1
|
Brown E, Lan J, Parks OB, Hinck CS, Hinck AP, Williams JV, Eddens T. Th1 differentiation and function are inhibited in neonates following human metapneumovirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf057. [PMID: 40280180 DOI: 10.1093/jimmun/vkaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/11/2025] [Indexed: 04/29/2025]
Abstract
Human metapneumovirus (HMPV) is a leading cause of lower respiratory tract infection in children accounting for 7% of acute care visits and hospitalizations. In particular, neonates and infants have worse outcomes with HMPV infection. The neonatal immune system is regulated to favor anti-inflammatory and tolerogenic responses compared to adults, including prior work demonstrating epigenetic factors in neonatal CD4+ T cells promoting Th2 formation rather than antiviral Th1 differentiation. To interrogate the neonatal immune response to HMPV, 4-to-6 day-old mice or adult 6-to-8 week-old mice were infected with HMPV. Neonates had a decreased Th1 population and increased Th2 and regulatory T-cell (Treg) populations compared to adults. Neonatal Th1 function, but not cell number, was restrained by surface PD-1 expression. To assess if neonatal Th1 formation was intrinsically inhibited after HMPV, neonatal and adult CD4s were transferred into immunocompetent or immunodeficient neonates. Both adult and neonatal CD4s demonstrated reduced Th1 differentiation in the immunocompetent neonates, but robust Th1 differentiation in immunodeficient neonates and immunocompetent adults, suggesting an extrinsic mechanism. Loss of neonatal Tregs led to increased Th1 differentiation after HMPV infection. Neonatal Tregs had increased TGF-β production compared to adult Tregs, and disruption of TGF-β signaling increased Th1 induction. These data demonstrate Tregs provide extrinsic regulation of Th1 formation in the context of respiratory viral infections, rather than an intrinsic limitation of neonatal CD4s. Collectively, these findings identify a nuanced neonatal response to respiratory viruses limiting Th1 formation and function.
Collapse
Affiliation(s)
- Emma Brown
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Olivia B Parks
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, United States
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Taylor Eddens
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, United States
| |
Collapse
|
2
|
Kim VHD, Upton JEM, Derfalvi B, Hildebrand KJ, McCusker C. Inborn errors of immunity (primary immunodeficiencies). ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2025; 20:76. [PMID: 39780212 PMCID: PMC11714877 DOI: 10.1186/s13223-024-00938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Primary immunodeficiencies (PID), now often referred to as inborn errors of immunity (IEI), are a large heterogeneous group of disorders that result from deficiencies in immune system development and/or function. IEIs can be broadly classified as disorders of adaptive immunity (e.g., combined or humoral immunodeficiencies) or of innate immunity (e.g., phagocyte and complement disorders). Although the clinical manifestations of IEIs are highly variable, traditionally many disorders involve an increased susceptibility to infection. Research in recent years has underscored how IEI can present with features other than infection such as: severe atopy, autoimmunity, autoinflammation, lymphoproliferation, and/or malignancy resulting from immune dysregulation. Early consultation with a clinical immunologist is essential, as timely diagnosis and treatment are imperative for preventing significant disease-associated morbidity and mortality. The treatment of IEIs is complex and generally requires both supportive and definitive strategies, including but not limited to, immunoglobulin replacement therapy, antibiotic prophylaxis, immune response modifiers, and hematopoietic stem cell transplantation. This article provides an overview of the major categories of IEIs and strategies for the appropriate diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Vy H D Kim
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Julia E M Upton
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Temerty School of Medicine, University of Toronto, Toronto, ON, Canada
| | - Beata Derfalvi
- Division of Immunology, IWK Health Centre, Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Kyla J Hildebrand
- Division of Immunology, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Christine McCusker
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
3
|
Walsh RB, McNaughton P, Nademi Z, Laberko A, Balashov D, Al-Mousa H, Arkwright PD, Wynn RF, Flood T, Williams E, Cant A, Abinun M, Hambleton S, Slatter M, Gennery AR, Lum SH, Owens S. Outcomes of Hematopoietic Stem Cell Transplantation in 5 Patients with Autosomal Recessive RIPK1-Deficiency. J Clin Immunol 2025; 45:65. [PMID: 39762600 PMCID: PMC11703983 DOI: 10.1007/s10875-024-01850-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) is widely expressed and integral to inflammatory and cell death responses. Autosomal recessive RIPK1-deficiency, due to biallelic loss of function mutations in RIPK1, is a rare inborn error of immunity (IEI) resulting in uncontrolled necroptosis, apoptosis and inflammation. Although hematopoietic stem cell transplantation (HSCT) has been suggested as a potential curative therapy, the extent to which disease may be driven by extra-hematopoietic effects of RIPK1-deficiency, which are non-amenable to HSCT, is not clear. We present a multi-centre, international review of an additional 5 RIPK1-deficient children who underwent HSCT. All patients presented with very early onset inflammatory bowel disease, 2 also suffered from inflammatory arthritis. Median age at transplant was 3 years (range 1-5 years); 1 received matched sibling marrow, 1 matched unrelated peripheral blood stem cells (PBSC), 2 TCRαβ/CD19-depleted PBSC from maternal-haploidentical donors, and 1 had TCRαβ/CD19-depleted PBSC from a mismatched unrelated donor. All received reduced-toxicity conditioning, based on treosulfan (n = 4) or busulfan (n = 1); 1 patient underwent a successful second transplant following autologous reconstitution. Four of five patients (80%) survived; 1 child died due to multi-drug resistant pseudomonas infection and multi-organ failure. With a median duration of 14 months follow-up, 2 survivors were disease-free, and 2 had substantially improving enteropathy. These findings demonstrated that HSCT is a potential curative therapy for RIPK1-deficiency.
Collapse
Affiliation(s)
- Rebecca B Walsh
- Royal Victoria Infirmary, Newcastle-Upon-Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | | | - Zohreh Nademi
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Alexandra Laberko
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Centre of Paediatric Haematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Centre of Paediatric Haematology, Oncology and Immunology, Moscow, Russia
| | - Hamoud Al-Mousa
- Section of Paediatric Allergy and Immunology, Department of Paediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester & Royal Manchester Children's Hospital, Manchester, UK
| | - Robert F Wynn
- Blood and Marrow Transplant Unit, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Terry Flood
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| | - Eleri Williams
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
| | - Andrew Cant
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mario Abinun
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Sophie Hambleton
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mary Slatter
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Andrew R Gennery
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Su Han Lum
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Stephen Owens
- Population Health Sciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
- Great North Children's Hospital, Newcastle-Upon-Tyne, UK.
| |
Collapse
|
4
|
Chuleerarux N, Makkoukdji N, Satnarine T, Kuhn JE, Nopsopon T, Valyasevi P, Schmidt FB, Kleiner G, Gans M. Inborn Errors of Immunity Presenting with Early-Onset Severe Atopy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:62. [PMID: 39859044 PMCID: PMC11767231 DOI: 10.3390/medicina61010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Inborn errors of immunity (IEIs), also known as primary immunodeficiencies, are a group of genetic disorders affecting the development and function of the immune system. While IEIs traditionally present with recurrent infections, an increasing number of cases manifest with early-onset severe atopy, including atopic dermatitis, food allergies, asthma, and allergic rhinitis-features that are often overlooked. This can lead to delayed diagnosis and treatment, which is crucial for IEI patients due to the risk of severe infections. We conducted a literature search and reviewed all IEIs that can present with early-onset severe atopy. The hallmark features of these disorders often include early-onset, persistent, and severe atopic dermatitis, food allergies, and recurrent episodes of asthma, which may be refractory to treatments. Additionally, we discuss the importance of recognizing such severe atopy as a potential indicator of an underlying immune deficiency, particularly when accompanied by unusual infections, growth failure, or autoimmunity. This review aims to raise awareness of this association and emphasize the need for early diagnosis and genetic testing in patients with atypical or treatment-resistant allergic diseases, allowing for more timely diagnosis of underlying immunodeficiencies and appropriate treatments.
Collapse
Affiliation(s)
- Nipat Chuleerarux
- Department of Internal Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadia Makkoukdji
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Travis Satnarine
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jessica Elise Kuhn
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Peerada Valyasevi
- Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Fernanda Bellodi Schmidt
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gary Kleiner
- Division of Allergy/Immunology, Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melissa Gans
- Division of Allergy/Immunology, Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Santana-Gonçalves M, De Santis PB, Malmegrim KCR, Oliveira MC. T-cell Recovery After Autologous Hematopoietic Stem Cell Transplantation in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:301-323. [PMID: 40067593 DOI: 10.1007/978-3-031-77921-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Over the last three decades, autologous hematopoietic stem cell transplantation (AHSCT) has emerged as a significant therapeutic strategy for patients with various refractory autoimmune diseases. Globally, more than 3000 AHSCT procedures have been performed for severe autoimmune diseases. The rationale behind this treatment is abrogation of autoreactivity; renovation of the immune system from the infused hematopoietic stem cells and establishment of a balanced, long-lasting, and self-tolerant immune system. Thymic rebound is a central event in the mechanisms of action of transplantation, promoting the generation of a new repertoire of T cells and reinstating self-tolerance. Here, we critically review the immunological mechanisms of AHSCT in various autoimmune disease settings, with a central focus on thymic rejuvenation. We understand that elucidating the mechanisms of action of the transplant and conducting immunological monitoring studies are crucial for comprehending the risks, benefits, and long-term efficacy of the treatment, thereby promoting functional improvements in patients with autoimmune diseases refractory to conventional treatment.
Collapse
Affiliation(s)
| | | | - Kelen C R Malmegrim
- Center for Cell-Based Therapy, Regional Blood Center, Ribeirão Preto, SP, Brazil.
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center, Ribeirão Preto, SP, Brazil.
- Department of Internal Medicine (Clínica Médica), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Che R, Miao M, Ding G, Zhao S. A rare case of late-onset immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome confused with IgA vasculitis nephropathy. Pediatr Nephrol 2025; 40:89-93. [PMID: 39190146 DOI: 10.1007/s00467-024-06482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
A 3-year-old boy initially presented with purpura-like rashes and nephrotic syndrome, suspected to be IgA vasculitis nephritis (IgAVN). The suggestion of kidney biopsy was rejected. Although the patient responded well to glucocorticoids, they later developed recurrent proteinuria, refractory diarrhea, and subsequent metabolic acidosis. Kidney biopsy showed membranous nephropathy with positive semaphorin 3B expression, indicative of other kidney diseases rather than IgAVN. Although his kidney responded well to glucocorticoid combined with cyclosporine A treatment regimen, enteropathy and severe food allergy still progressed afterwards as evidenced by villous atrophy on gastrointestinal endoscopy examination. Whole exome sequencing identified a heterozygous missense variant in exon 11 of FOXP3: c.1121 T > G, confirming the diagnosis of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. The case expanded the phenotypic spectrum of IPEX syndrome, suggesting high phenotypic heterogeneity despite similar genotypes. It also put emphasis on the significance of kidney biopsy to differentiate IgA vasculitis nephropathy from other immune disorders.
Collapse
MESH Headings
- Humans
- Male
- IgA Vasculitis/genetics
- IgA Vasculitis/diagnosis
- IgA Vasculitis/complications
- IgA Vasculitis/immunology
- Child, Preschool
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/complications
- Forkhead Transcription Factors/genetics
- Immune System Diseases/genetics
- Immune System Diseases/congenital
- Immune System Diseases/diagnosis
- Diagnosis, Differential
- Glomerulonephritis, IGA/genetics
- Glomerulonephritis, IGA/diagnosis
- Glomerulonephritis, IGA/immunology
- Glomerulonephritis, IGA/complications
- Intestinal Diseases/genetics
- Intestinal Diseases/diagnosis
- Intestinal Diseases/immunology
- Mutation, Missense
- Biopsy
- Kidney/pathology
- Failure to Thrive/genetics
- Failure to Thrive/etiology
- Failure to Thrive/diagnosis
- Glucocorticoids/therapeutic use
- Exome Sequencing
- Endocrine System Diseases/genetics
- Endocrine System Diseases/diagnosis
- Endocrine System Diseases/complications
- Diabetes Mellitus, Type 1/congenital
- Diarrhea
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Sanlong Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
7
|
Schnell JT, Briviesca RL, Kim T, Charbonnier LM, Henderson LA, van Wijk F, Nigrovic PA. The 'T reg paradox' in inflammatory arthritis. Nat Rev Rheumatol 2025; 21:9-21. [PMID: 39653758 DOI: 10.1038/s41584-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Classic regulatory T (Treg) cells expressing CD4 and the hallmark transcription factor FOXP3 are integral to the prevention of multi-system autoimmunity. However, immune-mediated arthritis is often associated with increased numbers of Treg cells in the inflamed joints. To understand these seemingly conflicting observations, which we collectively describe as 'the Treg paradox', we provide an overview of Treg cell biology with a focus on Treg cell heterogeneity, function and dysfunction in arthritis. We discuss how the inflamed environment constrains the immunosuppressive activity of Treg cells while also promoting the differentiation of TH17-like Treg cell, exTreg cell (effector T cells that were formerly Treg cells), and osteoclastogenic Treg cell subsets that mediate tissue injury. We present a new framework to understand Treg cells in joint inflammation and define potential strategies for Treg cell-directed interventions in human inflammatory arthritis.
Collapse
Affiliation(s)
- Julia T Schnell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Ye L, Song X, Cui Y, Wu S, Wang Y, Zhang T, Weng W, Ge T. Sirolimus alleviated intractable diarrhea of IPEX syndrome: a case report and literature review. BMC Pediatr 2024; 24:806. [PMID: 39696094 PMCID: PMC11653752 DOI: 10.1186/s12887-024-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare single-gene X-linked immunodeficiency disease caused by mutations in the forkhead box protein 3 (FOXP3) gene. The typical clinical manifestations of IPEX mainly include severe atopic dermatitis, insulin-dependent type 1 diabetes mellitus, and intractable diarrhea. CASE PRESENTATION Here, we report a boy with intractable diarrhea diagnosed with early-onset IPEX syndrome due to the c.434C > T (p.Ala145Val) mutation in exon 4 of the FOXP3 gene. The patient experienced intractable diarrhea and severe weight loss, and his clinical symptoms could not be alleviated by conventional supportive and anti-infection treatment. Sirolimus, an immunosuppressant, preferentially inhibits effector T cells while allowing the proliferation of Tregs and is used to treat IPEX patients and alleviate intractable diarrhea. CONCLUSION We reviewed the literature on the use of sirolimus for the treatment of IPEX syndrome over the past two decades.
Collapse
Affiliation(s)
- Lin Ye
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Xue Song
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Shengnan Wu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China.
| | - Ting Ge
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Tsilifis C, Speckmann C, Lum SH, Fox TA, Soler AM, Mozo Y, Corral D, Ewins AM, Hague R, Oikonomopoulou C, Kałwak K, Drabko K, Wynn R, Morris EC, Elcombe S, Bigley V, Lougaris V, Malagola M, Hauck F, Sedlacek P, Laberko A, Tjon JML, Buddingh EP, Wehr C, Grimbacher B, Gennery AR, Lankester AC, Albert MH, Neven B, Slatter MA. Hematopoietic stem cell transplantation for CTLA-4 insufficiency across Europe: A European Society for Blood and Marrow Transplantation Inborn Errors Working Party study. J Allergy Clin Immunol 2024; 154:1534-1544. [PMID: 39218359 DOI: 10.1016/j.jaci.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cytotoxic T-lymphocyte antigen 4 (CTLA-4) insufficiency causes a primary immune regulatory disorder characterized by lymphoproliferation, dysgammaglobulinemia, and multiorgan autoimmunity including cytopenias and colitis. OBJECTIVE We examined the outcome of hematopoietic stem cell transplantation (HSCT) for CTLA-4 insufficiency and study the impact of pre-HSCT CTLA-4 fusion protein (CTLA-4-Ig) therapy and pre-HSCT immune dysregulation on survival and immunologic outcome. METHODS This was a retrospective study of HSCT for CTLA-4 insufficiency and 2q33.2-3 deletion from the European Society for Blood and Marrow Transplantation Inborn Errors Working Party. Primary end points were overall survival (OS) and disease- and chronic graft-versus-host disease-free survival (DFS). Secondary end point was immunologic outcome assessed by immune dysregulation disease activity (IDDA) score. RESULTS Forty patients were included over a 25-year period. Before HSCT, 60% received CTLA-4-Ig, and median (range) IDDA score was 23.3 (3.9-84.0). Median (range) age at HSCT was 14.2 (1.3-56.0) years. Patients received peripheral blood stem cell (58%) or marrow (43%) from a matched unrelated donor (75%), mismatched unrelated donor (12.5%), or matched family donor (12.5%). Median (range) follow-up was 3 (0.6-15) years, and 3-year OS was 76.7% (58-87%) and DFS was 74.4% (54.9-86.0%). At latest follow-up, disease of 28 of 30 surviving patients was in disease-free remission with median IDDA reduction of 16. Probability of OS and DFS was greater in patients with lower disease activity before HSCT (IDDA < 23, P = .002 and P = .006, respectively). CTLA-4-Ig receipt did not influence OS or DFS. Cause of death was transplant related in 7 of 8 patients. CONCLUSION HSCT is an effective therapy to prevent ongoing disease progression and morbidity, with improving survival rates over time and in patients with lower pre-HSCT disease activity.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Su Han Lum
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas A Fox
- UCL Institute of Immunity and Transplantation, UCL, London, The Netherlands; Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Adriana Margarit Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Yasmina Mozo
- Paediatric Haematopoietic Stem Cell Transplant Unit, University Hospital La Paz, Madrid, Spain
| | - Dolores Corral
- Paediatric Haematopoietic Stem Cell Transplant Unit, University Hospital La Paz, Madrid, Spain
| | - Anna-Maria Ewins
- Paediatric Stem Cell Transplantation, Royal Hospital for Children, Glasgow, United Kingdom
| | - Rosie Hague
- Paediatric Immunology, Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Krzysztof Kałwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Robert Wynn
- Department of Blood and Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Emma C Morris
- UCL Institute of Immunity and Transplantation, UCL, London, The Netherlands; Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Suzanne Elcombe
- Department of Immunology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Northern Centre for Bone Marrow Transplantation, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Vassilios Lougaris
- Adult Bone Marrow Transplant Unit, ASST Spedali Civili, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Michele Malagola
- Adult Bone Marrow Transplant Unit, ASST Spedali Civili, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, 2nd Medical School, Charles University Motol, Prague, Czech Republic
| | - Alexandra Laberko
- Department of Haematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jennifer M L Tjon
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilie P Buddingh
- Department of Pediatrics, Willem-Alexander Children's Hospital, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, The Netherlands
| | - Claudia Wehr
- Department of Haematology and Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I/Hematology, Oncology, and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; CCI, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, CCI, University Hospital Freiburg, Freiburg, Germany
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arjan C Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bénédicte Neven
- Pediatric Immunology, Hematology, and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mary A Slatter
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Voarino M, Consonni F, Gambineri E. Expanding the spectrum of IPEX: from new clinical findings to novel treatments. Curr Opin Allergy Clin Immunol 2024; 24:457-463. [PMID: 39475830 PMCID: PMC11537464 DOI: 10.1097/aci.0000000000001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of recent research findings regarding immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, focusing on clinical and immunological novelties, as well as emerging treatment strategies, based on the published literature of the last few years. RECENT FINDINGS While it is well known that IPEX can present with a wide range of atypical clinical manifestations, new and unique phenotypes continue to emerge, making it essential to maintain a high level of clinical suspicion both at the time of diagnosis and during follow-up. This unpredictability in clinical presentation is further compounded by the lack of a clear genotype-phenotype correlation. A valuable tool for monitoring comes from recent discoveries regarding the epigenetic signature of Tregs, which, by correlating with disease severity, could prove to be a useful biomarker for diagnosis and ongoing management. The use of biological agents is emerging as an alternative to traditional immunosuppression. Additionally, ongoing studies are exploring the feasibility of gene therapy through the introduction of the wild-type FOXP3 into peripheral CD4 + T cells. SUMMARY Further research is needed to fully understand the variable clinical presentations of IPEX and optimize tailored therapies, ensuring better management and outcomes for affected individuals.
Collapse
Affiliation(s)
| | - Filippo Consonni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
11
|
McClory SE, Oved JH. Transplantation for immune dysregulatory disorders: current themes and future expectations. Curr Opin Pediatr 2024; 36:693-701. [PMID: 39345097 DOI: 10.1097/mop.0000000000001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PURPOSE OF REVIEW Primary immune regulatory disorders (PIRDs) are an increasing indication for hematopoietic stem cell transplant (HCT) in pediatric patients. Here, we provide an updated overview of HCT for PIRDs, and discuss future avenues for improvement in outcomes. RECENT FINDINGS There are now more than 50 described monogenic PIRDs, which impact all aspects of immune tolerance, regulation, and suppression. Disease characteristics are highly variable, and HCT remains the only option for cure. We review advances in targeted therapies for individual PIRDs, which have significantly improved outcomes and the ability to safely bridge to transplant. Additionally, advances in GVHD prevention, graft manipulation, personalized conditioning regimens, and supportive care have all increased survival after HCT. The high inflammatory state increases the risk of nonengraftment, rejection, and autologous reconstitution. Therapy to reduce the inflammatory state may further improve outcomes. In addition, although younger patients with fewer comorbidities have better outcomes, the clinical courses of these diseases may be extremely variable thereby complicating the decision to proceed to HCT. SUMMARY HCT for PIRDs is a growing consideration in cell therapy. Yet, there remain significant gaps in our understanding of which patients this curative therapy could benefit the most. Here, we review the current data supporting HCT for PIRDs as well as areas for future improvement.
Collapse
Affiliation(s)
- Susan E McClory
- Program for Integrated Immunodeficiency and Cell Therapy, The Children's Hospital of Philadelphia
- Cell Therapy and Transplant, Division of Oncology, The Children's Hospital of Philadelphia
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph H Oved
- Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
13
|
Bildstein T, Charbit-Henrion F, Azabdaftari A, Cerf-Bensussan N, Uhlig HH. Cellular and molecular basis of proximal small intestine disorders. Nat Rev Gastroenterol Hepatol 2024; 21:687-709. [PMID: 39117867 DOI: 10.1038/s41575-024-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The proximal part of the small intestine, including duodenum and jejunum, is not only dedicated to nutrient digestion and absorption but is also a highly regulated immune site exposed to environmental factors. Host-protective responses against pathogens and tolerance to food antigens are essential functions in the small intestine. The cellular ecology and molecular pathways to maintain those functions are complex. Maladaptation is highlighted by common immune-mediated diseases such as coeliac disease, environmental enteric dysfunction or duodenal Crohn's disease. An expanding spectrum of more than 100 rare monogenic disorders inform on causative molecular mechanisms of nutrient absorption, epithelial homeostasis and barrier function, as well as inflammatory immune responses and immune regulation. Here, after summarizing the architectural and cellular traits that underlie the functions of the proximal intestine, we discuss how the integration of tissue immunopathology and molecular mechanisms can contribute towards our understanding of disease and guide diagnosis. We propose an integrated mechanism-based taxonomy and discuss the latest experimental approaches to gain new mechanistic insight into these disorders with large disease burden worldwide as well as implications for therapeutic interventions.
Collapse
Affiliation(s)
- Tania Bildstein
- Great Ormond Street Hospital for Children, Department of Paediatric Gastroenterology, London, UK
| | - Fabienne Charbit-Henrion
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, APHP, University of Paris-Cité, Paris, France
- INSERM UMR1163, Intestinal Immunity, Institut Imagine, Paris, France
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
14
|
Bekis Bozkurt H, Bayram Catak F, Sahin A, Yalcin Gungoren E, Gemici Karaarslan B, Yakici N, Yorgun Altunbas M, Catak MC, Can S, Amirov R, Bozkurt S, Ozturk N, Bilgic Eltan S, Kasap N, Bal Cetinkaya F, Orhan F, Arga M, Cavkaytar O, Kiykim A, Karakoc-Aydiner E, Ozen A, Baris S. Diverse Clinical and Immunological Profiles in Patients with IPEX Syndrome: a Multicenter Analysis from Turkey. J Clin Immunol 2024; 45:9. [PMID: 39283523 DOI: 10.1007/s10875-024-01791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 12/06/2024]
Abstract
PURPOSE Immunodysregulation, Polyendocrinopathy, Enteropathy, and X-linked syndrome (IPEX), caused by pathogenic FOXP3 variants, is a rare autoimmune disorder with diverse clinical features, including early-onset diabetes, eczema, and enteropathy. Atypical cases show milder symptoms and unique signs, requiring different treatments. Therefore, there are ambiguities in the accurate diagnosis and management of IPEX. We sought to present clinical, genetic, and immunological assessments of 12 IPEX patients with long-term follow-up to facilitate the diagnosis and management of the disease. METHODS Clinical findings and treatment options of the patients were collected over time. Lymphocyte subpopulations, protein expressions, regulatory T (Treg) and circulating T follicular helper (cTFH) cells, and T-cell proliferation were analyzed. RESULTS Predominant presentations included autoimmunity (91.6%), failure to thrive (66.7%), and eczema (58.3%). There were four classical and eight atypical IPEX individuals. Allergic manifestations were more common in atypical patients. Notably, chronic diarrhea demonstrated heightened severity compared to other manifestations. Four patients (33.3%) demonstrated eosinophilia, and nine (75%) showed high serum IgE levels. Most patients exhibited normal percentages of Treg cells with reduced CD25, FOXP3, and CTLA-4 expressions, corrected after hematopoietic stem cell transplantation (HSCT). Compared to healthy controls, the TH2-like skewing accompanied by reduced TH17-like responses was observed in cTFH and Treg cells of patients. Overall, nine patients (75%) received immunosuppressants (ISs), and six (50%) underwent HSCT, which was the only treatment revealing sustained control. Sirolimus was used in six patients and showed better control than other ISs. CONCLUSIONS The first cohort from Turkey with long-term follow-up results, comparing typical and atypical cases, provides insights into the outcomes of different therapeutic modalities and T- cell subtype changes in IPEX syndrome.
Collapse
MESH Headings
- Humans
- Turkey
- Male
- Child, Preschool
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/therapy
- T-Lymphocytes, Regulatory/immunology
- Infant
- Female
- Child
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/congenital
- Immune System Diseases/diagnosis
- Immune System Diseases/genetics
- Immune System Diseases/therapy
- Immune System Diseases/congenital
- Autoimmunity
- Adolescent
- Diarrhea
Collapse
Affiliation(s)
- Hayrunnisa Bekis Bozkurt
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Feyza Bayram Catak
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ali Sahin
- Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ezgi Yalcin Gungoren
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Betul Gemici Karaarslan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nalan Yakici
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Karadeniz Technical University, Trabzon, Turkey
| | - Melek Yorgun Altunbas
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehmet Cihangir Catak
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Salim Can
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Razin Amirov
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Selcen Bozkurt
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Necmiye Ozturk
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fatma Bal Cetinkaya
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Fazil Orhan
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Karadeniz Technical University, Trabzon, Turkey
| | - Mustafa Arga
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Cavkaytar
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Faculty of Medicine, Department of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
15
|
Liu JQ, Jabbari A, Lin CH, Akkanapally V, Frankel WL, Basu S, He K, Zheng P, Liu Y, Bai XF. IL-27 Gene Therapy Ameliorates IPEX Syndrome Caused by Germline Mutation of Foxp3 Gene: A Major Role for Induction of IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:559-566. [PMID: 38975727 PMCID: PMC11333164 DOI: 10.4049/jimmunol.2400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.
Collapse
MESH Headings
- Animals
- Forkhead Transcription Factors/genetics
- Mice
- Interleukin-10/genetics
- Interleukin-10/immunology
- Genetic Therapy/methods
- Germ-Line Mutation
- T-Lymphocytes, Regulatory/immunology
- Genetic Diseases, X-Linked/therapy
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/genetics
- Interleukins/immunology
- Interleukins/genetics
- Diarrhea/genetics
- Diarrhea/therapy
- Diarrhea/immunology
- Intestinal Diseases/immunology
- Intestinal Diseases/genetics
- Intestinal Diseases/therapy
- Dependovirus/genetics
- Mice, Inbred C57BL
- Immune System Diseases/immunology
- Immune System Diseases/therapy
- Immune System Diseases/genetics
- Immune System Diseases/congenital
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/congenital
- Mice, Knockout
- Lymphocyte Activation/immunology
- Humans
- Interleukin-27/genetics
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, College of Medicine, Iowa City, Iowa, USA
| | - Cho-Hao Lin
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Venu Akkanapally
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Wendy L. Frankel
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Pan Zheng
- OncoC4, Inc., 640 Medical Center Drive, Rockville, MD, USA
| | - Yang Liu
- OncoC4, Inc., 640 Medical Center Drive, Rockville, MD, USA
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Alsaati N, Grier A, Ochfeld E, McClory S, Heimall J. Hematopoietic stem cell transplantation for primary immunodeficiency. Allergy Asthma Proc 2024; 45:371-383. [PMID: 39294909 DOI: 10.2500/aap.2024.45.240069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Primary immunodeficiencies, also commonly called inborn errors of immunity (IEI), are commonly due to developmental or functional defects in peripheral blood cells derived from hematopoietic stem cells. In light of this, for the past 50 years, hematopoietic stem cell transplantation (HSCT) has been used as a definitive therapy for IEI. The fields of both clinical immunology and transplantation medicine have had significant advances. This, in turn, has allowed for both an increasing ability to determine a monogenic etiology for many IEIs and an increasing ability to successfully treat these patients with HSCT. Therefore, it has become more common for the practicing allergist/immunologist to diagnose and manage a broad range of patients with IEI before and after HSCT. This review aims to provide practical guidance for the clinical allergist/immunologist on the basics of HSCT and known outcomes in selected forms of IEI, the importance of pre-HSCT supportive care, and the critical importance of and guidance for life-long immunologic and medical monitoring of these patients.
Collapse
Affiliation(s)
- Nouf Alsaati
- From the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia Pennsylvania; and
| | - Alexandra Grier
- From the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia Pennsylvania; and
| | - Elisa Ochfeld
- From the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia Pennsylvania; and
| | - Susan McClory
- Cell Therapy and Transplant Section, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia Pennsylvania
| | - Jennifer Heimall
- From the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia Pennsylvania; and
| |
Collapse
|
17
|
Lum SH, Albert MH, Gilbert P, Sirait T, Algeri M, Muratori R, Fournier B, Laberko A, Karakukcu M, Unal E, Ayas M, Yadav SP, Fisgin T, Elfeky R, Fernandes J, Faraci M, Cole T, Schulz A, Meisel R, Zecca M, Ifversen M, Biffi A, Diana JS, Vallée T, Giardino S, Ersoy GZ, Moshous D, Gennery AR, Balashov D, Bonfim C, Locatelli F, Lankester A, Neven B, Slatter M. Outcomes of HLA-mismatched HSCT with TCRαβ/CD19 depletion or post-HSCT cyclophosphamide for inborn errors of immunity. Blood 2024; 144:565-580. [PMID: 38669631 DOI: 10.1182/blood.2024024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
ABSTRACT HLA-mismatched transplants with either in vitro depletion of CD3+ T-cell receptor (TCR)αβ/CD19 (TCRαβ) cells or in vivo T-cell depletion using posttransplant cyclophosphamide (PTCY) have been increasingly used for patients with inborn errors of immunity (IEIs). We performed a retrospective multicenter study via the EBMT registry on 306 children with IEIs undergoing their first transplant between 2010 and 2019 from an HLA-mismatched donor using TCRαβ (n = 167) or PTCY (n = 139). The median age for hematopoietic stem cell transplantation (HSCT) was 1.2 years (range, 0.03-19.6 years). The 3-year overall survival (OS) was 78% (95% confidence interval (CI), 71-84) after TCRαβ and 66% (57-74) after PTCY (P = .013). Pre-HSCT morbidity score (hazard ratio [HR], 2.27; 1.07-4.80, P = .032) and non-busulfan/treosulfan conditioning (HR, 3.12; 1.98-4.92, P < .001) were the only independent predictors of unfavorable OS. The 3-year event-free survival (EFS) was 58% (50%-66%) after TCRαβ and 57% (48%-66%) after PTCY (P = .804). The cumulative incidence of severe acute graft-versus-host disease (GvHD) was higher after PTCY (15%, 9%-21%) than TCRαβ (6%, 2%-9%, P = .007), with no difference in chronic GvHD (PTCY, 11%, 6%-17%; TCRαβ, 7%, 3%-11%, P = .173). The 3-year GvHD-free EFS was 53% (44%-61%) after TCRαβ and 41% (32%-50%) after PTCY (P = .080). PTCY had significantly higher rates of veno-occlusive disease (14.4% vs TCRαβ 4.9%, P = .009), acute kidney injury (12.7% vs 4.6%, P = .032), and pulmonary complications (38.2% vs 24.1%, P = .017). Adenoviremia (18.3% vs PTCY 8.0%, P = .015), primary graft failure (10% vs 5%, P = .048), and second HSCT (17.4% vs 7.9%, P = .023) were significantly higher in TCRαβ. In conclusion, this study demonstrates that both approaches are suitable options in patients with IEIs, although they are characterized by different advantages and outcomes.
Collapse
Affiliation(s)
- Su Han Lum
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Paediatric Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Michael H Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Mattia Algeri
- Department of Paediatric Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Magna Graecia University, Catanzaro, Italy
| | - Rafaella Muratori
- Pediatric Hematology and Transplantation Unit, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Benjamin Fournier
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexandra Laberko
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Musa Karakukcu
- Erciyes University, KANKA Pediatric Hematology/Oncology and BMT Hospital, Kayseri, Turkey
| | - Elrem Unal
- Hasan KALYONCU University and Medicalpoint Hospital, Gaziantep, Turkey
| | - Mouhab Ayas
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Tunc Fisgin
- Pediatric Hematology/Oncology and BMT Unit, Altinbas University Faculty of Medicine Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Reem Elfeky
- Department of Paediatric Immunology, Great Ormand Street Children's Hospital, London, United Kingdom
| | - Juliana Fernandes
- Stem Cell Transplantation Unit, ITACI-Instituto da Criança-Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
- Hematology and Stem Cell Transplantation Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Hematology and Stem Cell Transplantation Unit, Hospital 9 de Julho, São Paulo, Brazil
| | | | - Theresa Cole
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Marco Zecca
- Paediatric Haematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Women and Child Health Department, University of Padua and Padua University Hospital, Padua, Italy
| | - Jean-Sebastien Diana
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Tanja Vallée
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Gizem Zengin Ersoy
- Pediatric Hematology/Oncology and BMT Unit, Altinbas University Faculty of Medicine Medical Park Bahcelievler Hospital, Istanbul, Turkey
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Paediatric Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Dmitry Balashov
- Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Carmem Bonfim
- Instituto de Pesquisa Pele Pequeno Príncipe/Faculdades Pequeno Príncipe, Pediatric Blood and Marrow Transplantation Service Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Franco Locatelli
- Department of Paediatric Hematology/Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Arjan Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bénédicte Neven
- Pediatric Immunology, Hematology and Rheumatology Department, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mary Slatter
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Paediatric Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Wang T, Wang J, Xu H, Yan H, Liu Y, Zhang N, Zhang Y, Zhang J, Xu J, Zhang L, Ge X, Meng M, Liu P, Yang Q, Qin D, Li S, He B. Salvianolic acid B alleviates autoimmunity in Treg-deficient mice via inhibiting IL2-STAT5 signaling. Phytother Res 2024; 38:3825-3836. [PMID: 38887974 DOI: 10.1002/ptr.8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024]
Abstract
Regulatory T cell (Treg) deficiency leads to immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome, which is a CD4+ T cell-driven autoimmune disease in both humans and mice. Despite understanding the molecular and cellular characteristics of IPEX syndrome, new treatment options have remained elusive. Here, we hypothesized that salvianolic acid B (Sal B), one of the main active ingredients of Salvia miltiorrhiza, can protect against immune disorders induced by Treg deficiency. To examine whether Sal B can inhibit Treg deficiency-induced autoimmunity, Treg-deficient scurfy (SF) mice with a mutation in forkhead box protein 3 were treated with different doses of Sal B. Immune cells, inflammatory cell infiltration, and cytokines were evaluated by flow cytometry, hematoxylin and eosin staining and enzyme-linked immunosorbent assay Kits, respectively. Moreover, RNA sequencing, western blot, and real-time PCR were adopted to investigate the molecular mechanisms of action of Sal B. Sal B prolonged lifespan and reduced inflammation in the liver and lung of SF mice. Moreover, Sal B decreased plasma levels of several inflammatory cytokines, such as IL-2, IFN-γ, IL-4, TNF-α, and IL-6, in SF mice. By analyzing the transcriptomics of livers, we determined the signaling pathways, especially the IL-2-signal transducer and activator of transcription 5 (STAT5) signaling pathway, which were associated with Treg deficiency-induced autoimmunity. Remarkably, Sal B reversed the expression of gene signatures related to the IL-2-STAT5 signaling pathway in vitro and in vivo. Sal B prolongs survival and inhibits lethal inflammation in SF mice through the IL-2-STAT5 axis. Our findings may inspire novel drug discovery efforts aimed at treating IPEX syndrome.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Huan Xu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Han Yan
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Ying Liu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Yawen Zhang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jingmin Zhang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Jingxuan Xu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Lei Zhang
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Ge
- Shanghai Key Laboratory of Pancreatic Disease, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjing Meng
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Peiman Liu
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Qiaozhi Yang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Daogang Qin
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Shandong, China
| | - Sen Li
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Baokun He
- Laboratory of Molecular Pharmacology and Drug Discovery, Institute of Chinese Materia Medica, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Baloh CH, Chong H. Inborn Errors of Immunity. Med Clin North Am 2024; 108:703-718. [PMID: 38816112 DOI: 10.1016/j.mcna.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Inborn errors of immunity occur in 1 in 1000 to 1 in 5000 individuals and are characterized by immune deficiency and immune dysregulation. The primary care provider (PCP) should be familiar with key features of these diagnoses including recurrent and/or severe infections, hyperinflammation, malignancy, and autoimmunity and have a low threshold to refer for evaluation. The PCP can begin a laboratory evaluation before referral by sending a complete blood count (CBC) with differential, antibody levels, vaccine titers, and possibly other tests. Management approaches vary from antibiotic prophylaxis to hematopoietic stem cell transplantation depending on the specific diagnosis.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Division of Allergy and Clinical Immunology, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, 60 Fenwood Road, BTM/Hale Building, 5th Floor, Boston, MA 02115, USA.
| | - Hey Chong
- Division of Allergy and Immunology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, AOB 3300, Pittsburgh, PA 15224, USA
| |
Collapse
|
20
|
Kijmassuwan T, Balouch F. Approach to Congenital Diarrhea and Enteropathies (CODEs). Indian J Pediatr 2024; 91:598-605. [PMID: 38105403 DOI: 10.1007/s12098-023-04929-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023]
Abstract
Congenital diarrhea and enteropathies (CODEs) constitute a group of rare genetic disorders characterized by severe diarrhea and malabsorption in the neonatal period or early infancy. Timely diagnosis and treatment is essential to prevent life-threatening complications, including dehydration, electrolyte imbalance, and malnutrition. This review offers a simplified approach to the diagnosis of CODEs, with a specific focus on microvillus inclusion disease (MVID), congenital tufting enteropathy (CTE), congenital chloride diarrhea (CLD), and congenital sodium diarrhea (CSD). Patients with CODEs typically present with severe watery or occasionally bloody diarrhea, steatorrhea, dehydration, poor growth, and developmental delay. Therefore, it is crucial to thoroughly evaluate infants with diarrhea to rule out infectious, allergic, or anatomical causes before considering CODEs as the underlying etiology. Diagnostic investigations for CODEs encompass various modalities, including stool tests, blood tests, immunological studies, endoscopy and biopsies for histology and electron microscopy, and next-generation sequencing (NGS). NGS plays a pivotal role in identifying the genetic mutations responsible for CODEs. Treatment options for CODEs are limited, often relying on total parenteral nutrition for hydration and nutritional support. In severe cases, intestinal transplantation may be considered. The long-term prognosis varies among specific CODEs, with some patients experiencing ongoing intestinal failure and associated complications. In conclusion, the early recognition and accurate diagnosis of CODEs are of paramount importance for implementing appropriate management strategies. Further research and advancements in genetic testing hold promise for enhancing diagnostic accuracy and exploring potential targeted therapies for these rare genetic disorders.
Collapse
Affiliation(s)
- Teera Kijmassuwan
- Division of Gastroenterology, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Gastroenterology, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Fariha Balouch
- Department of Gastroenterology, Queensland Children's Hospital, South Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Comella M, Palmisani E, Mariani M, Dell’Orso G, Licciardello M, Giarratana MC, Arcuri L, Pestarino S, Grossi A, Lanciotti M, Brucci G, Guardo D, Russo G, Dufour C, Fioredda F, Castagnola E, Miano M. Infection risk in patients with autoimmune cytopenias and immune dysregulation treated with mycophenolate mofetil and sirolimus. Front Immunol 2024; 15:1415389. [PMID: 38873600 PMCID: PMC11169563 DOI: 10.3389/fimmu.2024.1415389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Autoimmune cytopenias (AICs) are a group of disorders characterized by immune-mediated destruction of blood cells. In children, they are often secondary to immune dysregulation that may require long-lasting immunosuppression. Mycophenolate mofetil and sirolimus represent two well-tolerated options to treat these disorders, often as a steroid-sparing option. However, no data are available on the infection risk for patients undergoing long-lasting treatments. Patients and methods The rate of severe infective events was calculated in episodes per 100 persons/months at risk (p/m/r) documented by the analysis of hospitalization charts between January 2015 and July 2023 of patients treated with mycophenolate mofetil or sirolimus given for isolated AIC or AICs associated with autoimmune lymphoproliferative syndrome (ALPS)/ALPS-like syndromes in two large Italian pediatric hematology units. Results From January 2015 to July 2023, 13 out of 96 patients treated with mycophenolate mofetil or sirolimus developed 16 severe infectious events requiring hospitalization. No patients died. Overall infection rate was 0.24 person/*100 months/risk (95% CI 0.09-0.3). Serious infectious events incidence was higher in patients with ALPS-like compared to others (0.42 versus 0.09; p = 0.006) and lower in patients who underwent mycophenolate treatment alone compared to those who started sirolimus after mycophenolate failure (0.04 versus 0.29, p = 0.03). Considering only patients who started treatment at the beginning of study period, overall cumulative hazard was 18.6% at 60 months (95% CI 3.4-31.4) with higher risk of infectious events after 5 years in ALPS-like patients (26.1%; 95% CI 3.2-43.5) compared to other AICs (4%; 95% CI 0-11.4; p = 0.041). Discussion To the best of our knowledge, this is the first study to describe the infectious risk related to mycophenolate and sirolimus chronic treatment in patients with AICs and immune dysregulation. Our data highlight that infection rate is very low and mainly related to the underlying hematological condition. Conclusions Mycophenolate and sirolimus represent a safe immunosuppressive therapy in AICs and immune dysregulation syndromes.
Collapse
Affiliation(s)
- Mattia Comella
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elena Palmisani
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Mariani
- Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Dell’Orso
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Licciardello
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Carla Giarratana
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Arcuri
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Pestarino
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Genetic and Genomic of Rare Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marina Lanciotti
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgia Brucci
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniela Guardo
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanna Russo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Dufour
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Fioredda
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elio Castagnola
- Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Miano
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
22
|
Alkooheji I, Secord E, Buggs-Saxton C, Lulgjuraj T, Savaşan S. Sustained improvement in IPEX-like syndrome course following failed umbilical cord blood transplantation. Pediatr Hematol Oncol 2024; 41:246-249. [PMID: 37898908 DOI: 10.1080/08880018.2023.2273876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Affiliation(s)
- Ishaq Alkooheji
- Children's Hospital of Michigan, Hematology/Oncology Flow Cytometry Laboratory, Central Michigan University, Detroit, Michigan, USA
| | - Elizabeth Secord
- Wayne Pediatrics, Allergy & Immunology, Wayne State University, Detroit, Michigan, USA
| | | | - Tony Lulgjuraj
- Children's Hospital of Michigan, Gastroenterology, Central Michigan University, Detroit, Michigan, USA
| | - Süreyya Savaşan
- Children's Hospital of Michigan, Hematology/Oncology Flow Cytometry Laboratory, Central Michigan University, Detroit, Michigan, USA
- Children's Hospital of Michigan, Hematology/Oncology, Bone Marrow Transplant Program, Karmanos Cancer Institute, Detroit, Michigan, USA
- Central Michigna University College of Medicine, Mt Pleasant, Michigan, USA
| |
Collapse
|
23
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
24
|
Thangaraj A, Tyagi R, Suri D, Gupta S. Infections in Disorders of Immune Regulation. Pathogens 2024; 13:259. [PMID: 38535602 PMCID: PMC10976012 DOI: 10.3390/pathogens13030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 02/11/2025] Open
Abstract
Primary immune regulatory disorders (PIRDs) constitute a spectrum of inborn errors of immunity (IEIs) that are primarily characterized by autoimmunity, lymphoproliferation, atopy, and malignancy. In PIRDs, infections are infrequent compared to other IEIs. While susceptibility to infection primarily stems from antibody deficiency, it is sometimes associated with additional innate immune and T or NK cell defects. The use of immunotherapy and chemotherapy further complicates the immune landscape, increasing the risk of diverse infections. Recurrent sinopulmonary infections, particularly bacterial infections such as those associated with staphylococcal and streptococcal organisms, are the most reported infectious manifestations. Predisposition to viral infections, especially Epstein-Barr virus (EBV)-inducing lymphoproliferation and malignancy, is also seen. Notably, mycobacterial and invasive fungal infections are rarely documented in these disorders. Knowledge about the spectrum of infections in these disorders would prevent diagnostic delays and prevent organ damage. This review delves into the infection profile specific to autoimmune lymphoproliferative syndrome (ALPS), Tregopathies, and syndromes with autoimmunity within the broader context of PIRD. Despite the critical importance of understanding the infectious aspects of these disorders, there remains a scarcity of comprehensive reports on this subject.
Collapse
Affiliation(s)
- Abarna Thangaraj
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Reva Tyagi
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (A.T.); (R.T.)
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA;
| |
Collapse
|
25
|
Singh S, Pugliano CM, Honaker Y, Laird A, DeGottardi MQ, Lopez E, Lachkar S, Stoffers C, Sommer K, Khan IF, Rawlings DJ. Efficient and sustained FOXP3 locus editing in hematopoietic stem cells as a therapeutic approach for IPEX syndrome. Mol Ther Methods Clin Dev 2024; 32:101183. [PMID: 38282895 PMCID: PMC10818254 DOI: 10.1016/j.omtm.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic disorder caused by mutations in the FOXP3 gene, required for generation of regulatory T (Treg) cells. Loss of Treg cells leads to immune dysregulation characterized by multi-organ autoimmunity and early mortality. Hematopoietic stem cell (HSC) transplantation can be curative, but success is limited by autoimmune complications, donor availability and/or graft-vs.-host disease. Correction of FOXP3 in autologous HSC utilizing a homology-directed repair (HDR)-based platform may provide a safer alternative therapy. Here, we demonstrate efficient editing of FOXP3 utilizing co-delivery of Cas9 ribonucleoprotein complexes and adeno-associated viral vectors to achieve HDR rates of >40% in vitro using mobilized CD34+ cells from multiple donors. Using this approach to deliver either a GFP or a FOXP3 cDNA donor cassette, we demonstrate sustained bone marrow engraftment of approximately 10% of HDR-edited cells in immune-deficient recipient mice at 16 weeks post-transplant. Further, we show targeted integration of FOXP3 cDNA in CD34+ cells from an IPEX patient and expression of the introduced FOXP3 transcript in gene-edited primary T cells from both healthy individuals and IPEX patients. Our combined findings suggest that refinement of this approach is likely to provide future clinical benefit in IPEX.
Collapse
Affiliation(s)
- Swati Singh
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Cole M. Pugliano
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Aidan Laird
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - M. Quinn DeGottardi
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Ezra Lopez
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Stefan Lachkar
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Claire Stoffers
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Iram F. Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
26
|
Sonoda M, Ishimura M, Inoue H, Eguchi K, Ochiai M, Sakai Y, Doi T, Suzuki K, Inoue T, Mizukami T, Nakamura K, Takada H, Ohga S. Non-conditioned cord blood transplantation for infection control in athymic CHARGE syndrome. Pediatr Blood Cancer 2024; 71:e30809. [PMID: 38078568 DOI: 10.1002/pbc.30809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVE CHARGE syndrome is a congenital malformation syndrome caused by heterozygous mutations in the CHD7 gene. Severe combined immunodeficiency (SCID) arises from congenital athymia called CHARGE/complete DiGeorge syndrome. While cultured thymus tissue implantation (CTTI) provides an immunological cure, hematopoietic cell transplantation (HCT) is an alternative option for immuno-reconstitution of affected infants. We aimed to clarify the clinical outcomes of patients with athymic CHARGE syndrome after HCT. METHODS We studied the immunological reconstitution and outcomes of four patients who received non-conditioned unrelated donor cord blood transplantation (CBT) at Kyushu University Hospital from 2007 to 2022. The posttransplant outcomes were compared with the outcomes of eight reported patients. RESULTS Four index cases received CBT 70-144 days after birth and had no higher than grade II acute graft-versus-host disease. One infant was the first newborn-screened athymic case in Japan. They achieved more than 500/μL naïve T cells with balanced repertoire 1 month post transplant, and survived more than 12 months with home care. Twelve patients including the index cases received HCT at a median 106 days after birth (range: 70-195 days). One-year overall survival rate was significantly higher in patients who underwent non-conditioned HCT than in those who received conditioned HCT (100% vs. 37.5%, p = .02). Nine patients died, and the major cause of death was cardiopulmonary failure. CONCLUSIONS Athymic infants achieved a prompt reconstitution of non-skewing naïve T cells after non-conditioned CBT that led to home care in infancy without significant infections. Non-conditioned CBT is a useful bridging therapy for newborn-screened cases toward an immunological cure by CTTI.
Collapse
Affiliation(s)
- Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirosuke Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayuki Ochiai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Doi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kyoko Suzuki
- Department of Pediatrics, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Takeshi Inoue
- Division of Neonatology, Perinatal Center, Kumamoto City Hospital, Kumamoto, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Hidetoshi Takada
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
27
|
Bacchetta R, Roncarolo MG. IPEX syndrome from diagnosis to cure, learning along the way. J Allergy Clin Immunol 2024; 153:595-605. [PMID: 38040040 DOI: 10.1016/j.jaci.2023.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
In the past 2 decades, a significant number of studies have been published describing the molecular and clinical aspects of immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome. These studies have refined our knowledge of this rare yet prototypic genetic autoimmune disease, advancing the diagnosis, broadening the clinical spectrum, and improving our understanding of the underlying immunologic mechanisms. Despite these advances, Forkhead box P3 mutations have devastating consequences, and treating patients with IPEX syndrome remains a challenge, even with safer strategies for hematopoietic stem cell transplantation and gene therapy becoming a promising reality. The aim of this review was to highlight novel features of the disease to further advance awareness and improve the diagnosis and treatment of patients with IPEX syndrome.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif; Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, Calif; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
28
|
Borna S, Meffre E, Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol Rev 2024; 322:244-258. [PMID: 37994657 DOI: 10.1111/imr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
29
|
Seidel MG, Hauck F. Multilayer concept of autoimmune mechanisms and manifestations in inborn errors of immunity: Relevance for precision therapy. J Allergy Clin Immunol 2024; 153:615-628.e4. [PMID: 38185417 DOI: 10.1016/j.jaci.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Autoimmunity in inborn errors of immunity (IEIs) has a multifactorial pathogenesis and develops subsequent to a genetic predisposition in conjunction with gene regulation, environmental modifiers, and infectious triggers. On the basis of incremental data availability owing to upfront application of omics technologies, a more granular and dynamic view of mechanisms and manifestations is warranted. Here, we present a comprehensive novel concept of autoimmunity in IEIs that considers multiple layers of interdependent elements and connects 101 causative genes or deletions according to the quality of the allelic variants with 47 molecular pathways and 22 immune effector mechanisms. Furthermore, we list 50 resulting manifestations together with the corresponding Human Phenotype Ontology terms and review the types and frequencies of the most relevant clinical presentations. When all of its elements are taken together, this concept (1) extends the historical anatomic view of central versus peripheral tolerance toward multiple interdependent mechanisms of immune tolerance, (2) delineates the mechanisms underlying the protean clinical manifestations, and thereby, (3) points toward the most suitable precision therapy for autoimmunity in IEIs. The multilayer concept of autoimmune mechanisms and manifestations in IEIs will facilitate research design and provide clinical guidance on the use of precision medicine irrespective of the data depth available in each health care scenario.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
30
|
Wang P, Qian X, Jiang W, Wang H, Wang Y, Zhou Y, Zhang Y, Huang Y, Zhai X. Cord Blood Transplantation for Very Early-Onset Inflammatory Bowel Disease Caused by Interleukin-10 Receptor Deficiency. J Clin Immunol 2024; 44:67. [PMID: 38372823 DOI: 10.1007/s10875-024-01669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
PURPOSE Interleukin-10 receptor (IL-10R) deficiency can result in life-threatening very early-onset inflammatory bowel disease (VEO-IBD). Umbilical cord blood transplantation (UCBT) is a curative therapy for patients with IL-10R deficiency. This study aimed to investigate the efficacy of UCBT in treating IL-10R deficiency and develop a predictive model based on pre-transplant factors. METHODS Eighty patients with IL-10R deficiency who underwent UCBT between July 2015 and April 2023 were retrospectively analyzed. Cox proportional hazards regression and random survival forest were used to develop a predictive model. RESULTS Median age at transplant was 13.0 months (interquartile range [IQR], 8.8-25.3 months). With a median follow-up time of 29.4 months (IQR, 3.2-57.1 months), the overall survival (OS) rate was 65.0% (95% confidence interval [CI], 55.3%-76.3%). The engraftment rate was 85% (95% CI, 77%-93%). The cumulative incidences of acute and chronic graft-versus-host disease were 48.2% (95% CI, 37.1%-59.4%) and 12.2% (95% CI, 4.7%-19.8%), respectively. VEO-IBD-associated clinical symptoms were resolved in all survivors. The multivariate analysis showed that IL-6 and stool occult blood were independent prognostic risk factors. The multivariate Cox proportional hazards regression model with stool occult blood, length- or height-for-age Z-score, medical history of sepsis, and cord blood total nucleated cells showed good discrimination ability, with a bootstrap concordance index of 0.767-0.775 in predicting OS. CONCLUSION Better inflammation control before transplantation and higher cord blood total nucleated cell levels can improve patient prognosis. The nomogram can successfully predict OS in patients with IL-10R deficiency undergoing UCBT.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Wenjin Jiang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuhuan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ying Zhou
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ye Zhang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
31
|
McDonald GB, Landsverk OJ, McGovern DP, Aasebø A, Paulsen V, Haritunians T, Reims HM, McLaughlin BM, Zisman T, Li D, Elholm ET, Jahnsen FL, Georges GE, Gedde-Dahl T. Allogeneic bone marrow transplantation for patients with treatment-refractory Crohn's Disease. Heliyon 2024; 10:e24026. [PMID: 38283244 PMCID: PMC10818189 DOI: 10.1016/j.heliyon.2024.e24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Background & aims Durable remissions of Crohn's Disease (CD) have followed myeloablative conditioning therapy and allogeneic marrow transplantation. For patients with treatment-refractory disease, we used reduced-intensity conditioning to minimize toxicity, marrow from donors with low Polygenic Risk Scores for CD as cell sources, and protracted immune suppression to lower the risk of graft-versus-host disease (GVHD). Our aim was to achieve durable CD remissions while minimizing transplant-related complications. Methods DNA from patients and their HLA-matched unrelated donors was genotyped and Polygenic Risk Scores calculated. Donor marrow was infused following non-myeloablative conditioning. Patient symptoms and endoscopic findings were documented at intervals after transplant. Results We screened 807 patients, 143 of whom met eligibility criteria; 2 patients received allografts. Patient 1 had multiple complications and died at day 332 from respiratory failure. Patient 2 had resolution of CD symptoms until day 178 when CD recurred, associated with persistent host chimerism in both peripheral blood and intestinal mucosa. Withdrawal of immune suppression was followed by dominant donor immune chimerism in peripheral blood and resolution of CD findings. Over time, mucosal T-cells became donor-dominant. At 5 years after allografting, Patient 2 remained off all medications but had mild symptoms related to a jejunal stricture that required stricturoplasty at 6 years. At 8 years, she remains stable off medications. Conclusions The kinetics of immunologic chimerism after allogeneic marrow transplantation for CD patients depends on the intensity of the conditioning regimen and the magnitude of immune suppression. One patient achieved durable improvement of her previously refractory CD only after establishing donor immunologic chimerism in intestinal mucosa. Her course provides proof-of-principal for allografting as a potential treatment for refractory CD, but an immunoablative conditioning regimen should be considered for future studies.(ClinicalTrials.gov, NCT01570348).
Collapse
Affiliation(s)
- George B. McDonald
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Dermot P.B. McGovern
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anders Aasebø
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Vemund Paulsen
- Department of Transplantation Medicine, Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Norway
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Henrik M. Reims
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Timothy Zisman
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elisabeth T.M.M. Elholm
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Hematology, Oslo University Hospital, Norway and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Frode L. Jahnsen
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - George E. Georges
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Tobias Gedde-Dahl
- Department of Hematology, Oslo University Hospital, Norway and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
33
|
Borna Š, Lee E, Nideffer J, Ramachandran A, Wang B, Baker J, Mavers M, Lakshmanan U, Narula M, Garrett AKH, Schulze J, Olek S, Marois L, Gernez Y, Bhatia M, Chong HJ, Walter J, Kitcharoensakkul M, Lang A, Cooper MA, Bertaina A, Roncarolo MG, Meffre E, Bacchetta R. Identification of unstable regulatory and autoreactive effector T cells that are expanded in patients with FOXP3 mutations. Sci Transl Med 2023; 15:eadg6822. [PMID: 38117899 PMCID: PMC11070150 DOI: 10.1126/scitranslmed.adg6822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Studies of the monogenic autoimmune disease immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) have elucidated the essential function of the transcription factor FOXP3 and thymic-derived regulatory T cells (Tregs) in controlling peripheral tolerance. However, the presence and the source of autoreactive T cells in IPEX remain undetermined. Here, we investigated how FOXP3 deficiency affects the T cell receptor (TCR) repertoire and Treg stability in vivo and compared T cell abnormalities in patients with IPEX with those in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED). To study Tregs independently of their phenotype and to analyze T cell autoreactivity, we combined Treg-specific demethylation region analyses, single-cell multiomic profiling, and bulk TCR sequencing. We found that patients with IPEX, unlike patients with APECED, have expanded autoreactive T cells originating from both autoreactive effector T cells (Teffs) and Tregs. In addition, a fraction of the expanded Tregs from patients with IPEX lost their phenotypic and functional markers, including CD25 and FOXP3. Functional experiments with CRISPR-Cas9-mediated FOXP3 knockout Tregs and Tregs from patients with IPEX indicated that the patients' Tregs gain a TH2-skewed Teff-like function, which is consistent with immune dysregulation observed in these patients. Analyses of FOXP3 mutation-carrier mothers and a patient with IPEX after hematopoietic stem cell transplantation indicated that Tregs expressing nonmutated FOXP3 prevent the accumulation of autoreactive Teffs and unstable Tregs. These findings could be directly used for diagnostic and prognostic purposes and for monitoring the effects of immunomodulatory treatments.
Collapse
Affiliation(s)
- Šimon Borna
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Esmond Lee
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Nideffer
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akshaya Ramachandran
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Wang
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeanette Baker
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa Mavers
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Uma Lakshmanan
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mansi Narula
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy Kang-hee Garrett
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sven Olek
- Ivana Turbachova Laboratory for Epigenetics, Precision for Medicine GmbH, Berlin, 12489, Germany
| | - Louis Marois
- Department of Medicine, Immunology and Allergy Service, CHU de Québec – Laval University, Quebec, G1V 4G2, Canada
| | - Yael Gernez
- Department of Pediatrics, Division of Allergy, Rheumatology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monica Bhatia
- Columbia University Irving Medical Center, NY, NY 10032, USA
| | - Hey Jin Chong
- Division of Allergy and Immunology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, 15224, Pa, USA
| | - Jolan Walter
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, University of South Florida, St. Petersburg, 33701, FL, USA
| | - Maleewan Kitcharoensakkul
- Divisions of Rheumatology/Immunology, and Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Abigail Lang
- Department of Pediatrics, Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megan A. Cooper
- Department of pediatrics, division of Rheumatology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, 63110, USA
| | - Alice Bertaina
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, 269 Campus Drive West, Stanford, CA 94305, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Sato Y, Nathan A, Shipp S, Wright JF, Tate KM, Wani P, Roncarolo MG, Bacchetta R. A novel FOXP3 knockout-humanized mouse model for pre-clinical safety and efficacy evaluation of Treg-like cell products. Mol Ther Methods Clin Dev 2023; 31:101150. [PMID: 38027059 PMCID: PMC10679769 DOI: 10.1016/j.omtm.2023.101150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Forkhead box P3 (FOXP3) is an essential transcription factor for regulatory T cell (Treg) function. Defects in Tregs mediate many immune diseases including the monogenic autoimmune disease immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), which is caused by FOXP3 mutations. Treg cell products are a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection, as well as in the treatment of acquired autoimmune diseases. We have recently opened a phase I clinical trial for IPEX patients using autologous engineered Treg-like cells, CD4LVFOXP3. To facilitate the pre-clinical studies, a novel humanized-mouse (hu-mouse) model was developed whereby immune-deficient mice were transplanted with human hematopoietic stem progenitor cells (HSPCs) in which the FOXP3 gene was knocked out (FOXP3KO) using CRISPR-Cas9. Mice transplanted with FOXP3KO HSPCs had impaired survival, developed lymphoproliferation 10-12 weeks post-transplant and T cell infiltration of the gut, resembling human IPEX. Strikingly, injection of CD4LVFOXP3 into the FOXP3KO hu-mice restored in vivo regulatory functions, including control of lymphoproliferation and inhibition of T cell infiltration in the colon. This hu-mouse disease model can be reproducibly established and constitutes an ideal model to assess pre-clinical efficacy of human Treg cell investigational products.
Collapse
Affiliation(s)
- Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Abinaya Nathan
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Suzette Shipp
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - John Fraser Wright
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Keri Marie Tate
- Laboratory for Cell and Gene Medicine (LCGM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Prachi Wani
- Laboratory for Cell and Gene Medicine (LCGM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Maria-Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Wobma H, Janssen E. Expanding IPEX: Inborn Errors of Regulatory T Cells. Rheum Dis Clin North Am 2023; 49:825-840. [PMID: 37821198 DOI: 10.1016/j.rdc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erin Janssen
- Department of Pediatrics, Division of Pediatric Rheumatology, Michigan Medicine, C.S. Mott Children's Hospital, 1500 East Medical Center Drive, SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
36
|
Nishimura A, Uppuluri R, Raj R, Swaminathan VV, Cheng Y, Abu-Arja RF, Fu B, Laberko A, Albert MH, Hauck F, Bucciol G, Bigley V, Elcombe S, Kharya G, Pronk CJH, Wehr C, Neven B, Warnatz K, Meyts I, Morio T, Gennery AR, Kanegane H. An International Survey of Allogeneic Hematopoietic Cell Transplantation for X-Linked Agammaglobulinemia. J Clin Immunol 2023; 43:1827-1839. [PMID: 37454339 DOI: 10.1007/s10875-023-01551-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE X-linked agammaglobulinemia (XLA) is an inborn error of immunity caused by variants in Bruton's tyrosine kinase (BTK). XLA patients require lifelong immunoglobulin replacement therapy (IgRT). Only few XLA patients are indicated for allogeneic hematopoietic cell transplantation (HCT) because of severe complications. Accordingly, the published transplantation experience in XLA is minimal. We aimed to collect clinical data of XLA patients who received HCT in an international framework and to establish appropriate transplantation criteria and methods for XLA patients. METHODS XLA patients were recruited through a questionnaire and a literature review. The data are on patient characteristics and transplantation methods and outcomes. RESULTS In this study, twenty-two XLA patients who underwent HCT were recruited. The indication for HCT was recurrent or life-threatening infection in sixteen patients, malignancy in three, and other factors in three. A myeloablative conditioning, reduced toxicity myeloablative conditioning (RT-MAC), and reduced intensity conditioning (RIC) were selected in four, ten, and eight patients, respectively. Engraftment was achieved in 21 patients (95%). In all patients, 2-year overall survival (OS) and event-free survival (EFS) were 86% and 77%, respectively. In patients who received RT-MAC or RIC using treosulfan, busulfan, or melphalan, 2-year OS and EFS were 82% and 71%, respectively. Finally, twenty-one patients (95%) obtained complete or stable high-level mixed chimerism (50-95%), and the 1-year discontinuation rate of IgRT was 89%. CONCLUSION Based on the concept in which IgRT is the standard treatment for XLA, HCT may be an effective and safe alternative treatment option for XLA patients, and IgRT can be discontinued following transplantation. It is ideal to perform HCT in XLA patients for whom transplantation is indicated before they develop organ damage.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ramya Uppuluri
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Apollo Hospitals, Chennai, India
| | | | - Yifei Cheng
- Institute of Hematology, People's Hospital, Peking University, Beijing, China
| | - Rolla F Abu-Arja
- Pediatric Blood and Marrow Transplant Program, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Alexandra Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Giorgia Bucciol
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium
| | - Venetia Bigley
- Department of Immunology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Suzanne Elcombe
- Department of Immunology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gaurav Kharya
- Center for Bone Marrow Transplant and Cellular Therapy, Indraprastha Apollo Hospital, New Delhi, India
| | | | - Claudia Wehr
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, and Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
37
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
38
|
Lee WQ, Leong KF. Infantile vitiligo and alopecia in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome. Pediatr Dermatol 2023; 40:886-889. [PMID: 36727435 DOI: 10.1111/pde.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is characterized by failure to thrive, severe chronic diarrhea, neonatal type 1 diabetes or thyroiditis, and eczematous dermatitis. We report a patient with infantile onset IPEX syndrome who developed vitiligo, alopecia, and chronic diarrhea. Awaiting stem cell transplant, he had multiple episodes of sepsis and succumbed at the age of 10 months. The constellation of symptoms is important to prompt clinicians to suspect this rare syndrome as early hematopoietic stem cell transplantation is the only cure for IPEX patients.
Collapse
Affiliation(s)
- Wai Quen Lee
- Paediatric Dermatology Unit, Department of Paediatrics, Hospital Tunku Azizah, Kuala Lumpur, Malaysia
| | - Kin Fon Leong
- Paediatric Dermatology Unit, Department of Paediatrics, Hospital Tunku Azizah, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
40
|
Leon J, Chowdhary K, Zhang W, Ramirez RN, André I, Hur S, Mathis D, Benoist C. Mutations from patients with IPEX ported to mice reveal different patterns of FoxP3 and Treg dysfunction. Cell Rep 2023; 42:113018. [PMID: 37605532 PMCID: PMC10565790 DOI: 10.1016/j.celrep.2023.113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations of the transcription factor FoxP3 in patients with "IPEX" (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) disrupt regulatory T cells (Treg), causing an array of multiorgan autoimmunity. To understand the functional impact of mutations across FoxP3 domains, without genetic and environmental confounders, six human FOXP3 missense mutations are engineered into mice. Two classes of mutations emerge from combined immunologic and genomic analyses. A mutation in the DNA-binding domain shows the same lymphoproliferation and multiorgan infiltration as complete FoxP3 knockouts but delayed by months. Tregs expressing this mutant FoxP3 are destabilized by normal Tregs in heterozygous females compared with hemizygous males. Mutations in other domains affect chromatin opening differently, involving different cofactors and provoking more specific autoimmune pathology (dermatitis, colitis, diabetes), unmasked by immunological challenges or incrossing NOD autoimmune-susceptibility alleles. This work establishes that IPEX disease heterogeneity results from the actual mutations, combined with genetic and environmental perturbations, explaining then the intra-familial variation in IPEX.
Collapse
Affiliation(s)
- Juliette Leon
- Department of Immunology, Harvard Medical School, Boston, MA, USA; INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France
| | | | - Wenxiang Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Isabelle André
- INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France
| | - Sun Hur
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Liu Y, Armbrister SA, Okeugo B, Mills TW, Daniel RC, Oh JH, van Pijkeren JP, Park ES, Saleh ZM, Lahiri S, Roos S, Rhoads JM. Probiotic-Derived Ecto-5'-Nucleotidase Produces Anti-Inflammatory Adenosine Metabolites in Treg-Deficient Scurfy Mice. Probiotics Antimicrob Proteins 2023; 15:1001-1013. [PMID: 37178405 PMCID: PMC10926147 DOI: 10.1007/s12602-023-10089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolongs the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A2A) on T cells. We hypothesized that L. reuteri-derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut, and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73+CD8+ T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Shabba A Armbrister
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Beanna Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tingting W Mills
- Department of Biochemistry & Molecular Biology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Rhea C Daniel
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Evelyn S Park
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zeina M Saleh
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sharmistha Lahiri
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia AB, Stockholm, Sweden
| | - JMarc Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
42
|
Pandrowala A, Desai M, Madkaikar M, Kulkarni S, Shobhavat L, Mishra J, Jain S, Chandane P, Sehgal K, Chavan S, Karkera P, Bendre P, Thanky A, Rao S, Prabhu S, Bodhanwala M, Agarwal B, Hiwarkar P. Changing outcomes of stem cell transplantation in primary immunodeficiencies: Results from a tertiary-care charitable trust hospital in Mumbai. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100105. [PMID: 37779531 PMCID: PMC10509861 DOI: 10.1016/j.jacig.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 10/03/2023]
Abstract
Background Hematopoietic stem cell transplantation in primary immunodeficiency disorders has come a long way since the first transplant in 1968. In India, pediatric stem cell transplantation long-term survival outcomes range from 62.5% to 75%, compared to 90% in high-income countries. Objective We present single-center data of primary immunodeficiency transplants with immune-reconstitution evaluation after transplantation from a charitable trust hospital. Methods Retrospective data of children transplanted for primary immunodeficiency disorders from March 2019 to March 2022 in a newly established transplant unit were collected. Data of pretransplant infections and comorbidities, surveillance for carbapenem-resistant Enterobacteriaceae, transplant characteristics, donor source, graft-versus-host disease, posttransplant infections, immune reconstitution, overall survival at 1 year, and immunodeficiency-free survival were collated. Results Twenty-one patients underwent transplantation for primary immunodeficiency disorders. The median age at transplantation was 3 years and 5 months (range, 7 months to 17 years). Seventy-five percent of the cohort had organ involvement, with lung being the most common organ involved, followed by central nervous system. Fifty-two percent of children had peritransplant infections, with most of them recognized at the pretransplant assessment. Among 20 of 21 children with engraftment, 94% had complete chimerism initially, with 33% developing mixed chimerism over time. The median duration of immunosuppression was 3 months after transplantation, and only 1 child required systemic graft-versus-host disease treatment for more than a year. Immune-reconstitution showed good T-cell recovery at 3 months and naive T-cell production at 6 months. There was no regimen-related or sepsis-related mortality. Overall survival of the cohort was 95% at 1-year follow-up. Immunodeficiency-free survival was 86% after a median follow-up of 20 months. Conclusions Immunodeficiency-free and graft-versus-host disease-free survival can be achieved in the majority of children with primary immunodeficiencies using enhanced supportive care and the latest transplantation algorithms.
Collapse
Affiliation(s)
- Ambreen Pandrowala
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Mukesh Desai
- Department of Inborn errors of Immunity, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR–National Institute of Immunohaematology, KEM Hospital, Mumbai, India
| | - Shilpa Kulkarni
- Department of Paediatric Neurology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Lakshmi Shobhavat
- Department of Intensive Care, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Jayashree Mishra
- Department of Paediatric Cardiology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Shreepal Jain
- Department of Paediatric Cardiology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Parmarth Chandane
- Department of Paediatric Pulmonology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Saroj Chavan
- Department of Paediatric Radiology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Parag Karkera
- Department of Paediatric Surgery, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Pradnya Bendre
- Department of Paediatric Surgery, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ameet Thanky
- Department of Physiotherapy, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Sudha Rao
- Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Shakuntala Prabhu
- Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Minnie Bodhanwala
- Department of Paediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Bharat Agarwal
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prashant Hiwarkar
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
43
|
Hou AN, Wang Y, Pan YQ. A Case Report of IPEX Syndrome with Neonatal Diabetes Mellitus and Congenital Hypothyroidism as the Initial Presentation, and a Systematic Review of neonatal IPEX. J Clin Immunol 2023; 43:979-988. [PMID: 36867340 DOI: 10.1007/s10875-023-01456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is a serious disorder, which may comprise diabetes, thyroid disease, enteropathy, cytopenias, eczema, and other multi-system autoimmune dysfunction features. IPEX syndrome is caused by mutations in the forkhead box P3 (FOXP3) gene. Here, we report the clinical manifestations of a patient with IPEX syndrome onset in the neonatal period. A de novo mutation at exon 11 of the FOXP3 gene (c.1190G > A, p.R397Q) was found, and its main clinical manifestations included hyperglycemia and hypothyroidism. Subsequently, we comprehensively reviewed the clinical characteristics and FOXP3 mutations of 55 reported neonatal IPEX cases. The most frequent clinical presentation included symptoms of gastrointestinal involvement (n = 51, 92.7%), followed by skin-related symptoms (n = 37, 67.3%), diabetes mellitus (DM) (n = 33, 60.0%), elevated IgE (n = 28, 50.9%), hematological abnormality (n = 23, 41.8%), thyroid dysfunction (n = 18, 32.7%), and kidney-related symptoms (n = 13, 23.6%). In total, 38 variants were observed in the 55 neonatal patients. The most frequent mutation was c.1150G > A (n = 6; 10.9%), followed by c.1189C > T (n = 4; 7.3%), c.816 + 5G > A (n = 3; 5.5%), and C.1015C > G (n = 3; 5.5%), which were reported more than twice. The genotype-phenotype relationship showed that the repressor domain mutations were associated with DM (P = 0.020), and the leucine zipper mutations were associated with nephrotic syndrome (P = 0.020). The survival analysis suggested that treatment with glucocorticoids increased the survival of the neonatal patients. This literature review provides an informative reference for the diagnosis and treatment of IPEX syndrome in the neonatal period.
Collapse
Affiliation(s)
- A-Na Hou
- Department of Pediatrics, People's Republic of China, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yu-Qing Pan
- Department of Pediatrics, People's Republic of China, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
44
|
Mancuso G, Bechi Genzano C, Fierabracci A, Fousteri G. Type 1 diabetes and inborn errors of immunity: Complete strangers or 2 sides of the same coin? J Allergy Clin Immunol 2023; 151:1429-1447. [PMID: 37097271 DOI: 10.1016/j.jaci.2023.03.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023]
Abstract
Type 1 diabetes (T1D) is a polygenic disease and does not follow a mendelian pattern. Inborn errors of immunity (IEIs), on the other hand, are caused by damaging germline variants, suggesting that T1D and IEIs have nothing in common. Some IEIs, resulting from mutations in genes regulating regulatory T-cell homeostasis, are associated with elevated incidence of T1D. The genetic spectrum of IEIs is gradually being unraveled; consequently, molecular pathways underlying human monogenic autoimmunity are being identified. There is an appreciable overlap between some of these pathways and the genetic variants that determine T1D susceptibility, suggesting that after all, IEI and T1D are 2 sides of the same coin. The study of monogenic IEIs with a variable incidence of T1D has the potential to provide crucial insights into the mechanisms leading to T1D. These insights contribute to the definition of T1D endotypes and explain disease heterogeneity. In this review, we discuss the interconnected pathogenic pathways of autoimmunity, β-cell function, and primary immunodeficiency. We also examine the role of environmental factors in disease penetrance as well as the circumstantial evidence of IEI drugs in preventing and curing T1D in individuals with IEIs, suggesting the repositioning of these drugs also for T1D therapy.
Collapse
Affiliation(s)
- Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
45
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
46
|
Gerbaux M, Roos E, Willemsen M, Staels F, Neumann J, Bücken L, Haughton J, Yshii L, Dooley J, Schlenner S, Humblet-Baron S, Liston A. CTLA4-Ig Effectively Controls Clinical Deterioration and Immune Condition in a Murine Model of Foxp3 Deficiency. J Clin Immunol 2023:10.1007/s10875-023-01462-2. [PMID: 37156988 DOI: 10.1007/s10875-023-01462-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE FOXP3 deficiency results in severe multisystem autoimmunity in both mice and humans, driven by the absence of functional regulatory T cells. Patients typically present with early and severe autoimmune polyendocrinopathy, dermatitis, and severe inflammation of the gut, leading to villous atrophy and ultimately malabsorption, wasting, and failure to thrive. In the absence of successful treatment, FOXP3-deficient patients usually die within the first 2 years of life. Hematopoietic stem cell transplantation provides a curative option but first requires adequate control over the inflammatory condition. Due to the rarity of the condition, no clinical trials have been conducted, with widely unstandardized therapeutic approaches. We sought to compare the efficacy of lead therapeutic candidates rapamycin, anti-CD4 antibody, and CTLA4-Ig in controlling the physiological and immunological manifestations of Foxp3 deficiency in mice. METHOD We generated Foxp3-deficient mice and an appropriate clinical scoring system to enable direct comparison of lead therapeutic candidates rapamycin, nondepleting anti-CD4 antibody, and CTLA4-Ig. RESULTS We found distinct immunosuppressive profiles induced by each treatment, leading to unique protective combinations over distinct clinical manifestations. CTLA4-Ig provided superior breadth of protective outcomes, including highly efficient protection during the transplantation process. CONCLUSION These results highlight the mechanistic diversity of pathogenic pathways initiated by regulatory T cell loss and suggest CTLA4-Ig as a potentially superior therapeutic option for FOXP3-deficient patients.
Collapse
Affiliation(s)
- Margaux Gerbaux
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
- Department of Medicine, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Evelyne Roos
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
- VIB Center for Brain and Disease Research, 3000, Louvain, Belgium
| | - Mathijs Willemsen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
- VIB Center for Brain and Disease Research, 3000, Louvain, Belgium
| | - Frederik Staels
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
- VIB Center for Brain and Disease Research, 3000, Louvain, Belgium
| | - Julika Neumann
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
- VIB Center for Brain and Disease Research, 3000, Louvain, Belgium
| | - Leoni Bücken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Jeason Haughton
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | | | - James Dooley
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
- VIB Center for Brain and Disease Research, 3000, Louvain, Belgium
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Susan Schlenner
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium
| | - Stephanie Humblet-Baron
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium.
| | - Adrian Liston
- KU Leuven, Department of Microbiology, Immunology and Transplantation, 3000, Leuven, Belgium.
- VIB Center for Brain and Disease Research, 3000, Louvain, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
47
|
Liu Y, Armbrister SA, Okeugo B, Mills TW, Daniel RC, Oh JH, Pijkeren JP, Park ES, Saleh ZM, Lahiri S, Roos S, Rhoads JM. Probiotic-derived ecto-5'-nucleotidase produces anti-inflammatory adenosine metabolites in Treg-deficient scurfy mice. RESEARCH SQUARE 2023:rs.3.rs-2781715. [PMID: 37066419 PMCID: PMC10104250 DOI: 10.21203/rs.3.rs-2781715/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolonges the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A 2A ) on T cells. We hypothesized that L. reuteri -derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73 + CD8 + T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.
Collapse
|
48
|
Laberko A, Mukhinа A, Machneva E, Pashchenko O, Bykova T, Vahonina L, Bronin G, Skvortsova Y, Skorobogatova E, Kondratenko I, Fechina L, Shcherbina A, Zubarovskaya L, Balashov D, Rumiantsev A. Allogeneic Hematopoietic Stem Cell Transplantation Activity in Inborn Errors of Immunity in Russian Federation. J Clin Immunol 2023:10.1007/s10875-023-01476-w. [PMID: 37009957 PMCID: PMC10068234 DOI: 10.1007/s10875-023-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE Allogeneic hematopoietic stem cell transplantation (HSCT) is an established therapy for many inborn errors of immunity (IEI). The indications for HSCT have expanded over the last decade. The study aimed to collect and analyze the data on HSCT activity in IEI in Russia. METHODS The data were collected from the Russian Primary Immunodeficiency Registry and complemented with information from five Russian pediatric transplant centers. Patients diagnosed with IEI by the age of 18 years and who received allogeneic HSCT by the end of 2020 were included. RESULTS From 1997 to 2020, 454 patients with IEI received 514 allogeneic HSCT. The median number of HSCTs per year has risen from 3 in 1997-2009 to 60 in 2015-2020. The most common groups of IEI were immunodeficiency affecting cellular and humoral immunity (26%), combined immunodeficiency with associated/syndromic features (28%), phagocyte defects (21%), and diseases of immune dysregulation (17%). The distribution of IEI diagnosis has changed: before 2012, the majority (65%) had severe combined immunodeficiency (SCID) and hemophagocytic lymphohistiocytosis (HLH), and after 2012, only 24% had SCID and HLH. Of 513 HSCTs, 48.5% were performed from matched-unrelated, 36.5% from mismatched-related (MMRD), and 15% from matched-related donors. In 349 transplants T-cell depletion was used: 325 TCRαβ/CD19+ depletion, 39 post-transplant cyclophosphamide, and 27 other. The proportion of MMRD has risen over the recent years. CONCLUSION The practice of HSCT in IEI has been changing in Russia. Expanding indications to HSCT and SCID newborn screening implementation may necessitate additional transplant beds for IEI in Russia.
Collapse
Affiliation(s)
- Alexandra Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| | - Anna Mukhinа
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Russian National Association of Experts in Primary Immunodeficiency Registry, Moscow, Russia
| | - Elena Machneva
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga Pashchenko
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana Bykova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, St. Petersburg, Russia
| | - Larisa Vahonina
- Sverdlovsk Regional Children's Hospital №1, Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | | | - Yulia Skvortsova
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Skorobogatova
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Irina Kondratenko
- Russian Children's Clinical Hospital of the N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - Larisa Fechina
- Sverdlovsk Regional Children's Hospital №1, Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ludmila Zubarovskaya
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, St. Petersburg, Russia
| | - Dmitry Balashov
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Alexander Rumiantsev
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
49
|
Wyatt RC, Olek S, De Franco E, Samans B, Patel K, Houghton J, Walter S, Schulze J, Bacchetta R, Hattersley AT, Flanagan SE, Johnson MB. FOXP3 TSDR Measurement Could Assist Variant Classification and Diagnosis of IPEX Syndrome. J Clin Immunol 2023; 43:662-669. [PMID: 36600150 PMCID: PMC9957900 DOI: 10.1007/s10875-022-01428-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p < 0.0001) with higher levels of demethylation associated with more severe disease. Patients with other monogenic autoimmunity had a similar %TSDR/CD4 to controls (median 8.7%, p = 1.0). Identifying increased %TSDR/CD4 in patients with novel FOXP3 mutations presenting with isolated diabetes facilitates diagnosis and could offer an opportunity to monitor patients and begin immune modulatory treatment before onset of severe enteropathy.
Collapse
Affiliation(s)
- Rebecca C Wyatt
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sven Olek
- Ivana Türbachova Laboratory of Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Elisa De Franco
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bjoern Samans
- Ivana Türbachova Laboratory of Epigenetics, Precision for Medicine GmbH, Berlin, Germany
| | - Kashyap Patel
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jayne Houghton
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Steffi Walter
- Research & Development, Epimune Diagnostics, Berlin, Germany
| | - Janika Schulze
- Research & Development, Epimune Diagnostics, Berlin, Germany
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University, Stanford, USA
| | - Andrew T Hattersley
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sarah E Flanagan
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Matthew B Johnson
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
50
|
Giardino G, Romano R, Lougaris V, Castagnoli R, Cillo F, Leonardi L, La Torre F, Soresina A, Federici S, Cancrini C, Pacillo L, Toriello E, Cinicola BL, Corrente S, Volpi S, Marseglia GL, Pignata C, Cardinale F. Immune tolerance breakdown in inborn errors of immunity: Paving the way to novel therapeutic approaches. Clin Immunol 2023; 251:109302. [PMID: 36967025 DOI: 10.1016/j.clim.2023.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/12/2023]
Abstract
Up to 25% of the patients with inborn errors of immunity (IEI) also exhibit immunodysregulatory features. The association of immune dysregulation and immunodeficiency may be explained by different mechanisms. The understanding of mechanisms underlying immune dysregulation in IEI has paved the way for the development of targeted treatments. In this review article, we will summarize the mechanisms of immune tolerance breakdown and the targeted therapeutic approaches to immune dysregulation in IEI.
Collapse
Affiliation(s)
- Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Roberta Romano
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesca Cillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Toriello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Università degli Studi di Genova, Genoa, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|