1
|
Kang MJ, Kwak DH, Park H, Kim H, Yeom J, Lee SY, Choi SS, Hong SJ. Predictive biomarker for allergic March in children using blood proteomics. Pediatr Pulmonol 2025; 60:e27349. [PMID: 39470001 PMCID: PMC11740652 DOI: 10.1002/ppul.27349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Mi-Jin Kang
- Humidifier Disinfectant Health Center, Asan Medical Center, Seoul, Republic of Korea
| | - Do-Hyeon Kwak
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyowon Park
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyunjung Kim
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeonghun Yeom
- Prometabio Research Institute, Prometabio Co., Ltd. Hanam-si, Gyeonggi-do, Republic of Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Respiratory and Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Respiratory and Allergy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhou H, Wang L, Lv W, Yu H. The NLRP3 inflammasome in allergic diseases: mechanisms and therapeutic implications. Clin Exp Med 2024; 24:231. [PMID: 39325206 PMCID: PMC11427518 DOI: 10.1007/s10238-024-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
In recent years, there has been a global increase in the prevalence of allergic diseases, including allergic rhinitis, chronic rhinosinusitis, allergic asthma, atopic dermatitis, allergic conjunctivitis, and food allergies. Since the pathogenic mechanisms of these allergic diseases are not yet fully understood, targeted and effective therapies are lacking. The NLRP3 inflammasome, a multiprotein complex implicated in various inflammatory diseases, can be activated by diverse stimuli. It assembles into NLRP3 inflammasome complexes through conformational changes, initiating the proteolytic cleavage of dormant procaspase-1 into active caspase-1 and promoting the maturation of inflammatory cytokines, including IL-1β and IL-18. Dysfunction of the NLRP3 inflammasome may serve as a key driver of inflammatory diseases, leading to pyroptosis and amplifying the local inflammatory response. As preliminarily demonstrated, specific NLRP3 inflammatory vesicle inhibitors play refectory roles in animal models of allergic diseases, and it is believed that specific NLRP3 inflammasome inhibitors may be potential therapeutic agents for allergic diseases. This review highlights the progress of research on the NLRP3 inflammasome in allergic diseases, explores its contribution to different types of allergic diseases, and identifies promising clinical targets for intervention.
Collapse
Affiliation(s)
- Huiqin Zhou
- Department of Otolaryngology, Peking Union Medical College Hospital, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003) , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital , Fudan University, Shanghai, 200031, China
| | - Li Wang
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital , Fudan University, Shanghai, 200031, China
| | - Wei Lv
- Department of Otolaryngology, Peking Union Medical College Hospital, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003) , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Hongmeng Yu
- Department of Otolaryngology, Peking Union Medical College Hospital, Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003) , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- ENT Institute and Department of Otolaryngology, Eye & ENT Hospital , Fudan University, Shanghai, 200031, China.
| |
Collapse
|
3
|
Liu XT, Chen X, Zhao N, Geng F, Zhu MM, Ren QG. Synergism of ApoE4 and systemic infectious burden is mediated by the APOE-NLRP3 axis in Alzheimer's disease. Psychiatry Clin Neurosci 2024; 78:517-526. [PMID: 39011734 DOI: 10.1111/pcn.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/12/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Systemic infections are associated with the development of AD, especially in individuals carrying the APOE4 genotype. However, the detailed mechanism through which APOE4 affects microglia inflammatory response remains unclear. METHODS We obtained human snRNA-seq data from the Synapse AD Knowledge Portal and assessed the DEGs between APOE3 and APOE4 isoforms in microglia. To verify the interaction between ApoE and infectious products, we used ApoE to stimulate in vitro and in vivo models in the presence or absence of LPS (or ATP). The NLRP3 gene knockout experiment was performed to demonstrate whether the APOE-NLRP3 axis was indispensable for microglia to regulate inflammation and mitochondrial autophagy. Results were evaluated by biochemical analyses and fluorescence imaging. RESULTS Compared with APOE3, up-regulated genes in APOE4 gene carriers were involved in pro-inflammatory responses. ApoE4-stimulation significantly increased the levels of NLRP3 inflammasomes and ROS in microglia. Moreover, compared with ApoE4 alone, the co-incubation of ApoE4 with LPS (or ATP) markedly promoted pyroptosis. Both NF-κB activation and mitochondrial autophagy dysfunction were contributed by the increased level of NLRP3 inflammasomes induced by ApoE4. Furthermore, the pathological impairment induced by ApoE4 could be reversed by NLRP3 KO. CONCLUSIONS Our study highlights the importance of NLRP3 inflammasomes in linking ApoE4 with microglia innate immune function. These findings not only provide a molecular basis for APOE4-mediated neuroinflammatory but also reveal the potential reason for the increased risk of AD in APOE4 gene carriers after contracting infectious diseases.
Collapse
Affiliation(s)
- Xue-Ting Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Xiu Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Na Zhao
- School of Medicine, Southeast University, Nanjing, China
| | - Fan Geng
- School of Medicine, Southeast University, Nanjing, China
| | - Meng-Meng Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Yao X, Redekar NR, Keeran KJ, Qu X, Jeffries KR, Soria-Florido M, Saxena A, Dagur PK, Lin WC, McCoy JP, Levine SJ. Neutrophil Heterogeneity Is Modified during Acute Lung Inflammation in Apoa1-/- Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:456-468. [PMID: 38912868 PMCID: PMC11300144 DOI: 10.4049/jimmunol.2300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/01/2024] [Indexed: 06/25/2024]
Abstract
Neutrophils play important roles in inflammatory airway diseases. In this study, we assessed whether apolipoprotein A-I modifies neutrophil heterogeneity as part of the mechanism by which it attenuates acute airway inflammation. Neutrophilic airway inflammation was induced by daily intranasal administration of LPS plus house dust mite (LPS+HDM) to Apoa1-/- and Apoa1+/+ mice for 3 d. Single-cell RNA sequencing was performed on cells recovered from bronchoalveolar lavage fluid on day 4. Unsupervised profiling identified 10 clusters of neutrophils in bronchoalveolar lavage fluid from Apoa1-/- and Apoa1+/+ mice. LPS+HDM-challenged Apoa1-/- mice had an increased proportion of the Neu4 neutrophil cluster that expressed S100a8, S100a9, and Mmp8 and had high maturation, aggregation, and TLR4 binding scores. There was also an increase in the Neu6 cluster of immature neutrophils, whereas neutrophil clusters expressing IFN-stimulated genes were decreased. An unsupervised trajectory analysis showed that Neu4 represented a distinct lineage in Apoa1-/- mice. LPS+HDM-challenged Apoa1-/- mice also had an increased proportion of recruited airspace macrophages, which was associated with a reciprocal reduction in resident airspace macrophages. Increased expression of a common set of proinflammatory genes, S100a8, S100a9, and Lcn2, was present in all neutrophils and airspace macrophages from LPS+HDM-challenged Apoa1-/- mice. These findings show that Apoa1-/- mice have increases in specific neutrophil and macrophage clusters in the lung during acute inflammation mediated by LPS+HDM, as well as enhanced expression of a common set of proinflammatory genes. This suggests that modifications in neutrophil and macrophage heterogeneity contribute to the mechanism by which apolipoprotein A-I attenuates acute airway inflammation.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Neelam R. Redekar
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technologies Branch, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland
| | - Karen J. Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Kenneth R. Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - M.T. Soria-Florido
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Ankit Saxena
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Pradeep K. Dagur
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Wan-Chi Lin
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - J. Philip McCoy
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Stewart J. Levine
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Tagé BSS, Gonzatti MB, Vieira RP, Keller AC, Bortoluci KR, Aimbire F. Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation 2024; 47:1386-1402. [PMID: 38329636 DOI: 10.1007/s10753-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 μg of HDM (house dust mite) in 80 μL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-β cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.
Collapse
Affiliation(s)
- Barbara S S Tagé
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil.
| | - Michelangelo B Gonzatti
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Rodolfo P Vieira
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Anápolis, GO, 75083-515, Brazil
- Postgraduate Program in Bioengineering, University Brasil, São Paulo, SP, 08230-030, Brazil
- Postgraduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, 11010-150, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Karina R Bortoluci
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil
| |
Collapse
|
6
|
Moos PJ, Cheminant JR, Cowman S, Noll J, Wang Q, Musci T, Venosa A. Spatial and phenotypic heterogeneity of resident and monocyte-derived macrophages during inflammatory exacerbations leading to pulmonary fibrosis. Front Immunol 2024; 15:1425466. [PMID: 39100672 PMCID: PMC11294112 DOI: 10.3389/fimmu.2024.1425466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome. Methods The present work leverages a clinical idiopathic PF dataset and a murine model of acute inflammatory exacerbations triggered by mutation in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and phenotypically define monocyte/macrophage changes in the fibrosing lung. Results SP-C mutation triggered heterogeneous CD68+ macrophage activation, with highly active peri-injured cells relative to those sampled from fully remodeled and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+ alveolar macrophages defined asynchronous activation of extracellular matrix re-organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1) emanating from Trem2/TREM2 + interstitial macrophages. These cells also produced a distinct lipid signature from alveolar macrophages and monocytes, characterized by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant mice had limited impact on inflammation and mortality up to 42 day after injury. Discussion Together, these results provide a detailed spatio-temporal picture of resident, interstitial, and monocyte-derived macrophages during SP-C induced inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a biomarker to identify activated macrophages involved in tissue remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses 2024; 16:1156. [PMID: 39066318 PMCID: PMC11281610 DOI: 10.3390/v16071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Abud EM, White AA. Mast Cells in Aspirin-Exacerbated Respiratory Disease. Curr Allergy Asthma Rep 2024; 24:73-80. [PMID: 38217825 DOI: 10.1007/s11882-024-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Aspirin-exacerbated respiratory disease (AERD) is a syndrome of high type 2 inflammation and is known to critically involve mast cell activation. The mast cell is an important cell in the baseline inflammatory processes in the upper and lower airway by maintaining and amplifying type 2 inflammation. But it also is prominent in the hypersensitivity reaction to COX-1 inhibition which defines this condition. RECENT FINDINGS Recent work highlights the mast cell as a focal point in AERD pathogenesis. Using AERD as a specific model of both high type 2 asthma and chronic sinusitis, the role of mast cell activity can be better understood in other aspects of airway inflammation. Further dissecting out the mechanism of COX-1-mediated mast cell activation in AERD will be an important next phase in our understanding of NSAID-induced hypersensitivity as well as AERD pathophysiology.
Collapse
Affiliation(s)
- Edsel M Abud
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, USA
- Scripps Research Translational Institute, Scripps Research, San Diego, USA
| | - Andrew A White
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, USA.
| |
Collapse
|
9
|
Ramachandran AK, Das S, Shenoy GG, Mudgal J, Joseph A. Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:9-20. [PMID: 36573058 DOI: 10.2174/1871527322666221226145141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022]
Abstract
COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensinconverting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer's disease (EOAD). Despite this data, Alzheimer's disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gurupur Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
10
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
12
|
Kim Y, Kim Y, Lim HJ, Kim DK, Park JH, Oh CM. Integrative single-cell transcriptome analysis provides new insights into post-COVID-19 pulmonary fibrosis and potential therapeutic targets. J Med Virol 2023; 95:e29201. [PMID: 37966390 DOI: 10.1002/jmv.29201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
The global COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 virus has resulted in a significant number of patients experiencing persistent symptoms, including post-COVID pulmonary fibrosis (PCPF). This study aimed to identify novel therapeutic targets for PCPF using single-cell RNA-sequencing data from lung tissues of COVID-19 patients, idiopathic pulmonary fibrosis (IPF) patients, and a rat transforming growth factor beta-1-induced fibrosis model treated with antifibrotic drugs. Patients with COVID-19 had lower alveolar macrophage counts than healthy controls, whereas patients with COVID-19 and IPF presented with elevated monocyte-derived macrophage counts. A comparative transcriptome analysis showed that macrophages play a crucial role in IPF and COVID-19 development and progression, and fibrosis- and inflammation-associated genes were upregulated in both conditions. Functional enrichment analysis revealed the upregulation of inflammation and proteolysis and the downregulation of ribosome biogenesis. Cholesterol efflux and glycolysis were augmented in both macrophage types. The study suggests that antifibrotic drugs may reverse critical lung fibrosis mediators in COVID-19. The results help clarify the molecular mechanisms underlying pulmonary fibrosis in patients with severe COVID-19 and IPF and highlight the potential efficacy of antifibrotic drugs in COVID-19 therapy. Collectively, all these findings may have significant implications for the development of new treatment strategies for PCPF.
Collapse
Affiliation(s)
- Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyobin Julianne Lim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dae-Kyum Kim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ji-Hwan Park
- Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Tauber M, Basso L, Martin J, Bostan L, Pinto MM, Thierry GR, Houmadi R, Serhan N, Loste A, Blériot C, Kamphuis JB, Grujic M, Kjellén L, Pejler G, Paul C, Dong X, Galli SJ, Reber LL, Ginhoux F, Bajenoff M, Gentek R, Gaudenzio N. Landscape of mast cell populations across organs in mice and humans. J Exp Med 2023; 220:e20230570. [PMID: 37462672 PMCID: PMC10354537 DOI: 10.1084/jem.20230570] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.
Collapse
Affiliation(s)
- Marie Tauber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Luciana Bostan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Guilhem R. Thierry
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Camille Blériot
- Institut Necker des Enfants Malades, CNRS UMR8253, Paris, France
| | - Jasper B.J. Kamphuis
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carle Paul
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Toulouse University and Centre Hospitalier Universitaire, Toulouse, France
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Center for Sensory Biology, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Galli
- Departments of Pathology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Laurent L. Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Gentek
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| |
Collapse
|
14
|
Vannucchi V, Pelagatti L, Barone F, Bertini L, Celli T, Boccia N, Veneziani F, Cimolato B, Landini G. Delirium and IL-6 added to clinical scores improves their performance: a prospective analysis of CALL, PREDI-CO, MRS score applied to a population of patients admitted to internal medicine ward. Intern Emerg Med 2023; 18:1689-1700. [PMID: 37329431 PMCID: PMC10504150 DOI: 10.1007/s11739-023-03336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to evaluate the effectiveness of various scoring systems in predicting in-hospital mortality for COVID-19 patients admitted to the internal medicine ward. We conducted a prospective collection of clinical data from patients admitted to the Internal Medicine Unit at Santa Maria Nuova Hospital in Florence, Italy, with confirmed pneumonia caused by SARS-CoV-2. We calculated three scoring systems: the CALL score, the PREDI-CO score, and the COVID-19 in-hospital Mortality Risk Score (COVID-19 MRS). The primary endpoint was in-hospital mortality. : A total of 681 patients were enrolled in the study, with a mean age of 68.8 ± 16.1 years, and 54.8% of them were male. Non-survivors had significantly higher scores in all prognostic systems compared to survivors (MRS: 13 [12- 15] vs. 10 [8-12]; CALL: 12 [10-12] vs. 9 [7-11]; PREDI-CO: 4 [3-6] vs. 2 [1-4]; all p<0.001). The receiver operating characteristic (ROC) analysis yielded the following area under the curve (AUC) values: MRS 0.85, CALL 0.78, PREDI-CO 0.77. The addition of Delirium and IL6 to the scoring systems improved their discriminative ability, resulting in AUC values of 0.92 for MRS, 0.87 for CALL, and 0.84 for PREDI-CO. The mortality rate increased significantly across increasing quartiles (p<0.001). In conclusion the COVID-19 in-hospital Mortality Risk Score (MRS) demonstrated reasonable prognostic stratification for patients admitted to the internal medicine ward with SARS-CoV-2-induced pneumonia. The inclusion of Delirium and IL6 as additional prognostic indicators in the scoring systems enhanced their predictive performance, specifically in determining in-hospital mortality among COVID-19 patients.
Collapse
Affiliation(s)
- Vieri Vannucchi
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
| | - Lorenzo Pelagatti
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
- High-Dependency Unit, AOU Careggi, Florence, Italy
| | - Fabio Barone
- School of Medicine, University of Florence, Florence, Italy
| | - Laura Bertini
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
| | - Tommaso Celli
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
| | - Nunzia Boccia
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
| | - Francesca Veneziani
- Laboratory of Clinical Pathology, Santa Maria Nuova Hospital, Florence, Italy
- Laboratory of Clinical Pathology, San Giovanni di Dio Hospital, Florence, Italy
| | - Barbara Cimolato
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
| | - Giancarlo Landini
- Internal Medicine, Santa, Maria Nuova Hospital, Piazza di Santa Maria Nuova 1, 50121 Florence, Italy
| |
Collapse
|
15
|
Liu L, Zhou L, Wang LL, Zheng PD, Zhang FQ, Mao ZY, Zhang HJ, Liu HG. Programmed Cell Death in Asthma: Apoptosis, Autophagy, Pyroptosis, Ferroptosis, and Necroptosis. J Inflamm Res 2023; 16:2727-2754. [PMID: 37415620 PMCID: PMC10321329 DOI: 10.2147/jir.s417801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Bronchial asthma is a complex heterogeneous airway disease, which has emerged as a global health issue. A comprehensive understanding of the different molecular mechanisms of bronchial asthma may be an efficient means to improve its clinical efficacy in the future. Increasing research evidence indicates that some types of programmed cell death (PCD), including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, contributed to asthma pathogenesis, and may become new targets for future asthma treatment. This review briefly discusses the molecular mechanism and signaling pathway of these forms of PCD focuses on summarizing their roles in the pathogenesis and treatment strategies of asthma and offers some efficient means to improve clinical efficacy of therapeutics for asthma in the near future.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling-Ling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Peng-Dou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Feng-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhen-Yu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
17
|
Shen Y, Li L, Chen W, Li Q, Xu Y, He F, Wang C, Tian Z, Chen Y, Yang Y. Apolipoprotein E negatively regulates allergic airway inflammation and remodeling in mice with OVA-induced chronic asthma. Int Immunopharmacol 2023; 116:109776. [PMID: 36731155 DOI: 10.1016/j.intimp.2023.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Apolipoprotein E (ApoE) is a corticosteroid-unresponsive gene that negatively regulates ovalbumin (OVA) -induced allergic airway inflammation in mice with acute asthma. However, whether ApoE negatively regulates airway remodeling in mice with OVA-induced chronic asthma remains unknown. This study aimed to investigate the effects of ApoE on OVA-induced chronic asthma in a murine model. ApoE knockout (ApoE-/-) and wild-type (WT) mice were sensitized and challenged with OVA for 10 weeks to establish the chronic asthma model. Compared with WT mice, the results demonstrated that ApoE deficiency exacerbated OVA-induced airway inflammation, including elevated numbers of inflammatory cells in the blood and bronchoalveolar lavage fluid (BALF), as well as increased T helper type 2 (Th2) cells in lung tissue, Th2 cytokines in BALF, and total IgE levels in plasma. Importantly, ApoE deficiency aggravated OVA-induced airway remodeling, as evidenced by higher plasma transforming growth factor (TGF)-β1 levels, airway goblet cell hyperplasia, and collagen deposition compared with WT mice. These results revealed that ApoE deficiency aggravates airway remodeling and inflammation in mice with OVA-induced chronic allergic asthma.
Collapse
Affiliation(s)
- Yunqin Shen
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Lingjie Li
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Wushi Chen
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Qin Li
- Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Yixuan Xu
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Fang He
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Caixia Wang
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Zezhong Tian
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China
| | - Yan Yang
- Department of Nutrition, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China.
| |
Collapse
|
18
|
Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750. [PMID: 36444628 PMCID: PMC9695095 DOI: 10.1002/iid3.750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are lung diseases characterized by airflow limitation and chronic inflammation. More and more studies have shown that the occurrence and development of asthma and COPD are related to abnormal immune responses caused by dysregulation of many genetic and environmental factors. The exact pathogenesis of the disease is still unclear. A large number of studies have shown that the NLRP3 inflammasome is involved in the process of chronic airway inflammation in asthma and COPD. Here, we summarize recent advances in the mechanism of NLRP3 inflammasome activation and regulation and its role in the pathogenesis of inflammatory lung diseases such as asthma and COPD. Meanwhile we propose possible therapeutic targets in asthma and COPD.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Di
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Min Zhao
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Haoran Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Li Bai
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Ke Wang
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
19
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Alvarez-Simon D, Ait Yahia S, de Nadai P, Audousset C, Chamaillard M, Boneca IG, Tsicopoulos A. NOD-like receptors in asthma. Front Immunol 2022; 13:928886. [PMID: 36189256 PMCID: PMC9515552 DOI: 10.3389/fimmu.2022.928886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022] Open
Abstract
Asthma is an extremely prevalent chronic inflammatory disease of the airway where innate and adaptive immune systems participate collectively with epithelial and other structural cells to cause airway hyperresponsiveness, mucus overproduction, airway narrowing, and remodeling. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular innate immune sensors that detect microbe-associated molecular patterns and damage-associated molecular patterns, well-recognized for their central roles in the maintenance of tissue homeostasis and host defense against bacteria, viruses and fungi. In recent times, NLRs have been increasingly acknowledged as much more than innate sensors and have emerged also as relevant players in diseases classically defined by their adaptive immune responses such as asthma. In this review article, we discuss the current knowledge and recent developments about NLR expression, activation and function in relation to asthma and examine the potential interventions in NLR signaling as asthma immunomodulatory therapies.
Collapse
Affiliation(s)
- Daniel Alvarez-Simon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Saliha Ait Yahia
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Audousset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, INSERM U1306, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
- *Correspondence: Anne Tsicopoulos,
| |
Collapse
|
21
|
Bergmann C, Poli A, Agache I, Bianchini R, Bax HJ, Castells M, Crescioli S, Dombrowicz D, Ferastraoaru D, Fiebiger E, Gould HJ, Hartmann K, Izquierdo E, Jordakieva G, Josephs DH, Jutel M, Levi‐Schaffer F, de las Vecillas L, Lotze MT, Osborn G, Pascal M, Redegeld F, Rosenstreich D, Roth‐Walter F, Schmidt‐Weber C, Shamji M, Steveling EH, Turner MC, Untersmayr E, Jensen‐Jarolim E, Karagiannis SN. AllergoOncology: Danger signals in allergology and oncology: A European Academy of Allergy and Clinical Immunology (EAACI) Position Paper. Allergy 2022; 77:2594-2617. [PMID: 35152450 PMCID: PMC9545837 DOI: 10.1111/all.15255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.
Collapse
Affiliation(s)
- Christoph Bergmann
- Department of OtorhinolaryngologyRKM740 Interdisciplinary ClinicsDüsseldorfGermany
| | - Aurélie Poli
- Neuro‐Immunology GroupDepartment of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg
| | - Ioana Agache
- Faculty of MedicineTransylania University BrasovBrasovRomania
| | - Rodolfo Bianchini
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria
| | - Heather J. Bax
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Silvia Crescioli
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1011‐EGIDLilleFrance
| | - Denisa Ferastraoaru
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department of Medicine ResearchChildren's University Hospital BostonBostonMassachusettsUSA
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical BiosciencesKing's College London, New Hunt's HouseLondonUnited Kingdom,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUnited Kingdom
| | - Karin Hartmann
- Department of DermatologyUniversity of BaselBaselSwitzerland
| | - Elena Izquierdo
- IMMA, School of Medicine, Institute of Applied Molecular MedicineCEU San Pablo UniversityMadridSpain
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational MedicineMedical University of ViennaViennaAustria
| | - Debra H. Josephs
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Marek Jutel
- Department of Clinical ImmunologyWroclaw Medical UniversityWroclawPoland,ALL‐MED Medical Research InstituteWroclawPoland
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Faculty of MedicineThe Institute for Drug Research, The Hebrew University of JerusalemJerusalemIsrael
| | | | - Michael T. Lotze
- G.27A Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Gabriel Osborn
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - Mariona Pascal
- Department of Immunology, CDB, Hospital Clinic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de BarcelonaBarcelonaSpain
| | - Frank Redegeld
- Division of Pharmacology, Faculty of ScienceUtrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - David Rosenstreich
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Franziska Roth‐Walter
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Carsten Schmidt‐Weber
- Center of Allergy & Environment (ZAUM)Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental HealthMunichGermany,German Center for Lung Research (DZL)MunichGermany
| | - Mohamed Shamji
- Immunomodulation and Tolerance Group, Imperial College London, and Allergy and Clinical ImmunologyImperial College LondonLondonUnited Kingdom
| | | | | | - Eva Untersmayr
- Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Erika Jensen‐Jarolim
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Sophia N. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,Breast Cancer Now Research UnitSchool of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital,LondonSE1 9RTUnited Kindgom
| |
Collapse
|
22
|
Zhang J, Zhang L. Bioinformatics approach to identify the influences of SARS-COV2 infections on atherosclerosis. Front Cardiovasc Med 2022; 9:907665. [PMID: 36061537 PMCID: PMC9433720 DOI: 10.3389/fcvm.2022.907665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a global pandemic since early 2020. Understanding the relationship between various systemic disease and COVID-19 through disease ontology (DO) analysis, an approach based on disease similarity studies, has found that COVID-19 is most strongly associated with atherosclerosis. The study provides new insights for the common pathogenesis of COVID-19 and atherosclerosis by looking for common transcriptional features. Two datasets (GSE152418 and GSE100927) were downloaded from GEO database to search for common differentially expressed genes (DEGs) and shared pathways. A total of 34 DEGs were identified. Among them, ten hub genes with high degrees of connectivity were picked out, namely C1QA, C1QB, C1QC, CD163, SIGLEC1, APOE, MS4A4A, VSIG4, CCR1 and STAB1. This study suggests the critical role played by Complement and coagulation cascades in COVID-19 and atherosclerosis. Our findings underscore the importance of C1q in the pathogenesis of COVID-19 and atherosclerosis. Activation of the complement system can lead to endothelial dysfunction. The DEGs identified in this study provide new biomarkers and potential therapeutic targets for the prevention of atherosclerosis.
Collapse
|
23
|
Rolland Y, Baziard M, De Mauleon A, Dubus E, Saidlitz P, Soto ME. Coronavirus Disease-2019 in Older People with Cognitive Impairment. Clin Geriatr Med 2022; 38:501-517. [PMID: 35868669 PMCID: PMC8934719 DOI: 10.1016/j.cger.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Patients with cognitive impairment have paid a heavy price for the coronavirus disease 2019 pandemic. Their clinical characteristics and their place of life made them particularly exposed to being infected and suffering from severe forms. The repercussions of the isolation measures also had significant repercussions on the expression of their neuropsychiatric symptoms and the burden on families and health care professionals.
Collapse
Affiliation(s)
- Yves Rolland
- Gerontopole of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, Toulouse 31059, France; CERPOP Centre d'Epidémiologie et de Recherche en santé des POPulations UPS/INSERM UMR 1295, Toulouse, France.
| | - Marion Baziard
- Gerontopole of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, Toulouse 31059, France
| | - Adelaide De Mauleon
- Gerontopole of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, Toulouse 31059, France
| | - Estelle Dubus
- Gerontopole of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, Toulouse 31059, France
| | - Pascal Saidlitz
- Gerontopole of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, Toulouse 31059, France
| | - Maria Eugenia Soto
- Gerontopole of Toulouse, Institute on Aging, Toulouse University Hospital (CHU Toulouse), 20 rue du Pont Saint-Pierre, Cité de la Santé, CHU de Toulouse, Toulouse 31059, France; CERPOP Centre d'Epidémiologie et de Recherche en santé des POPulations UPS/INSERM UMR 1295, Toulouse, France
| |
Collapse
|
24
|
Weng D, Gao S, Shen H, Yao S, Huang Q, Zhang Y, Huang W, Wang Y, Zhang X, Yin Y, Xu W. CD5L attenuates allergic airway inflammation by expanding CD11c high alveolar macrophages and inhibiting NLRP3 inflammasome activation via HDAC2. Immunology 2022; 167:384-397. [PMID: 35794812 DOI: 10.1111/imm.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Allergic asthma is an airway inflammatory disease dominated by type 2 immune responses and there is currently no curative therapy for asthma. CD5-like antigen (CD5L) has been known to be involved in a variety of inflammatory diseases. However, the role of CD5L in allergic asthma remains unclear. In the present study, mice were treated with recombinant CD5L (rCD5L) during house dust mite (HDM) and ovalbumin (OVA) challenge to determine the role of CD5L in allergic asthma, and the underlying mechanism was further explored. Compared with PBS group, serum CD5L levels of asthmatic mice were significantly decreased, and the levels of CD5L in lung tissues and bronchoalveolar lavage fluid (BALF) were significantly increased. CD5L reduced airway inflammation and Th2 immune responses in asthmatic mice. CD5L exerted its anti-inflammatory function by increasing CD11chigh alveolar macrophages (CD11chigh AMs), and the anti-inflammatory role of CD11chigh AMs in allergic asthma was confirmed by CD11chigh AMs depletion and transfer assays. In addition, CD5L increased the CD5L+ macrophages and inhibited NLRP3 inflammasome activation by increasing HDAC2 expression in lung tissues of asthmatic mice. Hence, our study implicates that CD5L has potential usefulness for asthma treatment.
Collapse
Affiliation(s)
- Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China
| | - Hailan Shen
- Department of laboratory medicine, the first affiliated hospital of Chongqing medical university
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenjie Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Campbell NV, Mickael C, Kumar S, Zhang H, Campbell IL, Gillen AE, Trentin CO, Diener K, Gao B, Kheyfets VO, Gu S, Kumar R, Phang T, Brown RD, Graham BB, Stenmark KR. Single-cell RNA sequencing and binary hierarchical clustering define lung interstitial macrophage heterogeneity in response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2022; 323:L58-L68. [PMID: 35608266 PMCID: PMC9273277 DOI: 10.1152/ajplung.00104.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/22/2022] Open
Abstract
Few studies have examined lung interstitial macrophage (IM) molecular phenotypes after being exposed to hypoxia in vivo at the single-cell level, even though macrophages contribute to hypoxic pulmonary hypertension (PH). We aimed to determine IM diversity and its association with hypoxia-induced PH. We hypothesized that integrating single-cell RNA sequencing (scRNAseq) and binary hierarchal clustering (BHC) could resolve IM heterogeneity under normal homeostatic conditions and changes induced by hypoxia exposure. Cx3cr1GFP/+ reporter mice were exposed to normoxic conditions (∼21% [Formula: see text]) or exposed to 1 day (D1) or 7 days (D7) of hypoxia (∼10% [Formula: see text]). We used flow cytometry to isolate Cx3cr1+ IMs and the 10X Genomics platform for scRNAseq, Cell Ranger, Seurat, ClusterMap, monocle, ingenuity pathway analysis, and Fisher's exact test (q value < 0.05) for functional investigations. n = 374 (normoxia), n = 2,526 (D1), and n = 1,211 (D7) IMs were included in the analyses. We identified three normoxia-related cell types, five hypoxia-associated cell types that emerged at D1, and three that appeared at D7. We describe the existence of a putative resident trained innate IM, which is present in normoxia, transiently depleted at D1, and recovered after 7 days of sustained hypoxia. We also define a rare putative pathogenic population associated with transcripts implicated in PH development that emerges at D7. In closing, we describe the successful integration of BHC with scRNAseq to determine IM heterogeneity and its association with PH. These results shed light on how resident-trained innate IMs become more heterogeneous but ultimately accustomed to hypoxia.
Collapse
Affiliation(s)
- Nzali V Campbell
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Claudia Mickael
- Department of Medicine-Pulmonary Sciences & Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Sushil Kumar
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Hui Zhang
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Ian L Campbell
- School of Humanities and Science, Stanford University, Stanford, California
| | - Austin E Gillen
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Caio O Trentin
- Department of Medicine-Pulmonary Sciences & Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Katrina Diener
- Department of Medicine-Pulmonary Sciences & Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Bifeng Gao
- Department of Medicine-Pulmonary Sciences & Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Vitaly O Kheyfets
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Sue Gu
- Department of Medicine-Pulmonary Sciences & Critical Care, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rahul Kumar
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tzu Phang
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine-Bioinformatics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - R Dale Brown
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brian B Graham
- Department of Medicine, University of California, San Francisco, California
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
26
|
Zhu Y, Esnault S, Ge Y, Jarjour NN, Brasier AR. Airway fibrin formation cascade in allergic asthma exacerbation: implications for inflammation and remodeling. Clin Proteomics 2022; 19:15. [PMID: 35590254 PMCID: PMC9117591 DOI: 10.1186/s12014-022-09351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway remodeling in patients with asthma, which leads to a decline in pulmonary function, is likely the result of repeated exacerbations often provoked by aeroallergen exposures. Aeroallegen exposure triggers a stereotypic response orchestrated by growth factor cytokines and other protein mediators. This results in a late-phase allergic reaction characterized by vascular permeability, recruitment of activated leukocytes, and activation of structural cells of the airway. The spectrum of protein mediators and their functions are incompletely understood. METHODS Bronchoalveolar lavage fluid (BALF) samples were obtained from 12 volunteers who exhibited robust eosinophilic recruitment following segmental bronchial provocation with allergen (SBP-Ag). We systematically identified and quantified proteins in BALF using high-performance liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) followed by pathway analysis and correlations with airway physiology. RESULTS Pairwise analysis of protein abundance in BALF pre- vs post-SBP-Ag revealed that 55 proteins were upregulated and 103 proteins were downregulated. We observed enrichment of groups of proteins mapping to hemostasis/fibrin clot, platelet activation, lipoprotein assembly, neutrophil degranulation proteins, and acute-phase inflammation-airway remodeling pathways. The abundances of F2 and Fibrinogen γ (FGG) correlated with eosinophil numbers, whereas SERPINA3 negatively correlated with change in FeNO. The coagulation proteins F2 and KNG negatively correlated with FN1 an index of airway remodeling. Interestingly, patients with lower FEV1 showed distinct allergen-induced patterns of 8 BALF proteins, including MUC1, alarmins (HSPB1), and actin polymerization factors. CONCLUSIONS Protein abundance of the fibrin formation cascade, platelet activation and remodeling are associated with late-phase leukocyte numbers and markers of remodeling. Patients with lower FEV1 have distinct dynamic responses to allergen.
Collapse
Affiliation(s)
- Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Stephane Esnault
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, 53705, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, 53705, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, 715 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
27
|
Filippova YE, Malishevskaya TN, Petrov SA, Gubin DG, Vlasova AS. [Enzymatic activity of paraoxonase depending on polymorphism Q192R of the PON1 gene in patients with primary open-angle glaucoma]. Vestn Oftalmol 2022; 138:58-64. [PMID: 35488563 DOI: 10.17116/oftalma202213802158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is believed that one of the main blood enzymes that hydrolyzes oxidized lipids incorporated in lipoproteins is the calcium-dependent hydrolase of paraoxonase 1, which has a significant antioxidant effect depending on the polymorphism of the PON1 gene. PURPOSE To genotype patients with primary open-angle glaucoma (POAG) by the Q192R polymorphism of the PON1 gene in order to identify their genetic predisposition to dyslipidemia and atherosclerosis, as well as to determe the possibility of correcting the reduced activity of the PON1 enzyme in the examined individuals by the complex drug Cytoflavin. MATERIAL AND METHODS The study included 25 men with advanced POAG, IOP compensated by hypotonic agents, and 20 volunteers without POAG (mean age 63.0±5.4 years). All subjects underwent genotyping by the Q192R polymorphism of the PON1 gene using an analyzer. PON1 activity was assessed by the rate of nitrophenol formation when paraoxone diluted in acetone was added to the blood plasma. At the second stage, patients (of different phenotypes) were prescribed the complex drug Cytoflavin. RESULTS Homozygous carriers of the 192R allele were found to have significantly lower levels of PON1 activity than homozygous carriers of the Q192 allele. Carriage of the 192R allele may determine an increased risk of atherosclerotic injury in patients with POAG, especially in cases with high levels of atherogenic blood lipoproteins, low levels of high-density lipoproteins, or high levels of peroxidized lipids in the blood. The drug Cytoflavin showed a positive therapeutic effect on oxidative stress and hypercholesterinemia in POAG patients. CONCLUSION These findings can be used to determine the atherogenicity of lipoproteins and the progression of glaucomatous optic neuropathy and to optimize the therapy of PAHO.
Collapse
Affiliation(s)
- Yu E Filippova
- Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia
| | - T N Malishevskaya
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - S A Petrov
- Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia
| | - D G Gubin
- Tyumen State Medical University, Tyumen, Russia.,Tyumen Cardiological Research Center - branch of the Tomsk National Research Medical Center of the Russian Academy of Sciences, Tyumen, Russia
| | - A S Vlasova
- Federal Research Center Tyumen Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia.,Regional Ophthalmology Clinic, Tyumen, Russia
| |
Collapse
|
28
|
Trained immunity in type 2 immune responses. Mucosal Immunol 2022; 15:1158-1169. [PMID: 36065058 PMCID: PMC9705254 DOI: 10.1038/s41385-022-00557-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immunological memory of innate immune cells, also termed "trained immunity", allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.
Collapse
|
29
|
Liang YR, Tzeng IS, Hsieh PC, Kuo CY, Huang SY, Yang MC, Wu YK, Lan CC. Transcriptome analysis in patients with asthma after inhaled combination therapy with long-acting β2-agonists and corticosteroids. Int J Med Sci 2022; 19:1770-1778. [PMID: 36313228 PMCID: PMC9608042 DOI: 10.7150/ijms.76013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction: Asthma is one of the major public health problems that imposes a great burden on societal, financial, and healthcare around the world. Asthma poorly affects the health-related quality of life and daily activities of patients. Treatment of asthma, including inhaled corticosteroids (ICS) and long-acting beta-agonists (LABAs), mainly aims to improve the lung function and reduce symptoms and exacerbations. Current treatment regimens are symptom-based strategies, and the status of airway inflammation after treatment is yet unknown. We conducted this study to understand the comprehensive inflammation or airway remodeling status of patients after ICS-LABA treatment through RNA transcriptome analysis. Materials and methods: Eight newly diagnosed asthmatic patients and two healthy subjects were recruited in this study. Asthmatic patients underwent blood tests, lung function test, and RNA transcriptome analysis before and after ICS-LABA treatment. Results: In comparison with healthy subjects, pretreatment asthmatic patients had higher expression of protein tyrosine kinase and related signaling pathways. After ICS-LABA treatment, the expression of nuclear receptor transcription coactivator, N-acetyltransferase, protein tyrosine kinase, nuclear receptor, and RNA polymerase II-activating transcription factor were downregulated. However, the post-treatment asthmatic patients still had higher expression of cysteine-type endopeptidase, endodeoxyribonuclease, apolipoprotein, and unfolded protein was still upregulated than healthy subjects. Conclusions: The combination of ICS/LABAs decreased airway inflammatory and remodeling pathways. However, allergen stimulation-related pathways were still upregulated in patients after ICS/LABA treatment. The combination of medication and allergen removal is a complete strategy for asthma.
Collapse
Affiliation(s)
- Ya-Ru Liang
- Division of Respiratory Therapy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Shiang-Yu Huang
- Division of Respiratory Therapy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Mei-Chen Yang
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Yao-Kuang Wu
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu-Chi University, Hualien, Taiwan
| |
Collapse
|
30
|
Kurki SN, Kantonen J, Kaivola K, Hokkanen L, Mäyränpää MI, Puttonen H, Martola J, Pöyhönen M, Kero M, Tuimala J, Carpén O, Kantele A, Vapalahti O, Tiainen M, Tienari PJ, Kaila K, Hästbacka J, Myllykangas L. APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: a Finnish biobank, autopsy and clinical study. Acta Neuropathol Commun 2021; 9:199. [PMID: 34949230 PMCID: PMC8696243 DOI: 10.1186/s40478-021-01302-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein E ε4 allele (APOE4) has been shown to associate with increased susceptibility to SARS-CoV-2 infection and COVID-19 mortality in some previous genetic studies, but information on the role of APOE4 on the underlying pathology and parallel clinical manifestations is scarce. Here we studied the genetic association between APOE and COVID-19 in Finnish biobank, autopsy and prospective clinical cohort datasets. In line with previous work, our data on 2611 cases showed that APOE4 carriership associates with severe COVID-19 in intensive care patients compared with non-infected population controls after matching for age, sex and cardiovascular disease status. Histopathological examination of brain autopsy material of 21 COVID-19 cases provided evidence that perivascular microhaemorrhages are more prevalent in APOE4 carriers. Finally, our analysis of post-COVID fatigue in a prospective clinical cohort of 156 subjects revealed that APOE4 carriership independently associates with higher mental fatigue compared to non-carriers at six months after initial illness. In conclusion, the present data on Finns suggests that APOE4 is a risk factor for severe COVID-19 and post-COVID mental fatigue and provides the first indication that some of this effect could be mediated via increased cerebrovascular damage. Further studies in larger cohorts and animal models are warranted.
Collapse
Affiliation(s)
- Samu N. Kurki
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Jonas Kantonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Laura Hokkanen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Henri Puttonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - FinnGen
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Infectious Diseases, Meilahti Infectious Diseases and Vaccine Research Center MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Virology, University of Helsinki, and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Intensive Care Unit, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4, P.O. Box 340, 00029 Helsinki, Finland
| | - Juha Martola
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Jarno Tuimala
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| | - Anu Kantele
- Department of Infectious Diseases, Meilahti Infectious Diseases and Vaccine Research Center MeVac, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Marjaana Tiainen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Johanna Hästbacka
- Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Intensive Care Unit, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4, P.O. Box 340, 00029 Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital, POB 21, 00014 Helsinki, Finland
| |
Collapse
|
31
|
Kim YJ, Jee Y, Park S, Ha EH, Jo I, Lee HW, Song MS. Mortality Risk within 14 Days after Coronavirus Disease 2019 Diagnosis in Dementia Patients: A Nationwide Analysis. Dement Geriatr Cogn Disord 2021; 50:425-436. [PMID: 34856552 PMCID: PMC8805064 DOI: 10.1159/000519466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The study evaluated the increased mortality risk within 14 days of coronavirus disease 2019 (COVID-19) diagnosis in dementia patients. METHODS This retrospective study was conducted from February to April 2020 using the COVID-19 patients' database from the Korea Disease Control and Prevention Agency. The risk factors for early death within 14 days were determined using generalized logistic regression performed in a stepwise manner. Dementia patients diagnosed with COVID-19 were used for the study. The propensity score-matched cohort was included as controls. The differences in mortality within 14 days after COVID-19 diagnosis between the dementia patients and controls were evaluated. RESULTS We enrolled 5,349 COVID-19 patients from the database; 224 had dementia as comorbidity. The mortality rate within 14 days after COVID-19 diagnosis in dementia patients and the controls was 23.7% versus 1.7%, respectively, before propensity score matching (PSM) (p < 0.001), and 23.7% versus 9.2% after PSM (p < 0.001). The hazard ratio (HR) for mortality within 14 days in COVID-19 patients with dementia was significant even after PSM (HR 5.104, 95% confidence interval 2.889-5.673, p < 0.001). The survival curve of dementia patients was steeply inclined within 14 days after COVID-19 diagnosis, resulting in 70.7% of all deaths in dementia patients. CONCLUSIONS COVID-19 patients with dementia had a higher risk of early death within 14 days. Thus, prompt intervention is necessary for dementia patients after COVID-19 diagnosis.
Collapse
Affiliation(s)
- Yi-Jun Kim
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Yongho Jee
- Advanced Biomedical Research Institute, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Sholhui Park
- Department of Laboratory Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Eun-Hee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
- System Health Science & Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Inho Jo
- System Health Science & Engineering, Ewha Womans University, Seoul, Republic of Korea
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyang Woon Lee
- System Health Science & Engineering, Ewha Womans University, Seoul, Republic of Korea
- Departments of Neurology, Medical Science, and Computational Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Myung Seon Song
- Department of Psychiatry, Keyo Hospital, Uiwang, Republic of Korea
| |
Collapse
|
32
|
Miller RL, Grayson MH, Strothman K. Advances in asthma: New understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol 2021; 148:1430-1441. [PMID: 34655640 DOI: 10.1016/j.jaci.2021.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The last 2 years yielded a proliferation of high-quality asthma research. These include new understandings of the incidence and natural history of asthma, findings on the effects of exposure to air pollution, allergens, and intake of acetaminophen, soy isoflavones, and polyunsaturated fatty acids, and exposure to microbial products. The past 2 years have benefited from great strides in determining potential mechanisms of asthma development and asthma exacerbations. These novel understandings led to identification and development of exciting new avenues for potential therapeutic intervention. Finally, there has been significant progress made in the development of tools to facilitate the diagnosis of asthma and measurement of airway physiology and in precision diagnostic approaches. Asthma guidelines were updated and new insights into the pharmacologic management of patients, including biologics, were reported. We review the most notable advances in the natural history of asthma, risk factors for the development of asthma, underlying mechanisms, diagnostic approaches, and treatments. Although greater knowledge of the mechanisms underlying responses and nonresponses to novel therapeutics and across asthma phenotypes would be beneficial, the progress over just the past 2 years has been immense and impactful.
Collapse
Affiliation(s)
- Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio; Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kasey Strothman
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
33
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
34
|
Ma M, Li G, Qi M, Jiang W, Zhou R. Inhibition of the Inflammasome Activity of NLRP3 Attenuates HDM-Induced Allergic Asthma. Front Immunol 2021; 12:718779. [PMID: 34413860 PMCID: PMC8369415 DOI: 10.3389/fimmu.2021.718779] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Inhaled allergens promote inflammatory response, tissue damage, and airway hyperresponsiveness in the lungs, leading to allergic asthma. NLRP3, as an immune sensor of infections and cellular stress, is associated with the development and exacerbation of asthma. However, the mechanism by which NLRP3 affects asthma requires further investigation. Here, we showed that inhaled house dust mite (HDM) promotes NLRP3 inflammasome activation in the lungs and specifically induces the maturation of caspase-1 and IL-1β in alveolar macrophages (AMs). Using Nlrp3-mutant mice, we found that NLRP3 promotes the inflammatory response and pathogenesis in HDM-induced allergic asthma in an inflammasome-dependent manner. Treatment with RRx-001, an NLRP3 inhibitor, significantly reduced inflammatory cell infiltration and mucus secretion in the airway. Our results showed that NLRP3 in myeloid cells promoted the development and progression of allergic asthma in an inflammasome-dependent manner. Small molecules targeting the NLRP3 inflammasome may provide new treatment options for this disease.
Collapse
Affiliation(s)
- Ming Ma
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Guoyang Li
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Minghui Qi
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Chinese Academy of Sciences Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
36
|
Gong K, Chen Y, Liu W, Wang Z. Global research trends of Apolipoprotein E in central nervous system: A scientometric analysis. Int Immunopharmacol 2021; 98:107919. [PMID: 34217139 DOI: 10.1016/j.intimp.2021.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene) involves in cholesterol recycling and redistribution by mediating lipoprotein pathways unique to central nervous system (CNS), which is a potential therapeutic target for diseases. We visually analyzed the research hotspots of APOE related to CNS in this work, by scientometric analysis from the Web of Science Core Collection (WOSCC) database over the past two decades. A total of 25,719 references of "APOE" and 836 references of "APOE in CNS" were retrieved from the WOSCC on October 26, 2020, and then VOSviewer 1.6.15, Citespace 5.7.R2 were used for visual analysis. Over the last two decades, the research on the field of APOE in CNS is not faddish. Although many funds, organizations, and scholars were affiliated in this field, organizations and scholars, especially the top teams in this field, still lacked close cooperation with other teams around the world. Few articles with high citations had been published in the last decade, but recent studies still lacked scale and breakthrough, and the keywords associated with APOE appeared more outdated. However, the current researches have not fully elucidated the crosstalk between APOE and neuroinflammation in CNS, some new ideas may rekindle the research enthusiasm of scholars. Although the field of APOE in CNS appeared more outdated. Based on keyword analysis, we hypothesized new ideas for further investigation of neuroinflammation would light the interest of APOE in CNS for the scholars. The crosstalk between ApoE and inflammasome may be the focus of future researches. How APOE modulates the time course or intensity of the inflammasome activation, inflammatory response (proinflammatory or anti-inflammatory), and pathological process of CNS disease deserves future attention in both basic and clinical studies. More apoE/APOE-targeted pharmacological interventions will be available for preclinical experiments and clinical trials and bring hope for patients with CNS diseases.
Collapse
Affiliation(s)
- Kai Gong
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Yuhua Chen
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China
| | - Wei Liu
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| | - Zhanxiang Wang
- Trauma Center, First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China; Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Rd, Xiamen ,361003, Fujian, China.
| |
Collapse
|
37
|
Halayko AJ, Pascoe CD, Gereige JD, Peters MC, Cohen RT, Woodruff PG. Update in Adult Asthma 2020. Am J Respir Crit Care Med 2021; 204:395-402. [PMID: 34181860 DOI: 10.1164/rccm.202103-0552up] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew J Halayko
- University of Manitoba, 8664, SECTION OF RESPIRATORY DISEASES, Winnipeg, Manitoba, Canada.,University of Manitoba, 8664, Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- University of Manitoba, 8664, Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,University of Manitoba Children's Hospital Research Institute of Manitoba, 423136, Winnipeg, Manitoba, Canada
| | - Jessica D Gereige
- Boston University School of Medicine, 12259, Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston, Massachusetts, United States
| | - Michael C Peters
- University of California San Francisco, 8785, Pulmonary and Critical Care, San Francisco, California, United States
| | - Robyn T Cohen
- Boston University School of Medicine, 12259, Pediatrics, Boston, Massachusetts, United States
| | - Prescott G Woodruff
- UCSF, 8785, Division of Pulmonary and Critical Care Medicine, Department of Medicine and CVRI, San Francisco, California, United States;
| |
Collapse
|
38
|
Liu T, Liu S, Zhou X. Innate Immune Responses and Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:53-71. [PMID: 34019263 DOI: 10.1007/978-3-030-68748-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate immunity is the first defense line of the host against various infectious pathogens, environmental insults, and other stimuli causing cell damages. Upon stimulation, pattern recognition receptors (PRRs) act as sensors to activate innate immune responses, containing NF-κB signaling, IFN response, and inflammasome activation. Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and other nucleic acid sensors are involved in innate immune responses. The activation of innate immune responses can facilitate the host to eliminate pathogens and maintain tissue homeostasis. However, the activity of innate immune responses needs to be tightly controlled to ensure the optimal intensity and duration of activation under various contexts. Uncontrolled innate immune responses can lead to various disorders associated with aberrant inflammatory response, including pulmonary diseases such as COPD, asthma, and COVID-19. In this chapter, we will have a broad overview of how innate immune responses function and the regulation and activation of innate immune response at molecular levels as well as their contribution to various pulmonary diseases. A better understanding of such association between innate immune responses and pulmonary diseases may provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Hariyanto TI, Putri C, Situmeang RFV, Kurniawan A. Dementia is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infection. Am J Med Sci 2021; 361:394-395. [PMID: 33494933 PMCID: PMC7591314 DOI: 10.1016/j.amjms.2020.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Cynthia Putri
- Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, Indonesia
| | | | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Karawaci, Tangerang, Indonesia.
| |
Collapse
|
40
|
Anu K. Ramachandran, Das S, Joseph A. Crosstalk Between Covid-19 and Associated Neurological Disorders: A Review. Curr Neuropharmacol 2021; 19:1688-1700. [PMID: 33441073 PMCID: PMC8977634 DOI: 10.2174/1570159x19666210113154342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 11/22/2022] Open
Abstract
COVID-19 is a global pandemic, primarily affecting the pulmonary system but its effects on other systems are not certain. Coronavirus, the causative organism, binds with angiotensinconverting enzyme 2 (ACE2) receptors in the lungs and produces pneumonia-like symptoms. Other than lungs, ACE2 receptors are also seen in the endothelium of blood vessels. Therefore, viruses can bind to the ACE2 that is present in the endothelium of brain blood vessels and thus can invade BBB, leading to neuronal damage. It is also believed that olfactory cells rich in ACE2 receptors may act as the main route of viral spread into various parts of the brain. The reported neurological effects of SARS-CoV-2 include cerebrovascular diseases, ageusia and anosmia, Guillain Barre Syndrome, and viral encephalitis. The extent of neurological involvement in SARS-CoV-2 infection warrants the necessity of further research to systematically classify neurological complications associated with SARS-CoV-2 infection, its diagnosis, and treatment. As ACE2 receptors are present in various other organs, it is obligatory to study the effect of coronavirus on other organs also. Since the long-lasting effects of the COVID-19 are unclear, more studies should be conducted to confirm the effect of the virus on the central nervous system. This review highlights the reported neurological manifestations of SARS-CoV-2 and its mechanism.
Collapse
Affiliation(s)
- Anu K. Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
41
|
miR-223 Inhibits the Polarization and Recruitment of Macrophages via NLRP3/IL-1 β Pathway to Meliorate Neuropathic Pain. Pain Res Manag 2021; 2021:6674028. [PMID: 34408803 PMCID: PMC8367593 DOI: 10.1155/2021/6674028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Background miRNA is an essential factor in neuropathic pain. However, the underlying mechanism of miRNA in neuropathic pain remains unclear. Objective To explore the potential role of miR-223 in neuropathic pain in a mice model of chronic sciatic nerve injury. Methods Mice were divided into the sham group, CCI group, CCI + Lenti-vector group, and CCI + Lenti-miR-223 group. Flow cytometry was used to detect the neuronal apoptosis and the proportion of M1/M2 macrophages in each group. Western blot was used to detect the protein expression levels of ASC, caspase-1, IL-1β, and IL-18 in each group. Luciferase activity assay detects the binding of miR-223 and NLRP3. Macrophage chemotaxis experiments verified the anti-inflammatory effect of miR-223 in vitro. Results The overexpression of miR-233 significantly reduced the neuropathic pain caused by CCI and reduced the apoptosis and inflammatory factor expression. miR-223 inhibits the expression of NLRP3 by directly binding to the 3'-untranslated region. Overexpression of miR-223 reduces the protein levels of NLRP3, ASC, caspase-1, IL-1β, and IL-18 in the spinal cord of CCI mice, increases the proportion of M2-type macrophages, and reduces the proportion of M1-type macrophages. Conclusion miR-223 may facilitate the development of neuropathic pain in CCI mice by inhibiting NLRP3-mediated neuroinflammation.
Collapse
|
42
|
Hariyanto TI, Putri C, Arisa J, Situmeang RFV, Kurniawan A. Dementia and outcomes from coronavirus disease 2019 (COVID-19) pneumonia: A systematic review and meta-analysis. Arch Gerontol Geriatr 2020; 93:104299. [PMID: 33285424 PMCID: PMC7674980 DOI: 10.1016/j.archger.2020.104299] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The number of positive and death cases from coronavirus disease 2019 (COVID-19) is still increasing until now. One of the most prone individuals, even in normal situations is patients with dementia. Currently, no study provides clear evidence regarding the link between dementia and COVID-19. This study aims to analyze the relationship between dementia and poor outcomes of COVID-19 infection. MATERIALS AND METHODS We systematically searched the PubMed and Europe PMC database using specific keywords related to our aims until October 25th, 2020. All articles published on COVID-19 and dementia were retrieved. The quality of the study was assessed using the Newcastle Ottawa Scale (NOS) tool for observational studies. Statistical analysis was done using Review Manager 5.4 software. RESULTS A total of 24 studies with 46,391 dementia patients were included in this meta-analysis. This meta-analysis showed that dementia was associated with composite poor outcome [RR 2.67 (95% CI 2.06 - 3.47), p < 0.00001, I2 = 99%, random-effect modeling] and its subgroup which comprised of risk of COVID-19 infection [RR 2.76 (95% CI 1.43 - 5.33), p = 0.003, I2 = 99%, random-effect modeling], severe COVID-19 [RR 2.63 (95% CI 1.41 - 4.90), p = 0.002, I2 = 89%, random-effect modeling], and mortality from COVID-19 infection [RR 2.62 (95% CI 2.04 - 3.36), p < 0.00001, I2 = 96%, random-effect modeling]. CONCLUSIONS Extra care and close monitoring should then be provided to patients with dementia to minimize the risk of infections, preventing the development of severe and mortality outcomes.
Collapse
Affiliation(s)
- Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Indonesia 15811
| | - Cynthia Putri
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Indonesia 15811
| | - Jessie Arisa
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Indonesia 15811
| | - Rocksy Fransisca V Situmeang
- Memory clinic, Department of Neurology, Siloam Hospitals Lippo Village, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Indonesia 15811
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Indonesia 15811.
| |
Collapse
|
43
|
Kalchiem-Dekel O, Yao X, Barochia AV, Kaler M, Figueroa DM, Karkowsky WB, Gordon EM, Gao M, Fergusson MM, Qu X, Liu P, Li Y, Seifuddin F, Pirooznia M, Levine SJ. Apolipoprotein E Signals via TLR4 to Induce CXCL5 Secretion by Asthmatic Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:185-197. [PMID: 32338995 DOI: 10.1165/rcmb.2019-0209oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1β secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-β-activated kinase 1), IκKβ (inhibitor of nuclear factor κ B kinase subunit β), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKβ, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKβ, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKβ/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.
Collapse
Affiliation(s)
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | | | | | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, and
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, and
| | - Fayaz Seifuddin
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
44
|
Affiliation(s)
- Mark R Goldstein
- NCH Physician Group, Center for Healthy Living, 132 Moorings Park Drive, Naples, FL, USA
- First and Corresponding Author: Mark R. Goldstein, MD, FACP, NCH Physician Group, Center for Healthy Living, 132 Moorings Park Drive, Naples, FL 34105, USA, , Phone: 239.624.1120
| | - Gregory A Poland
- Mary Lowell Leary Emeritus Professor of Medicine, USA, Distinguished Investigator of the Mayo Clinic, USA, Director, Mayo Vaccine Research Group, USA, Editor-in-Chief, VACCINE, 611C Guggenheim Building, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Charles W Graeber
- Adjunct Assistant Professor of Medicine, Mayo Clinic College of Medicine and Science, Professor of Internal Medicine, University of Central Florida, College of Medicine, Program Director, NCH Healthcare System Internal Medicine Residency, Affiliate of the Mayo Clinic School of Medicine and Science, Naples, FL, USA
| |
Collapse
|
45
|
Qin S, Pu Q, Wang Z, Wu M. Apolipoprotein E in Asthmatic Inflammatory Response: Friend or Foe? Am J Respir Cell Mol Biol 2020; 63:141-143. [PMID: 32383998 PMCID: PMC7397772 DOI: 10.1165/rcmb.2020-0106ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Shugang Qin
- Department of Biomedical Sciences and School of Medicine and Health Sciencesand
- University of North Dakota Grand Forks, North Dakota
| | - Qinqin Pu
- Department of Biomedical Sciences and School of Medicine and Health Sciencesand
- University of North Dakota Grand Forks, North Dakota
| | - Zhihan Wang
- Department of Biomedical Sciences and School of Medicine and Health Sciencesand
- University of North Dakota Grand Forks, North Dakota
| | - Min Wu
- Department of Biomedical Sciences and School of Medicine and Health Sciencesand
- University of North Dakota Grand Forks, North Dakota
| |
Collapse
|
46
|
Canna SW, Schulert GS, de Jesus A, Pickering A, Brunner H, Gadina M, Levine S, Goldbach-Mansky R, Boutelle J, Sinha R, DeBenedetti F, Grom A. Proceedings from the 2 nd Next Gen Therapies for Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome symposium held on October 3-4, 2019. Pediatr Rheumatol Online J 2020; 18:53. [PMID: 32664935 PMCID: PMC7360380 DOI: 10.1186/s12969-020-00444-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
For reasons poorly understood, and despite the availability of biological medications blocking IL-1 and IL-6 that have markedly improved overall disease control, children with Systemic Juvenile Idiopathic Arthritis (SJIA) are now increasingly diagnosed with life-threatening chronic complications, including hepatitis and lung disease (SJIA-LD). On October 3-4, 2019, a two-day meeting, NextGen Therapies for Systemic Juvenile Idiopathic Arthritis (SJIA) & macrophage activation syndrome (MAS) organized by the Systemic JIA Foundation ( www.systemicjia.org/ ) in Washington, DC brought together scientists, clinicians, parents and FDA representatives with the objectives (1) to integrate clinical and research findings in MAS and SJIA-LD, and (2) to develop a shared understanding of this seemingly new pulmonary complication of SJIA. The current manuscript summarizes discussions and conclusions of the meeting.
Collapse
Affiliation(s)
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| | - Adriana de Jesus
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, NIH, North Bethesda, USA
| | | | - Hermine Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Massimo Gadina
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, NIH, North Bethesda, USA
| | - Stewart Levine
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, NIH, North Bethesda, USA
| | - Raphaela Goldbach-Mansky
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, NIH, North Bethesda, USA
| | | | | | | | - Alexei Grom
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.
| |
Collapse
|
47
|
Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J 2020; 34:9843-9853. [PMID: 32588493 PMCID: PMC7361619 DOI: 10.1096/fj.202001451] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The current coronavirus disease 2019 (COVID‐19) pandemic presents a global challenge for managing acutely ill patients and complications from viral infection. Systemic inflammation accompanied by a “cytokine storm,” hemostasis alterations and severe vasculitis have all been reported to occur with COVID‐19, and emerging evidence suggests that dysregulation of lipid transport may contribute to some of these complications. Here, we aim to summarize the current understanding of the potential mechanisms related to COVID‐19 dyslipidemia and propose possible adjunctive type therapeutic approaches that modulate lipids and lipoproteins. Specifically, we hypothesize that changes in the quantity and composition of high‐density lipoprotein (HDL) that occurs with COVID‐19 can significantly decrease the anti‐inflammatory and anti‐oxidative functions of HDL and could contribute to pulmonary inflammation. Furthermore, we propose that lipoproteins with oxidized phospholipids and fatty acids could lead to virus‐associated organ damage via overactivation of innate immune scavenger receptors. Restoring lipoprotein function with ApoA‐I raising agents or blocking relevant scavenger receptors with neutralizing antibodies could, therefore, be of value in the treatment of COVID‐19. Finally, we discuss the role of omega‐3 fatty acids transported by lipoproteins in generating specialized proresolving mediators and how together with anti‐inflammatory drugs, they could decrease inflammation and thrombotic complications associated with COVID‐19.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,NeoProgen, Baltimore, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lita Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Kim J, Jozic A, Sahay G. Naturally Derived Membrane Lipids Impact Nanoparticle-Based Messenger RNA Delivery. Cell Mol Bioeng 2020; 13:463-474. [PMID: 32837581 PMCID: PMC7250267 DOI: 10.1007/s12195-020-00619-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023] Open
Abstract
Introduction Lipid based nanoparticles (LNPs) are clinically successful vectors for hepatic delivery of nucleic acids. These systems are being developed for non-hepatic delivery of mRNA for the treatment of diseases like cystic fibrosis or retinal degeneration as well as infectious diseases. Localized delivery to the lungs requires aerosolization. We hypothesized that structural lipids within LNPs would provide features of integrity which can be tuned for attributes required for efficient hepatic and non-hepatic gene delivery. Herein, we explored whether naturally occurring lipids that originate from the cell membrane of plants and microorganisms enhance mRNA-based gene transfection in vitro and in vivo and whether they assist in maintaining mRNA activity after nebulization. Methods We substituted DSPC, a structural lipid used in a conventional LNP formulation, to a series of naturally occurring membrane lipids. We measured the effect of these membrane lipids on size, encapsulation efficiency and their impact on transfection efficiency. We further characterized LNPs after nebulization and measured whether they retained their transfection efficiency. Results One plant-derived structural lipid, DGTS, led to a significant improvement in liver transfection of mRNA. DGTS LNPs had similar transfection ability when administered in the nasal cavity to conventional LNPs. In contrast, we found that DGTS LNPs had reduced transfection efficiency in cells pre-and post-nebulization while maintaining size and encapsulation similar to DSPC LNPs. Conclusions We found that structural lipids provide differential mRNA-based activities in vitro and in vivo which also depend on the mode of administration. Understanding influence of structural lipids on nanoparticle morphology and structure can lead to engineering potent materials for mRNA-based gene therapy applications.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA
| | - Antony Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Sciences Building, Portland, OR USA.,Department of Biomedical Engineering, Oregon Health Science University, Robertson Life Sciences Building, Portland, OR USA
| |
Collapse
|
49
|
Chung YW, Cha J, Han S, Chen Y, Gucek M, Cho HJ, Nakahira K, Choi AMK, Ryu JH, Yoon JH. Apolipoprotein E and Periostin Are Potential Biomarkers of Nasal Mucosal Inflammation. A Parallel Approach of In Vitro and In Vivo Secretomes. Am J Respir Cell Mol Biol 2020; 62:23-34. [PMID: 31194918 DOI: 10.1165/rcmb.2018-0248oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
No previously suggested biomarkers of nasal mucosal inflammation have been practically applied in clinical fields, and nasal epithelium-derived secreted proteins as biomarkers have not specifically been investigated. The goal of this study was to identify secreted proteins that dynamically change during the differentiation from basal cells to fully differentiated cells and examine whether nasal epithelium-derived proteins can be used as biomarkers of nasal mucosal inflammation, such as chronic rhinosinusitis. To achieve this goal, we analyzed two secretomes using the isobaric tag for relative and absolute quantification technique. From in vitro secretomes, we identified the proteins altered in apical secretions of primary human nasal epithelial cells according to the degree of differentiation; from in vivo secretomes, we identified the increased proteins in nasal lavage fluids obtained from patients 2 weeks after endoscopic sinus surgery for chronic sinusitis. We then used a parallel approach to identify specific biomarkers of nasal mucosal inflammation; first, we selected apolipoprotein E as a nasal epithelial cell-derived biomarker through screening proteins that were upregulated in both in vitro and in vivo secretomes, and verified highly secreted apolipoprotein E in nasal lavage fluids of the patients by Western blotting. Next, we selected periostin as an inflammatory mediator-inducible biomarker from in vivo secretomes, the secretion of which was not induced under in vitro culture conditions. We demonstrated that those two nasal epithelium-derived proteins are possible biomarkers of nasal mucosal inflammation.
Collapse
Affiliation(s)
- Youn Wook Chung
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Severance Biomedical Science Institute
| | - Jimin Cha
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Seunghan Han
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Hyung-Ju Cho
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute.,Brain Korea 21 PLUS Project for Medical Science, and
| | - Joo-Heon Yoon
- The Airway Mucus Institute.,Global Research Laboratory for Allergic Airway Disease.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|