by baseline Lp(a): 72.9% had < 65 nmol/L, 21.0% had ≥100 nmol/L, 17.2% had ≥125 nmol/L, and 12.9% had ≥150 nmol/L. Compared with the normal (Lp(a) < 65 nmol/L) group, elevated Lp(a) groups (e.g. ≥ 150 nmol/L) had a higher proportion of patients with prior CAD (48.4% vs. 62.7%; P < 0.01), prior coronary revascularization (39.1% vs. 51.6%; P = 0.01), prior coronary artery bypass graft (6.0% vs. 15.1%; P < 0.01), vessel(s) with lesions (68.5% vs. 81.3%; P = 0.03), diffusely narrowed vessels (10.9% vs. 16.5%; P = 0.01) or chronic total occlusion lesions (14.3% vs. 25.2%; P < 0.01), and higher median SYNTAX-I (3.0 vs. 5.5; P = 0.01) and Gensini (10.0 vs. 16.0; P < 0.01) scores. CONCLUSION Elevated Lp(a) was associated with a more severe presentation of CAD. Awareness of Lp(a) levels in patients with CAD may have implications in their clinical management.
Collapse
Affiliation(s)
- David M Leistner
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, DZHK-Geschäftsstelle, Potsdamer Str. 58, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- University Hospital Frankfurt and Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | | | - Arash Haghikia
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, DZHK-Geschäftsstelle, Potsdamer Str. 58, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Youssef S Abdelwahed
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, DZHK-Geschäftsstelle, Potsdamer Str. 58, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anne-Sophie Schatz
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, DZHK-Geschäftsstelle, Potsdamer Str. 58, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Aslihan Erbay
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, DZHK-Geschäftsstelle, Potsdamer Str. 58, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- University Hospital Frankfurt and Wolfgang Goethe University, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Robert Roehle
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ana F Fonseca
- Novartis Pharma AG, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Philippe Ferber
- Novartis Pharma AG, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Berlin, DZHK-Geschäftsstelle, Potsdamer Str. 58, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| |
Collapse
|
24
|
Zhang S, Zhou Y, Wang J, Fu Q, Shen T, Pan G, Luo R, Yang X, Jiang L, Hu H. The Association of High Lipoprotein(a) Concentration and Risk of Ischaemic Stroke in Atrial Fibrillation Patients. Int J Gen Med 2024; 17:2001-2009. [PMID: 38736672 PMCID: PMC11088835 DOI: 10.2147/ijgm.s449400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Background Lipoprotein(a) [Lp(a)] is a well-established risk factor for ischaemic stroke (IS). It is unclear whether Lp(a) is associated with IS in patients with atrial fibrillation (AF). The aim of this study is to explore the association between the concentration of Lp(a) and the risk of IS in AF patients, hope to find the potential risk factor for the IS in AF patients. Methods This study is a retrospective cohort study. The screened AF patients between January 2017 and July 2021 were matched at 1:1 by the propensity score matching (PSM) method in the Second Affiliated Hospital of Nanchang University. Associations between Lp(a) and ischaemic stroke were analysed using logistic regression models, stratified analysis and sensitivity analysis. Statistical analyses were conducted using IBM SPSS software. Results The number of enrolled participates is 2258, which contains 1129 non-AF patients and 1129 AF patients. Among IS patients, the median Lp(a) concentration was higher than that of controls (17.03 vs. 15.36 mg/dL, P = 0.032). The Spearman rank-order correlation coefficients revealed significant positive relationships between IS and Lp(a) (P = 0.032). In addition, a significant increase in IS risk was associated with Lp(a) levels >30.00 mg/dL in unadjusted model [OR:1.263, 95% CI(1.046-1.523), P = 0.015], model 1 [OR:1.284, 95% CI(1.062,1.552), P = 0.010], model 2 [OR: 1.297, 95% CI(1.07,1.573). P = 0.008], and model 3 [OR: 1.290, 95% CI (1.064, 1.562). P = 0.009]. The stratified analysis indicated that this correlation was not affected by female sex [1.484 (1.117, 1.972), P = 0.006], age ≤ 60 [1.864 (1.067-3.254), P=0.029], hypertension [1.359 (1.074, 1.721), P = 0.011], or non-coronary heart disease (CHD) [1.388 (1.108, 1.738), P = 0.004]. Conclusion High levels of Lp(a) were significantly related to IS in AF patients and may be a potential risk factor in the onset of an IS in AF patients.
Collapse
Affiliation(s)
- Siyi Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Yue Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Jinghui Wang
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Qingan Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Tianzhou Shen
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Guanrui Pan
- Department of Clinical Medicine, Queen Mary School of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Renfei Luo
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xinlei Yang
- Department of Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Long Jiang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| | - Hui Hu
- Department of Medical Big Data Center, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People’s Republic of China
| |
Collapse
|
25
|
Xue J, Xiang Y, Jiang X, Jin A, Hao X, Li K, Lin J, Meng X, Li H, Zheng L, Wang Y, Xu J. The joint association of lipoprotein(a) and Lp-PLA2 with the risk of stroke recurrence. J Clin Lipidol 2024:S1933-2874(24)00181-8. [PMID: 38981820 DOI: 10.1016/j.jacl.2024.04.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND PURPOSE Currently little is known about the joint association of lipoprotein (a) [Lp(a)] and Lipoprotein-associated phospholipase A2 (Lp-PLA2) with stroke recurrence. METHODS In this prospective multicenter cohort study, 10,675 consecutive acute ischemic stroke (IS) and transient ischemic attack patients (TIA) with Lp(a) and Lp-PLA2 were enrolled. The association of stroke recurrence within 1 year with Lp(a) and Lp-PLA2 was assessed using Cox proportional hazards models and Kaplan-Meier curves. The interaction between Lp(a) and Lp-PLA2 with stroke recurrence was evaluated by multiplicative and additive scales. RESULTS A significant joint association of Lp(a) and Lp-PLA2 with the risk of stroke recurrence was observed. Multivariate cox regression analysis demonstrated that the combination of elevated Lp(a) (≥ 50 mg/dL) and Lp-PLA2 (≥175.1 ng/ml) was independently associated with the risk of stroke recurrence (adjusted hazard ratio: 1.42; 95 % CI: 1.15-1.76). Both significant multiplicative [(exp(β3):1.63, 95 % CI: 1.17-2.29, P = 0.004] and additive interaction (RERI:0.55, 95 % CI: 0.20-0.90, P = 0.002; AP: 0.39, 95 %CI, 0.24-0.53) were observed between Lp(a) and Lp-PLA2. CONCLUSIONS Our results indicated that Lp(a) and Lp-PLA2 have a joint association with the risk of stroke recurrence in IS/TIA patients. Patients with concomitant presence of elevated Lp(a) and Lp-PLA2 have greater risk of stroke recurrence.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Yukun Xiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Xue Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Xiwa Hao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Department of Neurology, Baotou Center Hospital, Inner Mongolia, China (Dr Hao)
| | - Ke Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu)
| | - Lemin Zheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China (Dr Zheng).
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (Dr Wang).
| | - Jie Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing 100070, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China (Drs Xue, Xiang, Jiang, Jin, Hao, Li, Lin, Meng, Li, Zheng, Wang and Xu); Institutes of Brain Science, Wannan Medical College, Wuhu, Anhui, China (Dr Xu); Department of Neurology, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China (Dr Xu).
| |
Collapse
|
26
|
Bess C, Mehta A, Joshi PH. All we need to know about lipoprotein(a). Prog Cardiovasc Dis 2024; 84:27-33. [PMID: 38759878 DOI: 10.1016/j.pcad.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Lipoprotein(a) [Lp(a)], a genetically determined macromolecular complex, is independently and causally associated with atherosclerotic cardiovascular disease (ASCVD) and calcific aortic stenosis via proposed proinflammatory, prothrombotic, and proatherogenic mechanisms. While Lp(a) measurement standardization issues are being resolved, several guidelines now support testing Lp(a) at least once in each adult's lifetime for ASCVD risk prediction which can foster implementation of more aggressive primary or secondary prevention therapies. Currently, there are several emerging targeted Lp(a) lowering therapies in active clinical investigation for safety and cardiovascular benefit among both primary and secondary prevention populations. First degree relatives of patients with high Lp(a) should be encouraged to undergo cascade screening. Primary prevention patients with high Lp(a) should consider obtaining a coronary calcium score for further risk estimation and to guide further ASCVD risk factor management including consideration of low dose aspirin therapy. Secondary prevention patients with high Lp(a) levels should consider adding PCSK9 inhibition to statin therapy.
Collapse
Affiliation(s)
- Courtney Bess
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX, United States of America; Parkland Health and Hospital System, Dallas, TX, United States of America
| | - Anurag Mehta
- VCU Health Pauley Health Center, Richmond, VA, United States of America
| | - Parag H Joshi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern, Dallas, TX, United States of America; Parkland Health and Hospital System, Dallas, TX, United States of America.
| |
Collapse
|
27
|
Rudin S, Kriemler L, Dittrich TD, Zietz A, Schweizer J, Arnold M, Peters N, Barinka F, Jung S, Arnold M, Fischer U, Rentsch K, Christ-Crain M, Katan M, De Marchis GM. Lipoprotein(a) as a blood marker for large artery atherosclerosis stroke etiology: validation in a prospective cohort from a swiss stroke center. Swiss Med Wkly 2024; 154:3633. [PMID: 38579294 DOI: 10.57187/s.3633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] serum levels are highly genetically determined and promote atherogenesis. High Lp(a) levels are associated with increased cardiovascular morbidity. Serum Lp(a) levels have recently been associated with large artery atherosclerosis (LAA) stroke. We aimed to externally validate this association in an independent cohort. METHODS This study stems from the prospective multicentre CoRisk study (CoPeptin for Risk Stratification in Acute Stroke patients [NCT00878813]), conducted at the University Hospital Bern, Switzerland, between 2009 and 2011, in which Lp(a) plasma levels were measured within the first 24 hours after stroke onset. We assessed the association of Lp(a) with LAA stroke using multivariable logistic regression and performed interaction analyses to identify potential effect modifiers. RESULTS Of 743 patients with ischaemic stroke, 105 (14%) had LAA stroke aetiology. Lp(a) levels were higher for LAA stroke than non-LAA stroke patients (23.0 nmol/l vs 16.3 nmol/l, p = 0.01). Multivariable regression revealed an independent association of log10and#xA0;Lp(a) with LAA stroke aetiology (aOR 1.47 [95% CI 1.03and#x2013;2.09], p = 0.03). The interaction analyses showed that Lp(a) was not associated with LAA stroke aetiology among patients with diabetes. CONCLUSIONS In a well-characterised cohort of patients with ischaemic stroke, we validated the association of higher Lp(a) levels with LAA stroke aetiology, independent of traditional cardiovascular risk factors. These findings may inform randomised clinical trials investigating the effect of Lp(a) lowering agents on cardiovascular outcomes. The CoRisk (CoPeptin for Risk Stratification in Acute Patients) study is registered on ClinicalTrials.gov. REGISTRATION NUMBER NCT00878813.
Collapse
Affiliation(s)
- Salome Rudin
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Internal Medicine, Hospital of Zweisimmen, Zweisimmen, Switzerland
| | - Lilian Kriemler
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Clinic for Internal Medicine, Cantonal Hospital Schaffhausen, Schaffhausen, Switzerland
| | - Tolga D Dittrich
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology and Stroke Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Annaelle Zietz
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Juliane Schweizer
- Department of Neurology, Stadtspital Zürich, Triemli, Zurich, Switzerland
| | - Markus Arnold
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nils Peters
- Department of Neurology and Stroke Center, Hirslanden Hospital Zurich, Zurich, Switzerland
| | - Filip Barinka
- Department of Neurology and Stroke Center, Hirslanden Hospital Zurich, Zurich, Switzerland
| | - Simon Jung
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Urs Fischer
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Katharina Rentsch
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Laboratory Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Endocrinology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mira Katan
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gian Marco De Marchis
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Neurology and Stroke Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
28
|
Moustafa B, Oparowski D, Testai S, Guman I, Trifan G. Efficacy and safety of PCSK9 inhibitors for stroke prevention: Systematic review and meta-analysis. J Stroke Cerebrovasc Dis 2024; 33:107633. [PMID: 38336118 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVE Investigate the efficacy and safety of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) on stroke prevention. BACKGROUND PCSK9i reduce low-density lipoprotein cholesterol (LDL-C) and lipoprotein a (LpA) levels. Their efficacy in reducing the risk of major cardiovascular events has been shown in multiple randomized clinical trials (RCT). However, clinical equipoise remains on the magnitude and mechanisms by which PCSK9i decrease the risk of stroke. METHODS We performed a systematic search of biomedical databases from inception to January 15, 2024, to identify RCTs that investigated the efficacy of PCSK9i versus placebo for major cardiovascular event prevention. The primary outcome was total stroke. The safety outcome was the risk of adverse neurological events, as defined by each trial. Effect size was represented by risk ratio (RR), and analysis was done using random-effects meta-analysis. Heterogeneity was assessed by I2 and Cochrane Q statistics. Meta-regression analyses were performed to assess the association between LDL-C and LpA reduction and stroke risk. RESULTS Overall, 20 studies with 93,093 patients were included. The quality of the evidence was moderate and heterogeneity for all comparisons was low (I2 < 25 %). The mean age was 60.1 years for the PCSK9i group and 59.6 years for the placebo group, with a mean follow-up time of 60.1 weeks. PCSK9i reduced the LDL-C levels by 11 % and LpA levels by 8 %. PCSK9i were associated with a significant reduction in stroke risk (RR 0.75, 95 % CI 0.66-0.86, I2 = 0 %), without an increase in mortality (RR 0.97, 95 % CI 0.87-1.08, I2 = 0 %). The risk of adverse neurological events was similar between groups (RR 0.99, 95 % CI 0.84-1.18, I2 = 11 %). In meta-regression analyses, the stroke risk was not associated with the magnitude of the effect of PCSK9i on LDL-C (LDL C β = -0.01, 95 % CI = -0.03-0.02) and LpA (β = -0.01, 95 % CI = -0.06-0.04) levels. CONCLUSIONS PCSK9i significantly reduced the stroke risk, without increasing mortality or the risk of adverse neurological events. Our findings also suggest that the beneficial effect of PCSK9i on stroke risk is mediated by LDL-C- and LpA-independent mechanisms.
Collapse
Affiliation(s)
- Bayan Moustafa
- Mayo Clinic Health System-Eau Claire, Eau Claire, WI, United States.
| | | | - Sofia Testai
- Latin School of Chicago, Chicago, IL, United States
| | - Ilan Guman
- Glenbrook North High Sch, Northbrook, IL, United States
| | - Gabriela Trifan
- Department of Neurology and Rehabilitation, University of Illinois Chicago, College of Medicine, Chicago, IL, United States
| |
Collapse
|
29
|
Laffin LJ, Nissen SE. Lp(a) - an overlooked risk factor. Trends Cardiovasc Med 2024; 34:193-199. [PMID: 36681362 DOI: 10.1016/j.tcm.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Lipoprotein(a) (Lp(a)) is an increasingly discussed and studied risk factor for atherosclerotic cardiovascular disease and aortic valve stenosis. Many genetic and epidemiological studies support the important causal role that Lp(a) plays in the incidence of cardiovascular disease. Although dependent upon the threshold and unit of measurement of Lp(a), most estimates suggest between 20 and 30% of the world's population have elevated serum levels of Lp(a). Lp(a) levels are predominantly mediated by genetics and are not significantly modified by lifestyle interventions. Efforts are ongoing to develop effective pharmacotherapies to lower Lp(a) and to determine if lowering Lp(a) with these medications ultimately decreases the incidence of adverse cardiovascular events. In this review, the genetics and pathophysiological properties of Lp(a) will be discussed as well as the epidemiological data demonstrating its impact on the incidence of cardiovascular disease. Recommendations for screening and how to currently approach patients with elevated Lp(a) are also noted. Finally, the spectrum of pharmacotherapies under development for Lp(a) lowering is detailed.
Collapse
|
30
|
Berman AN, Biery DW, Besser SA, Singh A, Shiyovich A, Weber BN, Huck DM, Divakaran S, Hainer J, Kaur G, Blaha MJ, Cannon CP, Plutzky J, Januzzi JL, Booth JN, López JAG, Kent ST, Nasir K, Di Carli MF, Bhatt DL, Blankstein R. Lipoprotein(a) and Major Adverse Cardiovascular Events in Patients With or Without Baseline Atherosclerotic Cardiovascular Disease. J Am Coll Cardiol 2024; 83:873-886. [PMID: 38418000 DOI: 10.1016/j.jacc.2023.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). However, whether the optimal Lp(a) threshold for risk assessment should differ based on baseline ASCVD status is unknown. OBJECTIVES The purpose of this study was to assess the association between Lp(a) and major adverse cardiovascular events (MACE) among patients with and without baseline ASCVD. METHODS We studied a retrospective cohort of patients with Lp(a) measured at 2 medical centers in Boston, Massachusetts, from 2000 to 2019. To assess the association of Lp(a) with incident MACE (nonfatal myocardial infarction [MI], nonfatal stroke, coronary revascularization, or cardiovascular mortality), Lp(a) percentile groups were generated with the reference group set at the first to 50th Lp(a) percentiles. Cox proportional hazards modeling was used to assess the association of Lp(a) percentile group with MACE. RESULTS Overall, 16,419 individuals were analyzed with a median follow-up of 11.9 years. Among the 10,181 (62%) patients with baseline ASCVD, individuals in the 71st to 90th percentile group had a 21% increased hazard of MACE (adjusted HR: 1.21; P < 0.001), which was similar to that of individuals in the 91st to 100th group (adjusted HR: 1.26; P < 0.001). Among the 6,238 individuals without established ASCVD, there was a continuously higher hazard of MACE with increasing Lp(a), and individuals in the 91st to 100th Lp(a) percentile group had the highest relative risk with an adjusted HR of 1.93 (P < 0.001). CONCLUSIONS In a large, contemporary U.S. cohort, elevated Lp(a) is independently associated with long-term MACE among individuals with and without baseline ASCVD. Our results suggest that the threshold for risk assessment may be different in primary vs secondary prevention cohorts.
Collapse
Affiliation(s)
- Adam N Berman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/adambermanMD
| | - David W Biery
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie A Besser
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Avinainder Singh
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arthur Shiyovich
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brittany N Weber
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M Huck
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjay Divakaran
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon Hainer
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gurleen Kaur
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, Maryland, USA
| | - Christopher P Cannon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, Massachusetts, USA
| | - John N Booth
- Center for Observational Research, Amgen Inc, Thousand Oaks, California, USA
| | | | - Shia T Kent
- Center for Observational Research, Amgen Inc, Thousand Oaks, California, USA
| | - Khurram Nasir
- Department of Cardiovascular Medicine, Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Marcelo F Di Carli
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai Health System, New York, New York, USA. https://twitter.com/DLBHATTMD
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
31
|
Yuen T, Mancini GJ, Hegele RA, Pearson GJ. Consideration and Application of Lipoprotein(a) in the Risk Assessment of Atherosclerotic Cardiovascular Disease Risk in Adults. CJC Open 2024; 6:597-606. [PMID: 38559332 PMCID: PMC10980900 DOI: 10.1016/j.cjco.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 04/04/2024] Open
Abstract
Lipoprotein(a) (Lp[a]) is an low-density lipoprotein (LDL)-like particle in which apolipoprotein (apo) B is covalently bound to a plasminogen-like molecule called apo(a). A High level of Lp(a) has been demonstrated to be an independent, causal, and prevalent risk factor for atherosclerotic cardiovascular disease (ASCVD), as well as aortic valve disease, through mechanisms that promote atherogenesis, inflammation, and thrombosis. With reliable and accessible assays, Lp(a) level has been established to be associated linearly with the risk for ASCVD. The 2021 Canadian Cardiovascular Society Dyslipidemia Guidelines recommend measuring an Lp(a) level once in a person's lifetime as part of the initial lipid screening. The aim of this review is to provide an update and overview of the utility and application of Lp(a) level in the assessment and treatment of adults at risk for ASCVD, consistent with this guideline recommendation.
Collapse
Affiliation(s)
- Tiffany Yuen
- Faculty of Medicine & Dentistry, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| | - G.B. John Mancini
- University of British Columbia, Department of Medicine, Division of Cardiology, Vancouver, British Columbia, Canada
| | - Robert A. Hegele
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Glen J. Pearson
- Faculty of Medicine & Dentistry, University of Alberta, Mazankowski Alberta Heart Institute, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Karp A, Jacobs M, Barris B, Labkowsky A, Frishman WH. Lipoprotein(a): A Review of Risk Factors, Measurements, and Novel Treatment Modalities. Cardiol Rev 2024:00045415-990000000-00218. [PMID: 38415744 DOI: 10.1097/crd.0000000000000667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The study of lipoprotein(a) [Lp(a)] has long been a source of interest as a possible independent risk factor for atherosclerotic cardiovascular disease (ASCVD). The results of large sample observational studies, genome-wide association studies, and Mendelian randomization studies have been strong indicators supporting the link between ASCVD and Lp(a) despite early studies, with less sensitive assays, failing to show a connection. The recommendations for the indications and frequency of testing Lp(a) levels vary between US, Canadian, and European organizations due to the uncertain role of Lp(a) in ASCVD. The innovation of recent therapies, such as antisense oligonucleotides and small interfering RNA, designed to specifically target and reduce Lp(a) levels by targeting mRNA translation have once more thrust LP(a) into the spotlight of inquiry. These emerging modalities serve the dual purpose of definitively elucidating the connection between elevated Lp(a) levels and atherosclerotic cardiovascular risk, as well as the possibility of providing clinicians with the tools necessary to manage elevated Lp(a) levels in vulnerable populations. This review seeks to examine the mechanisms of atherogenicity of Lp(a) and explore the most current pharmacologic therapies currently in development.
Collapse
Affiliation(s)
- Avrohom Karp
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Menachem Jacobs
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY
| | - Ben Barris
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - Alexander Labkowsky
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | - William H Frishman
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| |
Collapse
|
33
|
Xu Y, Zeng X, Tu WJ. Editorial: Pathophysiology, treatment and rehabilitation of atherosclerosis-related diseases in geriatric population. Front Med (Lausanne) 2024; 11:1358769. [PMID: 38390572 PMCID: PMC10882070 DOI: 10.3389/fmed.2024.1358769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Yan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xianwei Zeng
- Department of Neurosurgery, Rehabilitation Hospital of the National Research Center for Rehabilitation Technical Aids, Beijing, China
- Geriatrics Innovation Center, Weifang People's Hospital, Weifang, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Gyabaah S, Adu-Boakye Y, Sarfo-Kantanka O, Gyan KF, Kokuro C, Agyei M, Akassi J, Tawiah P, Norman B, Ovbiagele B, Sarfo FS. Frequency & factors associated with elevated lipoprotein-a among Ghanaian stroke survivors. J Neurol Sci 2024; 456:122839. [PMID: 38103418 DOI: 10.1016/j.jns.2023.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Indigenous Africans are genetically predisposed to elevated lipoprotein-a (Lp(a)), a veritable risk factor for ischemic stroke. Recent studies have demonstrated the promising efficacy of therapeutic interventions for addressing elevated Lp(a) among patients at high risk of atherosclerotic cardiovascular events. It is important to assess the burden of elevated Lp(a) among stroke survivors of African ancestry aimed at addressing potential unmet therapeutic gaps for optimal secondary prevention. PURPOSE To assess the frequency of elevated lipoprotein-a among Ghanaian stroke survivors and factors associated with it. METHODS A prospective study conducted at the Neurology clinic of the Komfo Anokye Teaching Hospital among ischemic stroke survivors aged ≥18 years. Serum lipoprotein-a concentrations were measured using ELISA kits. A multivariate regression analysis was fitted to identify factors independently associated with elevated lipoprotein-a concentration > 30 mg/dl. RESULTS Among 116 stroke survivors, 35 (30.2%) had elevated Lp(a). The adjusted odds ratio (95% CI) of factors associated with elevated Lp(a) were female sex 3.09 (1.05-9.12), p = 0.04, diabetes mellitus 3.52 (1.32-9.40), p = 0.01, urban dwelling 4.64 (1.61-13.39), p = 0.005 and total cholesterol 1.85 (1.28-2.67), p = 0.001. Whereas the LDL cholesterol significantly decreased from baseline to month 12 among a subset of participants, the Lp(a) levels significantly increased from a baseline value of 29.38 ± 15.32 mg/dl to 40.97 ± 29.72 mg/dl, p = 0.032. CONCLUSION Approximately 1 in 3 Ghanaian ischemic stroke survivors harbor an elevated Lp(a) associated with female sex, urban residence, diabetes mellitus and raised cholesterol. This burden highlights an unmet therapeutic gap in secondary risk reduction in this resource-limited setting.
Collapse
Affiliation(s)
| | - Yaw Adu-Boakye
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Osei Sarfo-Kantanka
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | | | - Collins Kokuro
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Martin Agyei
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - John Akassi
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Phyllis Tawiah
- Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Betty Norman
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | | | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Kwame Nkrumah University of Science & Technology, Kumasi, Ghana.
| |
Collapse
|
35
|
Liang C, Huang C, Nong Z, Li S, Lin M, Qin Z. Correlation between ABCB1 and OLIG2 polymorphisms and the severity and prognosis of patients with cerebral infarction. Open Med (Wars) 2024; 19:20230841. [PMID: 38221931 PMCID: PMC10787307 DOI: 10.1515/med-2023-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 01/16/2024] Open
Abstract
This study investigated the relationship between ATP-binding cassette sub-family B member 1 (ABCB1) and OLIG2 single nucleotide polymorphism (SNP) and neurological injury severity and outcome in cerebral infarction (CI). The neurological injury severity of 298 CI patients was evaluated by the National Institutes of Health Stroke Scale. The prognosis of CI patients at 30 days after admission was evaluated by the modified Rankin Scale. And 322 healthy people were selected as the control group. The SNPs of the ABCB1 gene (rs1045642) and OLIG2 gene (rs1059004 and rs9653711) were detected by TaqMan probe PCR, and the distribution of SNPs genotype was analyzed. SNP rs9653711 was correlated with CI. Recessive models of rs1045642 and rs9653711 were correlated with CI. The genotypes of rs1045642 and rs9653711 and genetic models were associated with CI severity. rs1045642 had no correlation with CI prognosis, while rs9653711 had less correlation. The genotype distribution and recessive model were associated with CI prognosis. SNP rs1059004 was not associated with CI severity and prognosis. Alcohol consumption, hypertension, diabetes, hyperlipidemia, and high levels of homocysteine (HCY) were independent risk factors for CI, while hypertension, hyperlipidemia, and HCY were associated with poor prognosis of CI. ABCB1 rs1045642 and OLOG2 rs9653711 are associated with CI severity.
Collapse
Affiliation(s)
- ChaoYing Liang
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - CuiYan Huang
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - ZhenRu Nong
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - SongLiang Li
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - MinShi Lin
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| | - ZuYe Qin
- Department of Neurology, The First People’s Hospital of Qinzhou, Qinzhou City, Guangxi Zhuang Autonomous Region, 535099, China
| |
Collapse
|
36
|
Mukherjee D, Nissen SE. Lipoprotein (a) as a Biomarker for Cardiovascular Diseases and Potential New Therapies to Mitigate Risk. Curr Vasc Pharmacol 2024; 22:171-179. [PMID: 38141196 DOI: 10.2174/0115701611267835231210054909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Lipoprotein (a) [Lp(a)] is a molecule that induces inflammation of the blood vessels, atherogenesis, valvular calcification, and thrombosis. METHODS We review the available evidence that suggests that high Lp(a) levels are associated with a persisting risk for atherosclerotic cardiovascular diseases despite optimization of established risk factors, including low-density lipoprotein cholesterol (LDL-C) levels. OBSERVATIONS Approximately a quarter of the world population have Lp(a) levels of >50 mg/dL (125 nmol/L), a level associated with elevated cardiovascular risk. Lifestyle modification, statins, and ezetimibe do not effectively lower Lp(a) levels, while proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors and niacin only lower Lp(a) levels modestly. We describe clinical studies suggesting that gene silencing therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotide targeting Lp(a), offer a targeted approach with the potential for safe and robust Lp(a)- lowering with only a few doses (3-4) per year. Prospective randomized phase 3 studies are ongoing to validate safety, effectiveness in improving hard clinical outcomes, and tolerability to assess these therapies. CONCLUSION Several emerging treatments with robust Lp(a)-lowering effects may significantly lower atherosclerotic cardiovascular risk.
Collapse
Affiliation(s)
- Debabrata Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, USA
| | - Steven E Nissen
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Jasti M, Islam S, Steele N, Ivy K, Maimo W, Isiadinso I. Lp(a) and risk of cardiovascular disease - A review of existing evidence and emerging concepts. J Natl Med Assoc 2023:S0027-9684(23)00141-4. [PMID: 38143155 DOI: 10.1016/j.jnma.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death among adults in the United States. There has been significant advancement in the diagnosis and treatment of atherosclerotic cardiovascular disease (ASCVD) and its underlying risk factors. In certain populations, there remains a significant residual risk despite adequate lowering of low-density lipoprotein cholesterol (LDL-C) and control of traditional risk factors. This has led to an interest in research to identify additional risk factors that contribute to atherosclerotic cardiovascular disease. Elevated lipoprotein (a) [Lp(a)] has been identified as an independent risk factor contributing to an increased risk for CVD. There are also ethnic and racial disparities in Lp(a) inheritance that need to be understood. This paper reviews the current literature on lipoprotein a, proposed mechanisms of actions for cardiovascular disease, recommendations for testing, and the current and emerging therapies for lowering Lp(a).
Collapse
Affiliation(s)
- Manasa Jasti
- Division of Cardiology, University of Tennessee Health Science Center/Ascension Saint Thomas, Nashville, TN, United States
| | - Sabrina Islam
- Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nathan Steele
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Kendra Ivy
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, GA, United States
| | - Willibroad Maimo
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Ijeoma Isiadinso
- Division of Cardiology, Department of Medicine, Center for Heart Disease Prevention, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
38
|
Dong W, Zhong X, Yuan K, Miao M, Zhai Y, Che B, Xu T, Xu X, Zhong C. Lipoprotein(a) and functional outcome of acute ischemic stroke when discordant with low-density lipoprotein cholesterol. Postgrad Med J 2023; 99:1160-1166. [PMID: 37624118 DOI: 10.1093/postmj/qgad070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Several studies have indicated that residual cardiovascular risk might be associated with elevated lipoprotein(a) [Lp(a)] even in the setting of controlled low-density lipoprotein cholesterol (LDL-C). We aimed to prospectively examine the association between Lp(a) and unfavorable functional outcome among patients with acute ischemic stroke when Lp(a) and LDL-C were discordant. METHODS Based on samples from the Infectious Factors, Inflammatory Markers and Prognosis of Acute Ischemic Stroke study, 973 patients with baseline plasma Lp(a) levels were included. The primary outcome was the composite outcome of death or major disability (modified Rankin Scale score of 3-6) at 6 months. Logistic regression models were used to estimate the risk for the primary outcome. Discordance analyses were performed, using difference in percentile units (>10 units), to detect the relative risk when Lp(a) and LDL-C were discordant. RESULTS In total, 201 (20.7%) participants experienced major disability or death at 6 months. The multivariable-adjusted odds ratio (OR) for the highest quartile was 1.88 [95% confidence interval (CI): 1.16-3.04] compared with the lowest quartile. Each 1-SD higher log-Lp(a) was associated with a 23% increased risk (95% CI: 2%-47%) for the primary outcome. Compared with the concordant group, the high Lp(a)/low LDL-C discordant group was associated with increased risk for the primary outcome (adjusted OR: 1.59, 95% CI: 1.01-2.52). CONCLUSIONS Elevated plasma Lp(a) levels were associated with increased risk of major disability and death at 6 months. Discordantly high Lp(a)/low LDL-C was associated with an unfavorable functional outcome, supporting the predictive potential of plasma Lp(a) after ischemic stroke, especially when discordant with LDL-C. Key messages What is already known on this topic Previous studies have indicated that a positive association between increased lipoprotein(a) [Lp(a)] and cardiovascular disease risk remained even in patients who achieved controlled low-density lipoprotein cholesterol (LDL-C) levels. The findings of studies exploring the association between Lp(a) and unfavorable clinical outcomes of stroke were inconsistent, and whether Lp(a) can predict the risk of unfavorable functional outcome in stroke patients when Lp(a) and LDL-C levels are discordant remains unknown. What this study adds Elevated plasma Lp(a) levels were associated with increased risk of major disability and death at 6 months beyond LDL-C levels in acute ischemic stroke patients. How this study might affect research, practice, or policy The combination of LDL-C-lowering therapies and Lp(a)-lowering therapies may have better clinical efficacy for patients with ischemic stroke, and it is of great clinical interest to further explore this possibility in dedicated randomized trials.
Collapse
Affiliation(s)
- Wenjing Dong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaoyan Zhong
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Ke Yuan
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Mengyuan Miao
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Yujia Zhai
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
39
|
Pasławska A, Tomasik PJ. Lipoprotein(a)-60 Years Later-What Do We Know? Cells 2023; 12:2472. [PMID: 37887316 PMCID: PMC10605347 DOI: 10.3390/cells12202472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) molecule includes two protein components: apolipoprotein(a) and apoB100. The molecule is the main transporter of oxidized phospholipids (OxPL) in plasma. The concentration of this strongly atherogenic lipoprotein is predominantly regulated by the LPA gene expression. Lp(a) is regarded as a risk factor for several cardiovascular diseases. Numerous epidemiological, clinical and in vitro studies showed a strong association between increased Lp(a) and atherosclerotic cardiovascular disease (ASCVD), calcific aortic valve disease/aortic stenosis (CAVD/AS), stroke, heart failure or peripheral arterial disease (PAD). Although there are acknowledged contributions of Lp(a) to the mentioned diseases, clinicians struggle with many inconveniences such as a lack of well-established treatment lowering Lp(a), and common guidelines for diagnosing or assessing cardiovascular risk among both adult and pediatric patients. Lp(a) levels are different with regard to a particular race or ethnicity and might fluctuate during childhood. Furthermore, the lack of standardization of assays is an additional impediment. The review presents the recent knowledge on Lp(a) based on clinical and scientific research, but also highlights relevant aspects of future study directions that would approach more suitable and effective managing risk associated with increased Lp(a), as well as control the Lp(a) levels.
Collapse
Affiliation(s)
- Anna Pasławska
- Tuchow Health Center, Medical Hospital Laboratory, Szpitalna St. 1, 33-170 Tuchow, Poland;
| | - Przemysław J. Tomasik
- Department of Clinical Biochemistry, Pediatric Institute, College of Medicine, Jagiellonian University, Wielicka St. 265, 30-663 Cracow, Poland
| |
Collapse
|
40
|
Roeters van Lennep JE, Tokgözoğlu LS, Badimon L, Dumanski SM, Gulati M, Hess CN, Holven KB, Kavousi M, Kayıkçıoğlu M, Lutgens E, Michos ED, Prescott E, Stock JK, Tybjaerg-Hansen A, Wermer MJH, Benn M. Women, lipids, and atherosclerotic cardiovascular disease: a call to action from the European Atherosclerosis Society. Eur Heart J 2023; 44:4157-4173. [PMID: 37611089 PMCID: PMC10576616 DOI: 10.1093/eurheartj/ehad472] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women and men globally, with most due to atherosclerotic cardiovascular disease (ASCVD). Despite progress during the last 30 years, ASCVD mortality is now increasing, with the fastest relative increase in middle-aged women. Missed or delayed diagnosis and undertreatment do not fully explain this burden of disease. Sex-specific factors, such as hypertensive disorders of pregnancy, premature menopause (especially primary ovarian insufficiency), and polycystic ovary syndrome are also relevant, with good evidence that these are associated with greater cardiovascular risk. This position statement from the European Atherosclerosis Society focuses on these factors, as well as sex-specific effects on lipids, including lipoprotein(a), over the life course in women which impact ASCVD risk. Women are also disproportionately impacted (in relative terms) by diabetes, chronic kidney disease, and auto-immune inflammatory disease. All these effects are compounded by sociocultural components related to gender. This panel stresses the need to identify and treat modifiable cardiovascular risk factors earlier in women, especially for those at risk due to sex-specific conditions, to reduce the unacceptably high burden of ASCVD in women.
Collapse
Affiliation(s)
- Jeanine E Roeters van Lennep
- Department of Internal Medicine, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu I Santa Pau, Ciber CV, Autonomous University of Barcelona, Barcelona, Spain
| | - Sandra M Dumanski
- Department of Medicine, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, and O’Brien Institute for Public Health, Calgary, Canada
| | - Martha Gulati
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Connie N Hess
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora and CPC Clinical Research Aurora, CO, USA
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, and National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meral Kayıkçıoğlu
- Department of Cardiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva Prescott
- Department of Cardiology, Bispebjerg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51 Gothenburg, Sweden
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte Hospital, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology at University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte Hospital, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Chiesa G, Zenti MG, Baragetti A, Barbagallo CM, Borghi C, Colivicchi F, Maggioni AP, Noto D, Pirro M, Rivellese AA, Sampietro T, Sbrana F, Arca M, Averna M, Catapano AL. Consensus document on Lipoprotein(a) from the Italian Society for the Study of Atherosclerosis (SISA). Nutr Metab Cardiovasc Dis 2023; 33:1866-1877. [PMID: 37586921 DOI: 10.1016/j.numecd.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
AIMS In view of the consolidating evidence on the causal role of Lp(a) in cardiovascular disease, the Italian Society for the Study of Atherosclerosis (SISA) has assembled a consensus on Lp(a) genetics and epidemiology, together with recommendations for its measurement and current and emerging therapeutic approaches to reduce its plasma levels. Data on the Italian population are also provided. DATA SYNTHESIS Lp(a) is constituted by one apo(a) molecule and a lipoprotein closely resembling to a low-density lipoprotein (LDL). Its similarity with an LDL, together with its ability to carry oxidized phospholipids are considered the two main features making Lp(a) harmful for cardiovascular health. Plasma Lp(a) concentrations vary over about 1000 folds in humans and are genetically determined, thus they are quite stable in any individual. Mendelian Randomization studies have suggested a causal role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis and observational studies indicate a linear direct correlation between cardiovascular disease and Lp(a) plasma levels. Lp(a) measurement is strongly recommended once in a patient's lifetime, particularly in FH subjects, but also as part of the initial lipid screening to assess cardiovascular risk. The apo(a) size polymorphism represents a challenge for Lp(a) measurement in plasma, but new strategies are overcoming these difficulties. A reduction of Lp(a) levels can be currently attained only by plasma apheresis and, moderately, with PCSK9 inhibitor treatment. CONCLUSIONS Awaiting the approval of selective Lp(a)-lowering drugs, an intensive management of the other risk factors for individuals with elevated Lp(a) levels is strongly recommended.
Collapse
Affiliation(s)
- Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy.
| | - Maria Grazia Zenti
- Section of Diabetes and Metabolism, Pederzoli Hospital, Peschiera Del Garda, Verona, Italy.
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Carlo M Barbagallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Claudio Borghi
- Department of Cardiovascular Medicine, IRCCS AOU S. Orsola, Bologna, Italy
| | - Furio Colivicchi
- Division of Clinical Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Aldo P Maggioni
- ANMCO Research Center, Heart Care Foundation, Firenze, Italy
| | - Davide Noto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine and Surgery, University of Perugia, Italy
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit, Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Institute of Biophysics, National Council of Researches, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
42
|
Bhatia HS, Hurst S, Desai P, Zhu W, Yeang C. Lipoprotein(a) Testing Trends in a Large Academic Health System in the United States. J Am Heart Assoc 2023; 12:e031255. [PMID: 37702041 PMCID: PMC10547299 DOI: 10.1161/jaha.123.031255] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 09/14/2023]
Abstract
Background Despite its high prevalence and clinical significance, clinical measurement of lipoprotein(a) is rare but has not been systematically quantified. We assessed the prevalence of lipoprotein(a) testing overall, in those with various cardiovascular disease (CVD) conditions and in those undergoing cardiac testing across 6 academic medical centers associated with the University of California, in total and by year from 2012 to 2021. Methods and Results In this observational study, data from the University of California Health Data Warehouse on the number of individuals with unique lipoprotein(a) testing, unique CVD diagnoses (using International Classification of Diseases, Tenth Revision [ICD-10], codes), and other unique cardiac testing were collected. The proportion of total individuals, the proportion of individuals with a given CVD diagnosis, and the proportion of individuals with a given cardiac test and lipoprotein(a) testing any time during the study period were calculated. From 2012 to 2021, there were 5 553 654 unique adults evaluated in the University of California health system, of whom 18 972 (0.3%) had lipoprotein(a) testing. In general, those with lipoprotein(a) testing were more likely to be older, men, and White race, with a greater burden of CVD. Lipoprotein(a) testing was performed in 6469 individuals with ischemic heart disease (2.9%), 836 with aortic stenosis (3.1%), 4623 with family history of CVD (3.3%), 1202 with stroke (1.7%), and 612 with coronary artery calcification (6.1%). For most conditions, the prevalence of testing in the same year as the diagnosis of CVD was relatively stable, with a small upward trend over time. Lipoprotein(a) testing was performed in 10 753 individuals (1.8%) who had lipid panels, with higher rates with more specialized testing, including coronary computed tomography angiography (6.8%) and apolipoprotein B (63.0%). Conclusions Lipoprotein(a) testing persists at low rates, even among those with diagnosed CVD, and remained relatively stable over the study period.
Collapse
Affiliation(s)
- Harpreet S. Bhatia
- Division of Cardiology, Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Samantha Hurst
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California San DiegoLa JollaCA
| | - Paresh Desai
- Altman Clinical and Translational Research Institute, University of California San DiegoLa JollaCA
| | - Wenhong Zhu
- Altman Clinical and Translational Research Institute, University of California San DiegoLa JollaCA
| | - Calvin Yeang
- Division of Cardiology, Department of MedicineUniversity of California San DiegoLa JollaCA
| |
Collapse
|
43
|
Vinci P, Di Girolamo FG, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Altamura N, Pirulli A, Zaccari M, Biasinutto C, Roni C, Fiotti N, Schincariol P, Mangogna A, Biolo G. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6721. [PMID: 37754581 PMCID: PMC10531345 DOI: 10.3390/ijerph20186721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Nicola Altamura
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Alessia Pirulli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Michele Zaccari
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Chiara Roni
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| |
Collapse
|
44
|
Chemello K, Gallo A, Guedon AF, Techer R, Croyal M, Swietek MJ, Meilhac O, Amarenco P, Lambert G. Lipoprotein(a): A Residual Cardiovascular Risk Factor in Statin-Treated Stroke Survivors: Insights From the SPARCL Trial. JACC. ADVANCES 2023; 2:100557. [PMID: 38939496 PMCID: PMC11198425 DOI: 10.1016/j.jacadv.2023.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2024]
Abstract
Background In the SPARCL (Stroke Prevention by Aggressive Reduction in Cholesterol levels) trial, atorvastatin (80 mg/d) was compared to placebo in patients with recent stroke or transient ischemic attack (TIA) and no known coronary artery disease. Objectives This study aimed to assess the contribution of lipoprotein(a) [Lp(a)] to subsequent cerebrovascular and cardiovascular events in stroke/TIA survivors. Methods Lp(a) levels and apolipoprotein(a) [apo(a)] isoform size were determined by liquid-chromatography mass spectrometry in samples collected at baseline from 2,814 SPARCL participants (1,418 randomized to atorvastatin and 1,396 to placebo). Within each treatment arm, patients in the highest quartile (≥84.0 nmol/L) were compared with those in the lowest quartiles of Lp(a) concentrations. Patients in the lowest quartile (≤25.9 Kringle IV domains) of apo(a) isoform sizes were compared with those in the highest quartiles. Multivariable-adjusted HRs were calculated using Cox proportional regression models. Results There was no significant association between Lp(a) concentrations or apo(a) isoform sizes and the risk of recurrent stroke, the primary outcome of SPARCL, or cerebrovascular events in patients randomized to atorvastatin or placebo. In contrast, in patients randomized to atorvastatin, elevated Lp(a) concentrations and short apo(a) isoforms were positively and independently associated with an increased risk of coronary events (HR: 1.607 [95% CI: 1.007-2.563] and HR: 2.052 [95% CI: 1.303-3.232]). No such association was found in patients randomized to placebo (HR: 1.025 [95% CI: 0.675-1.555] and HR: 1.097 [95% CI: 0.735-1.637]). Conclusions Lp(a) contributes to the residual coronary artery disease risk of statin-treated stroke/TIA survivors, paving the way for use of therapies targeting Lp(a) in this population with stroke. (Lipitor In The Prevention Of Stroke, For Patients Who Have Had A Previous Stroke [SPARCL]; NCT00147602).
Collapse
Affiliation(s)
- Kévin Chemello
- Inserm, UMR1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Sainte-Pierre, France
| | - Antonio Gallo
- Inserm, UMR1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Sainte-Pierre, France
- Department of Endocrinology and Prevention of Cardiovascular Disease, Institute of Cardio Metabolism and Nutrition (ICAN), Sorbonne Université Pitié-Salpêtrière Hospital, SU-APHP, Paris, France
| | - Alexis F. Guedon
- APHP, Service de Médecine Interne, Département Hospitalo-Universitaire Inflammation Immunopathologie Biothérapie (DMUi3), Sorbonne Université, Paris, France
| | - Romuald Techer
- Inserm, UMR1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Sainte-Pierre, France
| | - Mikael Croyal
- CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes Université, Nantes, France
- CHU Nantes, CNRS, Inserm, Institut du Thorax, Nantes Université, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | | | - Olivier Meilhac
- Inserm, UMR1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Sainte-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Pierre Amarenco
- INSERM 1148, Bichat Stroke Centre, Paris Université, Paris, France
| | - Gilles Lambert
- Inserm, UMR1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Sainte-Pierre, France
| |
Collapse
|
45
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bulfone L, Vacca A, Bertin N, Vivarelli C, Comand J, Catena C, Sechi LA. Lipoprotein(a): Just an Innocent Bystander in Arterial Hypertension? Int J Mol Sci 2023; 24:13363. [PMID: 37686169 PMCID: PMC10487946 DOI: 10.3390/ijms241713363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Elevated plasma lipoprotein(a) [Lp(a)] is a relatively common and highly heritable trait conferring individuals time-dependent risk of developing atherosclerotic cardiovascular disease (CVD). Following its first description, Lp(a) triggered enormous scientific interest in the late 1980s, subsequently dampened in the mid-1990s by controversial findings of some prospective studies. It was only in the last decade that a large body of evidence has provided strong arguments for a causal and independent association between elevated Lp(a) levels and CVD, causing renewed interest in this lipoprotein as an emerging risk factor with a likely contribution to cardiovascular residual risk. Accordingly, the 2022 consensus statement of the European Atherosclerosis Society has suggested inclusion of Lp(a) measurement in global risk estimation. The development of highly effective Lp(a)-lowering drugs (e.g., antisense oligonucleotides and small interfering RNA, both blocking LPA gene expression) which are still under assessment in phase 3 trials, will provide a unique opportunity to reduce "residual cardiovascular risk" in high-risk populations, including patients with arterial hypertension. The current evidence in support of a specific role of Lp(a) in hypertension is somehow controversial and this narrative review aims to overview the general mechanisms relating Lp(a) to blood pressure regulation and hypertension-related cardiovascular and renal damage.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
| | - Jacopo Comand
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (L.B.); (A.V.); (N.B.); (C.V.); (J.C.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
46
|
Nurmohamed NS, Moriarty PM, Stroes ESG. Considerations for routinely testing for high lipoprotein(a). Curr Opin Lipidol 2023; 34:174-179. [PMID: 35942815 PMCID: PMC10328534 DOI: 10.1097/mol.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Lipoprotein (a) [Lp(a)] is a likely causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and aortic valve disease, confirmed by Mendelian randomization. With reliable assays, it has been established that Lp(a) is linearly associated with ASCVD. Current low-density lipoprotein cholesterol (LDL-C) lowering therapies do not or minimally lower Lp(a). This review focuses on the clinical importance and therapeutic consequences of Lp(a) measurement. RECENT FINDINGS Development of RNA-based Lp(a) lowering therapeutics has positioned Lp(a) as one of the principal residual risk factors to target in the battle against lipid-driven ASCVD risk. Pelacarsen, which is a liver-specific antisense oligonucleotide, has shown Lp(a) reductions up to 90% and its phase 3 trial is currently underway. Olpasiran is a small interfering RNA targeting LPA messenger RNA, which is being investigated in phase 2 and has already shown dose-dependent Lp(a) reductions up to 90%. SUMMARY Lp(a) should be measured in every patient at least once to identify patients with very high Lp(a) levels. These patients could benefit from Lp(a) lowering therapies when approved. In the meantime, therapy in high Lp(a) patients should focus on further reducing LDL-C and other ASCVD risk factors.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Patrick M Moriarty
- Atherosclerosis and Lipid-apheresis Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erik SG Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
47
|
Zhang Z, Dai W, Zhu W, Rodriguez M, Lund H, Xia Y, Chen Y, Rau M, Schneider EA, Graham MB, Jobe S, Wang D, Cui W, Wen R, Whiteheart SW, Wood JP, Silverstein R, Berger JS, Kreuziger LB, Barrett TJ, Zheng Z. Plasma tissue-type plasminogen activator is associated with lipoprotein(a) and clinical outcomes in hospitalized patients with COVID-19. Res Pract Thromb Haemost 2023; 7:102164. [PMID: 37680312 PMCID: PMC10480648 DOI: 10.1016/j.rpth.2023.102164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/09/2023] Open
Abstract
Background Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Wen Zhu
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Diversity Summer Health-Related Research Education Program (DSHREP), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yuhe Xia
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary Rau
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ellen Anje Schneider
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mary Beth Graham
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shawn Jobe
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Center for Bleeding and Clotting Disorders, Michigan State University, Lansing, Michigan, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Renren Wen
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Divison of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Lexington, Kentucky, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Divison of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, Lexington, Kentucky, USA
| | - Roy Silverstein
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffery S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Department of Surgery, New York University Langone Health, New York, New York, USA
| | - Lisa Baumann Kreuziger
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
48
|
Colantonio LD, Goonewardena SN, Wang Z, Jackson EA, Farkouh ME, Li M, Malick W, Kent ST, López JAG, Muntner P, Bittner V, Rosenson RS. Incident CHD and ischemic stroke associated with lipoprotein(a) by levels of Factor VIII and inflammation. J Clin Lipidol 2023; 17:529-537. [PMID: 37331900 DOI: 10.1016/j.jacl.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Inflammation and coagulation may contribute to the increased risk for atherosclerotic cardiovascular disease (ASCVD) associated with high lipoprotein(a). The association of lipoprotein(a) with ASCVD is stronger in individuals with high versus low high-sensitivity C-reactive protein (hs-CRP), a marker of inflammation. OBJECTIVES Determine the association of lipoprotein(a) with incident ASCVD by levels of coagulation Factor VIII controlling for hs-CRP. METHODS We analyzed data from 6,495 men and women 45 to 84 years of age in the Multi-Ethnic Study of Atherosclerosis (MESA) without prevalent ASCVD at baseline (2000-2002). Lipoprotein(a) mass concentration, Factor VIII coagulant activity, and hs-CRP were measured at baseline and categorized as high or low (≥75th or <75th percentile of the distribution). Participants were followed for incident coronary heart disease (CHD) and ischemic stroke through 2015. RESULTS Over a median follow-up of 13.9 years, there were 390 CHD and 247 ischemic stroke events. The hazard ratio (95%CI) for CHD associated with high lipoprotein(a) (≥40.1 versus <40.1 mg/dL) including adjustment for hs-CRP among participants with low and high Factor VIII was 1.07 (0.80-1.44) and 2.00 (1.33-3.01), respectively (p-value for interaction 0.016). The hazard ratio (95%CI) for CHD associated with high lipoprotein(a) including adjustment for Factor VIII was 1.16 (0.87-1.54) and 2.00 (1.29-3.09) among participants with low and high hs-CRP, respectively (p-value for interaction 0.042). Lp(a) was not associated with ischemic stroke regardless of Factor VIII or hs-CRP levels. CONCLUSION High lipoprotein(a) is a risk factor for CHD in adults with high levels of hemostatic or inflammatory markers.
Collapse
Affiliation(s)
- Lisandro D Colantonio
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA (Drs Colantonio, Wang, Li, Muntner, Rosenson).
| | - Sascha N Goonewardena
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA (Dr Goonewardena)
| | - Zhixin Wang
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA (Drs Colantonio, Wang, Li, Muntner, Rosenson)
| | - Elizabeth A Jackson
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA (Drs Jackson, Bittner)
| | - Michael E Farkouh
- Peter Munk Cardiac Centre, University of Toronto and Heart and Stroke Richard Lewar Centre of Excellence, Toronto, ON, Canada (Dr Farkouh)
| | - Mei Li
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA (Drs Colantonio, Wang, Li, Muntner, Rosenson)
| | - Waqas Malick
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA (Drs Malick, Rosenson)
| | - Shia T Kent
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA, USA (Dr Kent)
| | | | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA (Drs Colantonio, Wang, Li, Muntner, Rosenson)
| | - Vera Bittner
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA (Drs Jackson, Bittner)
| | - Robert S Rosenson
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA (Drs Malick, Rosenson)
| |
Collapse
|
49
|
Genovesi S, Giussani M, Lieti G, Orlando A, Patti I, Parati G. Evidence and Uncertainties on Lipoprotein(a) as a Marker of Cardiovascular Health Risk in Children and Adolescents. Biomedicines 2023; 11:1661. [PMID: 37371756 PMCID: PMC10295837 DOI: 10.3390/biomedicines11061661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is made up of apoprotein(a) (apo(a)) and an LDL-like particle. The LPA gene encodes apo(a) and thus determines the characteristics and amount of apo(a) and Lp(a). The proportion of Lp(a) in each individual is genetically determined and is only minimally modifiable by the environment or diet. Lp(a) has important pro-atherosclerotic and pro-inflammatory effects. It has been hypothesized that Lp(a) also has pro-coagulant and antifibrinolytic actions. For these reasons, high Lp(a) values are an important independent risk factor for cardiovascular disease and calcific aortic valve stenosis. Numerous studies have been performed in adults about the pathophysiology and epidemiology of Lp(a) and research is under way for the development of drugs capable of reducing Lp(a) plasma values. Much less information is available regarding Lp(a) in children and adolescents. The present article reviews the evidence on this topic. The review addresses the issues of Lp(a) changes during growth, the correlation between Lp(a) values in children and those in their parents, and between Lp(a) levels in children, and the presence of cardiovascular disease in the family. Gaining information on these points is particularly important for deciding whether Lp(a) assay may be useful for defining the cardiovascular risk in children, in order to plan a prevention program early.
Collapse
Affiliation(s)
- Simonetta Genovesi
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy; (G.L.); (I.P.); (G.P.)
- Istituto Auxologico Italiano, Istituto Ricovero Cura Carattere Scientifico (IRCCS), 20135 Milan, Italy; (M.G.); (A.O.)
| | - Marco Giussani
- Istituto Auxologico Italiano, Istituto Ricovero Cura Carattere Scientifico (IRCCS), 20135 Milan, Italy; (M.G.); (A.O.)
| | - Giulia Lieti
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy; (G.L.); (I.P.); (G.P.)
| | - Antonina Orlando
- Istituto Auxologico Italiano, Istituto Ricovero Cura Carattere Scientifico (IRCCS), 20135 Milan, Italy; (M.G.); (A.O.)
| | - Ilenia Patti
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy; (G.L.); (I.P.); (G.P.)
| | - Gianfranco Parati
- School of Medicine and Surgery, Milano-Bicocca University, 20126 Milan, Italy; (G.L.); (I.P.); (G.P.)
- Istituto Auxologico Italiano, Istituto Ricovero Cura Carattere Scientifico (IRCCS), 20135 Milan, Italy; (M.G.); (A.O.)
| |
Collapse
|
50
|
Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, Koschinsky ML, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 2023; 374:107-120. [PMID: 37188555 DOI: 10.1016/j.atherosclerosis.2023.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In 2022, the European Atherosclerosis Society (EAS) published a new consensus statement on lipoprotein(a) [Lp(a)], summarizing current knowledge about its causal association with atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis. One of the novelties of this statement is a new risk calculator showing how Lp(a) influences lifetime risk for ASCVD and that global risk may be underestimated substantially in individuals with high or very high Lp(a) concentration. The statement also provides practical advice on how knowledge about Lp(a) concentration can be used to modulate risk factor management, given that specific and highly effective mRNA-targeted Lp(a)-lowering therapies are still in clinical development. This advice counters the attitude: "Why should I measure Lp(a) if I can't lower it?". Subsequent to publication, questions have arisen relating to how the recommendations of this statement impact everyday clinical practice and ASCVD management. This review addresses 30 of the most frequently asked questions about Lp(a) epidemiology, its contribution to cardiovascular risk, Lp(a) measurement, risk factor management and existing therapeutic options.
Collapse
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, and Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400, Saint-Pierre, La Réunion, France
| | - François Mach
- Department of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine Baylor Scott & White Health, 2301 S. 31st St., Temple, TX, 76508, USA
| | - Patrick M Moriarty
- Atherosclerosis and Lipoprotein-apheresis Clinic, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; and Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University Klinikum, Munich, Germany
| | - Salim S Virani
- The Aga Khan University, Karachi, Pakistan; Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51, Gothenburg, Sweden
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| |
Collapse
|