1
|
Zhao Q, Seow WJ. Association of solid fuel use with cognitive function and the modifying role of lifestyle: A nationwide cohort study in China. ENVIRONMENTAL RESEARCH 2024; 260:119538. [PMID: 38971352 DOI: 10.1016/j.envres.2024.119538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/24/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND As opposed to a healthy lifestyle, indoor air pollution from solid fuel use may be harmful for cognitive function. However, the extent to which lifestyle modifies the association between solid fuel use and cognitive function remains unknown. METHODS A total of 21,008 individuals aged 16 to 92 were enrolled in 2010 and followed up to 2014 in the China Family Panel Studies (CFPS). Cognitive function was assessed using standardized math and word tests in two waves. Solid fuel use at baseline was assessed by self-reporting of firewood, straw, or coal used for cooking. Lifestyle profile was classified into two groups (favorable vs. unfavorable) based on five modifiable lifestyle factors including alcohol drinking, smoking, body mass index, diet, and physical activity. Linear mixed-effects models were employed to assess the association of solid fuel use and lifestyle with cognitive function. The effect modification of lifestyle was analyzed. RESULTS A total of 49.7% of the study population used solid fuels for cooking and 17.4% had a favorable lifestyle. Solid fuel use was associated with a significant decrease in cognitive function (β = -0.29, 95% CI: -0.39, -0.19 for math test; β = -0.62, 95% CI: -0.84, -0.41 for word test). Lifestyle significantly modified this association (p-interaction: 0.006 for math test; 0.016 for word test), with the corresponding association being less pronounced among participants adhering to a favorable lifestyle compared to those with an unfavorable lifestyle. CONCLUSION A favorable lifestyle may attenuate the adverse association between solid fuel use and cognitive function. Adopting a favorable lifestyle has the potential to mitigate the adverse neurological effects due to indoor air pollution.
Collapse
Affiliation(s)
- Qi Zhao
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore.
| |
Collapse
|
2
|
Zhan H, Liu D, Deji Z, Liang W, Li J. Exposure to mixture particulate contaminants in the air and the risk of oral cancer: An updated systematic review and meta-analysis. Heliyon 2024; 10:e38568. [PMID: 39391488 PMCID: PMC11466603 DOI: 10.1016/j.heliyon.2024.e38568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
The mixture of contaminants in the air (e.g., PM2.5, smoke) is a part of air pollutants that has become a hot environmental issue. Previous epidemiological studies have reported the relationship between wood smoke and PM2.5 exposure and oral cancer, but findings have been inconsistent. Therefore, this work designed to find out the relationship between mixture contaminants in air exposure and oral cancer. Fourteen studies were included through research in three databases before February 2024. Before analysis, the Newcastle-Ottawa Scale was applied to examine the quality of all selected studies. Then, the meta-analysis was carried out by meta-regression analysis, sensitivity analysis and subgroup analysis. The results showed that exposure to PM2.5 may have a positive association with oral cancer (pooled OR = 1.13, 95 % confidence interval: 1.06, 1.20). In contrast, no significant association was found between indoor air pollution and oral cancer. However, the result of the subgroup analysis indicated there is a significant association of indoor air pollution and oral cancer in developing countries (pooled OR = 2.5, 95 % confidence interval: 1.7, 3.6). In addition, the heterogeneity among studies of indoor air pollution exposure and oral cancer may caused by studies carried out in developed countries according to the subgroup and meta-regression analyses. In conclusion, the studies about indoor air pollution exposure and oral cancer are discrepant. The effects of mixed air contaminants for people's health are not simple and more studies are demanded to find out it in the future.
Collapse
Affiliation(s)
- Hui Zhan
- Department of Dentistry, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Dentistry, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoma Deji
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Wei Liang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| | - Jiaoyang Li
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Fan YX, Zhang W, Li W, Ma YJ, Zhang HQ. Global, regional, and national impact of air pollution on stroke burden: changing landscape from 1990 to 2021. BMC Public Health 2024; 24:2786. [PMID: 39394088 PMCID: PMC11470728 DOI: 10.1186/s12889-024-20230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Exposure to air pollution contributes to cardiovascular disease-related deaths and morbidity, including stroke. However, few studies have examined the global stroke burden linked to air pollution. This study aimed to evaluate the global stroke morbidity and mortality associated with air pollution from 1990 to 2021. METHOD With the Global Burden of Disease Study (GBD) 2021, the numbers, and age-standardized rates (ASRs) of deaths and disability-adjusted life years (DALYs) for air pollution-related stroke were reported globally. Further subgroup analyses were conducted by age, sex, region and country, and stroke subtypes. A linear regression model explored global temporal trends and a cluster analysis examined temporal trends across GBD regions. To predict trends until 2040, the age-period-cohort (APC) model and the Bayesian age-period-cohort (BAPC) model were applied. RESULTS In 2021, there were 1,989,686 (95% uncertainty interval [95% UI], 1,530,479-2,493,238) deaths and 44,962,167 (95% UI, 35,020,339 - 55,467,024) DALYs due to air pollution-related stroke. The ASRs increased with age, peaking generally over 85 years. Males, the Central African region, and Guinea-Bissau showed higher stroke burdens Intracerebral hemorrhage was the most lethal subtype, with an ASR of 11.69 (95% UI 8.94-14.69) for deaths and 276.93 (95% UI 212.21-344.36) for DALYs. From 1990 to 2021, the crude number of deaths and DALYs increased by 13.4% and 6.3%, respectively, for the global stroke burden but showed a declining trend when age-standardized. Most GBD regions in Asia and Africa experienced an increasing stroke burden linked to air pollution, while Europe and America showed a decreasing trend. Predictions indicated a gradual reduction in ASRs, with higher rates in males from 2020 to 2040. CONCLUSIONS The global stroke burden associated with air pollution remained significant despite a decreasing trend until 2021. Although future predictions suggested a reduction, the crude counts for stroke burden remained substantial, with significant regional disparities. This warranted the implementation of public health policies and ongoing efforts.
Collapse
Affiliation(s)
- Yu-Xiang Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wen Zhang
- Department of Neurosurgery, Qingyang People's Hospital, Qingyang, 745000, China
| | - Wei Li
- Department of Neurosurgery, The People's Hospital of Leshan Central District, Leshan, 614000, China
| | - Yong-Jie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hong-Qi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Arrieta O, Arroyo-Hernández M, Soberanis-Piña PD, Viola L, Del Re M, Russo A, de Miguel-Perez D, Cardona AF, Rolfo C. Facing an un-met need in lung cancer screening: The never smokers. Crit Rev Oncol Hematol 2024; 202:104436. [PMID: 38977146 DOI: 10.1016/j.critrevonc.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide and the second most common cancer in both men and women. In addition to smoking, other risk factors, such as environmental tobacco smoke, air pollution, biomass combustion, radon gas, occupational exposure, lung disease, family history of cancer, geographic variability, and genetic factors, play an essential role in developing LC. Current screening guidelines and eligibility criteria have limited efficacy in identifying LC cases (50 %), as most screening programs primarily target subjects with a smoking history as the leading risk factor. Implementing LC screening programs in people who have never smoked (PNS) can significantly impact cancer-specific survival and early disease detection. However, the available evidence regarding the feasibility and effectiveness of such programs is limited. Therefore, further research on LC screening in PNS is warranted to determine the necessary techniques for accurately identifying individuals who should be included in screening programs.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico.
| | | | | | - Lucia Viola
- Thoracic Oncology Unit, Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Marzia Del Re
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Alessandro Russo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Andrés F Cardona
- Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center 1/ Foundation for Clinical and Applied Cancer Research (FICMAC)/ Molecular Oncology and Biology Systems Research Group (Fox‑G), Universidad El Bosque, Bogotá, Colombia
| | - Christian Rolfo
- Center for Thoracic Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA.
| |
Collapse
|
5
|
Ndlovu N, Nkeh-Chungag BN. Impact of Indoor Air Pollutants on the Cardiovascular Health Outcomes of Older Adults: Systematic Review. Clin Interv Aging 2024; 19:1629-1639. [PMID: 39372166 PMCID: PMC11453128 DOI: 10.2147/cia.s480054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Indoor air pollution accounts for approximately 3.8 million inopportune deaths annually at global level. Due to spending more time indoors, children and older adults are especially susceptible to the health risks of indoor air pollution. This review seeks to summarise existing knowledge on the cardiovascular health effects of three common indoor air pollutants, namely carbon monoxide (CO), particulate matter (PM2.5 and PM10), and Nitrogen dioxide (NO2), focusing on older adults. We systematically reviewed the literature (PROSPERO CRD42024479220) on PubMed, Google Scholar, Scopus, Web of Science and Embase. The search yielded 20,914 records. Two independent reviewers screened the articles using titles, abstracts, and full-length articles written in English. Upon a detailed assessment of all the records, the review considered 38 full-length articles. Several studies reported mortality, myocardial infarction, stroke, increased hospitalisation and increased emergency room visits due to exposure to indoor air pollution. A few studies reported arrhythmias, hypertension and Ischaemic heart disease due to exposure to indoor air pollutants. The increased mortality, morbidity, hospitalization, and emergency rooms visits resulting from indoor air pollution associated CVDs makes indoor air pollution a health risk for older adults. There is, therefore, a need to synthesize information on studies relate d to how the selected indoor air pollutants affected the cardiovascular health of older adults.
Collapse
Affiliation(s)
- Nomagugu Ndlovu
- Department of Biological and Environmental Sciences, Walter Sisulu University, Mthatha, South Africa
| | | |
Collapse
|
6
|
Mabeleng K, Rathebe PC, Masekameni MD. A cross-sectional study on domestic use of biomass fuel and the prevalence of respiratory illnesses in a rural community in Thaba-Tseka district of Lesotho. Heliyon 2024; 10:e36628. [PMID: 39263078 PMCID: PMC11386013 DOI: 10.1016/j.heliyon.2024.e36628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
The domestic utilization of biomass fuel for purposes such as cooking, space heating, and water heating has been linked to a number of respiratory ailments, particularly when burned inefficiently. However, there is an existing knowledge gap on the impact of this practice on the health of Basotho. This study aims to explore the impact of biomass fuels use on the prevalence of respiratory illnesses among residents of two rural communities in Thaba-Tseka. A quantitative, cross-sectional design was adopted, using a structured questionnaire, to assess the correlation between biomass fuel use and the prevalence of respiratory symptoms and diseases. Data were collected from 326 randomly selected individuals aged 18 and above. The major source of fuel energy used was firewood (39.6 %), followed by paraffin (29.1 %) and animal dung (15.6 %). The most prevalent respiratory symptom reported was cough, among 27.6 % of participants (n = 326), followed by sneezing (n = 326, 23.0 %), and fever (n = 326, 17.5 %). The lowest prevalent respiratory disease was pneumonia (0.9 %) while lung cancer was not reported. The reporting of respiratory symptoms and diseases was most prevalent in January. A greater prevalence of cough was reported by participants with a higher level of education (r (5) = 1.746, p = 0.008). More male participants reported to have tuberculosis (7.8 %) compared to females (3 %) (r (1) = 3.809, p = 0.051). Asthma was noted to be more prevalent among high income earners (r (3) = 8.169, p = 0.043) and those reported to have an employment (r (1) = 4.277, p = 0.039). Surprisingly, there was no association between respiratory diseases and symptoms, and the type of domestic fuel used. In the rural communities of Thaba-Tseka, about 4 in 10 Basotho rural communities, relied on firewood for cooking, space heating and water heating. Respiratory symptoms and diseases were observed mostly in the month of January. Several factors, including education level, marital status, gender, and income level, were significantly associated with specific respiratory symptoms and diseases. Targeted public health interventions are urgently needed to mitigate respiratory symptoms and diseases in the rural communities of Lesotho. More focus should be directed to health behavioral change and provision of improved stoves for exposure reduction of biomass emissions.
Collapse
Affiliation(s)
- Kekeletso Mabeleng
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Phoka C Rathebe
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, South Africa
| | - Masilu Daniel Masekameni
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, South Africa
- Developmental Studies, School of Social Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
7
|
Luo J, Zhao D, Gao T, Wang X, Wang X, Chai S, Li J, Zhou C. The mediating effect of sleep quality on solid cooking fuel use and psychological distress among rural older adults: evidence from Shandong, China. BMC Geriatr 2024; 24:750. [PMID: 39256646 PMCID: PMC11385825 DOI: 10.1186/s12877-024-05327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Exposure to indoor air pollution from solid cooking fuel use may increase mental disorders risk through pathways such as oroxidative stress, neuroinflammation, or cerebrovascular damage. However, few studies have explored the underlying mechanism between solid cooking fuel use and psychological distress. The present study aims to investigate the mediating role of sleep quality on the relationship between solid cooking fuel use and psychological distress among older adults in rural Shandong, China. METHODS This study used the cross-sectional data from the second follow-up survey of the Shandong Rural Elderly Health Cohort (SREHC). A total of 3,240 rural older adults were included in the analysis. Logistic regression and the Karlson, Holm, and Breen (KHB) mediation analyses were performed to investigate the relationship between solid cooking fuel use and psychological distress, as well as the mediating role of sleep quality in this association. RESULTS This study found that solid cooking fuel use was significantly and positively associated with psychological distress among older adults in rural Shandong, China (OR = 1.38, 95% CI: 1.12,1.70). Mediation analysis revealed that sleep quality mediated the association between solid cooking fuel use and psychological distress among older adults (β = 0.06, P = 0.011). The mediation effect accounted for 16.18% of the total effect. CONCLUSIONS Our study showed that solid cooking fuel use was associated with psychological distress among rural older adults, and sleep quality mediated this association. Interventions should focus on addressing cooking fuel types and poor sleep quality to reduce psychological distress. In the future, more aggressive environmental protection policies would be needed to lessen the adverse effects of indoor air pollution on the health of older adults in rural China.
Collapse
Affiliation(s)
- Jingjing Luo
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Dan Zhao
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Tingting Gao
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Xuehong Wang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Xueqing Wang
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Shujun Chai
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Jiayan Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China
| | - Chengchao Zhou
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Institute of Health and Elderly Care, Shandong University, Jinan, 250012, China.
- NHC Key Lab of Health Economics and Policy Research, Shandong University), Jinan, 250012, China.
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, NHC Key Lab of Health Economics and Policy Research, Shandong University, 44 Wen-hua-xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
8
|
Hilly JJ, Singh KR, Jagals P, Mani FS, Turagabeci A, Ashworth M, Mataki M, Morawska L, Knibbs LD, Stuetz RM, Dansie AP. Review of scientific research on air quality and environmental health risk and impact for PICTS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173628. [PMID: 38848924 DOI: 10.1016/j.scitotenv.2024.173628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
Air quality (AQ) significantly impacts human health, influenced by both natural phenomena and human activities. In 2021, heightened awareness of AQ's health impacts prompted the revision of the World Health Organization (WHO) guidelines, advocating for stricter pollution standards. However, research on AQ has predominantly focused on high-income countries and densely populated cities, neglecting low- and middle-income countries, particularly Pacific Island Countries, Territories, and States (PICTS). This systematic review compiles existing peer-reviewed literature on AQ research in PICTS to assess the current state of knowledge and emphasize the need for further investigation. A systematic literature search yielded 40 papers from databases including Web of Science, Scopus, and Embase. Among the 26 PICTS, only 6 (Hawai'i, Fiji, Papua New Guinea, New Caledonia, Republic of Marshall Islands, and Pacific) have been subject to AQ-related research, with 4 considering the World Health Organization (WHO) parameters and 26 addressing non-WHO parameters. Analysis reveals AQ parameters often exceed 2021 WHO guidelines for PM2.5, PM10, SO2, and CO, raising concerns among regional governments. Studies primarily focused on urban, agricultural, rural, and open ocean areas, with 15 based on primary data and 14 on both primary and secondary sources. Research interests and funding sources dictated the methods used, with a predominant focus on environmental risks over social, economic, and technological impacts. Although some papers addressed health implications, further efforts are needed in this area. This review underscores the urgent need for ongoing AQ monitoring efforts in PICTS to generate spatially and temporally comparable data. By presenting the current state of AQ knowledge, this work lays the foundation for coordinated regional monitoring and informs national policy development.
Collapse
Affiliation(s)
- J J Hilly
- School of Civil and Environmental Engineering, University of New South Wales, Australia; Environmental Health Division, Solomon Islands Ministry of Health and Medical Services, Solomon Islands.
| | - K R Singh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Republic of Korea
| | - P Jagals
- Children's Health and Environmental Program, The University of Queensland, Australia
| | - F S Mani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | - A Turagabeci
- College of Medicine, Nursing & Health science, Fiji National University, Fiji
| | - M Ashworth
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - M Mataki
- Solomon Islands Ministry of Environment, Climate Change, Disaster Management and Meteorology, Solomon Islands
| | - L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Australia
| | - L D Knibbs
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Australia; Public Health Research Analytics and Methods for Evidence, Public Health Unit, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - R M Stuetz
- School of Civil and Environmental Engineering, University of New South Wales, Australia
| | - A P Dansie
- School of Civil and Environmental Engineering, University of New South Wales, Australia
| |
Collapse
|
9
|
Yang S, Zheng X, Hou J, Geng B, Luo L, Zhu C, Liu L, Zhu J. Rural revival: Navigating environmental engineering and technology. ENVIRONMENTAL RESEARCH 2024; 254:119164. [PMID: 38762005 DOI: 10.1016/j.envres.2024.119164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The necessity for global engineering and technological solutions to address rural environmental challenges is paramount, particularly in improving rural waste treatment and infrastructure. This study presents a comprehensive quantitative analysis of 3901 SCI/SSCI and 3818 Chinese CSCD papers, spanning from 1989 to 2021, using tools like Derwent Data Analyzer and VOSviewer. Our key findings reveal a significant evolution in research focus, including a 716.67% increase in global publications from 1995 to 2008 and a 154.76% surge from 2015 to 2021, highlighting a growing research interest with technological hotspots in rural revitalization engineering and agricultural waste recycling. China and the USA are pivotal, contributing 784 and 714 publications respectively. Prominent institutions such as the Chinese Academy of Sciences play a crucial role, particularly in fecal waste treatment technology. These insights advocate for enhanced policy development and practical implementations to foster inclusive and sustainable rural environments globally.
Collapse
Affiliation(s)
- Siyuan Yang
- Beijing Institute of Metrology, Beijing, 100012, China
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liangguo Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liyuan Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Parvizi K, Menya D, Nix E, Mangeni J, Lorenzetti F, Sang E, Anderson de Cuevas R, Tawiah T, Baame M, Betang E, Ronzi S, Twumasi M, Amenga-Etego S, Quansah R, Mbatchou Ngahane BH, Puzzolo E, Asante KP, Pope D, Shupler M. Burden of headaches, eye irritation and respiratory symptoms among females stacking LPG with polluting cooking fuels: Modelling from peri-urban Cameroon, Ghana & Kenya. ENERGY NEXUS 2024; 14:None. [PMID: 38952437 PMCID: PMC11177547 DOI: 10.1016/j.nexus.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/05/2024] [Accepted: 05/10/2024] [Indexed: 07/03/2024]
Abstract
Introduction Liquefied petroleum gas (LPG) is a clean cooking fuel that emits less household air pollution (HAP) than polluting cooking fuels (e.g. charcoal, wood). While switching from polluting fuels to LPG can reduce HAP and improve health, the impact of 'stacking' (concurrent use of polluting fuels and LPG) on adverse health symptoms (e.g. headaches, eye irritation, cough) among female cooks is uncertain. Methods Survey data from the CLEAN-Air(Africa) study was collected on cooking patterns and health symptoms over the last 12 months (cough, wheezing, chest tightness, shortness of breath, eye irritation, headaches) from approximately 400 female primary cooks in each of three peri‑urban communities in sub-Saharan Africa: Mbalmayo, Cameroon; Obuasi, Ghana; and Eldoret, Kenya. Random effects Poisson regression, adjusted for socioeconomic and health-related covariates, assessed the relationship between primary and secondary cooking fuel type and self-reported health symptoms. Results Among 1,147 participants, 10 % (n = 118) exclusively cooked with LPG, 45 % (n = 509) stacked LPG and polluting fuels and 45 % (n = 520) exclusively cooked with polluting fuels. Female cooks stacking LPG and polluting fuels had significantly higher odds of shortness of breath (OR 2.16, 95 %CI:1.04-4.48) compared with those exclusively using LPG. In two communities, headache prevalence was 30 % higher among women stacking LPG with polluting fuels (Mbalmayo:82 %; Eldoret:65 %) compared with those exclusively using LPG (Mbalmayo:53 %; Eldoret:33 %). Women stacking LPG and polluting fuels (OR 2.45, 95 %CI:1.29-4.67) had significantly higher odds of eye irritation than women cooking exclusively with LPG. Second-hand smoke exposure was significantly associated with higher odds of chest tightness (OR 1.92, 95 % CI:1.19-3.11), wheezing (OR 1.76, 95 % CI:1.06-2.91) and cough (OR 1.78, 95 %CI:1.13-2.80). Conclusions In peri‑urban sub-Saharan Africa, women exclusively cooking with LPG had lower odds of several health symptoms than those stacking LPG and polluting fuels. Promoting a complete transition to LPG in these communities may likely generate short-term health benefits for primary cooks.
Collapse
Affiliation(s)
- Kourosh Parvizi
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| | - Diana Menya
- School of Public Health, Moi University, Eldoret, Kenya
| | - Emily Nix
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| | | | - Federico Lorenzetti
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| | - Edna Sang
- School of Public Health, Moi University, Eldoret, Kenya
| | | | | | | | | | - Sara Ronzi
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| | | | | | | | | | - Elisa Puzzolo
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| | | | - Daniel Pope
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| | - Matthew Shupler
- Department of Public Health, Policy and Systems, University of Liverpool, United Kingdom
| |
Collapse
|
11
|
Rufo JC, Annesi-Maesano I, Carreiro-Martins P, Moreira A, Sousa AC, Pastorinho MR, Neuparth N, Taborda-Barata L. Issue 2 - "Update on adverse respiratory effects of indoor air pollution" Part 1): Indoor air pollution and respiratory diseases: A general update and a Portuguese perspective. Pulmonology 2024; 30:378-389. [PMID: 37230882 DOI: 10.1016/j.pulmoe.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE To quantify the impact of different air pollutants on respiratory health based on robust estimates based on international data and to summarise the evidence of associations between indoor exposure to those pollutants and respiratory morbidity in the Portuguese population. RESULTS Several systematic reviews and meta-analyses (MA) at the world level demonstrate the impact of indoor air quality on respiratory health, with indoor particulate matter and gasses exerting a significant effect on the airways. Volatile organic compounds (VOC) have been related to asthma and lung cancer. However, only meta-analyses on biomass use allowed documentation of long-term respiratory effects. While early publications concerning Portuguese-based populations mainly focused on indoor exposure to environmental tobacco smoke, later studies relocated the attention to relevant exposure environments, such as day care buildings, schools, residences and nursing homes. Looking at the pooled effects from the reviewed studies, high levels of carbon dioxide and particulate matter in Portuguese buildings were significantly associated with asthma and wheezing, with VOC and fungi showing a similar effect in some instances. CONCLUSIONS Despite the significant reduction of indoor air pollution effects after the 2008 indoor smoking prohibition in public buildings, studies show that several indoor air parameters are still significantly associated with respiratory health in Portugal. The country shares the worldwide necessity of standardisation of methods and contextual data to increase the reach of epidemiological studies on household air pollution, allowing a weighted evaluation of interventions and policies focused on reducing the associated respiratory morbidity.
Collapse
Affiliation(s)
- J C Rufo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal
| | - I Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - P Carreiro-Martins
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Immunoallergology Service, Dona Estefânia Hospital, Centro Hospitalar e Universitário de Lisboa Central (CHULC), Lisbon, Portugal.
| | - A Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - A C Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, University of Évora, Évora, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - M R Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC) and Department of Medical and Health Sciences, University of Évora, Évora, Portugal
| | - N Neuparth
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Immunoallergology Service, Dona Estefânia Hospital, Centro Hospitalar e Universitário de Lisboa Central (CHULC), Lisbon, Portugal
| | - L Taborda-Barata
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; UBIAir-Clinical & Experimental Lung Centre, University of Beira Interior, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal; CICS-Health Sciences Research Centre, University of Beira Interior, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal; Immunoallergology Service, Centro Hospitalar Universitário Cova da Beira, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal
| |
Collapse
|
12
|
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116429. [PMID: 38718731 DOI: 10.1016/j.ecoenv.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Zhengrui Li
- XiangYa School of Medicine, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology | Hunan Engineering Research Center of Skin Health and Disease | Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Rezaei N, Sharafkhah M, Farahmand Y, Sepanlou SG, Dalvand S, Poustchi H, Sajadi A, Masoudi S, Roshandel G, Khoshnia M, Eslami L, Akhlaghi M, Delavari A. Population attributable fractions of cancer mortality related to indoor air pollution, animal contact, and water source as environmental risk factors: Findings from the Golestan Cohort Study. PLoS One 2024; 19:e0304828. [PMID: 38857263 PMCID: PMC11164345 DOI: 10.1371/journal.pone.0304828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Environmental risk factors are significant contributors to cancer mortality, which are neglected. PURPOSE This study aimed to estimate the population attributable fraction of cancer mortality due to the environmental risk factors. METHODS Golestan cohort study is a population-base cohort on 50045 participants between 40-75 with about 18 years of follow up. We detected 2,196 cancer mortality and applied a multiple Cox model to compute the hazard ratio of environmental risk factor on all cancer and cancer-specific mortality. The population attributable fraction was calculated, accordingly. RESULTS Biomass fuels for cooking, as an indoor air pollution, increased the risk of colorectal, esophageal, gastric cancer, and all-cancer mortality by 84%, 66%, 37%, and 17% respectively. Using gas for cooking, particularly in rural areas, could save 6% [Population Attributable Fraction: 6.36(95%CI: 1.82, 10.70)] of esophageal cancer, 3% [Population Attributable Fraction: 3.43 (0, 7.33)] of gastric cancer, and 6% [Population Attributable Fraction: 6.25 (1.76, 13.63)] of colorectal cancer mortality. Using a healthy tap water source could save 5% [Population Attributable Fraction:5.50(0, 10.93)] of esophageal cancer mortality, particularly in rural areas. There was no significant association between indoor air pollution for heating purposes and animal contact with cancer mortality. CONCLUSION Considering the results of this study, eliminating solid fuel for most daily usage, among the population with specific cancer types, is required to successfully reduce cancer related mortality. Adopting appropriate strategies and interventions by policymakers such as educating the population, allocating resources for improving the healthy environment of the community, and cancer screening policies among susceptible populations could reduce cancer related mortalities.
Collapse
Affiliation(s)
- Negar Rezaei
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Farahmand
- School of Medicine, Terhan University of Medical Sciences, Tehran, Iran
| | - Sadaf G. Sepanlou
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Dalvand
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Liver and Pancreatobiliary Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sajadi
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Masoudi
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Khoshnia
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Layli Eslami
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboube Akhlaghi
- Digestive Disease Research Center (DDRC), Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Delavari
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Demelash Enyew H, Hailu AB, Mereta ST. The effect of chimney fitted improved stove on kitchen fine particulate matter (PM2.5) concentrations in rural Ethiopia: Evidence from a randomized controlled trial. ENVIRONMENTAL RESEARCH 2024; 250:118488. [PMID: 38387494 DOI: 10.1016/j.envres.2024.118488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Millions of Ethiopian people cook with biomass fuels using traditional stoves, releasing harmful pollutants and contributing to a significant public health crisis. Improved stoves offer a potential escape route, but their effectiveness needs close scrutiny. This study delves into the impact of chimney-fitted stoves on kitchen PM2.5 concentrations in rural Ethiopian households. METHOD We conducted a randomized controlled trial with 86 households equally divided (1:1 ratio) between intervention and control groups. The 24-h average kitchen PM2.5 concentrations was measured using Particle and Temperature Sensor (PATS+) at baseline and after intervention. All relevant sociodemographic and cooking related characteristics were collected at baseline and dynamic characteristics were updated during air monitoring visits. Three distinct statistical models, including independent sample t-tests, paired sample t-tests and one-way analysis of variance were used to analyze the data using Statistical Package for the Social Sciences (SPSS) software for Windows (v 24.0). RESULT At baseline, the average 24-h kitchen PM2.5 concentrations were 482 μg/m3 (95% CI: 408, 557) for the control and 405 μg/m3 (95% CI: 318, 492) for the intervention groups. Despite remaining elevated at 449 μg/m3 (95% CI: 401, 496) in the control group, PM2.5 concentrations reduced to 104 μg/m3 (95% CI: 90,118) in the intervention group, indicating a statistically significant difference (t = 6.97, p < 0.001). All three statistical analyses delivered remarkably consistent results, estimating a PM2.5 reductions of 74% with the before-and-after approach, 76% when comparing groups, and 74% for difference in difference analysis. Beyond the overall reduction, homes with primary school completed women, larger kitchens, smaller family size, and those specifically baking Injera (the traditional energy-intensive staple food), witnessed even greater drops in PM2.5 levels. CONCLUSION Pregnant women in our study encountered dangerously high PM2.5 exposures in their kitchens. While the intervention achieved a significant PM2.5 reductions, unfortunately remained above the WHO's safe limit, highlighting the need for further interventions.
Collapse
Affiliation(s)
- Habtamu Demelash Enyew
- Debre Tabor University, College of Health Sciences, Department of Public Health, Ethiopia.
| | - Abebe Beyene Hailu
- Jimma University, Institution of Health, Department of Environmental Health Science and Technology, Ethiopia
| | - Seid Tiku Mereta
- Jimma University, Institution of Health, Department of Environmental Health Science and Technology, Ethiopia
| |
Collapse
|
15
|
Rosario CS, Urrutia-Pereira M, Murrieta-Aguttes M, D’Amato G, Chong-Silva DC, Godoi RHM, Rosario Filho NA. Air pollution and rhinitis. FRONTIERS IN ALLERGY 2024; 5:1387525. [PMID: 38863567 PMCID: PMC11166029 DOI: 10.3389/falgy.2024.1387525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Rhinitis arises from either allergic or non-allergic inflammation of the nasal mucosa, characterized by the infiltration of inflammatory cells into the tissue and nasal secretions, along with structural alterations in the nasal mucosa. The pathways through which air pollution affects rhinitis may diverge from those affecting asthma. This article aims to review the effects of diverse air pollutants on the nose, the correlation of climate change and pollution, and how they aggravate the symptoms of patients with rhinitis.
Collapse
Affiliation(s)
| | | | | | - Gennaro D’Amato
- Division of Respiratory and Allergic Diseases, Department of Chest Diseases, High Speciality Hospital “A. Cardarelli”, Naples, Italy
- Medical School of Specialization in Respiratory Diseases, Federico II University of Naples, Naples, Italy
| | | | | | | |
Collapse
|
16
|
McCarrick S, Delaval MN, Dauter UM, Krais AM, Snigireva A, Abera A, Broberg K, Eriksson AC, Isaxon C, Gliga AR. Toxicity of particles derived from combustion of Ethiopian traditional biomass fuels in human bronchial and macrophage-like cells. Arch Toxicol 2024; 98:1515-1532. [PMID: 38427118 PMCID: PMC10965653 DOI: 10.1007/s00204-024-03692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC-MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1-150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Mathilde N Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Ulrike M Dauter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Asmamaw Abera
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Axel C Eriksson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Khraishah H, Chen Z, Rajagopalan S. Understanding the Cardiovascular and Metabolic Health Effects of Air Pollution in the Context of Cumulative Exposomic Impacts. Circ Res 2024; 134:1083-1097. [PMID: 38662860 PMCID: PMC11253082 DOI: 10.1161/circresaha.124.323673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Collapse
Affiliation(s)
- Haitham Khraishah
- Division of Cardiovascular Medicine, University of Maryland Medical Center, Baltimore (H.K.)
| | - Zhuo Chen
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (Z.C., S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (Z.C., S.R.)
| |
Collapse
|
18
|
Rajagopalan S, Ramaswami A, Bhatnagar A, Brook RD, Fenton M, Gardner C, Neff R, Russell AG, Seto KC, Whitsel LP. Toward Heart-Healthy and Sustainable Cities: A Policy Statement From the American Heart Association. Circulation 2024; 149:e1067-e1089. [PMID: 38436070 DOI: 10.1161/cir.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nearly 56% of the global population lives in cities, with this number expected to increase to 6.6 billion or >70% of the world's population by 2050. Given that cardiometabolic diseases are the leading causes of morbidity and mortality in people living in urban areas, transforming cities and urban provisioning systems (or urban systems) toward health, equity, and economic productivity can enable the dual attainment of climate and health goals. Seven urban provisioning systems that provide food, energy, mobility-connectivity, housing, green infrastructure, water management, and waste management lie at the core of human health, well-being, and sustainability. These provisioning systems transcend city boundaries (eg, demand for food, water, or energy is met by transboundary supply); thus, transforming the entire system is a larger construct than local urban environments. Poorly designed urban provisioning systems are starkly evident worldwide, resulting in unprecedented exposures to adverse cardiometabolic risk factors, including limited physical activity, lack of access to heart-healthy diets, and reduced access to greenery and beneficial social interactions. Transforming urban systems with a cardiometabolic health-first approach could be accomplished through integrated spatial planning, along with addressing current gaps in key urban provisioning systems. Such an approach will help mitigate undesirable environmental exposures and improve cardiovascular and metabolic health while improving planetary health. The purposes of this American Heart Association policy statement are to present a conceptual framework, summarize the evidence base, and outline policy principles for transforming key urban provisioning systems to heart-health and sustainability outcomes.
Collapse
|
19
|
Chen C, Ou Y, Cai A, Huang Y, Feng Y, Nie Z. Household use of solid fuel and sarcopenia among middle-aged and older adults: The China Health and Retirement Longitudinal Study. Maturitas 2024; 182:107925. [PMID: 38325137 DOI: 10.1016/j.maturitas.2024.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Few studies have examined the effects of air pollution on the risk of sarcopenia, especially pollution in indoor settings. We explored the cross-sectional and longitudinal associations of household use of solid fuel for cooking and heating, separately and simultaneously, with risk of sarcopenia. METHODS Cross-sectional and follow-up data from the China Health and Retirement Longitudinal Study were used. Multivariable-adjusted generalized linear models and Cox proportional hazards regression models were performed to estimate the odds ratio and hazard ratio for sarcopenia, respectively. RESULTS 11,494 (median age: 57.0 years; 47.4 % males) and 7483 (median age: 57.0 years; 46.9 % males) participants were included in the cross-sectional and longitudinal study, respectively. After fully adjusting for covariates, including outdoor concentration of particulate matter (PM2.5), both the use of solid fuels for cooking and use for heating were positively associated with incident sarcopenia in the longitudinal analyses, with hazard ratios (95 % confidence interval) of 1.56 (1.28-1.89) and 1.26 (1.04-1.52), respectively. Moreover, significant multiplicative and/or additive interactions were observed between age, smoking and cooking with solid fuel and risk of sarcopenia (all P for interaction <0.05). Similar results were found in the cross-sectional analyses. CONCLUSIONS Household use of solid fuel was significantly associated with a higher risk of sarcopenia, while ageing and smoking had synergetic effects with burning solid fuels on the risk of sarcopenia. Our results highlight the importance of taking multi-pronged measures with respect to both air pollution and healthy lifestyle to prevent sarcopenia and promote healthy ageing.
Collapse
Affiliation(s)
- Chaolei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yanqiu Ou
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Anping Cai
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuqing Huang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingqing Feng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Zhiqiang Nie
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Global Health Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
20
|
Vicente ED, Calvo AI, Sainnokhoi TA, Kováts N, de la Campa AS, de la Rosa J, Oduber F, Nunes T, Fraile R, Tomé M, Alves CA. Indoor PM from residential coal combustion: Levels, chemical composition, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170598. [PMID: 38340837 DOI: 10.1016/j.scitotenv.2024.170598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Indoor air quality is crucial for human health due to the significant time people spend at home, and it is mainly affected by internal sources such as solid fuel combustion for heating. This study investigated the indoor air quality and health implications associated with residential coal burning covering gaseous pollutants (CO, CO2 and total volatile organic compounds), particulate matter, and toxicity. The PM10 chemical composition was obtained by ICP-MS/OES (elements), ion chromatography (water-soluble ions) and thermal-optical analysis (organic and elemental carbon). During coal combustion, PM10 levels were higher (up to 8.8 times) than background levels and the indoor-to-outdoor ratios were, on average, greater than unity, confirming the existence of a significant indoor source. The chemical characterisation of PM10 revealed increased concentrations of organic carbon and elemental carbon during coal combustion as well as arsenic, cadmium and lead. Carcinogenic risks associated with exposure to arsenic exceeded safety thresholds. Indoor air quality fluctuated during the study, with varying toxicity levels assessed using the Aliivibrio fischeri bioluminescence inhibition assay. These findings underscore the importance of mitigating indoor air pollution associated with coal burning and highlight the potential health risks from long-term exposure. Effective interventions are needed to improve indoor air quality and reduce health risks in coal-burning households.
Collapse
Affiliation(s)
- Estela D Vicente
- Department of Physics, University of León, 24071 León, Spain; Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana I Calvo
- Department of Physics, University of León, 24071 León, Spain
| | - Tsend-Ayush Sainnokhoi
- Centre for Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Nora Kováts
- Centre for Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Ana Sánchez de la Campa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071 Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071 Huelva, Spain
| | - Jesús de la Rosa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071 Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071 Huelva, Spain
| | - Fernanda Oduber
- Department of Physics, University of León, 24071 León, Spain
| | - Teresa Nunes
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Fraile
- Department of Physics, University of León, 24071 León, Spain
| | - Mário Tomé
- PROMETHEUS, School of Technology and Management (ESTG), Polytechnic University of Viana do Castelo, 4900-348 Viana do Castelo, Portugal
| | - Célia A Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Li C, Xia Y, Wang L. Household unclean fuel use, indoor pollution and self-rated health: risk assessment of environmental pollution caused by energy poverty from a public health perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18030-18053. [PMID: 37217815 DOI: 10.1007/s11356-023-27676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
The lack of access to clean energy remains one of the major challenges in the global energy sector. Access to clean, sustainable and affordable energy, outlined in the seventh Sustainable Development Goals (SDG 7) of the United Nations, plays a crucial role in advancing health (SDG 3), as unclean cooking energy may endanger people's health by causing air pollution. However, due to endogeneity problems such as reverse causality, the health consequences of environmental pollution caused by unclean fuel usage are difficult to be scientifically and accurately evaluated. This paper aims to systematically assess the health cost of unclean fuel usage based on tackling endogeneity, using the data from Chinese General Social Survey. The ordinary least squares model, ordered regression methods, instrumental variable approach, penalized machine learning methods, placebo test, and mediation models are applied in this research. Analytical results demonstrate that households' unclean fuel use significantly damages people's health. Specifically, the use of dirty fuel leads to an average of about a one-standard-deviation decline in self-rated health, demonstrating its notable negative effect. The findings are robust to a series of robustness and endogeneity tests. The impact mechanism is that unclean fuel usage reduces people's self-rated health through increasing indoor pollution. Meanwhile, the negative effect of dirty fuel use on health has significant heterogeneity among different subgroups. The consequences are more prominent for the vulnerable groups who are female, younger, living in rural areas and older buildings, with lower socio-economic status and uncovered by social security. Therefore, necessary measures should be taken to improve energy infrastructure to make clean cooking energy more affordable and accessible as well as to enhance people's health. Besides, more attention should be paid to the energy needs of the above specific vulnerable groups faced with energy poverty.
Collapse
Affiliation(s)
- Chao Li
- Business School, Shandong University, No. 180 Wenhuaxi Road, Weihai, 264209, China.
| | - Yuxin Xia
- HSBC Business School, Peking University, Shenzhen, China
| | - Lin Wang
- Glorious Sun School of Business and Management, Donghua University, Shanghai, China
| |
Collapse
|
22
|
Balmes JR. Invited Perspective: Longitudinal Follow-up of a Household Air Pollution Trial in a Birth Cohort Yields an Impactful Finding. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:31306. [PMID: 38506829 PMCID: PMC10953815 DOI: 10.1289/ehp14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Affiliation(s)
- John R. Balmes
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
23
|
Halder M, Kasemi N, Roy D, Majumder M. Impact of indoor air pollution from cooking fuel usage and practices on self-reported health among older adults in India: Evidence from LASI. SSM Popul Health 2024; 25:101653. [PMID: 38495804 PMCID: PMC10940171 DOI: 10.1016/j.ssmph.2024.101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
This research aims to explore the impact of various components of Indoor air pollution (IAP) on the Self-Reported Health (SRH) of older adults in India. Using a sample of 27,090 from the Longitudinal Aging Study in India (LASI) Wave-1, a multiple binary logistic regression model was employed to identify specific risk factors associated with poor SRH among older adults. Adjusting for demographic, socioeconomic, and IAP-related components, it was revealed that IAP significantly contributes to poor SRH. The adjusted model indicated that individuals using solid cooking fuels face a higher risk of poor SRH compared to those using liquid fuels. Additionally, individuals not using electric chimneys and cooking near windows are associated with an elevated risk of poor SRH, highlighting the importance of adequate ventilation. Health risk factors, including lung disease, diabetes, cough, and depression, further contribute to poor SRH among older adults exposed to IAP. Overall, the study offers crucial insights for policymakers, healthcare professionals, and environmentalists to improve the well-being of the vulnerable older population in India.
Collapse
Affiliation(s)
| | | | - Doli Roy
- Raiganj University, Raiganj, West Bengal, India
| | | |
Collapse
|
24
|
Shen J, Shi H, Zhang J, Meng X, Zhang C, Kang Y. Household polluting cooking fuels and intrinsic capacity among older population: A harmonized nationwide analysis in India and China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169031. [PMID: 38042204 DOI: 10.1016/j.scitotenv.2023.169031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUNDS Household polluting cooking fuels, as an important changeable behavior, are related to various detrimental health effects among the elderly. There is limited research on the association between polluting cooking fuel use and intrinsic capacity (IC) as an indicator of healthy aging. This study aimed to evaluate the above-mentioned association in India and China, where polluting cooking fuel use is common. METHODS We enrolled 33,803 participants aged ≥60 years from two nationally representative studies: the Longitudinal Aging Study in India and the China Health and Retirement Longitudinal Study. Polluting cooking fuel use was defined as a self-report of using wood, coal, kerosene, crop residue, or dung. IC was measured by five aspects, including locomotion, cognition, vitality, sensory, and psychological capacity. The random-effects mixed linear regression and logistic regression with population weighting were performed. Multivariable-adjusted model and propensity score were used to adjust for potential confounders. RESULTS A total of 47.54 % and 59.32 % of elderly adults reported primary cooking using polluting fuels in India and China, respectively. Using polluting cooking fuels was consistently associated with IC decline; particularly, cognitive capacity was the most susceptible domain. In India, participants using polluting fuels had a 1.062 (95 % confidence interval [CI]: 1.047-1.078) times risk for IC deficits, whereas more prominent results were observed in China (odds ratio [OR]: 2.040, 95 % CI: 1.642-2.533). Such harmful effects might be alleviated by transferring from polluting to clean fuels. Additionally, the duration of polluting fuel use was also positively associated with IC deficits. CONCLUSION This study provided substantial public implications on healthy aging for the elderly population at a global scale, strengthening the importance of health education and policy efforts to accelerate the transition from polluting to clean fuels.
Collapse
Affiliation(s)
- Ji Shen
- Department of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1, Dahua Road, Dongdan, Dongcheng District, Beijing 100730, PR China
| | - Hong Shi
- Department of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1, Dahua Road, Dongdan, Dongcheng District, Beijing 100730, PR China
| | - Jie Zhang
- Department of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1, Dahua Road, Dongdan, Dongcheng District, Beijing 100730, PR China
| | - Xue Meng
- Office of National Clinical Research for Geriatrics, Department of Scientific Research, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1, Dahua Road, Dongdan, Dongcheng District, Beijing 100730, PR China
| | - Chi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No. 1, Dahua Road, Dongdan, Dongcheng District, Beijing 100730, PR China
| | - Yuting Kang
- Office of National Clinical Research for Geriatrics, Department of Scientific Research, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1, Dahua Road, Dongdan, Dongcheng District, Beijing 100730, PR China.
| |
Collapse
|
25
|
Mulat E, Tamiru D, Abate KH. Impact of indoor Air Pollution on the Linear growth of children in Jimma, Ethiopia. BMC Public Health 2024; 24:488. [PMID: 38365615 PMCID: PMC10870508 DOI: 10.1186/s12889-024-17975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Stunting in children is the term for reduced linear growth and development, which is frequently brought on by a persistently inadequate diet, recurrent infections and chronic diseases or poor health conditions. Apart from the classic covariates of stunting, which include diet and illness, the relative contribution of household air pollution to chronic nutrition conditions is least studied. Hence, this study is conducted to investigate the impact of household air pollution on the linear growth of under-five children in Jimma town, Ethiopia. METHODS A prospective cohort study was employed to collect data from 280 under-five children who lived in households using solid fuel (exposed group, n = 140) and clean fuel (unexposed group, n = 140). Height-for-age Z scores were compared in both groups over a 12-month follow-up period. The difference in differences estimators were used for comparison of changes in the height-for-age Z scores from baseline to end line in exposed and non-exposed groups. The independent effect of the use of solid fuels on height-for-age Z scores was analyzed through a multivariable linear regression model. Statistical Significances were declared at P < 0.05 and 95% CI level. RESULTS In an unadjusted model (Model 1), compared with the clean fuel type, the mean difference in the height-for-age Z score of children in households using solid fuel was lower by 0.54 (-0.54, 95% CI -0.97, -0.12, P = 0.011). The beta coefficient remained negative after adjusting for age and sex (Model 2 -0.543, 95% CI -1.373, -0.563) and sociodemographic variables (Model 3: -0.543, 95% CI -1.362, -0.575). In the final model (Model 4), which adjusted for wealth quantile, dietary practice, water, sanitation and hygiene status and household food insecurity access scale, the beta coefficient held the same and significant (beta: -0.543, 95% CI -1.357, -0.579, P < 0.001). Higher HAZ scores were observed among female child (β: = 0.48, 95%CI: 0.28, 0.69), Child with father attended higher education (β: = 0.304 95%CI: 0.304, 95% CI 0.19, 0.41) as compared to male gender and those who did not attend a formal education, respectively. In contrast, child living in households with poor hygiene practices had lower HAZ score (β: -0.226, 95% CI: -0.449, -0.003), P < 0.001. CONCLUSIONS Exposure to indoor air pollution was inversely related to linear growth. Furthermore, sex, educational status and hygiene were found relevant predictors of linear growth. In such a setting, there is a need to step up efforts to design and implement public education campaigns regarding the health risks associated with exposure to household air pollution. Promoting improvements to kitchen ventilation and the use of improved cooking stoves, which will help to mitigate the detrimental effects of indoor air pollution on child growth impairment and its long-term effects.
Collapse
Affiliation(s)
- Elias Mulat
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Dessalegn Tamiru
- Department of Nutrition and Dietetics, Food and Nutrition Research Institute, Jimma University, Jimma, Ethiopia
| | - Kalkidan Hassen Abate
- Department of Nutrition and Dietetics, Food and Nutrition Research Institute, Jimma University, Jimma, Ethiopia
| |
Collapse
|
26
|
Liu Y, Wen H, Bai J, Sun J, Chen J, Yu C. Disease Burden and Prediction Analysis of Tracheal, Bronchus, and Lung Cancer Attributable to Residential Radon, Solid Fuels, and Particulate Matter Pollution Under Different Sociodemographic Transitions From 1990 to 2030. Chest 2024; 165:446-460. [PMID: 37806491 DOI: 10.1016/j.chest.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND This study investigated the impact of epidemiologic and sociodemographic changes in tracheal, bronchus, and lung cancer associated with residential radon, solid fuels, and particulate matter. RESEARCH QUESTION What are the influencing factors of tracheal, bronchus, and lung cancer disease burden attributable to the three pollutants? STUDY DESIGN AND METHODS Data were obtained from the Global Burden of Disease 2019. Age-standardized mortality rate (ASMR) and sociodemographic index (SDI) values were collected from 21 regions, and restricted cubic splines and quantile regression were used to investigate the relationship between ASMR or age-standardized disability-adjusted life years rate (ASDR), and SDI. Additionally, five countries with different SDIs were selected, and the Bayesian age-period-cohort model was used to predict the ASMR trends from 2020 to 2030. RESULTS High SDI quintiles were associated with increased residential radon pollution. The disease burden attributed to these three pollutants was particularly severe in the middle SDI quintiles. Older adults aged 80 to 89 years had the highest age-specific mortality, and the disease burden was greater in male patients than in female patients with these cancers attributed to the pollutants. The highest ASMR attributable to particulate matter when the SDI was 0.7. As the SDI increased, the disease burden caused by radon increased, whereas the burden caused by solid fuels decreased. Projections have indicated a rise in the death burden in patients with this cancer from particulate pollution in China, India, and Uganda over the next decade. INTERPRETATION The disease burden of tracheal, bronchus, and lung cancer attributed to the three pollutants was influenced by SDI, sex, and age. Older men are more susceptible to be affected. More preventive interventions may be required for men at younger ages to reduce the high death burden of older men. However, it is necessary to give due attention to women in specific countries in the future.
Collapse
Affiliation(s)
- Yan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haoyu Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Jianjun Bai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Jinyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Jiahao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Huang B, Hua J, Liu S, Wang X, Sun Z, Bai R, Dong W. Temporal trends in disease burden and attributable risk factors for tracheal, bronchus, and lung cancer in Nepal, 1990-2019. Cancer Epidemiol 2024; 88:102497. [PMID: 38007840 DOI: 10.1016/j.canep.2023.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Tracheal, bronchus, and lung (TBL) cancer is one of the most common cancers in Nepal. The aim of this study was to analyze the changing disease burden and risk factors for TBL cancer in Nepal from 1990 to 2019. METHODS TBL cancer burden data were obtained from the Global Burden of Disease Study 2019. A decomposition analysis was used to explore the impact of changes in population size, population age structure, age-specific prevalence, and disease severity on long-term trends of the TBL cancer burden in Nepal. RESULTS In 2019, TBL cancer resulted in the loss of 45.2 thousand (95% uncertainty interval [UI]: 32.3-59.2 thousand) disability-adjusted life years (DALYs) in Nepal, with the age-standardized incidence and prevalence rates increasing by 12.7% (95% UI: -21.0 to 63.9%) and 12.8% (95% UI: -21.1 to 62.0%), respectively, compared with 1990. The proportion of DALYs due to TBL cancer increased significantly among people aged 70 years and older from 1990 to 2019. However, the proportion of DALYs due to TBL cancer still dominated among males and females aged 50-69 years. Population growth, population aging, and increased age-specific prevalence led to an increased disease burden of TBL cancer, while disease severity led to a decreased burden. In 2019, smoking remained the major risk factor for TBL cancer in Nepal, while ambient particulate matter pollution exhibited the most significant rise. CONCLUSIONS The disease burden of TBL cancer in Nepal has continued to increase over the past three decades, and given the continuing population growth and aging process, TBL cancer is likely to have a considerable impact on health in Nepal in the future. There is a need to further establish effective TBL cancer prevention and control policies.
Collapse
Affiliation(s)
- Binfang Huang
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinchao Hua
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanshan Liu
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Wang
- Department of Science and Technology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhonghe Sun
- Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Ruhai Bai
- School of Public Affairs, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wanyue Dong
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
28
|
Rahman MM, Franklin M, Jabin N, Sharna TI, Nower N, Alderete TL, Mhawish A, Ahmed A, Quaiyum MA, Salam MT, Islam T. Assessing household fine particulate matter (PM 2.5) through measurement and modeling in the Bangladesh cook stove pregnancy cohort study (CSPCS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122568. [PMID: 37717899 DOI: 10.1016/j.envpol.2023.122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Biomass fuel burning is a significant contributor of household fine particulate matter (PM2.5) in the low to middle income countries (LMIC) and assessing PM2.5 levels is essential to investigate exposure-related health effects such as pregnancy outcomes and acute lower respiratory infection in infants. However, measuring household PM2.5 requires significant investments of labor, resources, and time, which limits the ability to conduct health effects studies. It is therefore imperative to leverage lower-cost measurement techniques to develop exposure models coupled with survey information about housing characteristics. Between April 2017 and March 2018, we continuously sampled PM2.5 in three seasonal waves for approximately 48-h (range 46 to 52-h) in 74 rural and semi-urban households among the participants of the Bangladesh Cook Stove Pregnancy Cohort Study (CSPCS). Measurements were taken simultaneously in the kitchen, bedroom, and open space within the household. Structured questionnaires captured household-level information related to the sources of air pollution. With data from two waves, we fit multivariate mixed effect models to estimate 24-h average, cooking time average, daytime and nighttime average PM2.5 in each of the household locations. Households using biomass cookstoves had significantly higher PM2.5 concentrations than those using electricity/liquefied petroleum gas (626 μg/m3 vs. 213 μg/m3). Exposure model performances showed 10-fold cross validated R2 ranging from 0.52 to 0.76 with excellent agreement in independent tests against measured PM2.5 from the third wave of monitoring and ambient PM2.5 from a separate satellite-based model (correlation coefficient, r = 0.82). Significant predictors of household PM2.5 included ambient PM2.5, season, and types of fuel used for cooking. This study demonstrates that we can predict household PM2.5 with moderate to high confidence using ambient PM2.5 and household characteristics. Our results present a framework for estimating household PM2.5 exposures in LMICs, which are often understudied and underrepresented due to resource limitations.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Population and Public Health Sciences, University of Southern California, USA; Department of Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, USA.
| | - Meredith Franklin
- Department of Population and Public Health Sciences, University of Southern California, USA; Department of Statistical Sciences and School of the Environment, University of Toronto, Canada
| | - Nusrat Jabin
- Department of Population and Public Health Sciences, University of Southern California, USA
| | - Tasnia Ishaque Sharna
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, (icddr,B), Bangladesh
| | - Noshin Nower
- Department of Statistical Sciences and School of the Environment, University of Toronto, Canada
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Alaa Mhawish
- Sand and Dust Storm Warning Regional Center, National Center for Meteorology, Jeddah, KSA
| | - Anisuddin Ahmed
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, (icddr,B), Bangladesh
| | - M A Quaiyum
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, (icddr,B), Bangladesh
| | - Muhammad T Salam
- Department of Population and Public Health Sciences, University of Southern California, USA; Department of Psychiatry, Kern Medical, Bakersfield, CA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, USA
| |
Collapse
|
29
|
Hou X, Li R, Wang J, Wei D, Yang X, Liao W, Yuchi Y, Liu X, Huo W, Mao Z, Liu J, Wang C, Hou J. Gender-specific associations between mixture of polycyclic aromatic hydrocarbons and telomere length. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9583-9598. [PMID: 37773482 DOI: 10.1007/s10653-023-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Evidence shows the relationships of individual environmental PAHs by their urinary metabolites with relative telomere length (RTL), which may be affected by biological gender differences. Since plasma parent PAHs are not metabolized, it may reflect human exposure to PAHs more realistically in daily life. Thus, exploring joint associations between plasma parent PAHs and RTL is urgent, which may identify the major contributor to its adverse effect. In this study, 2577 participants were obtained from the Henan Rural Cohort. The level of PAHs in blood samples was detected by gas chromatography coupled with tandem mass spectrometry. RTL in blood samples was detected by quantitative polymerase chain reaction. Generalized linear models or quantile g-computation were performed to evaluate the associations between the individual or a mixture of PAHs and RTL. Results from generalized linear models showed that each unit increment in BghiP value corresponded to a 0.098 (95%CI: 0.067, 0.129) increment in RTL for men; each unit increment in BaP, BghiP and Flu value corresponded to a 0.041 (95%CI: 0.014, 0.068), 0.081 (95%CI: 0.055, 0.107) and 0.016 (95%CI: 0.005, 0.027) increment in RTL for women. Results from quantile-g computation revealed that each one-quantile increment in the mixture of 10 PAHs corresponded to a 0.057 (95%CI: 0.021, 0.094) and 0.047 (95%CI: 0.003, 0.091) increment in RTL values of women and men, but these associations were mainly ascribed to three PAHs for women (BaP, Flu and BghiP) and men (BaP, BghiP and Pyr), respectively. Similar results were found in smoking men and cooking women without smoking. Our study found that exposure to 10 PAHs mixture was positively associated with RTL across gender, mainly attributed to Flu, BaP and BghiP, implicating that gender-specific associations may be ascribed to tobacco and cooking smoke pollution. The findings provided clues for effective measures to control PAHs pollutants-related aging disease.Clinical trial registration The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375 .
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaohuan Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junlin Liu
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
30
|
Azanaw J, Melaku MS. Spatial variation and factors associated of solid fuel use in Ethiopia a multilevel and spatial analysis based on EDHS 2016. Sci Rep 2023; 13:20279. [PMID: 37985673 PMCID: PMC10662317 DOI: 10.1038/s41598-023-46897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Cooking and heating using solid fuels, such as dung, wood, agricultural residues, grass, straw, charcoal, and coal, is a main source of household air pollution. This indoor combustion encompasses a diversity of health detrimental pollutants, especially for people from low-income countries like Ethiopia since solid fuels are accessible easily at a lesser cost. Limited studies done showing factors affecting in choosing fuel type and no study, which revealed spatial heterogeneity of solid fuel used based on such nationally representative data. Therefore, this study, aimed at investigating spatial variation and determinants of solid fuel use in Ethiopia. This study was done using the data from the Ethiopian Demographic and Health Survey 2016, a national representative sample (16,650) households were included. Spatial and Multi-level logistic regression analysis was done by considering the DHS data hierarchal nature. Variables in the final model with a p-value < 0.05 were reported as significant predictors of using solid fuel. All analyses were done using ArcGIS V.10.7.1 and STATA V.14 software. The finding of this study revealed that 90.8% (95% CI (87.9%, 91.2%)) of households depend on solid fuel for cooking. Based on the final model ;Male household head (AOR 1.38, 95% CI (1.12-1.71)), age of household head (AOR 1.61, 95% CI (1.20, 2.17)), and 1.49 (OR 1.49, 95% CI (1.12, 1.99)) respectively for the age classes of < 30, and 30-40, education attainment no education (OR 3.14, 95% CI (1.13, 8.71)) and primary education (AOR 2.16, 95% CI (2.78, 5.96), wealth index Poorest (AOR 11.05, 95% CI (5.68, 15.78)), Poorer (OR 5.19, 95% CI (5.43, 13.19)), Middle (OR 3.08, 95% CI (2.44, 8.73)), and Richer (OR 1.30, 95IC (1.07, 13.49)) compared to richest, and not accessibility of electricity (AOR 31.21, 95% CI (35.41, 42.67)), were individual-level factors significantly associated with using solid fuel. Community-level factors like households found at large city (AOR 2.80, 95CI (1.65, 4.77)), small city (AOR 2.58, 95% CI (1.55, 4.32)) town (AOR 4.02, 95% CI (2.46, 6.55)), and countryside (AOR 14.40, 95% CI (6.23, 21.15)) compared households found in capital city, community level media exposure (AOR 6.00, 95% CI (4.61, 7.82)) were statistically predictors in using solid fuel for cooking. This finding revealed that a large proportion of households in Ethiopia heavily depend on biomass, especially wood, for cooking. There was a greater disparity on solid fuel use for cooking in Ethiopia. Implementing major policy interventions should be introduced to reduce solid fuel use for cooking and inequalities in accessing clean fuel in Ethiopia.
Collapse
Affiliation(s)
- Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Mequannent Sharew Melaku
- Department of Health Informatics, Institute of Public Health, College of Medicine & Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
31
|
Hansel NN, Woo H, Koehler K, Gassett A, Paulin LM, Alexis NE, Putcha N, Lorizio W, Fawzy A, Belz D, Sack C, Barr RG, Martinez FJ, Han MK, Woodruff P, Pirozzi C, Paine R, Barjaktarevic I, Cooper CB, Ortega V, Zusman M, Kaufman JD. Indoor Pollution and Lung Function Decline in Current and Former Smokers: SPIROMICS AIR. Am J Respir Crit Care Med 2023; 208:1042-1051. [PMID: 37523421 PMCID: PMC10867935 DOI: 10.1164/rccm.202302-0207oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Rationale: Indoor pollutants have been associated with chronic obstructive pulmonary disease morbidity, but it is unclear whether they contribute to disease progression. Objectives: We aimed to determine whether indoor particulate matter (PM) and nitrogen dioxide (NO2) are associated with lung function decline among current and former smokers. Methods: Of the 2,382 subjects with a history of smoking in SPIROMICS AIR, 1,208 participants had complete information to estimate indoor PM and NO2, using individual-based prediction models, in relation to measured spirometry at two or more clinic visits. We used a three-way interaction model between time, pollutant, and smoking status and assessed the indoor pollutant-associated difference in FEV1 decline separately using a generalized linear mixed model. Measurements and Main Results: Participants had an average rate of FEV1 decline of 60.3 ml/yr for those currently smoking compared with 35.2 ml/yr for those who quit. The association of indoor PM with FEV1 decline differed by smoking status. Among former smokers, every 10 μg/m3 increase in estimated indoor PM was associated with an additional 10 ml/yr decline in FEV1 (P = 0.044). Among current smokers, FEV1 decline did not differ by indoor PM. The results of indoor NO2 suggest trends similar to those for PM ⩽2.5 μm in aerodynamic diameter. Conclusions: Former smokers with chronic obstructive pulmonary disease who live in homes with high estimated PM have accelerated lung function loss, and those in homes with low PM have lung function loss similar to normal aging. In-home PM exposure may contribute to variability in lung function decline in people who quit smoking and may be a modifiable exposure.
Collapse
Affiliation(s)
- Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine and
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine and
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Amanda Gassett
- Department of Environmental and Occupational Health Sciences and
| | - Laura M. Paulin
- Section of Pulmonary and Critical Care, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Hanover, New Hampshire
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Division of Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine and
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine and
| | - Daniel Belz
- Division of Pulmonary and Critical Care Medicine and
| | - Coralynn Sack
- Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - R. Graham Barr
- Division of Pulmonary and Critical Care, Presbyterian Hospital, Columbia University Medical Center, New York, New York
| | - Fernando J. Martinez
- Department of Internal Medicine, Weill Cornell Medical College, New York, New York
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Michigan
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Cheryl Pirozzi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | - Christopher B. Cooper
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California; and
| | - Victor Ortega
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Department of Internal Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Marina Zusman
- Department of Environmental and Occupational Health Sciences and
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences and
| |
Collapse
|
32
|
Vicente ED, Calvo AI, Alves C, Blanco-Alegre C, Candeias C, Rocha F, Sánchez de la Campa A, Fraile R. Residential combustion of coal: Effect of the fuel and combustion stage on emissions. CHEMOSPHERE 2023; 340:139870. [PMID: 37633612 DOI: 10.1016/j.chemosphere.2023.139870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Worldwide coal is still used for household heating purposes not only because it is available and cheap but also due to behavioural issues. Regional variability in fuels and combustion appliances make accurate emission estimates from this source hard to achieve. In the present study, gaseous (CO, VOCs, SO2 and NOX) and particulate matter (TSP) emission factors (EFs) were determined for Spanish household coal combustion covering three commercial coals and distinct combustion stages and mimicking usage patterns in real households. TSP samples were analysed to determine water-soluble inorganic ions, metal(loid)s, and organic and elemental carbon (OC and EC). Additionally, the morphology of the emitted particles was also characterised. CO (3.43-169 g kg-1), NOX (1.29-6.00 g kg-1) and SO2 (8.96-22.3 g kg-1) EFs showed no trend regarding the combustion stage or coal type tested. On the other hand, VOC, TSP and EC EFs were higher for the ignition/devolatilisation combustion stage, regardless of the fuel tested. TSP EFs (0.085-1.08 g kg-1) increased with increasing coal volatile matter while the opposite trend was recorded for VOC emissions (0.045-3.39 gC kg-1). TSP carbonaceous matter was dominated by EC while OC represented a small fraction of the particulate mass emitted (less than 8 %wt.). Inorganic compounds composed an important fraction of the TSP samples. Sulphate particulate mass fractions (8.66-22.9 %wt.) appeared to increase with coal S-content. Coal combustion released particles with diverse morphologies, including silicate-rich particles, ferro- and glassy-spheres. This study provides novel emission factors to update emission inventories of residential coal combustion. Additionally, detailed chemical profiles were obtained for source apportionment.
Collapse
Affiliation(s)
- E D Vicente
- Department of Physics, University of León, León, 24071, Spain; Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, Portugal.
| | - A I Calvo
- Department of Physics, University of León, León, 24071, Spain
| | - C Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, 3810-193, Portugal
| | - C Blanco-Alegre
- Department of Physics, University of León, León, 24071, Spain
| | - C Candeias
- Department of Geosciences, Geobiosciences, Geotechnologies and Geoengineering Research Centre (GeoBioTec), University of Aveiro, 3810-193, Aveiro, Portugal
| | - F Rocha
- Department of Geosciences, Geobiosciences, Geotechnologies and Geoengineering Research Centre (GeoBioTec), University of Aveiro, 3810-193, Aveiro, Portugal
| | - A Sánchez de la Campa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071, Huelva, Spain; Department of Earth Science, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, 21071, Huelva, Spain
| | - R Fraile
- Department of Physics, University of León, León, 24071, Spain
| |
Collapse
|
33
|
Leng S, Jin Y, Vitiello MV, Zhang Y, Ren R, Lu L, Shi J, Tang X. The association between polluted fuel use and self-reported insomnia symptoms among middle-aged and elderly Indian adults: a cross-sectional study based on LASI, wave 1. BMC Public Health 2023; 23:1953. [PMID: 37814252 PMCID: PMC10561501 DOI: 10.1186/s12889-023-16836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Insomnia predisposes the aging population to reduced quality of life and poor mental and physical health. Evidence of the association between polluted fuel use and insomnia symptoms is limited and is non-existent for the Indian population. Our study aimed to explore the link between polluted fuel use and insomnia symptoms in middle-aged and older (≥ 45 years) Indian populations. METHODS We utilized data from nationally representative Longitudinal Aging Study in India (LASI) Wave 1. Participants with complete information on fuel use, insomnia symptoms, and covariates were included. Insomnia symptoms were indicated by the presence of at least one of three symptoms: difficulty in initiating sleep (DIS), difficulty in maintaining sleep (DMS), or early morning awakening (EMA), ≥ 5 times/week. Survey-weighted multivariable logistic regression analyses were conducted to evaluate the association between polluted fuel use and insomnia symptoms. We also assessed the interaction of association in subgroups of age, gender, BMI, drinking, and smoking status. RESULTS Sixty thousand five hundred fifteen participants met the eligibility criteria. Twenty-eight thousand two hundred thirty-six (weighted percentage 48.04%) used polluted fuel and 5461 (weighted percentage 9.90%) reported insomnia symptoms. After full adjustment, polluted fuel use was associated with insomnia symptoms (OR 1.16; 95%CI 1.08-1.24) and was linked with DIS, DMS, and EMA (OR 1.14; 95%CI 1.05-1.24, OR 1.12; 95%CI 1.03-1.22, and OR 1.15; 95%CI 1.06-1.25, respectively). No significant interactions for polluted fuel use and insomnia symptoms were observed for analyses stratified by age, sex, BMI, drinking, or smoking. CONCLUSIONS Polluted fuel use was positively related to insomnia symptoms among middle-aged and older Indians. Suggestions are offered within this article for further studies to confirm our results, to explore underlying mechanisms, and to inform intervention strategies.
Collapse
Affiliation(s)
- Siqi Leng
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Yuming Jin
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Rong Ren
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China.
| |
Collapse
|
34
|
Sun S, Zhang C, Zhang Q, Li C, Huang D, Ding R, Cao J, Hao J. Role of ROS-mediated PERK/ATF4 signaling activation in extracorporeal tube formation injury of human umbilical vein endothelial cells induced by cooking oil fume PM 2.5 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115332. [PMID: 37611476 DOI: 10.1016/j.ecoenv.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Cooking oil fume-derived PM2.5 (COF-PM2.5) is a major source of indoor air contamination in China, which has been demonstrated to be a hazard factor of cardiovascular and cerebrovascular diseases. This study aimed to investigate the role of ROS-mediated PERK/ATF4 signaling activation in COF-PM2.5-inhibited extracorporeal tube formation in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with 100 μg/mL COF-PM2.5 at different times, with or without 100 nM PERK activity inhibitor GSK2606414 (GSK) or 200 μM antioxidant N-acetylcysteine (NAC) pretreatment. Our results showed that COF-PM2.5 exposure can inhibit extracorporeal tube formation and down-regulate VEGFR2 expression in HUVECs. Furthermore, our data indicated that COF-PM2.5 exposure can activate the PERK/ATF4 signaling in HUVECs. Mechanistically, pretreatment with GSK interdicted PERK/ATF4 signaling, thereby reversing COF-PM2.5-downregulated VEGFR2 protein expression in HUVECs. Furthermore, NAC reversed VEGFR2 expression downregulated induced by COF-PM2.5 by inhibiting the upregulation of intracellular ROS levels and PERK/ATF4 signaling in HUVECs. As above, COF-PM2.5 exposure could induce ROS release from HUVECs, which in turn activate the endoplasmic reticulum PERK/ATF4 signaling and inhibit tube formation of HUVECs.
Collapse
Affiliation(s)
- Shu Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chao Zhang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qi Zhang
- Hefei Institutes of Physical Science Chinese Academy of Sciences, No 350 Shushanhu Road, Hefei 230001, Anhui, China
| | - Changlian Li
- Department of Environmental Health, Hefei Center for Disease Control and Prevention, No 86 Lu'an Road, Hefei 230061, Anhui, China
| | - Dan Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jiyu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
35
|
Maleki Z, Hassanzadeh J, Méndez-Arriaga F, Ghaem H. Environmental factors and incidence of thyroid cancer in the world (1990-2019): an ecological study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100072-100077. [PMID: 37624503 DOI: 10.1007/s11356-023-29435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Environmental risk factors such as presence of pollutants in air as well as the combustion of fossil fuels or carbon as a cooking habit in closed environments inside houses affect thyroid hormonal homeostasis and diseases. This study aimed to estimate the association between environmental risk factors and the incidence of thyroid cancer worldwide from 1990 to 2019 including particulate pollutants coming from fossil fuels employed in closed environments. Data on the incidence of thyroid cancer and some environmental risk factors were extracted from the Global Cancer Observatory (GLOBOCAN) for 204 countries and territories from 1990 to 2019. Pearson's correlation coefficient was used to determine the correlation between the thyroid cancer incidence and environmental risk factors. Finally, a generalized additive model was fitted for modeling. R 3.5.0 was used for analysis of the data. The most relevant results showed that the age-standardized incidence rate (ASIR) of thyroid cancer has a positive and significant correlation with environmental air pollution by O3 (r=0.63, P value<0.001), by particulate matter pollution (r=0.23, P value<0.001), and by household PM2.5 air pollution (r=0.52, P value≤0.001). In contrast, the correlation between ASIR and high temperature (T>25.6°C) (r=-0.27, P value<0.001) is negative and significant. The modeling results showed that particulate matter pollution and O3 pollution and household PM2.5 air pollution which originated from solid fuels are risk factors for thyroid cancer. Therefore, more research in this field is necessary in areas with high levels of air pollution at the national and international levels.
Collapse
Affiliation(s)
- Zahra Maleki
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Hassanzadeh
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Haleh Ghaem
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
36
|
DeBoer EM, Morgan WJ, Quiros-Alcala L, Rosenfeld M, Stout JW, Davis SD, Gaffin JM. Defining and Promoting Pediatric Pulmonary Health: Assessing Lung Function and Structure. Pediatrics 2023; 152:e2023062292E. [PMID: 37656029 PMCID: PMC10484309 DOI: 10.1542/peds.2023-062292e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 09/02/2023] Open
Abstract
Lifelong respiratory health is rooted in the structural and functional development of the respiratory system in early life. Exposures and interventions antenatally through childhood can influence lung development into young adulthood, the life stage with the highest achievable lung function. Because early respiratory health sets the stage for adult lung function trajectories and risk of developing chronic obstructive pulmonary disease, understanding how to promote lung health in children will have far reaching personal and population benefits. To achieve this, it is critical to have accurate and precise measures of structural and functional lung development that track throughout life stages. From this foundation, evaluation of environmental, genetic, metabolic, and immune mechanisms involved in healthy lung development can be investigated. These goals require the involvement of general pediatricians, pediatric subspecialists, patients, and researchers to design and implement studies that are broadly generalizable and applicable to otherwise healthy and chronic disease populations. This National Institutes of Health workshop report details the key gaps and opportunities regarding lung function and structure.
Collapse
Affiliation(s)
- Emily M. DeBoer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wayne J. Morgan
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Lesliam Quiros-Alcala
- Johns Hopkins University, Bloomberg School of Public Health and Whiting School of Engineering, Environmental Health and Engineering, Baltimore, Maryland
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - James W. Stout
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Stephanie D. Davis
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Jonathan M. Gaffin
- Division of Pulmonary Medicine, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Ofori EK, Hayford IS, Nyantakyi G, Tergu CT, Opoku-Mensah E. Synerging Sustainable Development Goals-can clean energy (green) deliver UN-SDG geared towards socio-economic-environment objectives in emerging BRICS? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98470-98489. [PMID: 37610538 DOI: 10.1007/s11356-023-29209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
The BRICS nations are often seen as being at the vanguard of the push to implement sustainable energy technologies, even at the household scale, as part of the transition to sustainable societies. Given that the Sustainable Development Goals (SDGs) are interconnected and that achieving one is a good springboard for achieving others, we see the SDGs as having three dimensions: socio-economic-environmental sustainability. However, energy is central to attaining these tenets in the UN-SDG. Therefore, this work aims to use three germane methods-feasible generalized least square (FGLS), fixed effects model, and quantile regression-to discover empirical evidence to back up these statements. When different econometric estimate methods were used, these findings remained reliable. The research also showed that clean energy is essential when determining strategies to achieve environmental sustainability, human development, and foster green economic growth. Thus, investments in green resources and technological innovation promote the country's transition to sustainable development. They also show a substantial beneficial influence of clean and green energy and technology on supporting the main tenet of UN-SDG in BRICS across most quantiles. As a result of these major analytical findings, some relevant policies are proposed to enable the BRICS countries to achieve some of the United Nations Sustainable Development Goals that are closely related to undergoing green energy transition (SDG-7) and achieving environmental sustainability (SDG-13) through the channel of innovation (SDG-9). The study consequently suggests that to combat climate change, promote green economic growth, and assure human development, which will increase the likelihood of the UN-SDGs, investment in clean energy should be given top priority on the BRICS agenda.
Collapse
Affiliation(s)
- Elvis Kwame Ofori
- School of Management Engineering, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Isaac Sam Hayford
- School of Management Engineering, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.
- Department of Accounting, Zhongnan University of Economics and Law, Wuhan, Hubei, China.
| | - George Nyantakyi
- College of Management Science, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Clare Teroviel Tergu
- School of Management Engineering, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Evans Opoku-Mensah
- College of Management Science, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| |
Collapse
|
38
|
Huang WW, Sallah-Ud-Din R, Dlamini WN, Berekute AK, Getnet ME, Yu KP. Effectiveness of a covered oil-free cooking process on the abatement of air pollutants from cooking meats. Heliyon 2023; 9:e19531. [PMID: 37809458 PMCID: PMC10558720 DOI: 10.1016/j.heliyon.2023.e19531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Cooking events can generate household air pollutants that deteriorate indoor air quality (IAQ), which poses a threat to human health and well-being. In this study, the emission characteristics and emission factors (EFs) of air pollutants of different meats (beef, lamb, chicken, pork, and fish) cooked by a novel oil-free process and common with-oil processes were investigated. Oil-free cooking tends to emit lower total volatile organic compound (TVOC) levels and fewer submicron smoke particles and can reduce the intake of fat and calories. However, TVOC emissions during oil-free cooking were significantly different, and the lamb EFs were nearly 8 times higher than those during with-oil cooking. The particle-bound polycyclic aromatic hydrocarbon (ƩPPAH) and benzo(a)pyrene-equivalent (ƩBaPeq) EFs during with-oil cooking ranged from 76.1 to 140.5 ng/g and 7.7-12.4 ng/g, respectively, while those during oil-free cooking ranged from 41.0 to 176.6 ng/g and 5.4-47.6 ng/g, respectively. The ƩPPAH EFs of chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Furthermore, the ƩBaPeq EFs of beef, chicken, pork, and fish were lower during oil-free cooking than during cooking with oil. Therefore, it is recommended to use the oil-free method to cook chicken, pork, and fish to reduce ƩPPAH and ƩBaPeq emissions, but not recommended to cook lamb due to the increase of ƩBaPeq emissions. The with-oil uncovered cooking EFs of aldehydes ranged from 3.77 to 22.09 μg/g, and those of oil-free cooking ranged from 4.88 to 19.96 μg/g. The aldehyde EFs were lower during oil-free covered cooking than with-oil uncovered cooking for beef, chicken, and fish. This study provides a better realizing of new cooking approaches for the reduction of cooking-induced emission, but further research on the effects of food composition (moisture and fat) and characteristics is needed.
Collapse
Affiliation(s)
- Wei-Wen Huang
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
| | - Rasham Sallah-Ud-Din
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of International Ph.D. Program in Environmental Sciences and Technology, University System of Taiwan, Taipei, Taiwan(ROC)
| | - Wonder Nathi Dlamini
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of International Ph.D. Program in Environmental Sciences and Technology, University System of Taiwan, Taipei, Taiwan(ROC)
| | - Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | | | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan(ROC)
- Department of International Ph.D. Program in Environmental Sciences and Technology, University System of Taiwan, Taipei, Taiwan(ROC)
| |
Collapse
|
39
|
Habtamu D, Abebe B, Seid T. Health risk perceptions of household air pollution and perceived benefits of improved stoves among pregnant women in rural Ethiopia: a mixed method study. BMJ Open 2023; 13:e072328. [PMID: 37648392 PMCID: PMC10471873 DOI: 10.1136/bmjopen-2023-072328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE Since community perceptions of the risk of biomass smoke and the benefits of improved stoves play a critical role in behaviour change to the uptake and sustainable utilisation of improved stoves, we aimed to assess the level of health risk perception on kitchen smoke and benefits of using improved stoves among pregnant women. DESIGN A community-based cross-sectional mixed method study. SETTING In six kebeles of a low-income rural community of South Gondar Zone, Northwestern Ethiopia. PARTICIPANTS All 455 households with pregnant women aged 18-38 years, in their first-trimester or second-trimester gestation, exclusively use traditional biomass-fuelled or locally modified mud stoves, and the primary cook in her household were included. But completed data were obtained only from 422 households. RESULT From 422 completed data, more than half, 63% (95% CI 58% to 68%) had high-level health risk perception of household air pollution, and nearly three-fourths, 74% (95% CI 70% to 79%) of the respondents perceived that using improved stove had benefits for their families. Participants in the 32-38 years age group, rich in asset index, presence of under-five children, being a member of any women group and large family size were positively associated with high-level health risk perception. Whereas respondents in the 18-24 years age group, presence of under-five children, husbands of primary or higher education, high health risk perception and not happy with the current stove were positively associated with perceived benefits of using an improved stove. CONCLUSION The observed level of health risk perception of biomass smoke and the benefits of using improved stoves may help to adopt effective intervention measures. This study also suggests that for successful intervention, clean cooking programmes and policies must consider many local factors influencing health risk perception and benefits of using improved stoves. TRIAL REGISTRATION NUMBER ACTR202111534227089.
Collapse
Affiliation(s)
| | - Beyene Abebe
- Department of Environmental Health Science and Technology, Jimma University College of Public Health and Medical Sciences, Jimma, Ethiopia
| | - Tiku Seid
- Department of Environmental Health Science and Technology, Jimma University College of Public Health and Medical Sciences, Jimma, Ethiopia
| |
Collapse
|
40
|
Zhang X, Yu S, Zhang F, Zhu S, Zhao G, Zhang X, Li T, Yu B, Zhu W, Li D. Association between traffic-related air pollution and osteoporotic fracture hospitalizations in inland and coastal areas: evidences from the central areas of two cities in Shandong Province, China. Arch Osteoporos 2023; 18:96. [PMID: 37452267 DOI: 10.1007/s11657-023-01308-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Our result showed that short-term exposure to traffic-related air pollutants (TRAPs) might increase the risk of hospitalizations for osteoporotic fractures. It was suggested that government should formulate emission reduction policies to protect the health of citizens. INTRODUCTION As the main source of urban air pollution in China, exhaust emissions of motor vehicles have been linked to adverse health outcomes, but evidence of the relationship between short-term exposure to TRAPs and osteoporotic fractures is still relatively rare. METHODS In this study, a total of 5044 inpatients from an inland city (Jinan) and a coastal city (Qingdao), two cities with developed transportation in Shandong Province, were included. A generalized additive model (GAM) was used to investigate the association between TRAPs and hospitalizations for osteoporotic fractures. The stratified analyses were performed by gender and age. RESULTS Positive associations between TRAPs and osteoporotic fracture hospitalizations were observed. We found that short-term exposure to TRAPs was associated with increased numbers of hospitalizations for osteoporotic fractures. PM2.5 and PM10 were statistically significant associated with hospitalizations for osteoporotic fractures at both single-day and multiday lag structures only in Qingdao, with the strongest associations at lag06 and lag07 [RR=1.0446(95%CI: 1.0018,1.0891) for PM2.5, RR=1.0328(95%CI: 1.0084,1.0578) for PM10]. For NO2 and CO, we found significant associations at lag4 in the single lag structure in Jinan [RR=1.0354 (95%CI: 1.0071, 1.0646) for NO2, RR=1.0014 (95%CI: 1.0002, 1.0025) for CO], while only CO at lag4 was significantly associated with hospitalizations for osteoporotic fractures in Qingdao [1.0038 (1.0012, 1.0063)]. Stratified analyses indicated that the associations were stronger in females and older individuals (65 + years). CONCLUSION This study implied that short-term exposure to TRAPs pollution was associated with an increased risk of hospitalizations for osteoporotic fractures. Female patients and patients aged 65 + years appeared to be more vulnerable to TRAPs, suggesting that poor air quality is a modifiable risk factor for osteoporotic fractures.
Collapse
Affiliation(s)
- Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shengwen Yu
- Department of Orthopedics, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, 266033, China
| | - Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Bo Yu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Dejia Li
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
41
|
Zewdie A, Degefa GH, Donacho DO. Health risk assessment of indoor air quality, sociodemographic and kitchen characteristics on respiratory health among women responsible for cooking in urban settings of Oromia region, Ethiopia: a community-based cross-sectional study. BMJ Open 2023; 13:e067678. [PMID: 37328179 PMCID: PMC10277042 DOI: 10.1136/bmjopen-2022-067678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVES In Ethiopia, where biomass fuel is used by the majority of the population, women who are primarily responsible for cooking are at a higher risk of having respiratory symptoms. However, there is limited information on the respiratory symptoms of exposed women. This study assessed the magnitude of respiratory disease symptoms and associated factors among women responsible for cooking in Mattu and Bedele towns, south-west Ethiopia. METHODS A community-based cross-sectional study was conducted among 420 randomly selected women in urban settings in south-west Ethiopia. Data were collected through face-to-face interviews using a modified version of the American Thoracic Society Respiratory Questionnaire. The data were cleaned, coded and entered into EpiData V.3.1 and exported into SPSS V.22 for analysis. Bivariable and multivariable logistic regression analyses were used to identify factors associated with respiratory symptoms at a value of p<0.05. RESULTS It is found that 34.9% of the study participants have respiratory symptoms (95% CI 30.6% to 39.4%). Unimproved floor (adjusted OR (AOR)=2.4 at 95% CI 1.42 to 4.15), presence of thick black soot in the ceiling (AOR=2.1 at 95% CI 1.2 to 3.6), using fuel wood (AOR=2.3 at 95% CI 1.1 to 4.7), using a traditional stove (AOR=3.37 at 95% CI 1.85 to 6.16), long duration of cooking (AOR=2.52 at 95% CI 1.4 to 4.5) and cooking room without a window (AOR=2.4 at 95% CI 1.5 to 3.9) were significantly associated with women's respiratory symptoms. CONCLUSION More than two in six women who cook had respiratory symptoms. Floor, fuel and stove type, soot deposits in the ceiling, duration of cooking and cooking in a room without a window were the identified factors. Appropriate ventilation, improved floor and stove design and the switch to high-efficiency, low-emission fuels could help to lessen the effects of wood smoke on women's respiratory health.
Collapse
Affiliation(s)
- Asrat Zewdie
- Department of Public Health, College of Health Science, Mattu University, Mattu, Oromia region, Ethiopia
| | - Gutama Haile Degefa
- Department of Environmental Health Science and Technology, Jimma University, Jimma, Ethiopia
| | - Dereje Oljira Donacho
- Department of Health Informatics, College of Health Science, Mattu University, Mattu, Oromia region, Ethiopia
| |
Collapse
|
42
|
Chair SY, Choi KC, Chong MS, Liu T, Chien WT. Household air pollution from solid fuel use and depression among adults in rural China: evidence from the China Kadoorie Biobank data. BMC Public Health 2023; 23:1081. [PMID: 37280568 DOI: 10.1186/s12889-023-16038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Solid fuels are still widely used for cooking in rural China, leading to various health implications. Yet, studies on household air pollution and its impact on depression remain scarce. Using baseline data from the China Kadoorie Biobank (CKB) study, we aimed to investigate the relationship between solid fuel use for cooking and depression among adults in rural China. METHODS Data on exposure to household air pollution from cooking with solid fuels were collected and the Chinese version of the World Health Organization Composite International Diagnostic Interview short-form (CIDI-SF) was used to evaluate the status of major depressive episode. Logistic regression analysis was performed to investigate the association between solid fuel use for cooking and depression. RESULTS Amongst 283,170 participants, 68% of them used solid fuels for cooking. A total of 2,171 (0.8%) participants reported of having a major depressive episode in the past 12 months. Adjusted analysis showed that participants who had exposure to solid fuels used for cooking for up to 20 years, more than 20 to 35 years, and more than 35 years were 1.09 (95% CI: 0.94-1.27), 1.18 (95% CI: 1.01-1.38), and 1.19 (95% CI: 1.01-1.40) times greater odds of having a major depressive episode, respectively, compared with those who had no previous exposure to solid fuels used for cooking. CONCLUSION The findings highlight that longer exposure to solid fuels used for cooking would be associated with increased odds of major depressive episode. In spite of the uncertainty of causal relationship between them, using solid fuels for cooking can lead to undesirable household air pollution. Reducing the use of solid fuels for cooking by promoting the use of clean energy should be encouraged.
Collapse
Affiliation(s)
- Sek Ying Chair
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F, Esther Lee Building, Horse Material Water, Shatin, New Territories, Hong Kong SAR, China
| | - Kai Chow Choi
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F, Esther Lee Building, Horse Material Water, Shatin, New Territories, Hong Kong SAR, China
| | - Mei Sin Chong
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F, Esther Lee Building, Horse Material Water, Shatin, New Territories, Hong Kong SAR, China.
| | - Ting Liu
- School of Nursing, Sun Yat Sen University, Guangzhou, China
| | - Wai Tong Chien
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, 6/F, Esther Lee Building, Horse Material Water, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
43
|
Kumar P, Singh AB, Arora T, Singh S, Singh R. Critical review on emerging health effects associated with the indoor air quality and its sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162163. [PMID: 36781134 DOI: 10.1016/j.scitotenv.2023.162163] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Indoor air quality (IAQ) is one of the fundamental elements affecting people's health and well-being. Currently, there is a lack of awareness among people about the quantification, identification, and possible health effects of IAQ. Airborne pollutants such as volatile organic compounds (VOCs), particulate matter (PM), sulfur dioxide (SO2), carbon monoxide (CO), nitrous oxide (NO), polycyclic aromatic hydrocarbons (PAHs) microbial spores, pollen, allergens, etc. primarily contribute to IAQ deterioration. This review discusses the sources of major indoor air pollutants, molecular toxicity mechanisms, and their effects on cardiovascular, ocular, neurological, women, and foetal health. Additionally, contemporary strategies and sustainable methods for regulating and reducing pollutant concentrations are emphasized, and current initiatives to address and enhance IAQ are explored, along with their unique advantages and potentials. Due to their longer exposure times and particular physical characteristics, women and children are more at risk for poor indoor air quality. By triggering many toxicity mechanisms, including oxidative stress, DNA methylation, epigenetic modifications, and gene activation, indoor air pollution can cause a range of health issues. Low birth weight, acute lower respiratory tract infections, Sick building syndromes (SBS), and early death are more prevalent in exposed residents. On the other hand, the main causes of incapacity and early mortality are lung cancer, chronic obstructive pulmonary disease, and cardiovascular disorders. It's crucial to acknowledge anticipated research needs and implemented efficient interventions and policies to lower health hazards.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India
| | - A B Singh
- Institute of Genomics and Integrative Biology (IGIB), Mall Road Campus, Delhi 07, India
| | - Taruna Arora
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, India; Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 52, India; Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
44
|
Macchi C, Sirtori CR, Corsini A, Mannuccio Mannucci P, Ruscica M. Pollution from fine particulate matter and atherosclerosis: A narrative review. ENVIRONMENT INTERNATIONAL 2023; 175:107923. [PMID: 37119653 DOI: 10.1016/j.envint.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
According to the WHO, the entire global population is exposed to air pollution levels higher than recommended for health preservation. Air pollution is a complex mixture of nano- to micro-sized particles and gaseous components that poses a major global threat to public health. Among the most important air pollutants, causal associations have been established between particulate matter (PM), mainly < 2.5 μm, and cardiovascular diseases (CVD), i.e., hypertension, coronary artery disease, ischemic stroke, congestive heart failure, arrhythmias as well as total cardiovascular mortality. Aim of this narrative review is to describe and critically discuss the proatherogenic effects of PM2.5 that have been attributed to many direct or indirect effects comprising endothelial dysfunction, a chronic low-grade inflammatory state, increased production of reactive oxygen species, mitochondrial dysfunction and activation of metalloproteases, all leading to unstable arterial plaques. Higher concentrations of air pollutants are associated with the presence of vulnerable plaques and plaque ruptures witnessing coronary artery instability. Air pollution is often disregarded as a CVD risk factor, in spite of the fact that it is one of the main modifiable factors relevant for prevention and management of CVD. Thus, not only structural actions should be taken in order to mitigate emissions, but health professionals should also take care to counsel patients on the risks of air pollution.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy.
| |
Collapse
|
45
|
Chen X, Zhou CW, Fu YY, Li YZ, Chen L, Zhang QW, Chen YF. Global, regional, and national burden of chronic respiratory diseases and associated risk factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Front Med (Lausanne) 2023; 10:1066804. [PMID: 37056726 PMCID: PMC10088372 DOI: 10.3389/fmed.2023.1066804] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundThe burden of chronic respiratory diseases has changed over the three decades. This study aims to describe the spatiotemporal trends of prevalence, mortality, and disability-adjusted life years (DALY) due to chronic respiratory diseases (CRDs) worldwide during 1990–2019 using data from the Global Burden of Disease Study 2019 (GBD 2019).MethodsThe prevalence, mortality, and DALY attributable to CRDs and risk factors from 1990 to 2019 were estimated. We also assessed the driving factors and potentiality for improvement with decomposition and frontier analyses, respectively.ResultsIn 2019, 454.56 [95% uncertainty interval (UI): 417.35–499.14] million individuals worldwide had a CRD, showing a 39·8% increase compared with 1990. Deaths due to CRDs were 3.97 (95%UI: 3.58–4.30) million, and DALY in 2019 was 103.53 (95%UI: 94.79–112.27) million. Declines by average annual percent change (AAPC) were observed in age-standardized prevalence rates (ASPR) (0.64% decrease), age-standardized mortality rates (ASMR) (1.92%), and age-standardized DALY rates (ASDR) (1.72%) globally and in 5 socio-demographic index (SDI) regions. Decomposition analyses represented that the increase in overall CRDs DALY was driven by aging and population growth. However, chronic obstructive pulmonary disease (COPD) was the leading driver of increased DALY worldwide. Frontier analyses witnessed significant improvement opportunities at all levels of the development spectrum. Smoking remained a leading risk factor (RF) for mortality and DALY, although it showed a downward trend. Air pollution, a growing factor especially in relatively low SDI regions, deserves our attention.ConclusionOur study clarified that CRDs remain the leading causes of prevalence, mortality, and DALY worldwide, with growth in absolute numbers but declines in several age-standardized estimators since 1990. The estimated contribution of risk factors to mortality and DALY demands the need for urgent measures to improve them.Systematic review registrationhttp://ghdx.healthdata.org/gbd-results-tool.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Wei Zhou
- Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang-Yang Fu
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao-Zhe Li
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Wei Zhang
- NHC Key Laboratory of Digestive Diseases (Renji Hospital, Shanghai Jiaotong University School of Medicine), Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qing-Wei Zhang
| | - Yan-Fan Chen
- Key Laboratory of Heart and Lung, Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Yan-Fan Chen
| |
Collapse
|
46
|
Montuori P, Gioia M, Sorrentino M, Di Duca F, Pennino F, Messineo G, Maccauro ML, Riello S, Trama U, Triassi M, Nardone A. Determinants Analysis Regarding Household Chemical Indoor Pollution. TOXICS 2023; 11:264. [PMID: 36977029 PMCID: PMC10059753 DOI: 10.3390/toxics11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Indoor household pollution is not yet sufficiently studied in the general population. Over 4 million people die prematurely every year due to air pollution in households. This study aimed to propose quantitative data research through the administration of a KAP (Knowledge, Attitudes, and Practices) Survey Questionnaire. This cross-sectional study administered questionnaires to adults from the metropolitan city of Naples (Italy). Three Multiple Linear Regression Analyses (MLRA) were developed, including Knowledge, Attitudes, and Behavior regarding household chemical air pollution and the related risks. One thousand six hundred seventy subjects received a questionnaire to be filled out and collected anonymously. The mean age of the sample was 44.68 years, ranging from 21-78 years. Most of the people interviewed (76.13%) had good attitudes toward house cleaning, and 56.69% stated paying attention to cleaning products. Results of the regression analysis indicated that positive attitudes were significantly higher among subjects who graduated, with older age, male and non-smokers, but they were correlated with lower knowledge. In conclusion, a behavioral and attitudinal program targeted those with knowledge, such as younger subjects with high educational levels, but do not engage in correct practices towards household indoor chemical pollution.
Collapse
Affiliation(s)
- Paolo Montuori
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Mariagiovanna Gioia
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Michele Sorrentino
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Fabiana Di Duca
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Francesca Pennino
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Giuseppe Messineo
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Maria Luisa Maccauro
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Simonetta Riello
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Ugo Trama
- General Directorate of Health, Campania Region, Centro Direzionale Is. C3, 80143 Naples, Italy
| | - Maria Triassi
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| | - Antonio Nardone
- Department of Public Health, University “Federico II”, Via Sergio Pansini n° 5, 80131 Naples, Italy
| |
Collapse
|
47
|
Xu T, Ye X, Lu X, Lan G, Xie M, Huang Z, Wang T, Wu J, Zhan Z, Xie X. Association between solid cooking fuel and cognitive decline: Three nationwide cohort studies in middle-aged and older population. ENVIRONMENT INTERNATIONAL 2023; 173:107803. [PMID: 36805161 DOI: 10.1016/j.envint.2023.107803] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Household solid-fuel burning contributes to indoor air pollution and is linked to poor cognitive function, but how solid cooking fuel use leads to cognitive decline over time is not well elaborated. OBJECTIVE We examine the associations of solid cooking fuel with cognitive function among three nationally representative cohorts. METHODS This study uses data from the 2010-2018 China Family Panel Studies (CFPS), the 2011-2018 China Health and Retirement Longitudinal Study (CHARLS) and the 2003-2015 Mexican Health and Aging Study (MHAS) in adults over the age of 50. Time varying Cox model was conducted to measure the association between cooking fuel types and cognitive decline. Mediation analysis was used to estimate the potential mediation effects on the associations of cooking fuel types with cognitive decline risk. RESULTS Respondents in CFPS, CHARLS, and MHAS relied on solid cooking fuel at baseline approximately 56 %, 51 %, and 12 %, respectively. Using solid fuel was consistently associated with higher risk of cognitive decline in three cohorts (CFPS: HR = 1.300 [95 % CI: 1.201, 1.407], CHARLS: HR = 1.179 [95 % CI: 1.059, 1.312], MHAS: HR = 1.237 [95 % CI: 1.123, 1.362]). Compared to those with persistent solid fuel, persistent clean fuel and change from solid fuel to clean fuel were associated with a lower risk of cognitive decline. Hypertension, diabetes, physical activity, dyslipidemia and high-density lipoprotein cholesterol (HDL-C) may partially mediate the cognitive decline caused by solid fuel use. Of the cognitive decline burden, 18.23 % (95 % CI: 12.21 %, 24.73 %) in CFPS, 8.90 % (95 % CI: 2.93 %, 15.52 %) in CHARLS and 2.92 % (95 % CI: 1.52 %, 4.46 %) in MHAS of cognitive decline cases attributable to solid cooking fuel use. CONCLUSION The use of solid cooking fuel is associated with a higher risk of cognitive decline. It is essential to promote the expanded use of clean fuel to protect cognitive health.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoying Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoli Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Guohui Lan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mengying Xie
- The Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Zelin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tinggui Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jieyu Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhiying Zhan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
48
|
Portengen L, Downward G, Bassig BA, Blechter B, Hu W, Wong JYY, Ning B, Rahman ML, Ji BT, Li J, Yang K, Hosgood HD, Silverman DT, Rothman N, Huang Y, Vermeulen R, Lan Q. Methylated polycyclic aromatic hydrocarbons from household coal use across the life course and risk of lung cancer in a large cohort of 42,420 subjects in Xuanwei, China. ENVIRONMENT INTERNATIONAL 2023; 173:107870. [PMID: 36921559 DOI: 10.1016/j.envint.2023.107870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We previously showed that exposure to 5-methylchrysene (5MC) and other methylated polycyclic aromatic hydrocarbons (PAHs) best explains lung cancer risks in a case-control study among non-smoking women using smoky coal in China. Time-related factors (e.g., age at exposure) and non-linear relations were not explored. OBJECTIVE We investigated the relation between coal-derived air pollutants and lung cancer mortality using data from a large retrospective cohort. METHODS Participants were smoky (bituminous) or smokeless (anthracite) coal users from a cohort of 42,420 subjects from four communes in XuanWei. Follow-up was from 1976 to 2011, during which 4,827 deaths from lung-cancer occurred. Exposures were predicted for 43 different pollutants. Exposure clusters were identified using hierarchical clustering. Cox regression was used to estimate exposure-response relations for 5MC, while effect modification by age at exposure was investigated for cluster prototypes. A Bayesian penalized multi-pollutant model was fitted on a nested case-control sample, with more restricted models fitted to investigate non-linear exposure-response relations. RESULTS We confirmed the strong exposure-response relation for 5MC (Hazard Ratio [95% Confidence Interval] = 2.5 [2.4, 2.6] per standard-deviation (SD)). We identified four pollutant clusters, with all but two PAHs in a single cluster. Exposure to PAHs in the large cluster was associated with a higher lung cancer mortality rate (HR [95%CI] = 2.4 [2.2, 2.6] per SD), while exposure accrued before 18 years of age appeared more important than adulthood exposures. Results from the multi-pollutant model identified anthanthrene (ANT) and benzo(a)chrysene (BaC) as risk factors. 5MC remained strongly associated with lung cancer in models that included ANT and BaC and also benzo(a)pyrene (BaP). CONCLUSION We confirmed the link between PAH exposures and lung cancer in smoky coal users and found exposures before age 18 to be especially important. We found some evidence for the carcinogen 5MC and non-carcinogens ANT and BaC.
Collapse
Affiliation(s)
- Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands.
| | - George Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Bryan A Bassig
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bofu Ning
- Xuanwei Center for Disease Control and Prevention, Xuanwei, Qujing, Yunnan, China
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Sanjiangdadao, Qujing, Yunnan, China
| | - Kaiyun Yang
- Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yunchao Huang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
49
|
Jin X, Wang Y, Wu Y, Liang Y, Li Y, Sun X, Yan S, Mei L, Tao J, Song J, Pan R, Yi W, Cheng J, Yang L, Su H. The increased medical burden associated with frailty is partly attributable to household solid fuel: A nationwide prospective study of middle-aged and older people in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159829. [PMID: 36374752 DOI: 10.1016/j.scitotenv.2022.159829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Frail individuals often face a high medical burden, and household solid fuel use is associated with a range of functional declines or diseases, but evidence on the relationship between household solid fuel and frailty and the resulting medical burden is limited. We aim to investigate the effect of household solid fuel on frailty and further quantify how much of the increased medical burden associated with frailty is attributable to household solid fuel. METHODS The prospective data were from the China Health and Retirement Longitudinal Study, 4685 non-frail participants at baseline were included. Inverse probability weighting was used to balance the covariates between groups. The modified Poisson regression was used to analyze the association of household solid fuel (including baseline and switching across three-wave survey) with frailty, and the generalized linear model was used to analyze the association of frailty with the change in medical burden. Further, the increased medical burden associated with frailty attributable to household solid fuel was quantified. RESULTS Using solid fuel for cooking (RR = 1.29, 95%CI, 1.07-1.57), heating (RR = 1.38, 95%CI, 1.09-1.73), or both (RR = 1.40, 95%CI, 1.05-1.86) had a higher risk of frailty than using clean fuel. In addition, the risk of frailty generally increases with the times of solid fuel use across the three-wave survey. Then, frailty participants had a greater increase in the annual number of hospitalizations (β = 0.11, 95%CI, 0.02-0.19) and annual costs of hospitalizations (β = 2953.35, 95%CI, 1149.87-4756.83) than those non-frailty. Heating coal caused the largest frailty-related increase in the annual number of hospitalizations and annual costs of hospitalizations, with 0.04 and 1195.40, respectively. CONCLUSION The increased medical burden associated with frailty was partly attributable to household solid fuel, which suggested that intervention targeting household solid fuels can delay frailty and thus reduce individual medical burden.
Collapse
Affiliation(s)
- Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yuling Wang
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Junwen Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Linsheng Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
50
|
Liu Y, Ning N, Sun T, Guan H, Liu Z, Yang W, Ma Y. Association between solid fuel use and nonfatal cardiovascular disease among middle-aged and older adults: Findings from The China Health and Retirement Longitudinal Study (CHARLS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159035. [PMID: 36191716 DOI: 10.1016/j.scitotenv.2022.159035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Few studies have been conducted on the association between domestic solid fuel combustion and incident nonfatal cardiovascular disease (CVD). We assessed the prospective association between domestic fuel type and incident nonfatal CVD among Chinese adults aged ≥45 years. METHODS This was a prospective cohort study using data from the China Longitudinal Study of Health and Retirement (CHARLS) that recruited 8803 participants ≥45 years in 2013. Household fuel types were assessed based on self-reports, including solid fuel (coal, crop residue, or wood fuel) and clean fuel (central heating, solar power, natural gas, liquefied petroleum gas, electricity, or marsh gas). Nonfatal CVD was defined as self-reported physician-diagnosed nonfatal CVD. We established Cox proportional hazard regression models with age as the time scale and strata by sex to evaluate the hazard ratios (HRs) and 95 % confidence intervals (95 % CIs). RESULTS After a median follow-up of five years, 970 (11.02 %) nonfatal CVD cases were documented, including 423 (9.96 %) in males and 547 (12.01 %) in females. Participants with exposure to solid fuel for cooking and clean fuel for heating [HR (95 % CI):2.01 (1.36-2.96)], solid fuel for heating and clean fuel for cooking [HR (95 % CI):1.45 (1.06-1.99)], and solid fuel for both heating and cooking [HR (95 % CI):1.43 (1.07-1.92)] had an elevated nonfatal CVD risk compared to users of cleaner fuel for both cooking and heating. Those whom self-reported switching from solid fuels to cleaner fuels for cooking had significantly decreased nonfatal CVD risk [HR (95 % CI):0.76 (0.58-0.99)] than participants who did not switch to cleaner fuels. CONCLUSIONS Exposure to domestic solid fuel burning for cooking or heating is associated with an elevated nonfatal CVD risk. Notably, switching cooking fuels from solid to cleaner fuels is related to a reduced risk of nonfatal CVD.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ning Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Ting Sun
- School of Nursing, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongcai Guan
- School of Public Health, Peking University, Beijing, China
| | - Zuyun Liu
- School of Public Health and the Second Affiliated Hospital, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|