1
|
Lim J, Hubbard AK, Blechter B, Shi J, Zhou W, Loftfield E, Machiela MJ, Wong JYY. Associations Between Mosaic Loss of Sex Chromosomes and Incident Hospitalization for Atrial Fibrillation in the United Kingdom. J Am Heart Assoc 2024:e036984. [PMID: 39508149 DOI: 10.1161/jaha.124.036984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Mosaic loss of chromosome Y (mLOY) in leukocytes of men reflects genomic instability from aging, smoking, and environmental exposures. A similar mosaic loss of chromosome X (mLOX) occurs among women. However, the associations between mLOY, mLOX, and risk of incident heart diseases are unclear. METHODS AND RESULTS We estimated associations between mLOY, mLOX, and risk of incident heart diseases requiring hospitalization, including atrial fibrillation, myocardial infarction, ischemic heart disease, cardiomyopathy, and heart failure. We analyzed 190 613 men and 224 853 women with genotyping data from the UK Biobank. Among these participants, there were 37 037 men with mLOY and 13 978 women with mLOX detected using the Mosaic Chromosomal Alterations caller. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% CIs of each incident heart disease in relation to mLOY in men and mLOX in women. Additionally, Mendelian randomization was conducted to estimate causal associations. Among men, detectable mLOY was associated with elevated risk of atrial fibrillation (HR, 1.06 [95% CI, 1.03-1.11]). The associations were apparent in both never smokers (HR, 1.07 [95% CI, 1.01-1.14]) and ever smokers (HR, 1.05 [95% CI, 1.01-1.11]) as well as men aged >60 and ≤60 years. Mendelian randomization analyses supported causal associations between mLOY and atrial fibrillation (HRMR-PRESSO, 1.15 [95% CI, 1.13-1.18]). Among postmenopausal women, we found a suggestive inverse association between detectable mLOX and atrial fibrillation risk (HR, 0.90 [95% CI, 0.83-0.98]). However, associations with mLOY and mLOX were not found for other heart diseases. CONCLUSIONS Our findings suggest that mLOY and mLOX reflect sex-specific biological processes or exposure profiles related to incident atrial fibrillation requiring hospitalization.
Collapse
Affiliation(s)
- Jungeun Lim
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute Bethesda MD
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research Leidos Biomedical Research, Inc Frederick MD
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD
| | - Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute Bethesda MD
| |
Collapse
|
2
|
Bhat FA, Khan S, Khan AS, Haque SE, Akhtar M, Najmi AK. Cardio-oncological dialogue: Understanding the mechanistic correlation between heart failure and cancer. Life Sci 2024; 358:123170. [PMID: 39490523 DOI: 10.1016/j.lfs.2024.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/03/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
AIMS This review aims to elucidate the bidirectional relationship between heart failure and cancer by identifying their common and reciprocal risk factors. It seeks to provide a comprehensive understanding of the mechanistic interactions between these two conditions, supported by evidence from preclinical and clinical investigations. MATERIALS AND METHODS A thorough review of peer-reviewed articles was conducted to identify all possible interactions between cancer and heart failure. Multiple search engines were utilized with queries incorporating terms such as cardio-oncology, heart failure, cancer, risk factors, and mechanistic interactions. Selected studies were analysed to identify shared risk factors and to explore the mechanistic junctions that link the two diseases. KEY FINDINGS The review identified several common risk factors, including, inflammation, smoking, obesity, clonal haematopoiesis of indeterminate potential, and reduced exercise potential. The pathophysiological mechanisms linking heart failure with cancer include metabolic reprogramming in cancer, cancer-induced thrombosis, cardiac metastasis, paraneoplastic syndrome, cancer-associated cachexia, and anorexia. Additionally, it was found that cancer therapies, such as anthracyclines and radiation, can induce cardiotoxicity, leading to heart failure. The pathophysiological mechanisms that contribute to cancer in heart failure patients were identified as neurohormonal activation, state of hypoxia, secretion of Cardiokines, heart failure medication, innate immune reprograming & cardiac remodelling and coronary atherosclerotic disease. SIGNIFICANCE By highlighting the interconnected nature of heart failure and cancer, this review promotes a cardio-oncologic discourse, encouraging cardiologists and oncologists to consider these diseases as interrelated rather than separate entities. This perspective can lead to the development of novel therapeutic strategies and improve patient management by addressing the dual disease burden. Future research should focus on exploring the translational potential of existing drugs and developing new interventions to target the shared characteristics of heart failure and cancer.
Collapse
Affiliation(s)
- Faisal Ashraf Bhat
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saara Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024:ehae682. [PMID: 39417710 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Schafer AI, Mann DL. Thrombotic, Cardiovascular, and Microvascular Complications of Myeloproliferative Neoplasms and Clonal Hematopoiesis (CHIP): A Narrative Review. J Clin Med 2024; 13:6084. [PMID: 39458034 PMCID: PMC11508398 DOI: 10.3390/jcm13206084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The most common causes of morbidity and mortality in the myeloproliferative neoplasms (MPNs), with the exception of myelofibrosis, are venous and arterial thrombosis, as well as more recently discovered cardiovascular disease (CVD). Clonal hematopoiesis of indeterminate potential (CHIP) is the subclinical finding in an individual of somatic mutations that are also found in clinically overt MPNs and other myeloid malignancies. The prevalence of "silent" CHIP increases with age. CHIP can transform into a clinically overt MPN at an estimated rate of 0.5 to 1% per year. It is likely, therefore, but not proven, that many, if not all, MPN patients had antecedent CHIP, possibly for many years. Moreover, both individuals with asymptomatic CHIP, as well as clinically diagnosed patients with MPN, can develop thrombotic complications. An unexpected and remarkable discovery during the last few years is that even CHIP (as well as MPNs) are significant, independent risk factors for CVD. This review discusses up-to-date information on the types of thrombotic and cardiovascular complications that are found in CHIP and MPN patients. A systemic inflammatory state (that is often subclinical) is most likely to be a major mediator of adverse reciprocal bone marrow-cardiovascular interplay that may fuel the development of progression of MPNs, including its thrombotic and vascular complications, as well as the worsening of cardiovascular disease, possibly in a "vicious cycle". Translating this to clinical practice for hematologists and oncologists who treat MPN patients, attention should now be paid to ensuring that cardiovascular risk factors are controlled and minimized, either by the patient's cardiologist or primary care physician or by the hematologist/oncologist herself or himself. This review is intended to cover the clinical aspects of thrombosis and cardiovascular complications in the MPN, accompanied by pathobiological comments.
Collapse
Affiliation(s)
- Andrew I. Schafer
- Richard T. Silver MPN Center, Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell, New York, NY 10021, USA
| | - Douglas L. Mann
- The Center for Cardiovascular Research, Washington University, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
Vlasschaert C, Crowley SD, Bick AG. Salt and CHIP: Tet2-CH Aggravates Salt-Sensitive Hypertension in Mice. Circ Res 2024; 135:951-953. [PMID: 39388535 PMCID: PMC11512599 DOI: 10.1161/circresaha.124.325364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
| | - Steven D Crowley
- Division of Nephrology, Departments of Medicine, Durham VA and Duke University Medical Center, Durham, NC (S.D.C.)
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (A.G.B.)
| |
Collapse
|
6
|
Khabusheva E, Goodell MA. Can Ruxolitinib Crash TET2- and IDH2-Driven Clonal Hematopoiesis? Cancer Discov 2024; 14:1768-1770. [PMID: 39363743 DOI: 10.1158/2159-8290.cd-24-1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
In this issue, Waarts and colleagues developed an advanced ex vivo CRISPR screening platform to identify vulnerabilities in clonal hematopoiesis (CH). This unique system allowed the authors to identify a link between IDH2 and TET2 CH mutations, histone demethylases, and altered cytokine signaling, which enabled targeting by ruxolitinib leading to the elimination of CH clones, offering a possible path for preventing the development of malignancy. See related article by Waarts et al., p. 1860.
Collapse
Affiliation(s)
- Elmira Khabusheva
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Díez-Díez M, Ramos-Neble BL, de la Barrera J, Silla-Castro JC, Quintas A, Vázquez E, Rey-Martín MA, Izzi B, Sánchez-García L, García-Lunar I, Mendieta G, Mass V, Gómez-López N, Espadas C, González G, Quesada AJ, García-Álvarez A, Fernández-Ortiz A, Lara-Pezzi E, Dopazo A, Sánchez-Cabo F, Ibáñez B, Andrés V, Fuster V, Fuster JJ. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat Med 2024; 30:2857-2866. [PMID: 39215150 PMCID: PMC11485253 DOI: 10.1038/s41591-024-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.
Collapse
Affiliation(s)
- Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - J C Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Benedetta Izzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Virginia Mass
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Cristina Espadas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Gema González
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
8
|
Liu WS, Wu BS, Yang L, Chen SD, Zhang YR, Deng YT, Wu XR, He XY, Yang J, Feng JF, Cheng W, Xu YM, Yu JT. Whole exome sequencing analyses reveal novel genes in telomere length and their biomedical implications. GeroScience 2024; 46:5365-5385. [PMID: 38837026 PMCID: PMC11336033 DOI: 10.1007/s11357-024-01203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 06/06/2024] Open
Abstract
Telomere length is a putative biomarker of aging and is associated with multiple age-related diseases. There are limited data on the landscape of rare genetic variations in telomere length. Here, we systematically characterize the rare variant associations with leukocyte telomere length (LTL) through exome-wide association study (ExWAS) among 390,231 individuals in the UK Biobank. We identified 18 robust rare-variant genes for LTL, most of which estimated effects on LTL were significant (> 0.2 standard deviation per allele). The biological functions of the rare-variant genes were associated with telomere maintenance and capping and several genes were specifically expressed in the testis. Three novel genes (ASXL1, CFAP58, and TET2) associated with LTL were identified. Phenotypic association analyses indicated significant associations of ASXL1 and TET2 with cancers, age-related diseases, blood assays, and cardiovascular traits. Survival analyses suggested that carriers of ASXL1 or TET2 variants were at increased risk for cancers; diseases of the circulatory, respiratory, and genitourinary systems; and all-cause and cause-specific deaths. The CFAP58 carriers were at elevated risk of deaths due to cancers. Collectively, the present whole exome sequencing study provides novel insights into the genetic landscape of LTL, identifying novel genes associated with LTL and their implications on human health and facilitating a better understanding of aging, thus pinpointing the genetic relevance of LTL with clonal hematopoiesis, biomedical traits, and health-related outcomes.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1St Eastern Jianshe Road, Zhengzhou, 450000, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1St Eastern Jianshe Road, Zhengzhou, 450000, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12Th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
9
|
Clarke B, Holtkamp E, Öztürk H, Mück M, Wahlberg M, Meyer K, Munzlinger F, Brechtmann F, Hölzlwimmer FR, Lindner J, Chen Z, Gagneur J, Stegle O. Integration of variant annotations using deep set networks boosts rare variant association testing. Nat Genet 2024; 56:2271-2280. [PMID: 39322779 PMCID: PMC11525182 DOI: 10.1038/s41588-024-01919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Rare genetic variants can have strong effects on phenotypes, yet accounting for rare variants in genetic analyses is statistically challenging due to the limited number of allele carriers and the burden of multiple testing. While rich variant annotations promise to enable well-powered rare variant association tests, methods integrating variant annotations in a data-driven manner are lacking. Here we propose deep rare variant association testing (DeepRVAT), a model based on set neural networks that learns a trait-agnostic gene impairment score from rare variant annotations and phenotypes, enabling both gene discovery and trait prediction. On 34 quantitative and 63 binary traits, using whole-exome-sequencing data from UK Biobank, we find that DeepRVAT yields substantial gains in gene discoveries and improved detection of individuals at high genetic risk. Finally, we demonstrate how DeepRVAT enables calibrated and computationally efficient rare variant tests at biobank scale, aiding the discovery of genetic risk factors for human disease traits.
Collapse
Affiliation(s)
- Brian Clarke
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Eva Holtkamp
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association-Munich School for Data Science (MUDS), Munich, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Hakime Öztürk
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Mück
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magnus Wahlberg
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kayla Meyer
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Munzlinger
- AI Health Innovation Cluster, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Brechtmann
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Florian R Hölzlwimmer
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Jonas Lindner
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Zhifen Chen
- Department of Cardiology, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julien Gagneur
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Munich Center for Machine Learning, Munich, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| |
Collapse
|
10
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby WE, Ganesh S, Lannery K, Schuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat Commun 2024; 15:7858. [PMID: 39251642 PMCID: PMC11385577 DOI: 10.1038/s41467-024-52302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CHIP is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CHIP. Splicing factor genes (SF3B1, SRSF2, U2AF1, and ZRSR2) and TET2 CHIP grow significantly faster than DNMT3A non-R882 clones. We find that age at baseline and sex significantly influence the incidence of CHIP, while ASCVD and other traditional ASCVD risk factors do not exhibit such associations. Additionally, baseline synonymous passenger mutations are strongly associated with CHIP status and are predictive of new CHIP clone acquisition and clonal growth over extended follow-up, providing valuable insights into clonal dynamics of aging hematopoietic stem and progenitor cells. This study also reveals associations between germline genetic variants and incident CHIP. Our comprehensive longitudinal assessment yields insights into cell-intrinsic and -extrinsic factors contributing to the development and progression of CHIP clones in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney E Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Schuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Demajo S, Ramis-Zaldivar JE, Muiños F, Grau ML, Andrianova M, López-Bigas N, González-Pérez A. Identification of Clonal Hematopoiesis Driver Mutations through In Silico Saturation Mutagenesis. Cancer Discov 2024; 14:1717-1731. [PMID: 38722595 PMCID: PMC11372364 DOI: 10.1158/2159-8290.cd-23-1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. In this study, we trained machine learning models for 12 of the most recurrent CH genes to identify their driver mutations. These models outperform expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals. Significance: We developed and validated gene-specific machine learning models to identify CH driver mutations, showing their advantage with respect to expert-curated rules. These models can support the identification and clinical interpretation of CH mutations in newly sequenced individuals. See related commentary by Arends and Jaiswal, p. 1581.
Collapse
Affiliation(s)
- Santiago Demajo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan E Ramis-Zaldivar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel L Grau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Andrianova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
12
|
Ninni S, Vicario R, Coisne A, Woitrain E, Tazibet A, Stewart CM, Diaz LA, White JR, Koussa M, Dubrulle H, Juthier F, Jungling M, Vincentelli A, Edme JL, Nattel S, de Winther M, Geissmann F, Dombrowicz D, Staels B, Montaigne D. Clonal Hematopoiesis Is Associated With Long-Term Adverse Outcomes Following Cardiac Surgery. J Am Heart Assoc 2024; 13:e034255. [PMID: 39206728 DOI: 10.1161/jaha.123.034255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cardiac surgery triggers sterile innate immune responses leading to postoperative complications. Clonal hematopoiesis (CH) is associated with short-term inflammation-mediated outcomes after cardiac surgery. The impact of CH on long-term postoperative outcomes remains unknown. METHODS AND RESULTS In this cohort study, patients undergoing elective cardiac surgery were included from January 2017 to September 2019. Patients were screened for CH using a predefined gene panel of 19 genes. Recorded clinical events were all-cause death, major adverse cardiac and cerebral events including cardiovascular death, myocardial infarction or nonscheduled coronary revascularization, stroke, and hospitalization for acute heart failure. The primary study outcome was time to a composite criterion including all-cause mortality and major adverse cardiac and cerebral events. Among 314 genotyped patients (median age: 67 years; interquartile range 59-74 years), 139 (44%) presented with CH, based on a variant allelic frequency ≥1%. Carriers of CH had a higher proportion of patients with a history of atrial fibrillation (26% for CH versus 17% for non-CH carriers, P=0.022). The most frequently mutated genes were DNMT3A, TET2, and ASXL1. After a median follow-up of 1203 [813-1435] days, the primary outcome occurred in 50 patients. After multivariable adjustment, CH was independently associated with a higher risk for the primary outcome (hazard ratio, 1.88 [95% CI, 1.05-3.41], P=0.035). Most adverse events occurred in patients carrying TET2 variants. CONCLUSIONS In patients undergoing cardiac surgery, CH is frequent and associated with a 2-fold increased long-term risk for major adverse clinical outcomes. CH is a novel risk factor for long-term postcardiac surgery complications and might be useful to personalize management decisions. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03376165.
Collapse
Affiliation(s)
- Sandro Ninni
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal Montreal Canada
| | - Rocio Vicario
- Immunology Program Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York NY USA
| | - Augustin Coisne
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Eloise Woitrain
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Amine Tazibet
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Caitlin M Stewart
- Division of Solid Tumor Oncology, Department of Medicine Memorial Sloan Kettering Cancer Center New York NY USA
| | - Luis A Diaz
- Division of Solid Tumor Oncology, Department of Medicine Memorial Sloan Kettering Cancer Center New York NY USA
| | | | - Mohammed Koussa
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Henri Dubrulle
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Francis Juthier
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Marie Jungling
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - André Vincentelli
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Jean-Louis Edme
- Université de Lille, EA 4483, IMPECS: IMPact of Environmental ChemicalS on Human Health, CHU Lille Lille France
| | - Stanley Nattel
- Department of Medicine and Research Center Montreal Heart Institute and Université de Montréal Montreal Canada
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity Amsterdam University Medical Centers Amsterdam The Netherlands
| | - Frederic Geissmann
- Immunology Program Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York NY USA
| | - David Dombrowicz
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| | - David Montaigne
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID Lille France
| |
Collapse
|
13
|
Gajagowni S, Hopkins S, Qadeer Y, Virani SS, Verdonschot JAJ, Coombs CC, Amos CI, Nead KT, Jaiswal S, Krittanawong C. Clonal hematopoiesis of indeterminate potential and cardiovascular disease: Pathogenesis, clinical presentation, and future directions. Prog Cardiovasc Dis 2024; 86:79-85. [PMID: 39278303 DOI: 10.1016/j.pcad.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a well-studied phenomenon in hematologic malignancies. With advancements in gene sampling and analysis and the use of large cohort studies, CHIP has recently been linked to cardiovascular disease (CVD). The relationship between CHIP and CVD appears to be bidirectional, with traditional risk factors for cardiovascular disease increasing the mutation burden in CHIP, and CHIP itself effecting the incidence or prognosis of a variety of CVD. The purpose of this review is to understand the epidemiology, risk factors, and pathogenesis of CHIP in the context of various CVD conditions.
Collapse
Affiliation(s)
- Saivaroon Gajagowni
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Steven Hopkins
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Yusuf Qadeer
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Salim S Virani
- Office of the Vice Provost (Research), The Aga Khan University, Karachi 74800, Pakistan; Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, P. Debyelaan 25, 6229, HX, Maastricht, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202, AZ, Maastricht, the Netherlands
| | - Catherine C Coombs
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, California, United States of America
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Kevin T Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, United States of America; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY, United States of America.
| |
Collapse
|
14
|
Kang Y, Lefebvre B, Pamies IM, Gill SI, Doucette AG, Denduluri S, Smith AM, McCurdy S, Luger S, Carver J, Scherrer-Crosbie M. Symptomatic Heart Failure and Clonal Hematopoiesis-Related Mutations in Patients With Acute Myeloid Leukemia. Am J Cardiol 2024; 226:9-17. [PMID: 38972534 PMCID: PMC11330721 DOI: 10.1016/j.amjcard.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common risk factor for hematologic malignancies and cardiovascular diseases. This study aimed to investigate the association between CHIP-related mutations and symptomatic heart failure (HF) in patients diagnosed with acute myeloid leukemia (AML). A total of 563 patients with newly diagnosed AML who underwent DNA sequencing of bone marrow before treatment were retrospectively investigated. Cox proportional hazard regression models and Fine and Gray's subdistribution hazard regression models were used to assess the association between CHIP-related mutations and symptomatic HF. A total of 79.0% patients had at least 1 CHIP-related mutation; the most frequent mutations were DNMT3A, ASXL1, and TET2. A total of 51 patients (9.1%) developed symptomatic HF. The incidence of symptomatic HF was more frequent in patients with DNMT3A mutations (p <0.01), with a 1-year cumulative incidence of symptomatic HF in patients with DNMT3A mutations of 11.4%, compared with 3.9% in patients with wild-type DNMT3A (p <0.01). After adjustment for age and anthracyclines dose, DNMT3A mutations remained independently correlated with HF (hazard ratio 2.32, 95% confidence interval 1.26 to 4.29, p = 0.01). In conclusion, in patients with AML, the presence of DNMT3A mutations was associated with a twofold increased risk for symptomatic HF, irrespective of age and anthracyclines use.
Collapse
Affiliation(s)
- Yu Kang
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benedicte Lefebvre
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ingrid Marti Pamies
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar I Gill
- Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abigail G Doucette
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Srinivas Denduluri
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanda M Smith
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon McCurdy
- Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Selina Luger
- Division of Hematology and Oncology Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph Carver
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Disease, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Zuriaga MA, Yu Z, Matesanz N, Truong B, Ramos-Neble BL, Asensio-López MC, Uddin MM, Nakao T, Niroula A, Zorita V, Amorós-Pérez M, Moro R, Ebert BL, Honigberg MC, Pascual-Figal D, Natarajan P, Fuster JJ. Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis. Eur Heart J 2024:ehae546. [PMID: 39212933 DOI: 10.1093/eurheartj/ehae546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND AIMS Somatic mutations in the TET2 gene that lead to clonal haematopoiesis (CH) are associated with accelerated atherosclerosis development in mice and a higher risk of atherosclerotic disease in humans. Mechanistically, these observations have been linked to exacerbated vascular inflammation. This study aimed to evaluate whether colchicine, a widely available and inexpensive anti-inflammatory drug, prevents the accelerated atherosclerosis associated with TET2-mutant CH. METHODS In mice, TET2-mutant CH was modelled using bone marrow transplantations in atherosclerosis-prone Ldlr-/- mice. Haematopoietic chimeras carrying initially 10% Tet2-/- haematopoietic cells were fed a high-cholesterol diet and treated with colchicine or placebo. In humans, whole-exome sequencing data and clinical data from 37 181 participants in the Mass General Brigham Biobank and 437 236 participants in the UK Biobank were analysed to examine the potential modifying effect of colchicine prescription on the relationship between CH and myocardial infarction. RESULTS Colchicine prevented accelerated atherosclerosis development in the mouse model of TET2-mutant CH, in parallel with suppression of interleukin-1β overproduction in conditions of TET2 loss of function. In humans, patients who were prescribed colchicine had attenuated associations between TET2 mutations and myocardial infarction. This interaction was not observed for other mutated genes. CONCLUSIONS These results highlight the potential value of colchicine to mitigate the higher cardiovascular risk of carriers of somatic TET2 mutations in blood cells. These observations set the basis for the development of clinical trials that evaluate the efficacy of precision medicine approaches tailored to the effects of specific mutations linked to CH.
Collapse
Affiliation(s)
- María A Zuriaga
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
| | - Nuria Matesanz
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Buu Truong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
| | - Beatriz L Ramos-Neble
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Mari C Asensio-López
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
| | - Tetsushi Nakao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Virginia Zorita
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Marta Amorós-Pérez
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Rosa Moro
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Domingo Pascual-Figal
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, Murcia, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 3.184, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - José J Fuster
- Program on Novel Mechanisms of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
16
|
Weinstock JS, Chaudhry SA, Ioannou M, Viskadourou M, Reventun P, Jakubek YA, Liggett LA, Laurie C, Broome JG, Khan A, Taylor KD, Guo X, Peyser PA, Boerwinkle E, Chami N, Kenny EE, Loos RJ, Psaty BM, Russell TP, Brody JA, Yun JH, Cho MH, Vasan RS, Kardia SL, Smith JA, Raffield LM, Bidulescu A, O’Brien E, de Andrade M, Rotter JI, Rich SS, Tracy RP, Chen YDI, Gu CC, Hsiung CA, Kooperberg C, Haring B, Nassir R, Mathias R, Reiner A, Sankaran V, Lowenstein CJ, Blackwell TW, Abecasis GR, Smith AV, Kang HM, Natarajan P, Jaiswal S, Bick A, Post WS, Scheet P, Auer P, Karantanos T, Battle A, Arvanitis M. The Genetic Determinants and Genomic Consequences of Non-Leukemogenic Somatic Point Mutations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.22.24312319. [PMID: 39228737 PMCID: PMC11370504 DOI: 10.1101/2024.08.22.24312319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated mutation pathway (SRGAP2C). We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.
Collapse
Affiliation(s)
- Joshua S. Weinstock
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sharjeel A. Chaudhry
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Ioannou
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Maria Viskadourou
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Paula Reventun
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - L. Alexander Liggett
- Division of Hematology/Oncology, Boston Childrens Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Cecelia Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jai G. Broome
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alyna Khan
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, Boston University, Boxton, MA USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Nathalie Chami
- The Charles Bronfman Institute of Personalized Medicine
- The Mindich Child Health and Developlement Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ruth J. Loos
- The Charles Bronfman Institute of Personalized Medicine
- The Mindich Child Health and Developlement Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Tracy P. Russell
- Department of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jeong H. Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Ramachandran S. Vasan
- National Heart Lung and Blood Institute’s, Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Sharon L. Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
- Survey Research Center, Institute for Social Research, University of Michgian, Ann Arbor, MI
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27514
| | - Aurelian Bidulescu
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health Bloomington, Bloomington, IN, USA
| | | | - Mariza de Andrade
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Yii Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - C. Charles. Gu
- Center for Biostatistics and Data Sciences, Washington University, St. Louis, MO USA
| | - Chao A. Hsiung
- Department of Medicine, Taipei Veterans General Hospital, Taipei Taiwan - 201 Shi-Pai Rd. Sec. 2, Taipei Taiwan
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bernhard Haring
- Department of Medicine III, Saarland University Hospital, Homburg, Saarland, Germany - Department of Medicine I, University of Wrzburg, Wrzburg, Bavaria, Germany
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA. Electronic address
| | - Rami Nassir
- University of California Davis, Davis, CA, USA
| | - Rasika Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vijay Sankaran
- Division of Hematology/Oncology, Boston Childrens Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Thomas W. Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Goncalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Albert V. Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hyun M. Kang
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of Harvard & MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | | | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Wendy S. Post
- Department of Medicine, Cardiology Division, Johns Hopkins University
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Paul Auer
- Department of Biostatistics, Medical College of WisconsinDivision of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Marios Arvanitis
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Bertero E, Carmisciano L, Jonasson C, Butler J, Maack C, Ameri P. Association of inflammatory markers with incident heart failure or cancer in the HUNT3 and Health ABC population studies. Eur J Prev Cardiol 2024; 31:1400-1407. [PMID: 38429011 DOI: 10.1093/eurjpc/zwae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
AIMS To investigate the relationship between chronic low-grade inflammation, as measured by high-sensitivity C-reactive protein (hsCRP) levels, and incident heart failure (HF) or cancer. METHODS AND RESULTS We assessed the relationship between baseline hsCRP concentrations and subsequent HF or cancer in two community-based cohorts, the Trøndelag Health Study (HUNT3) and the Health, Aging and Body Composition (ABC) study. In the latter, the analysis was replicated with interleukin (IL)-1, IL-6, or tumour necrosis factor (TNF)-α instead of hsCRP. In HUNT3, hsCRP was measured in 47 163 subjects (mean age 52.3 ± 15.8 years). During a median follow-up of 12.1 years, 2034 (4.3%) individuals developed HF and 5024 (10.7%) cancer, with 442 (0.9%) being diagnosed with both. After adjusting for age, male sex, diabetes, obesity, previous or current smoking, and comorbidities, elevated baseline hsCRP was associated with a higher risk of HF or cancer [hazard ratio (HR) 1.09; 95% confidence interval (CI), 1.07-1.10]. In the Health ABC study, hsCRP levels were assessed in 2803 participants, who had a mean age of 72.6 ± 2.9 years and a higher burden of comorbidities than in HUNT3. During a median follow-up of 8.2 years, HF and cancer were diagnosed in 346 (12.3%) and 776 (27.7%) subjects, respectively, with 77 (2.7%) having both conditions. After adjusting for the same variables used for the HUNT3 cohort, hsCRP remained significantly associated with incident HF or cancer (HR 1.11; 95% CI, 1.05-1.18), as were IL-1 (HR 1.15; 1.07-1.24), IL-6 (HR 1.09; 1.02-1.17), and TNF-α (HR 1.15; 1.07-1.24). CONCLUSION A state of chronic, low-grade inflammation captured by an increase in hsCRP levels is associated with an increased risk of developing HF or cancer, with potential implications for clinical trials with anti-inflammatory therapies.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Cardiovascular Disease Unit, Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Luca Carmisciano
- Department of Health Sciences, Section of Biostatistics, University of Genova, Via Antonio Pastore 1, 16132 Genova, Italy
| | - Christian Jonasson
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- Department of Medicine, University of Mississippi, Jackson, MS, USA
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Cardiovascular Disease Unit, Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
18
|
Inoue S, Ko T, Shindo A, Nomura S, Yamada T, Jimba T, Dai Z, Nakao H, Suzuki A, Kashimura T, Iwahana T, Goto K, Matsushima S, Ishida J, Amiya E, Zhang B, Kubota M, Sawami K, Heryed T, Yamada S, Katoh M, Katagiri M, Ito M, Nayakama Y, Fujiu K, Hatano M, Takeda N, Takimoto E, Akazawa H, Morita H, Yamaguchi J, Inomata T, Kobayashi Y, Minamino T, Tsutsui H, Kurokawa M, Aiba A, Aburatani H, Komuro I. Association Between Clonal Hematopoiesis and Left Ventricular Reverse Remodeling in Nonischemic Dilated Cardiomyopathy. JACC Basic Transl Sci 2024; 9:956-967. [PMID: 39297129 PMCID: PMC11405799 DOI: 10.1016/j.jacbts.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 09/21/2024]
Abstract
Although clonal hematopoiesis of indeterminate potential (CHIP) is an adverse prognostic factor for atherosclerotic disease, its impact on nonischemic dilated cardiomyopathy (DCM) is elusive. The authors performed whole-exome sequencing and deep target sequencing among 198 patients with DCM and detected germline mutations in cardiomyopathy-related genes and somatic mutations in CHIP driver genes. Twenty-five CHIP driver mutations were detected in 22 patients with DCM. Ninety-two patients had cardiomyopathy-related pathogenic mutations. Multivariable analysis revealed that CHIP was an independent risk factor of left ventricular reverse remodeling, irrespective of known prognostic factors. CHIP exacerbated cardiac systolic dysfunction and fibrosis in a DCM murine model. The identification of germline and somatic mutations in patients with DCM predicts clinical prognosis.
Collapse
Affiliation(s)
- Shunsuke Inoue
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akito Shindo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Jimba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zhehao Dai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Kashimura
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Togo Iwahana
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Keiko Goto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Bo Zhang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Kubota
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Sawami
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tuolisi Heryed
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiteru Nayakama
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Yamaguchi
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
- School of Medicine and Graduate School, International University of Health and Welfare, Okawa City, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- International University of Health and Welfare, Tokyo, Japan
- Department of Frontier Cardiovascular Science, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Petrone G, Turker I, Natarajan P, Bolton KL. Clinical and Therapeutic Implications of Clonal Hematopoiesis. Annu Rev Genomics Hum Genet 2024; 25:329-351. [PMID: 39190914 DOI: 10.1146/annurev-genom-120722-100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Clonal hematopoiesis (CH) is an age-related process whereby hematopoietic stem and progenitor cells (HSPCs) acquire mutations that lead to a proliferative advantage and clonal expansion. The most commonly mutated genes are epigenetic regulators, DNA damage response genes, and splicing factors, which are essential to maintain functional HSPCs and are frequently involved in the development of hematologic malignancies. Established risk factors for CH, including age, prior cytotoxic therapy, and smoking, increase the risk of acquiring CH and/or may increase CH fitness. CH has emerged as a novel risk factor in many age-related diseases, such as hematologic malignancies, cardiovascular disease, diabetes, and autoimmune disorders, among others. Future characterization of the mechanisms driving CH evolution will be critical to develop preventative and therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Petrone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Isik Turker
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kelly L Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
20
|
Wang H, Divaris K, Pan B, Li X, Lim JH, Saha G, Barovic M, Giannakou D, Korostoff JM, Bing Y, Sen S, Moss K, Wu D, Beck JD, Ballantyne CM, Natarajan P, North KE, Netea MG, Chavakis T, Hajishengallis G. Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss. Cell 2024; 187:3690-3711.e19. [PMID: 38838669 PMCID: PMC11246233 DOI: 10.1016/j.cell.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Sheng Yushou Center of Cell Biology and Immunology, Shanghai 200240, China
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gundappa Saha
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Danai Giannakou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jonathan M Korostoff
- Department of Periodontics, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Bing
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Souvik Sen
- Department of Neurology, University of South Carolina, Columbia, SC 29209, USA; Center for the Study of Aphasia Recovery, University of South Carolina, Columbia, SC 29209, USA
| | - Kevin Moss
- Department of Biostatistics and Health Data Sciences, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - James D Beck
- Division of Comprehensive Oral Health-Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, LIMES, University of Bonn, 53115 Bonn, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Vlasschaert C, Pan Y, Chen J, Akwo E, Rao V, Hixson JE, Chong M, Uddin MM, Yu Z, Jiang M, Peng F, Cao S, Wang Y, Kim DK, Hung AM, He J, Tamura MK, Cohen DL, He J, Li C, Bhat Z, Rao P, Xie D, Bick AG, Kestenbaum B, Paré G, Rauh MJ, Levin A, Natarajan P, Lash JP, Zhang MZ, Harris RC, Robinson-Cohen C, Lanktree MB, Kelly TN. Clonal hematopoiesis of indeterminate potential contributes to accelerated chronic kidney disease progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309181. [PMID: 38946975 PMCID: PMC11213124 DOI: 10.1101/2024.06.19.24309181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (β -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.
Collapse
|
22
|
Silver AJ, Vlasschaert C, Mack T, Sharber B, Xu Y, Bick AG, Pinson CW, Savona MR. Solid Organ Transplant Recipients Exhibit More TET2-Mutant Clonal Hematopoiesis of Indeterminate Potential Not Driven by Increased Transplantation Risk. Clin Cancer Res 2024; 30:2475-2485. [PMID: 38551504 DOI: 10.1158/1078-0432.ccr-23-3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Solid organ transplant recipients comprise a unique population of immunosuppressed patients with increased risk of malignancy, including hematologic neoplasms. Clonal hematopoiesis of indeterminate potential (CHIP) represents a known risk factor for hematologic malignancy and this study describes the prevalence and patterns of CHIP mutations across several types of solid organ transplants. EXPERIMENTAL DESIGN We use two national biobank cohorts comprised of >650,000 participants with linked genomic and longitudinal phenotypic data to describe the features of CHIP across 2,610 individuals who received kidney, liver, heart, or lung allografts. RESULTS We find individuals with an allograft before their biobank enrollment had an increased prevalence of TET2 mutations (OR, 1.90; P = 4.0e-4), but individuals who received transplants post-enrollment had a CHIP mutation spectrum similar to that of the general population, without enrichment of TET2. In addition, we do not observe an association between CHIP and risk of incident transplantation among the overall population (HR, 1.02; P = 0.91). And in an exploratory analysis, we do not find evidence for a strong association between CHIP and rates of transplant complications such as rejection or graft failure. CONCLUSIONS These results demonstrate that recipients of solid organ transplants display a unique pattern of clonal hematopoiesis with enrichment of TET2 driver mutations, the causes of which remain unclear and are deserving of further study.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian Sharber
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Wright Pinson
- Transplant Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
23
|
Saadatagah S, Naderian M, Uddin M, Dikilitas O, Niroula A, Schuermans A, Selvin E, Hoogeveen RC, Matsushita K, Nambi V, Yu B, Chen LY, Bick AG, Ebert BL, Honigberg MC, Li N, Shah A, Natarajan P, Kullo IJ, Ballantyne CM. Atrial Fibrillation and Clonal Hematopoiesis in TET2 and ASXL1. JAMA Cardiol 2024; 9:497-506. [PMID: 38598228 PMCID: PMC11007653 DOI: 10.1001/jamacardio.2024.0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Importance Clonal hematopoiesis of indeterminate potential (CHIP) may contribute to the risk of atrial fibrillation (AF) through its association with inflammation and cardiac remodeling. Objective To determine whether CHIP was associated with AF, inflammatory and cardiac biomarkers, and cardiac structural changes. Design, Setting, and Participants This was a population-based, prospective cohort study in participants of the Atherosclerosis Risk in Communities (ARIC) study and UK Biobank (UKB) cohort. Samples were collected and echocardiography was performed from 2011 to 2013 in the ARIC cohort, and samples were collected from 2006 to 2010 in the UKB cohort. Included in this study were adults without hematologic malignancies, mitral valve stenosis, or previous mitral valve procedure from both the ARIC and UKB cohorts; additionally, participants without hypertrophic cardiomyopathy and congenital heart disease from the UKB cohort were also included. Data analysis was completed in 2023. Exposures CHIP (variant allele frequency [VAF] ≥2%), common gene-specific CHIP subtypes (DNMT3A, TET2, ASXL1), large CHIP (VAF ≥10%), inflammatory and cardiac biomarkers (high-sensitivity C-reactive protein, interleukin 6 [IL-6], IL-18, high-sensitivity troponin T [hs-TnT] and hs-TnI, N-terminal pro-B-type natriuretic peptide), and echocardiographic indices. Main Outcome Measure Incident AF. Results A total of 199 982 adults were included in this study. In ARIC participants (4131 [2.1%]; mean [SD] age, 76 [5] years; 2449 female [59%]; 1682 male [41%]; 935 Black [23%] and 3196 White [77%]), 1019 had any CHIP (24.7%), and 478 had large CHIP (11.6%). In UKB participants (195 851 [97.9%]; mean [SD] age, 56 [8] years; 108 370 female [55%]; 87 481 male [45%]; 3154 Black [2%], 183 747 White [94%], and 7971 other race [4%]), 11 328 had any CHIP (5.8%), and 5189 had large CHIP (2.6%). ARIC participants were followed up for a median (IQR) period of 7.0 (5.3-7.7) years, and UKB participants were followed up for a median (IQR) period of 12.2 (11.3-13.0) years. Meta-analyzed hazard ratios for AF were 1.12 (95% CI, 1.01-1.25; P = .04) for participants with vs without large CHIP, 1.29 (95% CI, 1.05-1.59; P = .02) for those with vs without large TET2 CHIP (seen in 1340 of 197 209 [0.67%]), and 1.45 (95% CI, 1.02-2.07; P = .04) for those with vs without large ASXL1 CHIP (seen in 314 of 197 209 [0.16%]). Large TET2 CHIP was associated with higher IL-6 levels. Additionally, large ASXL1 was associated with higher hs-TnT level and increased left ventricular mass index. Conclusions and Relevance Large TET2 and ASXL1, but not DNMT3A, CHIP was associated with higher IL-6 level, indices of cardiac remodeling, and increased risk for AF. Future research is needed to elaborate on the mechanisms driving the associations and to investigate potential interventions to reduce the risk.
Collapse
Affiliation(s)
- Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, Texas
| | | | - Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Ozan Dikilitas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Art Schuermans
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ron C. Hoogeveen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Vijay Nambi
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Michael E. DeBakey VA Medical Center, Veterans Affairs Hospital, Houston, Texas
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston
| | - Lin Yee Chen
- Department of Medicine, University of Minnesota, Minneapolis
| | | | - Benjamin L. Ebert
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Prevention of Progression, Dana-Farber Cancer Institute, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Amil Shah
- Department of Medicine, University of Texas Southwestern, Dallas
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
- Gonda Vascular Center, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
24
|
Lim J, Hubbard AK, Blechter B, Shi J, Zhou W, Loftfield E, Machiela MJ, Wong JYY. Associations between mosaic loss of sex chromosomes and incident hospitalization for atrial fibrillation in the United Kingdom. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308171. [PMID: 38903105 PMCID: PMC11188119 DOI: 10.1101/2024.05.29.24308171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Mosaic loss of chromosome Y (mLOY) in leukocytes of men reflects genomic instability from aging, smoking, and environmental exposures. A similar mosaic loss of chromosome X (mLOX) occurs among women. However, the associations between mLOY, mLOX, and risk of incident heart diseases are unclear. Methods We estimated associations between mLOY, mLOX, and risk of incident heart diseases requiring hospitalization, including atrial fibrillation, myocardial infarction, ischemic heart disease, cardiomyopathy, and heart failure. We analyzed 190,613 men and 224,853 women with genotyping data from the UK Biobank. Among these participants, we analyzed 37,037 men with mLOY and 13,978 women with mLOX detected using Mosaic Chromosomal Alterations caller. Multivariable Cox regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) of each incident heart disease in relation to mLOY in men and mLOX in women. Additionally, Mendelian randomization (MR) was conducted to estimate causal associations. Results Among men, detectable mLOY was associated with elevated risk of atrial fibrillation (HR=1.06, 95%CI:1.03-1.11). The associations were apparent in both never-smokers (HR=1.07, 95%:1.01-1.14) and ever-smokers (HR=1.05, 95%CI:1.01-1.11) as well as men > and ≤60 years of age. MR analyses supported causal associations between mLOY and atrial fibrillation (HRMR-PRESSO=1.15, 95%CI:1.13-1.18). Among post-menopausal women, we found a suggestive inverse association between detectable mLOX and atrial fibrillation risk (HR=0.90, 95%CI:0.83-0.98). However, associations with mLOY and mLOX were not found for other heart diseases. Conclusions Our findings suggest that mLOY and mLOX reflect sex-specific biological processes or exposure profiles related to incident atrial fibrillation requiring hospitalization.
Collapse
Affiliation(s)
- Jungeun Lim
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Aubrey K Hubbard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jason Y Y Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
25
|
Boulet J, Sridhar VS, Bouabdallaoui N, Tardif JC, White M. Inflammation in heart failure: pathophysiology and therapeutic strategies. Inflamm Res 2024; 73:709-723. [PMID: 38546848 PMCID: PMC11058911 DOI: 10.1007/s00011-023-01845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 04/30/2024] Open
Abstract
A role for inflammation in the development and progression of heart failure (HF) has been proposed for decades. Multiple studies have demonstrated the potential involvement of several groups of cytokines and chemokines in acute and chronic HF, though targeting these pathways in early therapeutic trials have produced mixed results. These studies served to highlight the complexity and nuances of how pro-inflammatory pathways contribute to the pathogenesis of HF. More recent investigations have highlighted how inflammation may play distinct roles based on HF syndrome phenotypes, findings that may guide the development of novel therapies. In this review, we propose a contemporary update on the role of inflammation mediated by the innate and adaptive immune systems with HF, highlighting differences that exist across the ejection fraction spectrum. This will specifically be looked at through the lens of established and novel biomarkers of inflammation. Subsequently, we review how improvements in inflammatory pathways may mediate clinical benefits of existing guideline-directed medical therapies for HF, as well as future therapies in the pipeline targeting HF and inflammation.
Collapse
Affiliation(s)
- Jacinthe Boulet
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Vikas S Sridhar
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| | - Nadia Bouabdallaoui
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Michel White
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, QC, H1C 1C8, Montreal, Canada.
| |
Collapse
|
26
|
Raisi-Estabragh Z, Szabo L, Schuermans A, Salih AM, Chin CWL, Vágó H, Altmann A, Ng FS, Garg P, Pavanello S, Marwick TH, Petersen SE. Noninvasive Techniques for Tracking Biological Aging of the Cardiovascular System: JACC Family Series. JACC Cardiovasc Imaging 2024:S1936-878X(24)00082-2. [PMID: 38597854 DOI: 10.1016/j.jcmg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Liliana Szabo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Art Schuermans
- Faculty of Medicine, KU Leuven, Leuven, Belgium; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed M Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Department of Population Health Sciences, University of Leicester, Leicester UK; Department of Computer Science, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore; Cardiovascular Academic Clinical Programme, Duke National University of Singapore Medical School, Singapore, Singapore
| | - Hajnalka Vágó
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pankaj Garg
- University of East Anglia, Norwich Medical School, Norwich, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy; Padua Hospital, Occupational Medicine Unit, Padua, Italy; University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS, University of Padua, Padua, Italy
| | | | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Health Data Research UK, London, United Kingdom
| |
Collapse
|
27
|
Cochran JD, Walsh K. Clonal Hematopoiesis: The Emergent CVD Risk Factor. Arterioscler Thromb Vasc Biol 2024; 44:768-771. [PMID: 38536898 PMCID: PMC10977652 DOI: 10.1161/atvbaha.123.319562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 10/03/2024]
Affiliation(s)
- Jesse D Cochran
- Hematovascular Biology Center, Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center (J.D.C., K.W.), University of Virginia School of Medicine, Charlottesville
- Medical Scientist Training Program (J.D.C.), University of Virginia School of Medicine, Charlottesville
| | - Kenneth Walsh
- Hematovascular Biology Center, Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center (J.D.C., K.W.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
28
|
Ninni S, Dombrowicz D, de Winther M, Staels B, Montaigne D, Nattel S. Genetic Factors Altering Immune Responses in Atrial Fibrillation: JACC Review Topic of the Week. J Am Coll Cardiol 2024; 83:1163-1176. [PMID: 38508850 DOI: 10.1016/j.jacc.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 03/22/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide and is associated with a range of adverse clinical outcomes. Accumulating evidence points to inflammatory processes resulting from innate immune responses as a cornerstone in AF pathogenesis. Genetic and epigenetic factors affecting leukocytes have been identified as key modulators of the inflammatory response. Inherited variants in genes encoding proteins involved in the innate immune response have been associated with increased risk for AF recurrence and stroke in AF patients. Furthermore, acquired somatic mutations associated with clonal hematopoiesis of indeterminate potential, leukocyte telomere shortening, and epigenetic age acceleration contribute to increased AF risk. In individuals carrying clonal hematopoiesis of indeterminate potential, myocardial monocyte-derived macrophage shift toward a proinflammatory phenotype may precipitate AF. Further studies are needed to better understand the role of genetic regulation of the native immune response in atrial arrhythmogenesis and its therapeutic potential as a target for personalized medicine.
Collapse
Affiliation(s)
- Sandro Ninni
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France; Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Menno de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis & Ischemic Syndromes; Amsterdam Infection and Immunity: Inflammatory diseases; Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Montaigne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Essen, Germany; Institut hospitalo-universitaire Liryc and Fondation Bordeaux Université, Bordeaux, France.
| |
Collapse
|
29
|
Schuermans A, Vlasschaert C, Nauffal V, Cho SMJ, Uddin MM, Nakao T, Niroula A, Klarqvist MDR, Weeks LD, Lin AE, Saadatagah S, Lannery K, Wong M, Hornsby W, Lubitz SA, Ballantyne C, Jaiswal S, Libby P, Ebert BL, Bick AG, Ellinor PT, Natarajan P, Honigberg MC. Clonal haematopoiesis of indeterminate potential predicts incident cardiac arrhythmias. Eur Heart J 2024; 45:791-805. [PMID: 37952204 PMCID: PMC10919923 DOI: 10.1093/eurheartj/ehad670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND AND AIMS Clonal haematopoiesis of indeterminate potential (CHIP), the age-related expansion of blood cells with preleukemic mutations, is associated with atherosclerotic cardiovascular disease and heart failure. This study aimed to test the association of CHIP with new-onset arrhythmias. METHODS UK Biobank participants without prevalent arrhythmias were included. Co-primary study outcomes were supraventricular arrhythmias, bradyarrhythmias, and ventricular arrhythmias. Secondary outcomes were cardiac arrest, atrial fibrillation, and any arrhythmia. Associations of any CHIP [variant allele fraction (VAF) ≥ 2%], large CHIP (VAF ≥10%), and gene-specific CHIP subtypes with incident arrhythmias were evaluated using multivariable-adjusted Cox regression. Associations of CHIP with myocardial interstitial fibrosis [T1 measured using cardiac magnetic resonance (CMR)] were also tested. RESULTS This study included 410 702 participants [CHIP: n = 13 892 (3.4%); large CHIP: n = 9191 (2.2%)]. Any and large CHIP were associated with multi-variable-adjusted hazard ratios of 1.11 [95% confidence interval (CI) 1.04-1.18; P = .001] and 1.13 (95% CI 1.05-1.22; P = .001) for supraventricular arrhythmias, 1.09 (95% CI 1.01-1.19; P = .031) and 1.13 (95% CI 1.03-1.25; P = .011) for bradyarrhythmias, and 1.16 (95% CI, 1.00-1.34; P = .049) and 1.22 (95% CI 1.03-1.45; P = .021) for ventricular arrhythmias, respectively. Associations were independent of coronary artery disease and heart failure. Associations were also heterogeneous across arrhythmia subtypes and strongest for cardiac arrest. Gene-specific analyses revealed an increased risk of arrhythmias across driver genes other than DNMT3A. Large CHIP was associated with 1.31-fold odds (95% CI 1.07-1.59; P = .009) of being in the top quintile of myocardial fibrosis by CMR. CONCLUSIONS CHIP may represent a novel risk factor for incident arrhythmias, indicating a potential target for modulation towards arrhythmia prevention and treatment.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | - Victor Nauffal
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Lachelle D Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy E Lin
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Megan Wong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Steven A Lubitz
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | | | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patrick T Ellinor
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Michael C Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, 75 Ames St., Cambridge, MA 02142, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
30
|
Ahn HJ, An HY, Ryu G, Lim J, Sun C, Song H, Choi SY, Lee H, Maurer T, Nachun D, Kwon S, Lee SR, Lip GYH, Oh S, Jaiswal S, Koh Y, Choi EK. Clonal haematopoiesis of indeterminate potential and atrial fibrillation: an east Asian cohort study. Eur Heart J 2024; 45:778-790. [PMID: 38231881 DOI: 10.1093/eurheartj/ehad869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND AND AIMS Both clonal haematopoiesis of indeterminate potential (CHIP) and atrial fibrillation (AF) are age-related conditions. This study investigated the potential role of CHIP in the development and progression of AF. METHODS Deep-targeted sequencing of 24 CHIP mutations (a mean depth of coverage = 1000×) was performed in 1004 patients with AF and 3341 non-AF healthy subjects. Variant allele fraction ≥ 2.0% indicated the presence of CHIP mutations. The association between CHIP and AF was evaluated by the comparison of (i) the prevalence of CHIP mutations between AF and non-AF subjects and (ii) clinical characteristics discriminated by CHIP mutations within AF patients. Furthermore, the risk of clinical outcomes-the composite of heart failure, ischaemic stroke, or death-according to the presence of CHIP mutations in AF was investigated from the UK Biobank cohort. RESULTS The mean age was 67.6 ± 6.9 vs. 58.5 ± 6.5 years in AF (paroxysmal, 39.0%; persistent, 61.0%) and non-AF cohorts, respectively. CHIP mutations with a variant allele fraction of ≥2.0% were found in 237 (23.6%) AF patients (DNMT3A, 13.5%; TET2, 6.6%; and ASXL1, 1.5%) and were more prevalent than non-AF subjects [356 (10.7%); P < .001] across the age. After multivariable adjustment (age, sex, smoking, body mass index, diabetes, and hypertension), CHIP mutations were 1.4-fold higher in AF [adjusted odds ratio (OR) 1.38; 95% confidence interval 1.10-1.74, P < .01]. The ORs of CHIP mutations were the highest in the long-standing persistent AF (adjusted OR 1.50; 95% confidence interval 1.14-1.99, P = .004) followed by persistent (adjusted OR 1.44) and paroxysmal (adjusted OR 1.33) AF. In gene-specific analyses, TET2 somatic mutation presented the highest association with AF (adjusted OR 1.65; 95% confidence interval 1.05-2.60, P = .030). AF patients with CHIP mutations were older and had a higher prevalence of diabetes, a longer AF duration, a higher E/E', and a more severely enlarged left atrium than those without CHIP mutations (all P < .05). In UK Biobank analysis of 21 286 AF subjects (1297 with CHIP and 19 989 without CHIP), the CHIP mutation in AF is associated with a 1.32-fold higher risk of a composite clinical event (heart failure, ischaemic stroke, or death). CONCLUSIONS CHIP mutations, primarily DNMT3A or TET2, are more prevalent in patients with AF than non-AF subjects whilst their presence is associated with a more progressive nature of AF and unfavourable clinical outcomes.
Collapse
Affiliation(s)
- Hyo-Jeong Ahn
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hong Yul An
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Gangpyo Ryu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jiwoo Lim
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Choonghyun Sun
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Han Song
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Heesun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Taylor Maurer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Soonil Kwon
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - So-Ryoung Lee
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Chest and Heart Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Genome Opinion Incorporation, Seoul 04799, Republic of Korea
- Cancer Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
31
|
Kapadia CD, Goodell MA. Tissue mosaicism following stem cell aging: blood as an exemplar. NATURE AGING 2024; 4:295-308. [PMID: 38438628 DOI: 10.1038/s43587-024-00589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
Loss of stem cell regenerative potential underlies aging of all tissues. Somatic mosaicism, the emergence of cellular patchworks within tissues, increases with age and has been observed in every organ yet examined. In the hematopoietic system, as in most tissues, stem cell aging through a variety of mechanisms occurs in lockstep with the emergence of somatic mosaicism. Here, we draw on insights from aging hematopoiesis to illustrate fundamental principles of stem cell aging and somatic mosaicism. We describe the generalizable changes intrinsic to aged stem cells and their milieu that provide the backdrop for somatic mosaicism to emerge. We discuss genetic and nongenetic mechanisms that can result in tissue somatic mosaicism and existing methodologies to detect such clonal outgrowths. Finally, we propose potential avenues to modify mosaicism during aging, with the ultimate aim of increasing tissue resiliency.
Collapse
Affiliation(s)
- Chiraag D Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
32
|
Love SAM, Collins JM, Anthony KM, Buchheit SF, Butler EN, Bey GS, Gondalia R, Hayden KM, Zannas AS, Bick AG, Manson JE, Desai PM, Natarajan P, Bhattacharya R, Jaiswal S, Barac A, Reiner A, Kooperberg C, Stewart JD, Whitsel EA. Individual and Neighborhood-level Socioeconomic Status and Somatic Mutations Associated With Increased Risk of Cardiovascular Disease and Mortality: A Cross-Sectional Analysis in the Women's Health Initiative. Womens Health Issues 2024; 34:197-207. [PMID: 38061917 PMCID: PMC10978295 DOI: 10.1016/j.whi.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), the expansion of leukemogenic mutations in white blood cells, has been associated with increased risk of atherosclerotic cardiovascular diseases, cancer, and mortality. OBJECTIVE We examined the relationship between individual- and neighborhood-level socioeconomic status (SES) and CHIP and evaluated effect modification by interpersonal and intrapersonal resources. METHODS The study population included 10,799 postmenopausal women from the Women's Health Initiative without hematologic malignancy or antineoplastic medication use. Individual- and neighborhood (Census tract)-level SES were assessed across several domains including education, income, and occupation, and a neighborhood-level SES summary z-score, which captures multiple dimensions of SES, was generated. Interpersonal and intrapersonal resources were self-reports. CHIP was ascertained based on a prespecified list of leukemogenic driver mutations. Weighted logistic regression models adjusted for covariates were used to estimate risk of CHIP as an odds ratio (OR) and 95% confidence interval (95% CI). RESULTS The interval-scale neighborhood-level SES summary z-score was associated with a 3% increased risk of CHIP: OR (95% CI) = 1.03 (1.00-1.05), p = .038. Optimism significantly modified that estimate, such that among women with low/medium and high levels of optimism, the corresponding ORs (95% CIs) were 1.03 (1.02-1.04) and 0.95 (0.94-0.96), pInteraction < .001. CONCLUSIONS Our findings suggest that reduced risk of somatic mutation may represent a biological pathway by which optimism protects contextually advantaged but at-risk women against age-related chronic disease and highlight potential benefits of long-term, positive psychological interventions.
Collapse
Affiliation(s)
- Shelly-Ann M Love
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Jason M Collins
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kurtis M Anthony
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sophie F Buchheit
- Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - Eboneé N Butler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ganga S Bey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Injury Surveillance and Analytics, Real-World Analytics Solutions, IQVIA, Durham, North Carolina
| | - Kathleen M Hayden
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Anthony S Zannas
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Institute for Trauma Recovery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, Neuroscience Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Pinkal M Desai
- Division of Hematology and Medical Oncology, Weill Cornell Medical Center, New York, New York
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Romit Bhattacharya
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Ana Barac
- Division of Cardiology, MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, District of Columbia; Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington; Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
33
|
Dimmeler S, Zeiher A. [Heart and blood: clonal hematopoiesis]. Herz 2024; 49:105-110. [PMID: 38424288 DOI: 10.1007/s00059-024-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Cardiovascular diseases are among the leading causes of death worldwide, with well-known modifiable risk factors, such as smoking, overweight, lipid metabolism disorders, lack of physical activity and high blood pressure playing a significant role. Recent studies have now identified "clonal hematopoiesis" as a novel blood-based risk factor. Clonal hematopoiesis arises from mutations in hematopoietic stem cells, which lead to the expansion of mutated blood cells. Mutated cell clones can be detected in over 40% of individuals over 50 years old, with more than 15% of those over 90 years old harboring large clones. Surprisingly, mutated cells predispose to the development of leukemia only to a minor extent, leading to the term clonal hematopoiesis of indeterminate potential (CHIP); however, it has been shown that CHIP is associated with an increased risk of cardiovascular diseases. Individuals with CHIP-associated gene mutations have an elevated risk of atherosclerotic vascular diseases, stroke and thrombosis. Patients with heart failure with reduced ejection fraction (HFrEF), whether of ischemic or non-ischemic origin and patients with heart failure with preserved ejection fraction (HFpEF) exhibit an increased number of mutated cells in the blood. The presence of CHIP mutations is linked to a poorer prognosis in patients with existing cardiovascular diseases. Future research should aim at a better understanding of the specific effects of different mutations, clone sizes and combinations to develop personalized therapeutic approaches. Various anti-inflammatory therapeutic drugs are available, which can be tested in controlled studies.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60590, Frankfurt am Main, Deutschland.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt am Main, Deutschland.
| | - Andreas Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Deutschland
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60590, Frankfurt am Main, Deutschland
- Cardiopulmonary Institute (CPI), 60590, Frankfurt am Main, Deutschland
| |
Collapse
|
34
|
Vlasschaert C, Lanktree MB, Rauh MJ, Kelly TN, Natarajan P. Clonal haematopoiesis, ageing and kidney disease. Nat Rev Nephrol 2024; 20:161-174. [PMID: 37884787 PMCID: PMC10922936 DOI: 10.1038/s41581-023-00778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is a preclinical condition wherein a sizeable proportion of an individual's circulating blood cells are derived from a single mutated haematopoietic stem cell. CHIP occurs frequently with ageing - more than 10% of individuals over 65 years of age are affected - and is associated with an increased risk of disease across several organ systems and premature death. Emerging evidence suggests that CHIP has a role in kidney health, including associations with predisposition to acute kidney injury, impaired recovery from acute kidney injury and kidney function decline, both in the general population and among those with chronic kidney disease. Beyond its direct effect on the kidney, CHIP elevates the susceptibility of individuals to various conditions that can detrimentally affect the kidneys, including cardiovascular disease, obesity and insulin resistance, liver disease, gout, osteoporosis and certain autoimmune diseases. Aberrant pro-inflammatory signalling, telomere attrition and epigenetic ageing are potential causal pathophysiological pathways and mediators that underlie CHIP-related disease risk. Experimental animal models have shown that inhibition of inflammatory cytokine signalling can ameliorate many of the pathological effects of CHIP, and assessment of the efficacy and safety of this class of medications for human CHIP-associated pathology is ongoing.
Collapse
Affiliation(s)
| | - Matthew B Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Mitroulis I, Hajishengallis G, Chavakis T. Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc Res 2024; 119:2801-2812. [PMID: 36655373 PMCID: PMC10874275 DOI: 10.1093/cvr/cvad003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/20/2023] Open
Abstract
Cardiometabolic disorders are chief causes of morbidity and mortality, with chronic inflammation playing a crucial role in their pathogenesis. The release of differentiated myeloid cells with elevated pro-inflammatory potential, as a result of maladaptively trained myelopoiesis may be a crucial factor for the perpetuation of inflammation. Several cardiovascular risk factors, including sedentary lifestyle, unhealthy diet, hypercholesterolemia, and hyperglycemia, may modulate bone marrow hematopoietic progenitors, causing sustained functional changes that favour chronic metabolic and vascular inflammation. In the present review, we summarize recent studies that support the function of long-term inflammatory memory in progenitors of the bone marrow for the development and progression of cardiometabolic disease and related inflammatory comorbidities, including periodontitis and arthritis. We also discuss how maladaptive myelopoiesis associated with the presence of mutated hematopoietic clones, as present in clonal hematopoiesis, may accelerate atherosclerosis via increased inflammation.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- First Department of Internal Medicine and Department of Haematology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Centre for Cardiovascular Science, QMRI, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
36
|
Lin I, Wei A, Gebo TA, Boutros PC, Flanagan M, Kucine N, Cunniff C, Arboleda VA, Chang VY. Increased Frequency of Clonal Hematopoiesis of Indeterminate Potential in Bloom Syndrome Probands and Carriers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24302163. [PMID: 38370823 PMCID: PMC10871368 DOI: 10.1101/2024.02.02.24302163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Bloom Syndrome (BSyn) is an autosomal recessive disorder caused by biallelic germline variants in BLM, which functions to maintain genomic stability. BSyn patients have poor growth, immune defects, insulin resistance, and a significantly increased risk of malignancies, most commonly hematologic. The malignancy risk in carriers of pathogenic variants in BLM (BLM variant carriers) remains understudied. Clonal hematopoiesis of indeterminate potential (CHIP) is defined by presence of somatic mutations in leukemia-related genes in blood of individuals without leukemia and is associated with increased risk of leukemia. We hypothesize that somatic mutations driving clonal expansion may be an underlying mechanism leading to increased cancer risk in BSyn patients and BLM variant carriers. Methods To determine whether de novo or somatic variation is increased in BSyn patients or carriers, we performed and analyzed exome sequencing on BSyn and control trios. Results We discovered that both BSyn patients and carriers had increased numbers of low-frequency, putative somatic variants in CHIP genes compared to controls. Furthermore, BLM variant carriers had increased numbers of somatic variants in DNA methylation genes compared to controls. There was no statistical difference in the numbers of de novo variants in BSyn probands compared to control probands. Conclusion Our findings of increased CHIP in BSyn probands and carriers suggest that one or two germline pathogenic variants in BLM could be sufficient to increase the risk of clonal hematopoiesis. These findings warrant further studies in larger cohorts to determine the significance of CHIP as a potential biomarker of aging, cancer, cardiovascular disease, morbidity and mortality.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA
| | - Angela Wei
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA
- Interdepartmental BioInformatics Program, UCLA
| | - Tsumugi A Gebo
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA
| | - P C Boutros
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Interdepartmental BioInformatics Program, UCLA
- Department of Urology, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, CA
| | - Maeve Flanagan
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Nicole Kucine
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - C Cunniff
- Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - V A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA
- Interdepartmental BioInformatics Program, UCLA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, CA
| | - V Y Chang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA
- Division of Pediatric Hematology/Oncology, UCLA, Los Angeles, CA
- Children's Discovery and Innovation Institute, UCLA, Los Angeles, CA
| |
Collapse
|
37
|
Liu C, Zhou YP, Lian TY, Li RN, Ma JS, Yang YJ, Zhang SJ, Li XM, Qiu LH, Qiu BC, Ren LY, Wang J, Han ZY, Li JH, Wang L, Xu XQ, Sun K, Chen LF, Cheng CY, Zhang ZJ, Jing ZC. Clonal Hematopoiesis of Indeterminate Potential in Chronic Thromboembolic Pulmonary Hypertension: A Multicenter Study. Hypertension 2024; 81:372-382. [PMID: 38116660 DOI: 10.1161/hypertensionaha.123.22274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) is multifactorial and growing evidence has indicated that hematological disorders are involved. Clonal hematopoiesis of indeterminate potential (CHIP) has recently been associated with an increased risk of both hematological malignancies and cardiovascular diseases. However, the prevalence and clinical relevance of CHIP in patients with CTEPH remains unclear. METHODS Using stepwise calling on next-generation sequencing data from 499 patients with CTEPH referred to 3 centers between October 2006 and December 2021, CHIP mutations were identified. We associated CHIP with all-cause mortality in patients with CTEPH. To provide insights into potential mechanisms, the associations between CHIP and inflammatory markers were also determined. RESULTS In total, 47 (9.4%) patients with CTEPH carried at least 1 CHIP mutation at a variant allele frequency of ≥2%. The most common mutations were in DNMT3A, TET2, RUNX1, and ASXL1. During follow-up (mean, 55 months), deaths occurred in 22 (46.8%) and 104 (23.0%) patients in the CHIP and non-CHIP groups, respectively (P<0.001, log-rank test). The association of CHIP with mortality remained robust in the fully adjusted model (hazard ratio, 2.190 [95% CI, 1.257-3.816]; P=0.006). Moreover, patients with CHIP mutations showed higher circulating interleukin-1β and interleukin-6 and lower interleukin-4 and IgG galactosylation levels. CONCLUSIONS This is the first study to show that CHIP mutations occurred in 9.4% of patients with CTEPH are associated with a severe inflammatory state and confer a poorer prognosis in long-term follow-up.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| | - Ruo-Nan Li
- School of Pharmacy, Henan University, Zhengzhou, China (R.-N.L., J.-S.M.)
| | - Jing-Si Ma
- School of Pharmacy, Henan University, Zhengzhou, China (R.-N.L., J.-S.M.)
| | - Yin-Jian Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (Y.-J.Y., K.S., Z.-J.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Jin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| | - Xian-Mei Li
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu-Hong Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Yan Ren
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia Wang
- Department of Medical Laboratory, Weifang Medical University, China (J.W.)
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital (Z.-Y.H., J.-H.L.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Hui Li
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital (Z.-Y.H., J.-H.L.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, China (L.W.)
| | - Xi-Qi Xu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (Y.-J.Y., K.S., Z.-J.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Feng Chen
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (C.L., Y.-P.Z., X.-M.L., L.-H.Q., B.-C.Q., L.-Y.R., X.-Q.X., L.-F.C.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Yan Cheng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| | - Ze-Jian Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (Y.-J.Y., K.S., Z.-J.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China (T.-Y.L., S.-J.Z., C.-Y.C., Z.-C.J)
| |
Collapse
|
38
|
Kanuri B, Biswas P, Dahdah A, Murphy AJ, Nagareddy PR. Impact of age and sex on myelopoiesis and inflammation during myocardial infarction. J Mol Cell Cardiol 2024; 187:80-89. [PMID: 38163742 PMCID: PMC10922716 DOI: 10.1016/j.yjmcc.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Of all the different risk factors known to cause cardiovascular disease (CVD), age and sex are considered to play a crucial role. Aging follows a continuum from birth to death, and therefore it inevitably acts as a risk for CVD. Along with age, sex differences have also been shown to demonstrate variations in immune system responses to pathological insults. It has been widely perceived that females are protected against myocardial infarction (MI) and the protection is quite apparent in young vs. old women. Acute MI leads to changes in the population of myeloid and lymphoid cells at the injury site with myeloid bias being observed in the initial inflammation and the lymphoid in the late-resolution phases of the pathology. Multiple evidence demonstrates that aging enhances damage to various cellular processes through inflamm-aging, an inflammatory process identified to increase pro-inflammatory markers in circulation and tissues. Following MI, marked changes were observed in different sub-sets of major myeloid cell types viz., neutrophils, monocytes, and macrophages. There is a paucity of information regarding the tissue and site-specific functions of these sub-sets. In this review, we highlight the importance of age and sex as crucial risk factors by discussing their role during MI-induced myelopoiesis while emphasizing the current status of myeloid cell sub-sets. We further put forth the need for designing and executing age and sex interaction studies aimed to determine the appropriate age and sex to develop personalized therapeutic strategies post-MI.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Priosmita Biswas
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Albert Dahdah
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA.
| |
Collapse
|
39
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Shumliakivska M, Luxán G, Hemmerling I, Scheller M, Li X, Müller-Tidow C, Schuhmacher B, Sun Z, Dendorfer A, Debes A, Glaser SF, Muhly-Reinholz M, Kirschbaum K, Hoffmann J, Nagel E, Puntmann VO, Cremer S, Leuschner F, Abplanalp WT, John D, Zeiher AM, Dimmeler S. DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. Nat Commun 2024; 15:606. [PMID: 38242884 PMCID: PMC10799021 DOI: 10.1038/s41467-023-43003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/27/2023] [Indexed: 01/21/2024] Open
Abstract
Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes. We used combined transcriptomic data derived from peripheral blood mononuclear cells of HF patients, both with and without CHIP, and cardiac tissue. We demonstrate that inactivation of DNMT3A in macrophages intensifies interactions with cardiac fibroblasts and increases cardiac fibrosis. DNMT3A inactivation amplifies the release of heparin-binding epidermal growth factor-like growth factor, thereby facilitating activation of cardiac fibroblasts. These findings identify a potential pathway of DNMT3A CHIP-driver mutations to the initiation and progression of HF and may also provide a compelling basis for the development of innovative anti-fibrotic strategies.
Collapse
Affiliation(s)
- Mariana Shumliakivska
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Guillermo Luxán
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Inga Hemmerling
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Marina Scheller
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Xue Li
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Bianca Schuhmacher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Zhengwu Sun
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 68, 81377, München, Germany
| | - Alisa Debes
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simone-Franziska Glaser
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klara Kirschbaum
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jedrzej Hoffmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Eike Nagel
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Valentina O Puntmann
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Institute of Experimental and Translational Cardiovascular Imaging, Centre for Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sebastian Cremer
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
- Department of Medicine, Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Wesley Tyler Abplanalp
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- German Center of Cardiovascular Research (DZHK), Partner Site Rhine/Main, 60439, Frankfurt am Main, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
41
|
Schuermans A, Honigberg MC, Raffield LM, Yu B, Roberts MB, Kooperberg C, Desai P, Carson AP, Shah AM, Ballantyne CM, Bick AG, Natarajan P, Manson JE, Whitsel EA, Eaton CB, Reiner AP. Clonal Hematopoiesis and Incident Heart Failure With Preserved Ejection Fraction. JAMA Netw Open 2024; 7:e2353244. [PMID: 38270950 PMCID: PMC10811556 DOI: 10.1001/jamanetworkopen.2023.53244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Importance Clonal hematopoiesis of indeterminate potential (CHIP), the age-related clonal expansion of hematopoietic stem cells with leukemogenic acquired genetic variants, is associated with incident heart failure (HF). Objective To evaluate the associations of CHIP and key gene-specific CHIP subtypes with incident HF with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF). Design, Setting, and Participants This population-based cohort study included participants from 2 racially diverse prospective cohort studies with uniform HF subtype adjudication: the Jackson Heart Study (JHS) and Women's Health Initiative (WHI). JHS participants were enrolled during 2000 to 2004 and followed up through 2016. WHI participants were enrolled during 1993 to 1998 and followed up through 2022. Participants who underwent whole-genome sequencing, lacked prevalent HF at baseline, and were followed up for HF adjudication were included. Follow-up occurred over a median (IQR) of 12.0 (11.0-12.0) years in the JHS and 15.3 (9.0-22.0) years in the WHI. Statistical analysis was performed from June to December 2023. Exposures Any CHIP and the most common gene-specific CHIP subtypes (DNMT3A and TET2 CHIP). Main Outcomes and Measures First incident hospitalized HF events were adjudicated from hospital records and classified as HFpEF (left ventricular ejection fraction ≥50%) or HFrEF (ejection fraction <50%). Results A total of 8090 participants were included; 2927 from the JHS (median [IQR] age, 56 [46-65] years; 1846 [63.1%] female; 2927 [100.0%] Black or African American) and 5163 from the WHI (median [IQR] age, 67 [62-72] years; 5163 [100.0%] female; 29 [0.6%] American Indian or Alaska Native, 37 [0.7%] Asian or Pacific Islander, 1383 [26.8%] Black or African American, 293 [5.7%] Hispanic or Latinx, 3407 [66.0%] non-Hispanic White, and 14 [0.3%] with other race and ethnicity). The multivariable-adjusted hazard ratio (HR) for composite CHIP and HFpEF was 1.28 (95% CI, 0.93-1.76; P = .13), and for CHIP and HFrEF it was 0.79 (95% CI, 0.49-1.25; P = .31). TET2 CHIP was associated with HFpEF in both cohorts (meta-analyzed HR, 2.35 [95% CI, 1.34 to 4.11]; P = .003) independent of cardiovascular risk factors and coronary artery disease. Analyses stratified by C-reactive protein (CRP) in the WHI found an increased risk of incident HFpEF in individuals with CHIP and CRP greater than or equal to 2 mg/L (HR, 1.94 [95% CI, 1.20-3.15]; P = .007), but not in those with CHIP and CRP less than 2 mg/L or those with CRP greater than or equal to 2 mg/L without CHIP, when compared with participants without CHIP and CRP less than 2 mg/L. Conclusions and Relevance In this cohort study, TET2 CHIP was an independent risk factor associated with incident HFpEF. This finding may have implications for the prevention and management of HFpEF, including development of targeted therapies.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Bing Yu
- School of Public Health, The University of Texas Health Science Center, Houston
| | - Mary B. Roberts
- Center for Primary Care and Prevention, Brown University, Pawtucket, Rhode Island
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson
| | - Amil M. Shah
- Division of Cardiovascular Medicine, University of Texas Southwestern Medical Center, Dallas
| | | | - Alexander G. Bick
- Division of Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health and Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill
| | - Charles B. Eaton
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Care New England, Center for Primary Care and Prevention, Pawtucket, Rhode Island
- Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alexander P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
42
|
Rhee JW, Pillai R, He T, Bosworth A, Chen S, Atencio L, Oganesyan A, Peng K, Guzman T, Lukas K, Sigala B, Iukuridze A, Lindenfeld L, Jamal F, Natarajan P, Goldsmith S, Krishnan A, Rosenzweig M, Wong FL, Forman SJ, Armenian S. Clonal Hematopoiesis and Cardiovascular Disease in Patients With Multiple Myeloma Undergoing Hematopoietic Cell Transplant. JAMA Cardiol 2024; 9:16-24. [PMID: 37938837 PMCID: PMC10633387 DOI: 10.1001/jamacardio.2023.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
Importance There is a paucity of information on the association between clonal hematopoiesis of indeterminate potential (CHIP) and cardiovascular disease (CVD) in patients with cancer, including those with multiple myeloma (MM) undergoing hematopoietic cell transplant (HCT), a population at high risk of developing CVD after HCT. Objective To examine the association between CHIP and CVD in patients with MM and to describe modifiers of CVD risk among those with CHIP. Design, Setting, and Participants This was a retrospective cohort study of patients with MM who underwent HCT between 2010 and 2016 at City of Hope Comprehensive Cancer Center in Duarte, California, and had pre-HCT mobilized peripheral blood stem cell (PBSC) products cryopreserved and accessible for CHIP analyses. The study team performed targeted panel DNA sequencing to detect the presence of CHIP (variant allele frequency 2% or more). Main Outcomes and Measures The primary end point was the 5-year cumulative incidence and risk for developing de novo CVD (heart failure, coronary artery disease, or stroke) after HCT. Results Of 1036 consecutive patients with MM (580 male [56%]; median age, 60.0 years) who underwent a first autologous HCT, 201 patients had at least 1 CHIP variant (19.4%) and 35 patients had 2 or more variants (3.4%). The 5-year incidence of CVD was significantly higher in patients with CHIP (21.1% vs 8.4%; P < .001) compared with those without CHIP; the 5-year incidence among those with 2 or more variants was 25.6%. In the multivariable model, CHIP was associated with increased risk of CVD (hazard ratio [HR], 2.72; 95% CI, 1.70-4.39), as well as of individual outcomes of interest, including heart failure (HR, 4.02; 95% CI, 2.32-6.98), coronary artery disease (HR, 2.22; 95% CI, 1.06-4.63), and stroke (HR, 3.02; 95% CI, 1.07-8.52). Patients who had both CHIP and preexisting hypertension or dyslipidemia were at nearly 7-fold and 4-fold increased risk of CVD, respectively (reference: no CHIP, no hypertension, or dyslipidemia). Conclusion and Relevance CHIP was significantly and independently associated with risk of CVD in patients with MM undergoing HCT and may serve as a novel biologically plausible biomarker for CVD in this cohort. Patients with MM and both CHIP and cardiovascular risk factors had an exceptionally high risk of CVD. Additional studies are warranted to determine if cardiovascular preventive measures can reduce CHIP-associated CVD risk.
Collapse
Affiliation(s)
- June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Raju Pillai
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tianhui He
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Alysia Bosworth
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Sitong Chen
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Liezl Atencio
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Artem Oganesyan
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Kelly Peng
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Tati Guzman
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Kara Lukas
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Brianna Sigala
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Aleksi Iukuridze
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Lanie Lindenfeld
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Faizi Jamal
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Scott Goldsmith
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Amrita Krishnan
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Michael Rosenzweig
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - F. Lennie Wong
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Saro Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte California
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
43
|
Mangione MC, Wen J, Cao DJ. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases. J Mol Cell Cardiol 2024; 186:111-124. [PMID: 38039845 PMCID: PMC10843805 DOI: 10.1016/j.yjmcc.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is evolutionarily conserved from yeast to humans and is one of the most fundamental pathways of living organisms. Since its discovery three decades ago, mTOR has been recognized as the center of nutrient sensing and growth, homeostasis, metabolism, life span, and aging. The role of dysregulated mTOR in common diseases, especially cancer, has been extensively studied and reported. Emerging evidence supports that mTOR critically regulates innate immune responses that govern the pathogenesis of various cardiovascular diseases. This review discusses the regulatory role of mTOR in macrophage functions in acute inflammation triggered by ischemia and in atherosclerotic cardiovascular disease (ASCVD) and heart failure with preserved ejection fraction (HFpEF), in which chronic inflammation plays critical roles. Specifically, we discuss the role of mTOR in trained immunity, immune senescence, and clonal hematopoiesis. In addition, this review includes a discussion on the architecture of mTOR, the function of its regulatory complexes, and the dual-arm signals required for mTOR activation to reflect the current knowledge state. We emphasize future research directions necessary to understand better the powerful pathway to take advantage of the mTOR inhibitors for innovative applications in patients with cardiovascular diseases associated with aging and inflammation.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinhua Wen
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; VA North Texas Health Care System, Dallas TX 75216, USA.
| |
Collapse
|
44
|
Sciatti E, D'Elia E, Gori M, Grosu A, Balestrieri G, Senni M, Barbui T, Gavazzi A. Clonal hematopoiesis of indeterminate potential: implications for the cardiologists. J Cardiovasc Med (Hagerstown) 2024; 25:1-12. [PMID: 38051659 DOI: 10.2459/jcm.0000000000001520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Myeloproliferative neoplasms, including polycythemia vera, essential thrombocythemia, and myelofibrosis, are characterized by somatic gene mutations in bone marrow stem cells, which trigger an inflammatory response influencing the development of associated cardiovascular complications. In recent years, the same mutations were found in individuals with cardiovascular diseases even in the absence of hematological alterations. These genetic events allow the identification of a new entity called 'clonal hematopoiesis of indeterminate potential' (CHIP), as it was uncertain whether it could evolve toward hematological malignancies. CHIP is age-related and, remarkably, myocardial infarction, stroke, and heart failure were frequently reported in these individuals and attributed to systemic chronic inflammation driven by the genetic mutation. We reviewed the connection between clonal hematopoiesis, inflammation, and cardiovascular diseases, with a practical approach to improve clinical practice and highlight the current unmet needs in this area of knowledge.
Collapse
Affiliation(s)
| | | | - Mauro Gori
- Cardiology Unit 1, ASST-Papa Giovanni XXIII
| | | | | | | | - Tiziano Barbui
- FROM Research Foundation E.T.S., Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Antonello Gavazzi
- FROM Research Foundation E.T.S., Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
45
|
Park E, Evans MA, Walsh K. Regulators of clonal hematopoiesis and physiological consequences of this condition. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:3. [PMID: 39119355 PMCID: PMC11309374 DOI: 10.20517/jca.2023.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.
Collapse
Affiliation(s)
- Eunbee Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
46
|
Cacic AM, Schulz FI, Germing U, Dietrich S, Gattermann N. Molecular and clinical aspects relevant for counseling individuals with clonal hematopoiesis of indeterminate potential. Front Oncol 2023; 13:1303785. [PMID: 38162500 PMCID: PMC10754976 DOI: 10.3389/fonc.2023.1303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has fascinated the medical community for some time. Discovered about a decade ago, this phenomenon links age-related alterations in hematopoiesis not only to the later development of hematological malignancies but also to an increased risk of early-onset cardiovascular disease and some other disorders. CHIP is detected in the blood and is characterized by clonally expanded somatic mutations in cancer-associated genes, predisposing to the development of hematologic neoplasms such as MDS and AML. CHIP-associated mutations often involve DNA damage repair genes and are frequently observed following prior cytotoxic cancer therapy. Genetic predisposition seems to be a contributing factor. It came as a surprise that CHIP significantly elevates the risk of myocardial infarction and stroke, and also contributes to heart failure and pulmonary hypertension. Meanwhile, evidence of mutant clonal macrophages in vessel walls and organ parenchyma helps to explain the pathophysiology. Besides aging, there are some risk factors promoting the appearance of CHIP, such as smoking, chronic inflammation, chronic sleep deprivation, and high birth weight. This article describes fundamental aspects of CHIP and explains its association with hematologic malignancies, cardiovascular disorders, and other medical conditions, while also exploring potential progress in the clinical management of affected individuals. While it is important to diagnose conditions that can lead to adverse, but potentially preventable, effects, it is equally important not to stress patients by confronting them with disconcerting findings that cannot be remedied. Individuals with diagnosed or suspected CHIP should receive counseling in a specialized outpatient clinic, where professionals from relevant medical specialties may help them to avoid the development of CHIP-related health problems. Unfortunately, useful treatments and clinical guidelines for managing CHIP are still largely lacking. However, there are some promising approaches regarding the management of cardiovascular disease risk. In the future, strategies aimed at restoration of gene function or inhibition of inflammatory mediators may become an option.
Collapse
Affiliation(s)
- Anna Maria Cacic
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| |
Collapse
|
47
|
Demajo S, Ramis-Zaldivar JE, Muiños F, Grau ML, Andrianova M, López-Bigas N, González-Pérez A. Identification of Clonal Hematopoiesis Driver Mutations through In Silico Saturation Mutagenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299893. [PMID: 38168256 PMCID: PMC10760256 DOI: 10.1101/2023.12.13.23299893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of a number of hematologic malignancies, cardiovascular diseases and other conditions. Although the most frequently mutated CH driver genes have been identified, a systematic landscape of the mutations capable of initiating this phenomenon is still lacking. Here, we train high-quality machine-learning models for 12 of the most recurrent CH driver genes to identify their driver mutations. These models outperform an experimental base-editing approach and expert-curated rules based on prior knowledge of the function of these genes. Moreover, their application to identify CH driver mutations across almost half a million donors of the UK Biobank reproduces known associations between CH driver mutations and age, and the prevalence of several diseases and conditions. We thus propose that these models support the accurate identification of CH across healthy individuals.
Collapse
Affiliation(s)
- Santiago Demajo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel L Grau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Maria Andrianova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
48
|
Nathan DI, Dougherty M, Bhatta M, Mascarenhas J, Marcellino BK. Clonal hematopoiesis and inflammation: A review of mechanisms and clinical implications. Crit Rev Oncol Hematol 2023; 192:104187. [PMID: 37879493 DOI: 10.1016/j.critrevonc.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined by the presence of somatic mutations in hematopoietic stem and progenitor cells (HSPC). CH is associated primarily with advancing age and confers an elevated risk of progression to overt hematologic malignancy and cardiovascular disease. Increasingly, CH is associated with a wide range of diseases driven by, and sequelae of, inflammation. Accordingly, there is great interest in better understanding the pathophysiologic and clinical relationship between CH, aging, and disease. Both observational and experimental findings support the concept that CH is a potential common denominator in the inflammatory outcomes of aging. However, there is also evidence that local and systemic inflammatory states promote the growth and select for CH clones. In this review, we aim to provide an up-to-date summary of the nature of the relationship between inflammation and CH, which is central to unlocking potential therapeutic opportunities to prevent progression to myeloid malignancy.
Collapse
Affiliation(s)
- Daniel I Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manasa Bhatta
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
49
|
Lassalle F, Duployez N, Vincent F, Rauch A, Denimal T, Rosa M, Labreuche J, Dombrowicz D, Staels B, Preudhomme C, Susen S, Van Belle E, Dupont A. Negative Impact of TET2 Mutations on Long-Term Survival After Transcatheter Aortic Valve Replacement. JACC Basic Transl Sci 2023; 8:1424-1435. [PMID: 38093739 PMCID: PMC10714177 DOI: 10.1016/j.jacbts.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 07/01/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is considered as being a novel age-related risk factor for cardiovascular diseases. By capture-sequencing of a 67-gene panel, we established a large spectrum of CHIP in 258 patients with aortic valve stenosis undergoing transcatheter aortic valve replacement (TAVR) and assessed their association with long-term survival after TAVR. One or several CHIP variants in 35 genes were identified in 68% of the cohort, DNMT3A and TET2 being the 2 most frequently mutated genes. Patients carrying a TET2-CHIP-driver variant with low variant allele frequency (2%-10%) had a significant decrease in overall survival 5 years after TAVR.
Collapse
Affiliation(s)
- Fanny Lassalle
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Nicolas Duployez
- Unite Mixte de Recherche (UMR) 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University of Lille, CNRS, Inserm, Centre Hospitalier Universitaire Lille, Lille, France
| | - Flavien Vincent
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Antoine Rauch
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Tom Denimal
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Mickael Rosa
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Julien Labreuche
- Department of Biostatistics, Centre Hospitalier Universitaire Lille, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Claude Preudhomme
- Unite Mixte de Recherche (UMR) 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University of Lille, CNRS, Inserm, Centre Hospitalier Universitaire Lille, Lille, France
| | - Sophie Susen
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Eric Van Belle
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Annabelle Dupont
- University of Lille, Inserm, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
50
|
Cochran J, Yura Y, Thel MC, Doviak H, Polizio AH, Arai Y, Arai Y, Horitani K, Park E, Chavkin NW, Kour A, Sano S, Mahajan N, Evans M, Huba M, Naya NM, Sun H, Ban Y, Hirschi KK, Toldo S, Abbate A, Druley TE, Ruberg FL, Maurer MS, Ezekowitz JA, Dyck JR, Walsh K. Clonal Hematopoiesis in Clinical and Experimental Heart Failure With Preserved Ejection Fraction. Circulation 2023; 148:1165-1178. [PMID: 37681311 PMCID: PMC10575571 DOI: 10.1161/circulationaha.123.064170] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Clonal hematopoiesis (CH), which results from an array of nonmalignant driver gene mutations, can lead to altered immune cell function and chronic disease, and has been associated with worse outcomes in patients with heart failure (HF) with reduced ejection fraction. However, the role of CH in the prognosis of HF with preserved ejection fraction (HFpEF) has been understudied. This study aimed to characterize CH in patients with HFpEF and elucidate its causal role in a murine model. METHODS Using a panel of 20 candidate CH driver genes and a variant allele fraction cutoff of 0.5%, ultradeep error-corrected sequencing identified CH in a cohort of 81 patients with HFpEF (mean age, 71±6 years; ejection fraction, 63±5%) and 36 controls without a diagnosis of HFpEF (mean age, 74±7 years; ejection fraction, 61.5±8%). CH was also evaluated in a replication cohort of 59 individuals with HFpEF. RESULTS Compared with controls, there was an enrichment of TET2-mediated CH in the HFpEF patient cohort (12% versus 0%, respectively; P=0.02). In the HFpEF cohort, patients with CH exhibited exacerbated diastolic dysfunction in terms of E/e' (14.9 versus 11.7, respectively; P=0.0096) and E/A (1.69 versus 0.89, respectively; P=0.0206) compared with those without CH. The association of CH with exacerbated diastolic dysfunction was corroborated in a validation cohort of individuals with HFpEF. In accordance, patients with HFpEF, an age ≥70 years, and CH exhibited worse prognosis in terms of 5-year cardiovascular-related hospitalization rate (hazard ratio, 5.06; P=0.042) compared with patients with HFpEF and an age ≥70 years without CH. To investigate the causal role of CH in HFpEF, nonconditioned mice underwent adoptive transfer with Tet2-wild-type or Tet2-deficient bone marrow and were subsequently subjected to a high-fat diet/L-NAME (Nω-nitro-l-arginine methyl ester) combination treatment to induce features of HFpEF. This model of Tet2-CH exacerbated cardiac hypertrophy by heart weight/tibia length and cardiomyocyte size, diastolic dysfunction by E/e' and left ventricular end-diastolic pressure, and cardiac fibrosis compared with the Tet2-wild-type condition. CONCLUSIONS CH is associated with worse heart function and prognosis in patients with HFpEF, and a murine experimental model of Tet2-mediated CH displays greater features of HFpEF.
Collapse
Affiliation(s)
- Jesse Cochran
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshimitsu Yura
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Current address: Department of Cardiovascular Medicine, Nagoya University School of Medicine, Nagoya 466-8550, Japan
| | - Mark C. Thel
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Heather Doviak
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ariel H. Polizio
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yuka Arai
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yohei Arai
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Keita Horitani
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Current address: Department of Internal Medicine II, Kansai Medical University, Osaka 573-1010, Japan
| | - Eunbee Park
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicholas W. Chavkin
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anupreet Kour
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Soichi Sano
- Laboratory of Cardiovascular Mosaicism, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | | | - Megan Evans
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mahalia Huba
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Hanna Sun
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Youngho Ban
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Karen K. Hirschi
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Frederick L. Ruberg
- Section of Cardiovascular Medicine, Department of Medicine and Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine/Boston Medical Center, Boston, MA 02118, USA
| | - Mathew S. Maurer
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Justin A. Ezekowitz
- Alberta Heart Failure Etiology and Analysis Research Team (HEART) project
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Jason R.B. Dyck
- Alberta Heart Failure Etiology and Analysis Research Team (HEART) project
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|